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Abstract

We introduce ENERVERSE, a generative robotics foundation model that constructs
and interprets embodied spaces. ENERVERSE employs a chunk-wise autoregressive
video diffusion framework to predict future embodied spaces from instructions,
enhanced by a sparse context memory for long-term reasoning. To model the 3D
robotics world, we adopt a multi-view video representation, providing rich perspec-
tives to address challenges like motion ambiguity and 3D grounding. Additionally,
ENERVERSE-D, a data engine pipeline combining generative modeling with 4D
Gaussian Splatting, forms a self-reinforcing data loop to reduce the sim-to-real gap.
Leveraging these innovations, ENERVERSE translates 4D world representations
into physical actions via a policy head (ENERVERSE-A), achieving state-of-the-art
performance in both simulation and real-world tasks. For efficiency, ENERVERSE-
A reuses features from the first denoising step and predicts action chunks, achieving
about 280 ms per 8-step action chunk on a single RTX 4090. Further video demos,
dataset samples could be found in our project page.

1 Introduction

Creative Al in vision has achieved significant progress, especially in video generation, where models
produce high-quality videos from human instructions [23,/59]]. This success highlights the model’s
spatiotemporal imagination, enabling accurate forecasting of future frames. Similarly, robotic
manipulation, a fundamental task in embodied Al, needs accurate predictions of future actions based
on language instructions to interact with the physical world. Based on this sharing principle of future
space prediction, one natural strategy is to align robotics action prediction with a video generation
task to leverage video generation models’ imagination capabilities for policy planning. Motivated by
this, recent studies [49} 138, 16, [15]] have conducted preliminary explorations by fine-tuning general
video generation models on robotic manipulation videos to align feature representations with the
robotics domain, and predict physical actions. However, such methods [38] often simply adapt
general-purpose video generation models to embodied tasks, neglecting the substantial gap between
their representation space and the three-dimensional, temporally interconnected robotics environment,
thereby hindering accurate action policy prediction. We do not claim a direct monotonic link between
pixel-level video quality and control success. Rather, we align the latent space to encode 3D,
action-conditioned dynamics so that actions can reliably follow generated trajectories.

To bridge the gap, we propose ENERVERSE, a generative robotics foundation model designed to
construct and interpret the robotics 4D (3D with time) world. In ENERVERSE, we employ an
autoregressive video diffusion framework that iteratively predicts the embodied future space based on
a given instruction. Within this generative paradigm, we define a minimal unit of the future space
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as a ‘chunk’, and the model repeatedly predicts the next chunk to incrementally expand the space.
Additionally, to prevent model collapse and enhance the action planning capabilities, we design a
sparse context memory mechanism during training. Instead of relying on consecutive memory, this
mechanism preserves essential prior content throughout the generation process in a non-redundant
manner, theoretically allowing infinite-length sequence generation. While this design achieves stable
2D embodied video generation, it remains insufficient for 3D understanding.

(a) Multi-View Video Generation

A straightforward solution is di-

rectly extending 2D video generation I
into multi-view video generation and Views

mounting multiple cameras to provide
more 3D cues [12]. However, adding
cameras increases hardware costs, /O
bandwidth requirements, and system
complexity. To circumvent these chal-
lenges, we argue that a strong 3D
generative prior learned during pre-
training can effectively enhance the Reonatruction
single-camera setup. During infer-
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Although the pre-training stage requires substantial multi-camera data, acquiring precisely calibrated
multi-camera observations with corresponding robotic actions is costly and labor-intensive. While
simulators can generate abundant synthetic data, the Sim2Real gap remains a significant challenge.
To address this, we propose ENERVERSE-D, a data engine combining a generative model with 4D
Gaussian Splatting (4DGS). By leveraging the adaptability of the generative model and the spatial
constraints of 4DGS, ENERVERSE-D establishes a data flywheel that narrows the Sim2Real gap.

Building on these designs, ENERVERSE effectively models and interprets the robotic environment in
both 3D space and temporal dimensions. With this generative prior, we can directly translate the 4D
world (3D spatial with temporal information) representation into physical actions via a policy head,
as shown in Fig.[I] allowing the robot to execute task instructions in real-world scenarios. As a result,
ENERVERSE-A attains state-of-the-art performance in both simulation and real-world deployments.

The contributions of this work are as follows: (1) A chunk-wise autoregressive diffusion architecture
with sparse contextual memory capable of long-term grounding. (2) A multi-view diffusion generator
that endows the model with a 3-D spatial prior beneficial under single-camera deployment. (3) A
4DGS-based data flywheel that supplies geometry-consistent multiview training data for robotics.

2 ENERVERSE

ENERVERSE comprises several designs, including a chunk-wise autoregressive generation framework
and the sparse memory design for embodied future space generation. We additionally integrate a
4DGS to construct a data flywheel, referred to as ENERVERSE-D, and a policy head to generate
physical actions, referred as ENERVERSE-A.
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Figure 2: An overview of our chunk-wise autoregressive generation approach and multi-view diffusion
generator block. (a) During training, random clean frames from consecutive sequences are combined
with noisy frames to predict denoised latents. In inference, newly generated denoised frames become
the next clean frames for subsequent steps, iterating until the EoS frame is detected. Only a single
view of the autoregressive process is shown for clarity. (b) In the multi-view diffusion generator block,
observational frames from Camera 7 or Rendered View i + 1 are encoded with a VAE. Ray direction
maps are concatenated with video latents, followed by conv layers and attention mechanisms.

