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ABSTRACT

Limited progress has been made in continual unsupervised learning of represen-
tations, especially in reusing, expanding, and continually disentangling learned
semantic factors across data environments. We argue that this is because existing
approaches treat continually-arrived data independently, without considering how
they are related based on their underlying semantic factors. We address this by
a new generative model describing a topologically-connected mixture of spike-
and-slab distributions in the latent space, learned end-to-end in a continual fashion
via principled variational inference. The learned mixture automatically discovers
the active semantic factors underlying each data environment, and to accordingly
accumulate their relational structure. This distilled knowledge can further be used
for generative replay and guiding continual disentangling of sequentially-arrived
semantic factors. We tested the presented method on a split version of 3DShapes
to provide the quantitative disentanglement evaluation of continually learned rep-
resentations, and further demonstrated its ability to continually disentangle new
representations and improve shared downstream tasks in benchmark datasets.

1 INTRODUCTION

The progress in continual learning has been mostly made for supervised discriminative learning,
whereas continual unsupervised representation learning remains relatively under-explored (Rama-
puram et al., 2020; Achille et al., 2018; Rao et al., 2019). The few existing works have primarily
focused on battling catastrophic forgetting in the generative performance of a model: for instance,
a common approach known as generative-replay synthesizes past samples using a snapshot of the
generative model trained from past data, and then continually trains the model to generate both new
data and synthesized past samples (Achille et al., 2018; Rao et al., 2019; Ramapuram et al., 2020).

There is however another important yet under-explored question in continual unsupervised repre-
sentation learning: how to reuse, expand, and continually disentangle latent semantic factors across
different data environments? These are inherent in the human learning process: while learning from
new data (e.g., learning cars after bicycles), we are naturally able to reuse shared semantic factors
without re-learning (e.g., wheels), expand and disentangle new semantic factors (e.g., the shape of
cars), while accumulating knowledge about the relationship among data environments based on these
semantic factors (e.g., bicycles and cars both have wheels but are different in shapes). Disentangled
representation learning, as a long-standing research topic, has demonstrated various benefits in
generative modeling and downstream tasks (Higgins et al., 2017; Kumar et al., 2017; Kim & Mnih,
2018; Liu et al., 2021; Rhodes & Lee, 2021; Horan et al., 2021). With increasing recent interests
in unsupervised representation learning in a continual learning setting (Rao et al., 2019; Madaan
et al., 2021), it is important to investigate the challenges and solutions to achieve disentanglement of
sequentially-arrived semantic factors in streaming data.

Reusing latent dimensions for learned semantic factors has mainly been attempted by a teacher-student
like approach where the student model is taught to infer and generate similarly to a snapshot of the
past models (teacher) on replayed data (Achille et al., 2018; Ramapuram et al., 2020). In Achille
et al. (2018), this is further facilitated by explicitly masking out latent dimensions that are not actively
used in a data environment. Such masks however have to be heuristically defined before training on
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Figure 1: Through a self-organizing spike-and-slab mixture, CUDOS continually distills knowledge
about the relational structure of data environments with their shared and distinct semantic factors.

the new environment. How to automatically discover latent dimensions explaining active semantic
factors underlying each data environment, in a continual fashion, remains an open question.

Expanding learned semantic factors, in part, results naturally from continually optimizing a generative
model to newly arrived data (Achille et al., 2018; Ramapuram et al., 2020), or even progressively
increasing the model’s latent capacity on the same data (Burgess et al., 2017; Li et al., 2020). These
alone however would not uncover the relational structure among data environments in the latent
space. In Rao et al. (2019), a mixture of Gaussians has been used and continually expanded such that
newly arrived data are clustered to an existing or new mixture component. While this captures the
expanding data distributions, it does not consider the reuse of semantic factors among data clusters.

Continually disentangling semantic factors, until now, is limited to the native disentangling ability
inherent in VAE, or promoting the reusing of shared semantic factors (Achille et al., 2018; Ramapuram
et al., 2020). While the common strategy of generative replay teaches a model what latent dimensions
to use for shared semantic factors on the replayed data (Achille et al., 2018; Ramapuram et al.,
2020), no such guidance is available on new data. As a result, as we will show, none of the existing
approaches can prevent newly-learned semantic factors to be entangled with re-used ones.

In this work, we show that the above limitations boil down to a fundamental bottleneck in existing
continual unsupervised learning of representations: that the learner is asked to treat continually-arrived
data independently, without knowing how they are related based on the underlying semantic factors.
To overcome this, we argue that the model needs to learn two critical knowledge: latent dimensions
explaining active semantic factors underlying each data environment, and the relationship among
the latter based on the former. We present Continual Unsupervised Disentangling of self-Organizing
representations (CUDOS) that is able to accumulate the relational structure of continually-arrived
data based on their underlying active semantic factors, and exploiting this knowledge to guide
disentangling of sequentially-arrived semantic factors. As illustrated in Fig. 1, to accumulate the
relational structure of the data, we model the latent representations with a topologically-connected
mixture of distributions via Bayesian self-organizing maps (SOM) (Kohonen, 1990; Yin & Allinson,
2001). To automatically discover active semantic factors underlying each data environment, we model
each component of the SOM mixture with a spike-and-slab distribution (Titsias & Lazaro-Gredilla,
2011; Tonolini et al., 2020), such that the sparse spike variable identifies latent dimensions explaining
active semantic factors. This results in a generative model with a self-organizing mixture of slab-
and-spike distributions, where the distilled knowledge – the relational structure of data environments
and their associated active semantic factors – supports 1) mixture-based generative replay and 2)
continual disentangling of sequentially-arrived semantic factors.