2.1 Next Chunk Diffusion

Chunk-wise Autoregresswe Generation. As shown in Fig. 2] the observed latent sequence is repre-
sented as o} & = [0}, ..., 0] € REXHXWXC ‘encoded by a pre-trained Variational Autoencoder
(VAE). Here, K denotes the number of observed frames, H x W represents the spatial resolution,
C is the number of channels, and ¢ is the denoising step. Similarly, the latent representation of the
rendered image is given by rl T e RIXHXWXC Ror s1mp11c1ty, we treat 7 as a special case of o.
The predicted latent sequence is denoted as 2} M [2},..., 2] € RMXHXWXC The goal is to
develop a video diffusion model that generates these predicted latents condltloned on o ¥ and a
textual prompt ¢, following the conditional probability: pg (2} ch o} 2( Here 0 represents the
parameters of the denoising network, which is defined as €y zt ,c,01 % 1), cis encoded by a
frozen TS encoder and then projected with an MLP. The network is tramed to predlct the ground truth
noise € from the noisy frame targets by optimizing the loss function:

2
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where e is the sampled ground truth noise, and € denotes the learnable parameters. We follow [41]]
to implement the v-prediction. Instead of predicting the noise ¢;, the model predicts v, defined as:
vy = € — 0. Here, ayp = /ay (signal scale) and oy = /1 — ozf (noise scale), consistent with
the forward process equation z; = ayxg + o4€;. After training, the denoised data z, can be derived
from random noise z through iterative denoising.

During inference, the diffusion generator takes both clean and noisy frames as input to produce M
denoised frames. The newly generated frames serve as clean inputs for subsequent iterations, and
this process repeats until detecting a predefined End-of-Sequence (EOS) frame. As the diffusion
generation operates on latent frames, the L1 distance of each frame to the EOS is computed. If this
distance falls below a predefined threshold, generation is terminated. In practice, this threshold-based
EOS detection is highly effective.

Sparse Memory Mechanism. Instead of the conventional approach of using consecutive frames as
the clean frame context for chunk prediction during training, we propose using sparsely sampled
frames as the clean frame context. This approach leverages the redundancy often present in video data,
allowing approximately 80% of frames to be discarded without compromising training effectiveness.
Additionally, the high frame-dropping ratio enhances the model’s robustness, particularly in handling
out-of-distribution (OOD) scenarios such as covariant shift problems commonly encountered in the



robot learning domain. From a representation learning perspective, this randomized sampling strategy
promotes a deeper understanding of chunk prediction, potentially outperforming methods that rely on
continuous frames.

During inference, clean frames are derived from observed or rendered frames and denoised using a
sliding window approach. This technique ensures a smooth transition between observed and generated
frames while improving efficiency and reducing GPU memory consumption.

2.2 4D Embodied Space Generation

Single-view video generation struggles to recover accurate 3D structure and resolve occlusions, which
is critical for embodied manipulation. We therefore extend the next-chunk diffusion model in Sec. 2]
into a multi-view video generator that is conditioned on camera geometry and learns cross-view
consistency end-to-end. Given a task prompt ¢, m-view observations Q. € REXmxHxWx3
with per-view camera intrinsics and extrinsics, we encode each frame into VAE latents and directly
predict future multi-view latents z.y; € RMXmxXHXWXC “aq jllustrated in Fig. 2l To make the
representation view-aware, we compute a per-view ray-direction map that encodes the camera
intrinsics and extrinsics and concatenate it channel-wise with the image latents before the diffusion
backbone, following ray-based conditioning [[7, [40]. Cross-view geometric coherence is modeled
using attention along the view dimension: we reshape features to attend across views at corresponding
spatial locations and apply spatial attention that preserves pixel-to-ray alignment. Temporal attention
is applied along the time dimension to capture scene dynamics. During training, simulator data
provide ground-truth camera parameters; for real-world videos we use estimated extrinsics relative to
the robot base. At inference, we use the available extrinsics; when depth is available, we optionally
depth-warp observed frames to synthesize auxiliary rendered frames that better match the multi-view
training conditions.
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Figure 3: The pipeline for ENERVERSE as a data engine. Observation images from multiple cameras
and rendered images are processed by the multi-view video generator to produce denoised videos.
These videos, along with their camera poses, are used in 4DGS for 4D scene reconstruction. The
reconstructed 3D content is rendered to generate high-precision images. These high-quality rendered
images are iteratively refined and fed back into the pipeline.

Real-World Data Flywheels. To reduce reliance on costly fully calibrated multi-camera capture and
to narrow sim-to-real gaps, we introduce an offline data flywheel, e.g., ENERVERSE-D, that leverages
sparse real observations to bootstrap geometry-consistent multi-view videos and progressively reduce
the gap, as shown in Fig.[3] After pretraining the 4D base model (EnerVerse-G) as above, we fine-tune
it to accept sparse multi-view inputs in the 4D latent space RE XV *TxHxW gpecifically, among m
views, at least n < m robot-mounted cameras provide complete observation sequences; for these
observed views we skip noise injection and use their clean latents as conditioning, while we apply
the standard noisy-to-denoised diffusion to unobserved target views. Given sparse observations (e.g.,
one full video), their camera parameters, and a task prompt, the model produces denoised predictions
for the missing views. We then reconstruct a 4D scene using 4D Gaussian Splatting (4DGS) from
the union of observed and generated multi-view videos and their poses. The 4DGS representation is
rendered to all target views to obtain higher-fidelity, geometry-consistent frames. These renders can
be re-noised and fed back through the multi-view generator, followed by another 4DGS optimization
step, yielding an iterative loop that progressively reduces noise, improves reconstruction accuracy,



and tightens cross-view consistency. As the loop accumulates real multi-view episodes, we further
fine-tune the multi-view generator on the collected data.

2.3 From 4D Embodied Space to Physical Action

We further integrate a policy head into the diffusion generator, enabling the generation of actions after
the extensive pretraining of future space generation. The policy operates on a compact visual latent
E extracted from the middle block of the UNet backbone at the first denoising step (the noisiest step),
which reduces computation while retaining rich task-relevant cues. Visual inputs may be captured
RGB frames or rendered views, as shown in Fig[4} both are encoded by the shared video backbone.
The action head hy is a stack of DiT blocks followed by a linear projection to the action space. We
predict action chunks [58] for temporal consistency. Let a;.p4r—1 € R7*4 denote a chunk of actions
with d = 7 (delta position, rotation, and gripper openness). The denoising model fy estimates clean
actions from noisy inputs using DDPM-style training:

0 k k
Oppyr—1 < fe(C’ Oty Qprptr—15 k) = he (E7 Apptr—15 k)v

where E is the cached visual latent from ENERVERSE-G and k € {1,..., K} is the diffusion step.
The training objective minimizes denoising MSE.

At inference, we compute F once by passing (c, o) through the video diffusion backbone and cache
it across the action denoising steps. The action head then iteratively denoises from a” to a® for
the current chunk. We use per-view, per-frame decoding for visuals, but policy conditioning is
view-aggregated via E/ (mean over spatial dimensions within the UNet middle block). We provide
more details in the Appendix.
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Figure 4: Render View 1 and Render View 2 are generated by rendering from a point cloud recon-
structed from RGB-Image 1 using depth wrapping. The render views correspond to camera views
obtained by rotating the RGB camera view around the Z-axis by £30°.

3 Experiments

To demonstrate the effectiveness of proposed method, we evaluate ENERVERSE in two different
domains, e.g. video generation quality and robotic policy performance.

3.1 Experiment Settings

Training Data: We selected several public datasets characterized by well-defined task logic, including
RT-1 [4]], Taco-Play [39]], ManiSkill [[14], BridgeV1 [46], LanguageTable [27], and RoboTurk [28]]
for pretraining. Furthermore, we constructed a dataset containing multi-view video ground truths
using the Isaac Sim simulator [31]. The detailed dataset statistics could be found in Appendix.
During pretraining , only video frames were utilized for video generation training. For the policy
planning task, fine-tuning with a limited quantity of demonstration data from specific scenarios
proved sufficient to attain state-of-the-art performance. To mitigate domain gaps encountered when
training with heterogeneous data, we employed domain embeddings inspired by [47]. Specifically,
distinct domain embeddings were allocated to each sub-dataset. In subsequent space generation and
policy planning, these embeddings were integrated with the diffusion timestep embeddings prior
to input into the diffusion model. This methodology effectively alleviated conflicts arising from
discrepancies in entities, task types, and visual styles.

Model Details. Our model is conducted based on UNet-based Video Diffusion Models (VDM) [53]],
and can be easily adapted to DiT [32] architectures. And the image decoding occurs per-view and
per-frame. In our experiments on generating embodied future spaces, we identified that chunk size
significantly influences model performance. Comparative analyses utilizing chunk sizes of 1, 4, 8,
and 16 revealed that the model exhibited optimal robustness when employing a chunk size of 8.



Following the methodology outlined in [5], we introduced corruptive noise to the frames within the
memory context. To alleviate degradation in autoregressive generation, the intensity of this noise
was modulated in a cosine-related manner relative to the distance from the current moment. After
pretraining the multiview video generation models, we performed a generation learning with the
action videos to achieve both visual and spatial adaptation. Subsequently, we fine-tuned the action
policy head using action trajectories. Following this, we fine-tune the action policy head using the
action trajectories. The action head adopts the Diffusion Policy (DP) architecture [[10], with a total of
190M parameters. For the DP head’s condition, we utilized features extracted from the middle block
of the UNet during the first denoising step and calculated the mean across the spatial dimensions.
This resulted in a final shape of 7" x C, where T is the video length and C' is the channel number.
Rendered images have a resolution of 512 x 320, and the action head predicts the delta pose. For
ENERVERSE-D, we integrate 4D Gaussian Splatting using the official implementation [50], with
depth-based initialization when available and a deformation depth of 1.

3.2 Comparison Results

Embodied Future Space Generation. Following AVID [38]], we assess video generation quality
utilizing the RT-1 [4] dataset. To create a comparable baseline, we fine-tune DynamicCrafter on the
RT-1 dataset and run inference iteratively with FreeNoise [34] to enable long video generation(DC-
FN). For evaluation, we generate 200 synthetic videos with varied lengths by conditioning the models
on the initial frame and task instructions, subsequently comparing the generated videos against the
ground truth using standard metrics such as PSNR and FVD. However, while these metrics primarily
evaluate visual quality, embodied tasks necessitate additional considerations, including semantic
alignment with instructions, workspace consistency across frames, and motion continuity. To address
these higher-order aspects, we execute a user study involving robotics experts, assessing the generated
videos based on semantic accuracy, frame consistency, and motion continuity.

Method Atomic Task Long Task
PSNR?T FVD] Qualityt Seman.t Consist.1 Continuity? Ability

DC-FN 25.42 445.94 54 97 92 80 X

ENERVERSE 26.1 404.65 59 97 89 90 v

Table 1: Performance comparison between DynamiCrafter (FN) and our proposed approach across
Atomic Task metrics (Quantitative Comparison and User Study) and Long Task ability. The proposed
method outperforms DynamiCrafter (FN) in most metrics, demonstrating its effectiveness in video
generation and task performance.

Tab. [T)illustrates that our method substantially outperforms DynamicCrafter (FN) in both quantitative
and qualitative evaluations. In terms of quantitative metrics, our approach achieves a higher PSNR
and a lower FVD. These findings indicate that our method produces videos of superior visual
quality and enhanced temporal dynamics. In the user study, our method secures a higher quality
score and exceeds DynamicCrafter in motion continuity, which is essential for robotic manipulation
tasks. Although both methods attain equivalent semantic accuracy, this suggests that our approach
effectively preserves instruction alignment while delivering superior overall performance. Moreover,
our method uniquely accommodates long tasks, as evidenced by its successful execution of long-range
manipulation scenarios, whereas DynamicCrafter falters in this domain. We also provide a qualitative
comparison in Fig.[5

Multi-View Generation Consistency. In this section, we qualitatively demonstrate the capability
of ENERVERSE to generate multi-view videos of the same scene while ensuring consistency across
views. Furthermore, each view attains high-quality image generation, thereby highlighting the
robustness of our approach. As shown in Fig.[f] ENERVERSE could generate high-quality multi-view
videos in both simulator and real-world settings.