We evaluated CUDOS on both benchmark datasets for continual representation learning, and a split
version of 3DShapes (Burgess & Kim, 2018) designed for quantitative evaluation of disentangling
sequentially-arrived semantic factors. In comparison to existing works, we showed that CUDOS not
only addressed catastrophic forgetting, but also improved – both quantitatively and qualitatively –
continual disentanglement of latent semantic factors and thereby downstream discriminative tasks.

2



Published as a conference paper at ICLR 2023

2 RELATED WORKS

Deep Learning with SOM:The use of SOM has been explored within deep learning of image
classification (Liu et al., 2015), image clustering (Manduchi et al., 2019; Forest et al., 2000), and
time-series prediction (Jin et al., 2015; Fortuin et al., 2019). None of these works, however, considered
continual learning of representations. In the context of continual learning, SOM was used to first
learn the relationship among all discriminative tasks, and then used to mask the neurons of a fully-
connected layer for each task (Bashivan et al., 2018). A dual-memory self-organizing architecture
was also presented for learning object instances and categories in life-long object recognition (Parisi
et al., 2018). While both works shared our motivation to leverage the ability of SOM to maintain and
expand a memory of data distributions across environments, neither considered continual unsupervised
representation learning, or utilized SOM as a topologically-connected Bayesian mixture model.

Inferring Active Semantic Factors in VAE: Learning meaningful representations is a vital task for
VAE, where large latent space often leads to latent dimensions that carry little information (Chen
et al., 2017). Sparse coding and discrete latent space have proved to be elegant solutions (Oord et al.,
2017; Tonolini et al., 2020). Non-parametric discrete densities have been explored for stochastic
latent activation to improve disentanglement (Gyawali et al., 2019). A discrete latent space based
on vector quantization was shown to solve posterior collapse (Oord et al., 2017), whereas sparsity
was directly modeled in a continuous latent space using spike-and-slab priors (Tonolini et al., 2020).
None of these concepts has been extended to continual unsupervised learning of representations.

Continual Unsupervised Representation Learning: Most existing works in continual unsupervised
representation learning relied on enhanced generative replay to combat catastrophic forgetting of
generation using learned semantic factors (Achille et al., 2018; Ramapuram et al., 2020; Ye & Bors,
2020). The two most related works are those presented in Achille et al. (2018) and Rao et al. (2019).
In Achille et al. (2018), to reuse latent dimensions explaining semantic factors shared with past data,
a mask for active latent dimensions specific to each data environment was used. This mask was
heuristically determined before training on the new data, which will affect the learning and sharing of
latent dimensions on the new data. Furthermore, while this strategy protects latent dimensions specific
to past data environments (not shared and thus turned off), it does not prevent new semantic factors
from being entangled with the shared dimensions. CUDOS presents fundamental solutions to these
problems by 1) principled variational inference of active latent dimensions leveraging slab-and-spike
priors, and 2) guiding continual disentangling of sequentially-arrived semantic factors by exploiting
the relational structure of data.

In Rao et al. (2019), a mixture of Gaussians was continually expanded as new data arrive. This shares
our intuition that continual learning of representations can benefit from accumulating an evolving
summary of data in the latent space. How the different data clusters are related in terms of shared
and distinct semantic factors, however, was not exploited in Rao et al. (2019). In contrast, CUDOS
exploits the relationship among data clusters based on their underlying active semantic factors, and
uses that to facilitate continual reuse and disentangling of sequentially-arrived semantic factors.

3 METHODS

We first establish the foundation for CUDOS: a VAE with a self-organizing mixture of spike-and-slab
priors to learn the relational structure of data based on their active semantic factors (Section 3.1). We
then describe how to use this data summary for generative replay (Section 3.2.2), and use the relation
between new and past data to improve continual disentangling of representations (Section 3.2.3).

3.1 LEARNING THE RELATIONAL STRUCTURE OF DATA VIA ACTIVE SEMANTIC FACTORS

Fig. 1 outlines the foundation model underlying CUDOS. Given data x, we are interested in learning
representations of meaningful semantic factors within a latent vector z ∈ RJ . While doing so we
encourage sparse coding to discover latent dimensions explaining active semantic factors in VAE
(Tonolini et al., 2020), while learning the relational structure of data based on these semantic factors.

Generative Model: To accumulate the relational structure of data, we model the latent space by a
mixture of distributions using Bayesian-SOM (Yin & Allinson, 2001) with K nodes. Additionally, to
discover the active semantic factors for each data environment, we model each mixture component as
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a spike-and-slab distribution that encourages sparsity in the latent dimensions (Tonolini et al., 2020).
This gives rise to the following generative process:

w ∼ Cat(π), pψk(z|wk = 1) =

J∏
j=1

[αjkN (zj ;µjk, (σ
j
k)

2) + (1− αjk)δ(z
j)],

pψ(z) =

K∑
k=1

p(z|wk)p(wk), x ∼ pθ(x|z), pθ,ψ(x, z, w) = pθ(x|z)pψ(z|w)p(w).