Robotic Policy Evaluation on LIBERO Following the evaluation protocol in OpenVLA [22], we
evaluate robotic policies using the LIBERO [26] benchmark, which consists of four distinct task
suites: LIBERO-Spatial, LIBERO-Object, LIBERO-Goal, and LIBERO-Long. Each suite contains 10
tasks, each with 50 human demonstrations. For each task suite, a separate policy model is fine-tuned.
We compare our method against five baselines: Diffusion Policy [[10], a direct action learning policy
trained from scratch; Octo [44], a transformer-based policy model fine-tuned on the target dataset;
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Figure 5: Qualitative comparison for single view video generation between ENERVERSE and Dy-
namiCrafter(FN) on RT-1 dataset. Since ENERVERSE predict EOS frame at 42th frame for this task,
we visualize up-to 42th frame sampled from both generated sequence. The sequences generated by
DynamiCrafter(FN) did not maintain the logic and produce many hallucinations as the sequence
grew. In contrast, the sequence generated by ENERVERSE was logically coherent, continuously and
completely generating the future space of the entire task, and accurately predicting the EOS frame.
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Figure 6: Qualitative results for multi view generatlon on LIBERO (left) and real-world manipulation
data (right). The first generated view position is overlapped with a static mounted RGB camera and
others are manually set. The consistency of objects across views is highlighted by a red rectangle.
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OpenVLA, a 7B vision-language-action (VLA) model fine-tuned on the target dataset; MDT [37]],a
diffusion transformer-based policy with an auxiliary MAE loss; MAIL [[19]], a policy model with
Mamba in an encoder-decoder structure. Besides, we provide the results of MAIL with two S-
RGB input with their official implementation. For evaluation, all models are tested across tasks using
50 rollouts per task, with results averaged over three random seeds. Experiments with ENERVERSE-A
are conducted under three setups: a single RGB image, and when RGB-D is available, | RGB image
with 1 rendered view, and 1 RGB image with 2 rendered views, as shown in Fig. E The abbreviations
denote different input modalities: S-RGB for Static RGB, G-RGB for Gripper RGB, S-RGBD for
Static RGB-D, G-RGBD for Gripper RGB-D, P for proprioceptive arm position.

Model Visual Input Spatial Object Goal Long  Avg.
Diffusion Policy S-RGB 78.3 92.5 68.3 50.5 724
Octo S-RGB 78.9 85.7 84.6 51.1 75.1
OpenVLA S-RGB 84.7 88.4 79.2 537 76.5
MDT S-RGB,G-RGB 78.5 87.5 73.5 64.8 76.1
MAIL S-RGB,G-RGB 74.3 90.1 81.8 78.6 81.2
MAIL S-RGB,S-RGB 76.0 90.0 82.0 78.0 81.5
ENERVERSE S-RGB 92.1 93.2 78.1 73.0 84.1
ENERVERSE S-RGBD — RGB with 1 Render 93 95.0 81.0 73.0 85.5
ENERVERSE S-RGBD — RGB with 2 Render 91.2 97.7 85.0 80.0 88.5

Table 2: Evaluation results on the LIBERO benchmark across four task suites.

As shown in Tab. 2] ENERVERSE achieves state-of-the-art performance across the LIBERO bench-
mark, significantly surpassing all baselines. With single S-RGB input, it achieves an average score of
84.1, outperforming strong baselines.



Robotic Policy Evaluation on CALVIN CALVIN [29] is an open-source simulated benchmark
designed for learning long-horizon tasks. It consists of four distinct scenes (A, B, C, and D) and
introduces the ABC—D evaluation protocol, where models are trained on environments A, B, and C
and evaluated on environment D. The primary evaluation metric is the success sequence length, which
measures the ability to complete five consecutive subtasks within a sequence. Notably, CALVIN’s
training data is trajectory-based, whereas inference requires performing sequential tasks without
explicit task transition signals. This discrepancy between training and inference introduces challenges,
as our model relies on memory. Nevertheless, we strictly adhere to the evaluation protocol and do not
reset the memory when a new task begins, making policy inference more demanding. This limitation
does not affect other models, as they do not utilize memory. Despite these challenges and limited
input signals, our model achieves competitive performance, as shown in Table

Method Input 1 2 3 4 5 Avg. Len.
RoboFlamingo [25] S-RGB, G-RGB 824 619 466 33.1 235 247
GR-1 [51] S-RGB, G-RGB, P 854 712 59.6 49.7 40.1 3.06
3D Diffuser [20] S-RGBD, G-RGBD,P 922 78.7 639 512 412 3.27
SUSIE [2] S-RGB 87 69.0 49.0 38.0 26.0 2.69
ENERVERSE S-RGB 90.8 73.0 573 437 356 3.00

Table 3: The comparisons with state-of-the-art approaches on Calvin (ABC — D).

3.3 Further Studies

In this section, we explore several key design choices for ENERVERSE. First, we examine the
significance of the proposed sparse memory mechanism, which plays a critical role in both policy
learning and video generation. Second, we discuss the training strategy utilized in ENERVERSE.
Third, we analyze the alignment between the predicted action spaces and visual spaces through
attention map analysis. Finally, we introduce the real-world experiment setup.

Effectiveness of Sparse Memory Mechanism. We evaluate the effectiveness of our sparse memory
mechanism in both policy learning and video generation. The evaluation is conducted on the LIBERO-
Long task suite, as this suite involves significantly longer task execution steps, requiring the policy to
exhibit strong long-range memory and task reasoning capabilities. The evaluation is performed with
a single visual input. As shown in Tab.[4] the absence of the sparse memory results in significant
performance degradation, with the policy achieving only 30.8 compared to 73 when the sparse
memory mechanism is applied. Similarly, Fig. [7]demonstrates that when the video generator operates
without sparse memory, the model experiences unexpected collapse and fails to recover in out-of-
distribution (OOD) scenarios. In contrast, the sparse memory mechanism ensures robust performance
while also saving computational resources.
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Figure 7: Ablation results for context memory mechanism in video generation. Providing history

information to the generation model with consecutive context (first line) often leads to unexpected
model collapse while the model with sparse memory (second line) shows robust performance and
save mush computing resources.

Training Strategy Analysis. To analyze the impact of different training strategies on robotic policy
learning, we trained four robotic policies on the LIBERO-Spatial task suite using the following
approaches: (1) training the entire ENERVERSE from scratch using only policy loss optimization;
(2) training the entire ENERVERSE as in (1) but initialized with pretrained weights from a general
video generator, e.g. DynamiCrafter(DC) [53], which is trained with the general natural videos; (3)
co-training ENERVERSE by optimizing both the robotic policy action loss and the video generation




Setup w/o Sparse Memory w Sparse Memory

LIBERO-Long-SV 30.8 73

Table 4: Sparse Memory analysis on LIBERO-Long.

loss simultaneously; and (4) the default two-stage training strategy, where the video generator is
pretrained first, followed by fine-tuning ENERVERSE using only robotic policy loss optimization.

Strategy All-Scratch ~ With DC Pretrain. One-Stage Co-Train Two-Stage Finetune

LIBERO-Spatial Failed 79 86.3 92.1

Table 5: Performance comparison of different training strategies on the LIBERO-Spatial task suite.

As shown in Tab. 5] training ENERVERSE from scratch without loading pretrained weights failed
to converge, underscoring the importance of robust initialization. Another possible reason for this
failure could be the relatively limited training data compared to the number of network parameters.
Initializing with pretrained weights improved performance (79), while jointly optimizing the policy
loss and video generation loss in a one-stage co-training setup further increased performance to
86.3. This demonstrates that the video generation task enhances policy learning. Our default Two-
Stage Fine-tuning strategy, which involves pretraining the video generator followed by fine-tuning
ENERVERSE with policy loss optimization, achieved the best performance.

Effectiveness of Additional Rendered Views. With the expressive pretrained generative space
prior, our method using a single S-RGB camera already achieves SOTA performance. When a single
S-RGBD camera is available, we can incorporate additional rendered views, with the original RGB
image as input to the model. These additional views not only bring the input setting closer to the
training configuration but also enable the policy model to better leverage the pretrained generative
space prior. Notably, the configuration RGB with 1 Render outperforms MAIL’s 2 S-RGB setup,
both in terms of overall performance and gains compared to a single RGB input, demonstrating that
the performance improvement is not solely due to the additional visual inputs. Incorporating RGB
with 2 Render yields even greater gains by mitigating occlusions, as illustrated in Fig.

3D Video vs. 4D Space for Robotics. We provide a direct comparison between attaching a diffusion
policy head to a base single-view video generator (DynamiCrafter) and our 4D variant (EnerVerse-A).
As shown in Table[6] the base video model underperforms substantially (79.0) relative to ENERVERSE-
A (92.1), highlighting the benefits of 4D extensions. We hypothesize that the cross-view consistency
learned during multi-view pretraining provides stronger geometric priors, which help the model better
understand spatial relationships and occlusions. Further, even when tested with single RGB-D inputs,
ENERVERSE benefits from additional rendered views at inference. These findings underscore the
ability to incorporate additional rendered views at test time further enhances performance, showcasing
the practicality and effectiveness of our approach.

Model Multi-view Pre-Train Input at Test SR
DynamiCrafter + DP No S-RGB 79.0
EnerVerse-A Yes S-RGB 92.1
EnerVerse-A Yes S-RGB with 1 Render  93.0

Table 6: Direct comparison between a base single-view video generator with a policy head and
our approach on LIBERO-Spatial. Multi-view pretraining substantially improves SR even with
single-view inputs.

Real-World Experiments. To evaluate the manipulation capabilities of ENERVERSE-A, we con-
ducted real-world experiments using commercial robotics on the tasks of Block Placing, Plastic
Objects Sorting, and Fruit Sorting. For further details, please refer to Appendices[A]

More Discussions and Experiments. We provide additional discussions and experiments in the
appendices: pretrained model performance (Appendices [C), alignment between action and visual
spaces (Appendices D)), robustness against OOD samples (Appendices [E), model architecture and
computational overhead (Appendices [F] and [G), and visual samples validating the data engine’s
effectiveness (Appendices ).



4 Related Works

Video Generation Models. Diffusion-based video generation models have made notable progress,
especially in text-to-video (T2V) generation [3}142]]. Early T2V approaches [56} 9} [35] [16] build
on text-to-image (T2I) priors by introducing temporal modules trained on video data. Dynamic-
Crafter [53] reuses motion priors from T2V diffusion models in an image-to-video (I2V) context.
Recent works [23] |59 [1] explores replacing U-Nets with Diffusion Transformer (DiT) [33]], and
[36] uses the multi-camera poses information to extend the video generation into the 3D world
modelling. Other studies [[11]] incorporate causal mechanisms to generate longer sequences or extend
video-generation models into world modeling by forecasting future states [[17, 15} 48]. In this paper,
we mainly adopt DynamicCrafter as our base 12V framework due to its open-source availability and
widespread use. We also ensure compatibility with modern DiT architectures, although that is not our
main focus here.