(1)

where ∗j denotes the j-th element of ∗, and δ(∗) Dirac delta function centered at zero. The mixing
prior p(w) is parameterized by π, πi ≥ 0 and

∑
πi = 1. The latent variable z from the k-th mixture

component is parametrized by ψk = {µk,σ2
k,αk, πk}, where parameter αk introduces sparsity to

mask out inactive dimensions. Data x are generated from z via a neural network parametrized by θ.

Inference Model: We define variational approximations of the posterior density p(z, w|x) as:

q(z, w|x) = qϕ(z|x)pψ(w|z), qϕ(z|x) =
J∏
j=1

[α̃jN (zj ; µ̃j , (σ̃j)2) + (1− α̃j)δ(zj)],

pψ(wk = 1|z) = p(z|wk, ψk)p(wk = 1)∑K
k′=1 p(z|wk′ , ψk′)p(wk′ = 1)

.

(2)

where pψ(wk = 1|z) is the posterior probability of the k-th mixture component. For parameters µ̃
and logσ̃2 of the spike-and-slab distribution, their inference is amortized as the output of an encoding
network parameterized by ϕ. For parameter α̃, considering that similar data should share latent
dimensions for common semantic factors, we infer it at a set level as inspired by the neural statistician
(Edwards & Storkey, 2017; Hewitt et al., 2018). We discuss how to determine the set in Section 3.2.1.

Variational Inference: The parameters ψ, θ, and ϕ are optimized by the ELBO loss as:

log p(x) ≥ LELBO = Eqϕ(z,w|x)[log
pθ,ψ(z,x, w)

qϕ(z, w|x)
] = Eqϕ(z,w|x)[log

pθ(x|z)pψ(z|w)p(w)
qϕ(z|x)pψ(w|z)

]

= Eqϕ(z|x)[log pθ(x|z)]− Epψ(w|z)[DKL(qϕ(z|x)||pψ(z|w))]− Eqϕ(z|x)[DKL(pψ(w|z)||p(w))].
(3)

The first reconstruction term is similar to that in the vanilla VAE. The second term measures the
KL-divergence between qϕ(z|x) and its conditional prior, measured over the posterior distribution of
the SOM mixture pψ(w|z). Specifically, we estimate the expectation over pψ(w|z) as:

Epψ(w|z)[DKL(qϕ(z|x)||pψ(z|w))] =
K∑
k=1

pψ(wk = 1|z)DKL[qϕ(z|x)||pψ(z|wk = 1)], (4)

where pψ(wk|z) can be computed in a batch during forward propagation, and
DKL[qϕ(z|x)||pψ(z|wk = 1)] can be derived following (Tonolini et al., 2020) as:

J∑
j

[α̃j(log
σjk
σ̃j

+
(µ̃j − µjk)

2 + (σ̃j)2

2(σjk)
2

− 1

2
) + (1− α̃j) log

1− α̃j

1− αjk
+ α̃j log

α̃j

αjk
]

This KL loss encourages qϕ(z|x) to follow a mixture density with the mixing probability determined
by the posterior probability of each component given z. Note that the latter automatically considers
sharing of semantic factors between the inferred z and each mixture component k (via spike variable
α̃ and αk). The third term in Eqn. (3) measures the KL-divergence between the posterior density of
w and its prior (set to be uniform in this work). The expectation is estimated by Monte Carlo samples.

Iterative Optimization: We maximize the ELBO loss as defined in Eqn. (3) by iterative optimization.
In each iteration, we first fix ψ of the SOM mixture and maximize Eqn. (3) with respect to the VAE’s
parameters θ and ϕ by stochastic gradient descent with reparameterization trick (Kingma & Welling,
2014; Tonolini et al., 2020): at the first iteration, the SOM-mixture is initialized as a uniform mixture
of ψ = {0, I,0.2} and the optimization becomes a standard ELBO with spike-and-slab priors.
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Figure 2: (a) Combating catastrophic forgetting by generative replays from SOM-mixture, and (b)
Continually disentangling by using the relation between new and past data based on their underlying
shared semantic dimensions.

With the updated θ and ϕ, we then maximize Eqn. (3) with respect to the SOM-mixture parameter
ψ which, as derived in Appendix-I, amounts to maximizing the expectation of the log-likelihood of
pψ(z) over the variational posterior distribution of qϕ(z|x): ψ∗ = argmaxψEqϕ(z|x)[log pψ(z)] We
follow the theory in Gepperth & Pfülb (2021) to optimize ψ using stochastic gradient descent.

3.2 CONTINUAL LEARNING WITH CUDOS

We now consider a setting of continual unsupervised learning where the label of the underlying data
environments is unknown. Following existing approaches (Achille et al., 2018; Rao et al., 2019;
Ramapuram et al., 2020), we maintain a snapshot of the model parameters [ψold, θold, ϕold] every τ
training steps. These model snapshots are used to guide (1) synthesizing replayed samples to teach
the model to perform consistently on past data (Section 3.2.2), and (2) continually disentangling
sequentially-arrived semantic factors using the relationship between past and new data (3.2.3).

3.2.1 INFERRING α FOR STREAMING DATA

As mentioned in Section 3.1, we choose to infer α̃ at a set level to leverage shared information
underpinning a set of data. If the boundary between data environments is known, α̃ can be shared
for all data within the same data environment. Alternatively, if the boundary of data environments
is not known, we assume α̃ to be shared within each mini-batch xbatch. Specifically, we maintain
ϕα = {α̃1, α̃2, · · · , α̃d} for d number of sets with distinct underlying semantic factors. Given a new
batch of xbatch, we first determine if it can be described by an existing α̃, or a new α̃d+1 has to be
allocated if the existing ϕα fails to describe xbatch well:

α̃new =

{
α̂, if Ep(z|µ̃,σ̃2,α̂)[Lr] ≤ Tα,

α̃d+1, otherwise,
(5)

where α̂ = argminα̃∈ϕαEp(z|µ̃,σ̃2,α̃)[Lr], Tα is a threshold for the reconstruction error Lr of xbatch
averaging over pixels. Note that Equation (5) only determines how a data batch xbatch is associated
with a variable α̃. The values of these variables are optimized during variational inference.

3.2.2 GENERATIVE REPLAY WITH CUDOS

To combat forgetting, we synthesize data samples following the generation process as defined in
Eqn. (1), using the snapshot of the SOM mixture with parameters ψold. As illustrated in Fig. 2(a), on
the synthesized samples x̃old and their corresponding latent samples zp, we encourage the model to
be consistent with its past snapshot (Ramapuram et al., 2020; Achille et al., 2018; Lezama, 2019):

Lold = Lc[S(pθ(x|zp)), x̃old] + Lc[S(qϕ(z|x̃old)), zp], (6)

where Lc is mean squared error and S(·) is a sampling process. This strategy combines the two key
existing concepts in replay mechanism: as in generative replay (Shin et al., 2017; Ramapuram et al.,
2020), data are synthesized quickly and readily with limited burden on storage; as in core-set methods
(Nguyen et al., 2018; Borsos et al., 2020), the SOM-mixture provides a representative summary of
data ensuring that more important mixture components are more frequently re-used in future training.

3.2.3 GUIDING CONTINUAL DISENTANGLEMENT

Generative replay lacks mechanisms to teach the model how to disentangle newly-arrived semantic
factors from latent dimensions already used for previously-learned semantic factors. CUDOS provides
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a unique opportunity to address this issue by its ability to describe the relation between new and past
data. For a new data x, its shared latent dimensions with SOM summary of past data (parameterized
by ψold) is determined by a mask sψold computed by a scaled and displaced Sigmoid function:

sjψold
= Sigmoid(b(α̃j · αjvBMU,ψold

− 0.5)) (7)

where α̃ is the spike variable inferred from x and αvBMU,ψold the spike variable of the best-matching
unit vBMU (the component with the largest posterior) on the snapshot of the past SOM. b scales and
sharpens the Sigmoid function towards a gated function (Tonolini et al., 2020). Note that neither sψold

or vBMU is fixed; they are functions of the unknown spike variables α̃ and αvBMU,ψold . We now use
this to (1) maintain consistency on latent dimensions for shared semantic factors (if any), and (2)
prevent entangling new semantic factors into the shared latent dimensions.

Reusing Shared Semantic Factors: To teach the model to reuse latent dimensions corresponding to
previously-learned semantic factors on new data x, we ask the VAE encoder qϕ to be consistent with
its past snapshot qϕold in the shared dimensions when inferring from the new data:

Lnewz = Lc[S(qϕ(z|x))⊙ sψold , S(qϕold(z|x))⊙ sψold ], (8)

where ⊙ is element-wise multiplication.

Disentangling New Semantic Factors: Now since the past model does not necessarily know how to
generate new data x, how does it teach the new model? Intuitively, given the relation between x and
the past data as determined in Eqn. (7), even though the past model does not know how to generate
the new x, it would know how to generate from those shared semantic dimensions in x. Therefore, as
illustrated in Fig. 2(b), if we take a sample zvBMU,ψold from the mixture component vBMU, and replace
its latent values with those inferred from x at the shared latent dimensions, the model should know
how to generate from this combined latent vector zcom in a way consistent to the past generator:

zvBMU,ψold = S(pψold(z|vBMU)), zcom = zvBMU,ψold ⊙ (1− sψold) + S(qϕ(z|x))⊙ sψold , (9)

Lnewx = Lc[S(pθold(x|zcom)), S(pθ(x|zcom))]. (10)

Intuitively, if the model entangles new semantic factors into the shared dimensions, it will be penalized
as the past decoder does not know how to generate from these new factors. As we will demonstrate,
this constraint – uniquely made possible by CUDOS – is critical in continual disentanglement.

Summary: In summary, the overall loss for CUDOS is:

L = LELBO + γ1Lold + γ2Lnewz + γ3Lnewx, (11)

where γ1, γ2, and γ3 are weighting hyperparameters. This extends the foundation objective function
to continual learning settings, which promotes the sharing of shared semantic factors between new
and past data environments, and the disentangling of new semantic factors.

4 EXPERIMENTS AND RESULTS

We evaluated CUDOS on (1) a split version of 3DShapes (Burgess & Kim, 2018) for quantitative
evaluation of continual disentanglement, (2) MNIST(LeCun et al., 1998), Fashion-MNIST(Xiao et al.,
2017), and their moving versions in (Achille et al., 2018), and (3) split-CelebA (Liu et al., 2015).