Video Pretraining for Robotics. GR-2 [0] presents a generalizable robot manipulation framework
that pretrains on large-scale internet videos, then fine-tunes on both video generation and action
prediction for robotic trajectories. LAPA [55]] uses non-robot action videos for representation learning,
mapping discrete latent actions (via VQ-VAE) to robotic manipulation tasks through a VLA model.
SEER [43] further explores inverse dynamics pretraining to boost performance. AVID [38]] employs
DynamicCrafter [S3] as its foundation, using an adapter for the robotics domain. VidMan [49]], based
on OpenSora [59], focuses on environment prediction before action generation but is limited to 2D
image space. In contrast, we propose generating long-sequence futures via a novel data generation
engine, capturing richer motion information vital for robotics.

4D Generation. Recent progress [§]] allows reconstruction of dynamic scenes from 2D videos using
3D Gaussian Splatting (GS) [21] and Neural Radiance Fields (NeRF) [30]]. Prior approaches approxi-
mate the spatio-temporal 4D volume with sets of 4D Gaussians [54], jointly optimizing geometry
and motion in canonical space [50]. More recent advancements [24] employ customized sampling
for multi-view video diffusion models, particularly for single dynamic objects. DimensionX [43]
leverages multiple LoRAs [[18]] for diverse camera motions, while Cat4D [52] uses a single multi-view
diffusion model to generate videos for dynamic 3D reconstruction. By contrast, our method produces
videos from a multi-views tailored for robotic manipulation tasks. In our offline data flywheel stage,
GS complements video generation models to mitigate the sim-to-real gap, enhancing geometric
consistency and reducing hallucinations from the generative models.

5 Conclusions

In conclusion, ENERVERSE is a generative robotics foundation model that tackles multi-view video
generation and long-range policy execution by modeling embodied future spaces. With sparse con-
textual memory and chunkwise autoregressive architecture, ENERVERSE enhances spatial reasoning
and task adaptability. The ENERVERSE-D pipeline, combining generative modeling with 4DGS,
bridges the sim-to-real gap, reducing reliance on real-world data. Integrated with a policy head,
ENERVERSE-A achieves state-of-the-art performance in manipulation tasks, both in the simulator
environment and the real-world settings.

Limitations. Due to the high dynamics and rich object interactions in robotics tasks, video generation
models inevitably produce artifacts, as discussed in App. [B] However, advancements in the video
modeling community are expected to improve this. Additionally, while we provide an initial attention
map analysis, further exploration is needed to better understand how video generation guides action
policy learning. Finally, the current rendered views are derived from heuristically set camera poses,
which may not be optimal. Integrating Next-Best View methods [57]] could address this limitation.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:

Justification: In the abstract and Introduction Section, we clearly demonstrate the contribu-
tion and scope of the proposed ENERVERSE.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:

Justification: In the main text, we outlined the limitations related to our work. In Appendix,
we further discussed the limitations of our article, hoping to guide more future work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer:
Justification: We have described the relevant details in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: This may be temporary, and we are working hard to promote the process of
open source.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:

Justification: In Section [3] and App. [G] we clearly demonstrated experimental settings,
including model architecture, training settings, evaluation settings, etc.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the high cost of pre-training, we do not repeat the same experiments.
But we perform multiple independent runs with different random seeds for the policy
evaluation.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: In App.[F] we have provided sufficient information on the computer resources
needed to reproduce the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:

Justification: We guarantee that the research conducted in the paper complies with NeurIPS
Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This paper has no negative societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:

Justification: Our license name is CC-BY 4.0. We will cite the original works and properly
acknowledge the authors of any existing assets (e.g., code, models, datasets) used in our

paper.
Guidelines:
* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Real-World Robotic Experiments

To evaluate the manipulation capabilities of ENERVERSE-A, we conducted real-world experiments.
The robot is instructed to place blocks into designated compartments of a foam worktable, requiring
accuracy due to the tight fit and visual similarity between the foam and table, as shown in Figure|[§]

Compared with the general "Pick and Place" task, this task has additional challenges:

* The robot must follow natural language instructions, such as "Row One, Column Two," to
identify the required compartment.

* The compartments are only slightly larger than the magnet blocks, transforming the pick-
and-place task into a highly precise "insertion" operation.

» The magnet blocks are relatively heavy, requiring the robot gripper to grasp near the center
of the block to ensure stability during manipulation.

Correspondingly, we define four evaluation metrics:

* Grasp: Indicates whether the robotic gripper holds the suitable part of the block and transfers
it stably during manipulation. It has binary values: O for failure, 1 for success.

* Place: Determines whether the robot places the block into a possible compartment. A score
of 0 indicates failure, 1 indicates a perfect placement, and 0.5 indicates that the block has
some collisions with the foam during manipulation.

¢ Instruction Following: Evaluates whether the robot places the block into the desired
compartment as instructed. It has binary values: O for failure, 1 for success.

The overall Success is calculated as the product of the individual factors. The policy was executed
five times for each compartment, and the average scores are presented in Table[7]] ENERVERSE-A
demonstrates strong performance in most target positions. However, it fails to handle positions
(3,2) and (3,3). We hypothesize that this limitation arises because these positions are located
near the boundary of the robot’s action space, making them challenging to reach. We provide
the OpenVLA [22] results. Our method outperforms OpenVLA in both grasp and place subtasks,
demonstrating superior spatial understanding. The place subtask, in particular, is challenging due
to compartments being only slightly larger than the blocks, requiring precise spatial understanding
and target localization, which highlights the benefits of our method’s 4D space prior. However,
OpenVLA shows better instruction-following ability, likely due to its LLM part (our CLIP text
encoder). Demonstration videos are provided in the supplementary materials.

In addition to the block placement task, we conducted experiments on sorting transparent plastic
objects and fruit sorting. Demonstration videos for these experiments are also included in the
supplementary materials.

(a) Block Placement (b) Fruit Sorting

Figure 8: Real-world experimental setup.
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Target Position Grasp Place Ins. Following Success
(1,1 1 1 1 1
(1,2) 1 1 1 1
(1,3) 1 0.8 1 0.8
2,1 1 0.7 1 0.7
(2,2) 1 1 1 1
(2,3) 1 0.8 1 0.8
3,1 1 0.7 1 0.7
(3,2) 1 1 0 0
(3.3) 1 1 0 0
OpenVLA-Avg 0.89 0.61 0.96 0.61
ENERVERSE-Avg 1.0 0.89 0.78 0.67

Table 7: Performance of the robotic system in placing blocks into designated compartments. The task
demands high precision due to the tight fit and visual similarity between the foam and table.

B Further Discussions on the Tasks Types and Video Quality in the
Real-World Settings.

Integrating physical knowledge, such as kinematics and dynamics, into generative models remains a
significant challenge, particularly for complex robotic manipulation tasks [60]. However, we believe
that large-scale, high-quality pretraining data can significantly enhance physical modeling capabilities,
including tasks involving deformable object manipulation. For instance, we provide video generation
results for a cloth-folding task in Fig.[9] Our approach is not limited to simple pick-and-place tasks.
It is capable of modeling tasks that require kinematic constraints, such as articulation (e.g., turning a
button or opening a drawer). Additional video results are provided in the supplementary materials.

Figure 9: Generation Results on the Cloth Folding Task.

While visual artifacts in the generated videos (e.g., surface penetration or snappy transitions) are
present, these imperfections have minimal impact on robotic task execution. In our framework,
the generated videos primarily serve as a 4D spatiotemporal prior, which is further refined during
fine-tuning. This is supported by our real-world robot experiments, where task performance remains
robust despite the presence of these artifacts.
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Figure 10: Generation Results with Pre-Trained Model on LIBERO.

C Discussion on the Pretrained Model Performance

We present the pretrained model’s generation results on the LIBERO-Object split in Fig. [0} The gen-
erated videos exhibit significant artifacts, with the scenes collapsing after several frames. We attribute
this issue to the domain gap between the LIBERO dataset and the datasets used for pretraining.

Additionally, we directly fine-tuned the pretrained model on LIBERO-Object actions without adapting
it to the LIBERO video generation task. As shown in Table 8] this approach results in substantial
performance degradation for the final policy model.

Method LIBERO-Object
ENERVERSE 932
ENERVERSE w/o Gen-Adaption 85

Table 8: Comparison of policy performance w/wo LIBERO video generation task adaption.

D Attention Map Analysis

. To further analyze the alignment between the predicted action space and the visual space, including
the visual observations cached by our Sparse Memory Mechanism and the generated future space, we
visualized the attention maps from the first several layers of the Cross-Attention Block in our policy
head.

Fig.[TT]illustrates attention maps from different heads and layers, showcasing the model’s hierarchical
focus and the impact of our proposed embodied future space generation in facilitating robust action
prediction. In Fig.[TT](a), attention is distributed almost entirely across the future space, reflecting the
model’s ability to leverage sparse memory conditions and generated predictions from the outset. In
contrast, Fig. [TT(d) shows the attention sharply focused on the sparse memory space, with minimal
reliance on the generated future space, indicating that the model has transitioned to memory-based
reasoning. Interestingly, Figures[IT|c,e) demonstrate that the model effectively integrates information
from both the sparse memory space and the predicted future space. Moreover, these attention maps
reveal that earlier decision steps tend to prioritize sparse memory, while later action steps shift
focus to the generated future space. These results validate that our generative pretraining effectively
enhances the model’s ability to integrate temporal information, align predicted actions with future
visual contexts, and make robust decisions.
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(a) Head 0, Layer 0 b) Head 2, Layer 1 (c) Head 8, Layer 2 (d) Head 12, Layer 3 (e) Head 15, Layer 2

A Nl B

Sparse Mem. Fuhxre Spuce

Flgure 1 1: Attentlon maps from different heads and layers of the model. The y-axis (Query) represents
the predicted action space (8 steps), while the x-axis (Key-Value) spans Sparse Memory (first 4
columns) and predicted future space (last 8 columns). Bright yellow indicates high attention, showing
how the model focuses on memory (left) and future predictions (right) when generating actions.

PredA Action Space

E Robustness against OOD Samples
To evaluate generalization on out-of-distribution (OOD) samples, we designed three experiments:

* Changing the floor texture for unseen scenes.
 Altering container textures for unseen containers.

* Training on all LIBERO splits ("train-all, test-all") and evaluating on each split simultane-
ously.

The first two experiments required no retraining and were conducted on the LIBERO-Object split. As
shown in Table[9} our model demonstrated strong generalization and robustness. For the "train-all,
test-all" experiment, the performance (87.63 Avg) improved compared to single-split training (84.1
Avg). We attribute this improvement to shared textures and spatial layouts across splits, which enable
better learning from the larger mixed dataset.

Method Seen | Uns. Scene Texture Delta | Uns. Cont. Texture Delta
OpenVLA (S-RGB) 88.4 64.9 23.5 82 6.4
Ours (S-RGB) 93.2 93.1 0.1 93.0 0.2
Ours (RGB with 2 Render) 97.7 96.4 1.3 97.5 0.2

Table 9: Performance comparison across seen and unseen scenarios with texture variations.

F Computational Overhead

During the action-related fine-tuning training stage, using LIBERO-Spatial as an example, the single
S-RGB setting requires 8 A100 GPUs for approximately 20 hours during the video generation
adaptation stage and an additional 12 hours for the action learning stage.

For video generation inference, the single-view setting consumes approximately 12 GB of GPU
memory, while generating three views requires about 13.5 GB. The generation of a single video
chunk takes around 20 seconds per view.