Split-3DShapes: We quantitatively evaluated the continual disentanglement of past and new repre-
sentations in a split version of 3Dshapes with two sub-sets: The first one only had red floor and wall,
and the second added all floor colors except red. A successful continual learning of representations is
expected to continually learn the new factor of floor color while reusing the others learned in the first
set. We compared CUDOS to four groups of baselines: (1) naive VAE (Kingma & Welling, 2014),
naive TC-VAE (Chen et al., 2018), and VAE with gradually increased capacity (Burgess et al., 2017)
without an explicit mechanism to combat catastrophic forgetting, (2) unsupervised continual learning
reliant on generative replay (Achille et al., 2018; Ramapuram et al., 2020) and heuristically-defined
masks of active latent dimensions (Achille et al., 2018), (3) unsupervised continual learning using
a mixture of Gaussian in the latent space (Rao et al., 2019), and (4) a continual learning version of
VQ-VAE (Oord et al., 2017) (a prototype-based method similar to SOM) and TC-VAE (Chen et al.,
2018) (a representative disentangling VAE) with replay mechanism Lold. Experiments on each model
were executed at least 5 times.
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Figure 3: Continually learning a split version of 3DShapes where the variations of floor colors were
absent initially and appeared later. Black bounding boxes annotate in which latent dimensions the new
semantic factors are learnt. (a): Traversing each latent dimension after training on data with no floor
color variations. (b): Traversing each dimension after training on the data with floor color variations,
where comparison of CUDOS with baseline methods shows the improved ability to disentangle new
semantic factors into previously inactive dimensions.

Method MIG ↑ MIG-sup ↑ I(zpast; factorsnew) ↓ ∆ reconstruction loss ↓
Naive VAE 0.229±0.052 0.228±0.086 1.220±0.295 0.351±0.044
Naive TC-VAE 0.295±0.141 0.377±0.169 1.113±0.158 0.355±0.144
Burgess et al. (2017) 0.192±0.029 0.131±0.018 1.154±0.092 0.300±0.037
Continual TC-VAE 0.138±0.112 0.254±0.109 1.312±0.668 0.006±0.004
Continual VQ-VAE 0.115±0.045 0.226±0.045 1.470 ±1.236 0.008±0.002
Achille et al. (2018) 0.162±0.057 0.234±0.078 0.639±0.200 0.025±0.010
Rao et al. (2019) 0.095±0.075 0.091±0.037 0.886±0.084 0.042±0.015
Ramapuram et al. (2020) 0.197±0.056 0.296±0.073 1.115±0.222 0.003±0.003
CUDOS 0.242±0.047 0.326±0.053 0.024±0.029 0.021±0.013

Table 1: Quantitative metrics for disentanglement. MIG: mutual information gap (Chen et al.,
2018). MIG-sup: supplement mutual information gap (Li et al., 2020). I(zpast; factorsnew): mutual
information between already active dimensions and the new factors. ∆ reconstruction loss: the
relative change for reconstructing past data.

Choosing suitable disentanglement metrics is vital as different metrics may measure different aspects
of the disentanglement (Locatello et al., 2020; Zaidi et al., 2022). Here we consider two types
of metrics. First, to form a complete measurement of the one-to-one relationship between latent
dimensions and semantic factors, we chose MIG-sup (Li et al., 2020) that penalizes learning multiple
semantic factors into the same dimensions in combination with the complementary MIG (Chen et al.,
2018). Second, to focus on the disentanglement of sequentially-arrived semantic factors, we compute
the mutual information I(zpast; factorsnew) between active dimensions for past data and new factors
in the new data. Ideally, if a model manages to disentangle new semantic factors into dimensions not
used by previous data, I(zpast; factorsnew) should be close to 0. Finally, we also compute the relative
change of reconstruction loss for past data to measure forgetting.

As shown in Fig.3(a), major semantic factors such as object shape, size, and color were learned from
the first subset. When a new data stream is introduced (shown in Fig.3(b)), while all models were
able to reuse most of the latent dimensions corresponding to previously-learned semantic factors, all
baseline models entangled new semantic factors – the floor color – with these dimensions. In contrast,
CUDOS was able to not only reuse shared latent dimensions, but also disentangle new ones into
previously inactive dimensions. Note that we include results of Ramapuram et al. (2020) in Fig.3 as
an example of the baseline models that have constraints on replayed data, annotated by Lold. Visual
traversing results of other comparison models can be found in Appendix.D. Additional results on
different sequences of split-3DShapes can be found in Appendix I.

Quantitatively, as summarized in Table. 1, CUDOS witnessed the lowest I(zpast; factorsnew) among all
comparison models, as well as the best disentanglement performance as measured by MIG and MIG-
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Figure 4: SOM results on split-3DShapes. (a) SOM prototypes learnt after the first (left) and second
(right) data environments. Black boxes label prototypes associated with current (black) and replayed
data samples (blue), while the rest of the prototypes are mixture-interpolated. (b) Average spike
parameter αk. Prototypes of the second data environment (black) shared active dimensions from the
first data environment (blue) with added dimensions. Gray represents inactive dimensions.

Figure 5: Continual learning of Moving Fashion-
MNIST and MNIST.