In action inference, the single S-RGB setting uses 10.6 GB of GPU memory, whereas the three-view
configuration requires 12 GB. Action inference for a single S-RGB setting takes approximately 300
ms per action chunk, with a default chunk size of eight frames.

G Further Details on the Model Architecture

The main architecture is based on DynamiCrafter [53]], with extensions to support multi-view
processing using the Ray Camera Map and Spatial Attention. No additional specialized designs were
introduced; instead, operations were conducted in a 4D latent space. Specifically, the input latent has
a shape of BCVTHW, where B is the batch size, C is the channel, V is view number, and T stands for n
timestamp. This input latent is reshaped as follows:

* (BT)(VHW) C for spatial attention.
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Figure 12: The Construction of the Action Policy Head.

Hyperparameter

Configuration

Diffusion Setup
Sampling Parameters
Input

UNet
Temporal Attention

Spatial Attention
Video Training

Policy Training
Number of Parameters

- Diffusion steps: 1000; Noise schedule: Linear; 5o = 0.00085; 87 = 0.0120

- Sampler: DDIM; Steps: 500

- Video resolution: 320 x 512; Chunk size: 8; Encoded with VAE

- Language prompt c, tokenized with T5

- Camera parameters encoded with ray direction map (L118 in main text)

- Latent image channels: 4; Ray map channels: 6; z-shape: 40 x 64 x 4

- Attention resolutions: {64, 32, 16}; Head channels: 64; Conv layers: 4

- Temporal kernel size: 3,1, 1; downscales: 40 x 64 — 20 x 32 — 10 x 16

- Attention resolutions: {64, 32, 16}; Head channels: 64; Conv layers: 4

- Learning rate: 5 x 10~°; Optimizer: Adam; Batch/GPU (single-view): §8;
Batch/GPU (multi-view): 1

- Parameterization: v-prediction; Max steps: 100,000; Gradient clipping: 0.5
(norm)

- Same as video training, but with sample-prediction parameterization

- Base model (DynamiCrafter): 1.4B; Policy head (DiT blocks): 190M; VAE
(frozen): 83.7M

Table 10: Training details and hyperparameters used in our experiments.

* (BVHW)TC for temporal attention.

* (BVT)CHW before decoding.

The image decoding occurs per view and per frame. Features (BCVTHW) were extracted before the U-
Net’s middle block, followed by Pooling and an MLP to obtain a BTC? feature vector for conditioning
the denoising process. The action head consists of 18 DiT blocks, with denoised latents passed
through a linear layer for action predictions. As mentioned in Section [2.3] the header predicts the
delta pose. Actions are represented as a 7-dimensional vector in pose space: delta position (z, y, 2),
rotation (roll, pitch, yaw), and gripper openness. A simple diagram is shown in Fig.[12] We further
provide the hyperparameters in Table
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H More Details on Training Data

Pretraining Datasets. We pretrain on heterogeneous embodied datasets with clear task logic:
RT-1 [4], Language Table [27], Bridge [46], RoboTurk [28]], ManiSkill [[14]], and an Isaac Sim
dataset [31]]. Summary statistics:

* RT-1: 3.7M frames, 87K episodes, egocentric, real robot.

* Language Table: 7.0M frames, 442K episodes, front-facing, real robot.

* Bridge: 2.0M frames, 25K episodes, egocentric, real robot.

* RoboTurk: 72K frames, 1.9K episodes, front-facing, real robot.

ManiSkill: 4.0M frames, 30K episodes, front-facing, simulation.

* Isaac Simulator: 3.0M frames, 40K episodes, egocentric + 8 third-person views, simulation.
At the time of this work, public embodied datasets predominantly provide single third-person or
egocentric views, which are insufficient for training multi-view generation. LIBERO contains fewer
than 500 trajectories, making it inadequate for robust multi-view learning. To bridge this gap, we
constructed a multi-view dataset in Isaac Sim with ground-truth camera parameters. The simulator
corpus contains about 40K episodes across 8 tasks spanning industrial and home scenarios, with
diverse object layouts, lighting, and camera poses. Task list:

* place trash into the dustbin;

* pick fruit into basket;

* pick toy into box;

* insert pen;

* place bag;

* open drawer;

* place fruits;

* arrange workpieces.

We provide visual examples of data collected from the simulator in Fig.[T3] with additional videos
available in the supplementary material. At the time of this work, all available embodied datasets
provided only single third-person camera views, which are insufficient for multi-view generation
tasks. Furthermore, the evaluation benchmark LIBERO contains fewer than 500 trajectories, which is
inadequate for training a multi-view generation model. Collecting real-world multi-view data directly
is prohibitively expensive and labor-intensive.

Figure 13: Visual Examples from the Simulator Collected Data.

I Visual Samples for our Data Engine

We provide visual samples from our Data Engine in Fig.[T4 As shown in the figure, using ENER-
VERSE-D as the data engine results in fewer artifacts and clearer boundaries.

Furthermore, we conducted additional experiments on the “arrange workpieces” task, where a robotic
arm manipulates gears and boxes on a tabletop with frequent self-occlusions. Following the data-
flywheel setting, given the task description and one complete head-camera video, the goal is to
generate the corresponding video from a target view. We evaluated 50 generated episodes under two
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Only 4DGS

EnerVerse-D

Figure 14: Visual Samples for Data Engine.

settings: (i) Without 4DGS—directly running the ENERVERSE-D video generation pipeline; (ii) With
4DGS—first generating an initial video via ENERVERSE-D, then applying the 4DGS pipeline to
render target views, re-noising the renders, and feeding them back into ENERVERSE for refinement.
Two blinded human experts assessed diffusion-induced hallucinations in the generated videos. The
assessment result shows that integrating 4DGS reduces hallucinations by 40% relative to the baseline
without 4DGS in scenarios with self-occlusions, quantitatively demonstrating the value of 4DGS in

mitigating generative artifacts.
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