3DShapes baselines CUDOS
Scale R2 ↑ 0.05±0.07 0.58±0.13

Orientation R2 ↑ 0.08±0.05 0.93±0.02
∆ Scale ↑ -0.92±0.10 -0.13±0.13

∆ Orientation ↑ -0.81±0.15 -0.00±0.01
Moving-MNIST baselines CUDOS

X-pos R2 ↑ 0.67±0.09 0.70±0.06
Y-pos R2 ↑ 0.75±0.05 0.66±0.23
∆ X-pos ↑ 0.053±0.13 0.054±0.08
∆ Y-pos ↑ 0.01±0.06 -0.15±0.27

Table 2: R2 score on new data & its change ∆
from that on old data prior to continual learing.

sup. This carefully designed experiment provided clear evidence that CUDOS is able to continually
disentangle new semantic factors without entangling them with shared ones learned from the past.
It also showed that this cannot be achieved by naively using generative replay to extend existing
disentangling or prototype-based VAE (e.g., TC-VAE and VQ-VAE) into continual versions. More
discussion of differences between static and continual disentanglement can be found in Appendix J.

Fig. 4 (a) shows that the SOM-mixture continually updated a summary of the relation between past
(blue box) and new data environments (black box) based on their active latent dimensions (b). T-SNE
plots of the learned latent representations after continual learning as an alternative way to visualize
the relationships among data are provided in Appendix G.

Moving MNIST & Fashion-MNIST: We then tested CUDOS on sequences of Fashion-MNIST,
MNIST, and moving versions of them similar to that presented in Achille et al. (2018). Fig.5
presented results for one sequence: Moving Fashion-MNIST → Moving MNIST → Fashion-MNIST.
As shown, CUDOS was able to disentangle new semantic factors (green boxes), while re-using those
learned from the past (red boxes). For instance, the positional semantic factors learned from Moving
Fashion-MNIST were reused while learning Moving MNIST.

CelebA: We further designed experiments for continually learning over split versions of CelebA
data. Fig.6 provide examples of results obtained by two different splits: by age (top), and by bangs
(bottom). Traversing results on selected dimensions showed that CUDOS was able to reuse latent
dimensions for previous semantic factors while learning new ones related to the new attributes.

Benefits on downstream tasks: To evaluate the usefulness of the disentangled representations
learnt by CUDOS, we focused on shared tasks related to the continually-learned semantic factors
shared among past and new data environments, including predicting the scale and orientation of
3DShapes, and predicting the X- and Y- positions of Moving-MNIST. For each task, we identified
the corresponding active latent dimensions after learning the first data environment, and continually
trained linear regressors to predict the ground-truth labels using these active latent dimensions: the
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Figure 6: CelebA split by age (top row) and bangs (bottom row). The green boxes highlight the newly
learned semantic factors, and the red boxes highlight the reused ones.

moving fashion moving MNIST fashion
active 0.74 0.85 0.86
inactive 0.4 0.17 0.35

Method MIG ↑ MIG-sup ↑ I(zpast; factorsnew) ↓ ∆ reconstruction ↓
VAE+SOM+Lold 0.128±0.026 0.125±0.029 0.969±0.238 0.011±0.001
VAE+SS+Lold 0.302±0.121 0.293±0.119 0.782±0.765 0.005±0.103
VAE+SOM+SS+Lold 0.217±0.072 0.240±0.082 0.648±0.268 0.024±0.004
VAE+SOM+SS+Lold+Lnewz 0.216±0.036 0.320±0.086 0.072±0.050 0.024±0.004
CUDOS (above+Lnewx) 0.242±0.047 0.326±0.053 0.024±0.029 0.021±0.013

Table 4: Top: Continual digit classification accuracy (testing) based on active or inactive dimensions.
Bottom: Ablation study. SS: spike-and-slab density. Lold/Lnew: constraints on replayed/new data.

intuition is that, if new semantic factors are entangled into these shared dimensions, the performance
of the regressor will decrease during continual learning. For comparisons, Achille et al. (2018) and
Ramapuram et al. (2020) were used as baselines and their results aggregated for 3Dshapes, and
Ramapuram et al. (2020) was used as the baseline for Moving-MNIST. Table 2 summarizes the R2

scores of each task obtained on new data along with their changes ∆ from the R2 scores obtained
on old data prior to continual learning. As shown, CUDOS achieved best final R2 score for scale
and orientation regression, along with minimum drop of performance over the course of continual
learning. For Moving-MNIST, CUDOS and baselines achieved similar results on X-Y position
regression, with in general less significant performance drop in comparison to 3DShapes. We argue
that this is because X-Y position regression on a clean background is an easier task, than scale and
orientation regression on a more complex data environment like 3DShapes. Additionally, Table 4
(top) shows digit-classification performance on Moving-MNIST using active and inactive dimensions,
which suggested that active semantic factors for the digit data environments are learned properly.

Ablation study: Table. 4 (bottom) presents a detailed ablation study on the contribution brought by
the different ingredients within CUDOS. We did not include results from VAE+Lold because they are
represented by the work of Ramapuram et al. (2020) as reported in Table. 1. As shown, the sparsity
introduced by spike-and-slab distribution plays a significant role in improving the disentanglement
ability of CUDOS. While SOM alone does not appear to improve the general disentangling ability
of the model, it does seem to help disentangle new semantic factors from previously learned ones;
more importantly, it is a necessary component for learning the relational structure of data to guide
disentanglement, i.e., for enabling Lnewx in Equation (10). Indeed, the combined introduction of
SOM and Lnewx brings significant improvement in the ability of CUDOS to disentangle new semantic
factors from previously learned ones, as it is evident in the improvement achieved in MIG-sup and
I(zpast; factorsnew). More implementation details can be found in Appendix.C.

Conclusion: In this paper, we demonstrated that an overlooked key ingredient to continual unsuper-
vised learning of representations is to exploit the relational structure of data based on their underlying
active semantic factors. We presented CUDOS, a novel VAE with self-organizing spike-and-slab
mixtures, to address this. A limitation of the present form of CUDOS is that continual disentangling
partly depends on the teacher-student strategy, leaving the snapshot timing a hyper-parameter. We
will investigate sequential Bayesian inference as a potential solution to this problem as a future work.
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A OPTIMIZING ψ FROM ELBO

To make the partial derivative of ψ clearer, we first rewrote the last two terms of ELBO in Eqn. (3) as:

− Epψ(w|z)[DKL(qϕ(z|x)||pψ(z|w))]− Eqϕ(z|x)[DKL(pψ(w|z)||p(w))]

=

∫
pψ(w|z)

pψ(w|z)
∫
qϕ(z|x)log

pψ(z|w)
qϕ(z|x)

dzdw + Eqϕ(z|x)
∫
pψ(w|z)log

p(w)

pψ(w|z)
dw

=

∫
qϕ(z|x)

qϕ(z|x)
∫
pψ(w|z)logpψ(z|w)dzdw −

∫
pψ(w|z)

pψ(w|z)
∫
qϕ(z|x)logqϕ(z|x)dzdw

+ Eqϕ(z|x)
∫
pψ(w|z)log

p(w)

pψ(w|z)
dw

= Eqϕ(z|x)
∫
pψ(w|z)log

pψ(z|w)p(w)
pψ(w|z)

dw − Epψ(w|z),qϕ(z|x)[logqϕ(z|x)]

= Eqϕ(z|x)[logpψ(z)]− Epψ(w|z),qϕ(z|x)[logqϕ(z|x)]
(12)

Therefore the optimized ψ∗ can be solved by:

ψ∗ = argmaxψELBO = argmaxψEqϕ(z|x)[logpψ(z)] (13)

B MOVING MNIST AND MOVING FASHION-MNIST DATASET

Based on the original MNIST and fashion-MNIST dataset, we created the moving version of them by:
(1) Resize the original 28*28 images to 36*36 images, (2) Place the original 36*36 images image at
the top-left of a 64*64 black background. (2) Apply translation for both x and y axis with values
[5,10,15,20,25].

C EXPERIMENTS DETAIL

Hyper-parameters settings and implementation strategy: We set γ1 = 0.25, γ2 = 1, γ3 = 0.35,
b = 10 in all experiments. Snapshot of the model is updated every τ = 1500 iteration steps.
Regarding weights in Eqn 11, in our experiments, generally, we are trying to avoid certain parts of
the loss function becoming too large or small, and we found a rule-of-thumb weight value described
above across different datasets. The most tricky part is the weighting for the constraints of old
data and new data. We found a slightly higher weight on new data can achieve better continual
disentanglement results. We reason that the constraint on new factors is more difficult compared
with reconstructing old data, and therefore emphasizing more on that (higher weight) can be helpful.
In general, we didn’t find obvious differences within around 30% percent changes of each weight.
Putting them too high (larger than the ELBO term) will affect the original continual learning of new
data. Metrics in Table. 1 are calculated in a setting where the boundary of data environments is
known.

Network-architecture: Table. 5 shows the network architecture for all our experiments, where BN
stands for batch normalization, Conv stands for convolution layer, T-Conv stands for transposed
convolution layer, FC stands for fully-connected layer, ELU stands for Exponential linear unit
activation.

Code is available at https://github.com/Zhiyuan1991/CUDOS_release.

D TRAVERSING RESULTS ON SPLIT-3DSHAPES

Here we presented additional traversing results for baseline methods, along with their
I(zpast; factorsnew) value.
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Figure 7: Burgess et al. (2017), I(zpast; factorsnew): 1.185

Figure 8: Achille et al. (2018), I(zpast; factorsnew): 0.602.
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Figure 9: Ramapuram et al. (2020), I(zpast; factorsnew): 0.877

Figure 10: Continual VQ-VAE, I(zpast; factorsnew): 1.402
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Encoder Layer Encoder parameters Decoder Layer Decoder parameters

Conv1 32,4,4, strides=2, BN, ELU FC1 1024, BN, ELU
Conv2 64,4,4, strides=2, BN, ELU FC2 4*4*256, BN, ELU
Conv3 128,4,4, strides=2, BN, ELU T-Conv1 128,4,4, strides=2, BN, ELU
Conv4 256,4,4, strides=2, BN, ELU T-Conv2 64,4,4, strides=2, BN, ELU
FC1 1024, BN, ELU T-Conv3 32,4,4, strides=2, BN, ELU
FC2 1024, BN, ELU T-Conv4 image channels,4,4, strides=2
FC3 latent dims*2

Table 5: Network architecture

Figure 11: Prototypes learnt for continual learning on Moving-Fanshion-MNIST to Moving-MNIST
to MNIST.

E SOM PROTOTYPES

Additional SOM prototypes learnt for Moving-MNIST are shown in Fig 11. In the SOM, the presented
model was able to remember and accumulate old representations, e.g., fashion digits, while learning
new representations, e.g., number digits, Additionally, the shared representations, the X-Y position,
were changing smoothly among prototypes.
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Figure 12: Mapping density on SOM of the first data environment of split-3DShapes during training.

Figure 13: Mapping density on SOM of the second data environment of split-3DShapes during
training. Dots without black boundaries are replay data.

F DATA ENVIRONMENTS MAPPING ON SOM DURING TRAINING

In Fig 12 and Fig 13 we presented additional data environments’ mapping density on SOM during
continual training.

G T-SNE FOR 3DSHAPES FACTORS

Here we presented additional T-SNE plots for the learned latent representations of our model (colored
by the generative factors of 3DShape) after continual learning of split-3DShape as shown in Fig 3.
As shown in Fig.14, some factors such as floor color (10 classes) and shape (4 classes) formed good
clusters while some more difficult factors such as orientation (15 classes) and scale (8 classes) formed
fewer discriminative clusters.

H TRAVERSING RESULTS ON MOVING-MNIST

Here we presented additional traversing results for baseline methods on Moving-MNIST.
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Figure 14: T-SNE plots for 3DShapes factors.

Figure 15: Burgess et al. (2017).
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Figure 16: Achille et al. (2018).

Figure 17: Ramapuram et al. (2020).
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Figure 18: Continual VQ-VAE.

I ADDITIONAL EXPERIMENTS OF SPLIT-3DSHAPES

Here we first presented additional experiments of split-3DShapes with two splitting versions that
each has three data environments. The first version, as shown in Fig 19, was starting with no floor
and wall color variations and then continually added them. The second version, as shown in Fig 20,
was starting with no scale and wall color variations and then continually added them. For most latent
dimensions during continual learning, CUDOS was able to reuse those corresponding to previously
learned semantic factors and disentangle new ones into previously inactive dimensions.

Next, we presented a reversed sequence of split-3DShape, where the first data environment includes
all semantic factors and the second one includes a subset that doesn’t have the floor color variations
(only red remained). As shown in fig 21, our model was able to reuse all previous semantic factors
without any expansion of latent space. Furthermore, our model was able to remember how to generate
the variations of the missing floor color in the second data environment after continual training.

J MORE DISCUSSION OF DIFFERENCES BETWEEN STATIC AND CONTINUAL
DISENTANGLEMENT

Continually disentangling sequentially-arrived semantic factors is fundamentally different from
disentangling a static dataset where the model sees all semantic factors at once. When semantic
factors are presented sequentially, the model needs to make sure that it 1) does not forget previously
learned factors, 2) is able to re-use latent dimensions corresponding to shared factors, and 3) prevents
new ones to be entangled into the shared ones. None of these challenges are addressed by state-of-
the-art (SOTA) disentangling VAEs such as FactorVAE (Kim & Mnih, 2018) and TC-VAE (Chen
et al., 2018). The continual setting sees significant challenges such as forgetting (including forgetting
learned semantic factors) and, as in other continual learning problems, cannot be expected to see
similar disentanglement performance to those reported on static settings. That’s why the non-continual
baselines in Table 1, including naive VAE, naive TC-VAE, and Burgess et al. (2017), all showed
weaker performance than what would have been expected in a static learning setting. Furthermore,
because these models are not designed for continual learning, they will also face challenges such as
catastrophic forgetting. We can take a closer look at this by taking naive TC-VAE versus continual
TC-VAE (with generative replay mechanism) as an example. As shown in Table 1, naive TC-VAE
achieved overall better MIG and MIG-sup scores because they can forget about previous data and
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Figure 19: Continually learning a split version of 3DShapes where the variations of floor and wall
colors were absent initially and appeared later. Each row of images is traversing each latent dimension
after training on data environments titled above. Black bounding boxes annotate where the new
semantic factors are learnt.

Figure 20: Continually learning a split version of 3DShapes where the variations of scale and wall
colors were absent initially and appeared later. Each row of images is traversing each latent dimension
after training on data environments titled above. Black bounding boxes annotate where the new
semantic factors are learnt.

21



Published as a conference paper at ICLR 2023

Figure 21: Continually learning a reversed sequence of split-3DShape where all semantic factors
were presented in the beginning but later the variation of floor color was removed (only red remained).
Each row of images is traversing each latent dimension after training on data environments titled
above.

focus on disentangling the new data (in split 3DShapes, the two sequentially-presented datasets share
many latent factors but one). Therefore, forgetting previous semantic factors did not create a large
performance drop in MIG and MIG-sup scores. This catastrophic forgetting however is reflected in
the reconstruction loss, which increased from 2365 to 3207 (around 35% change) on the previous data.
In addition, the I(zpast; factorsnew) metric further shows that naive TC-VAE is not able to separate
new semantic factors from previously-learned latent dimensions, but rather achieved relatively high
disentangling by simply forgetting previous factors and learning on the new data itself. This is similar
to naive VAE’s performance.

By extending TC-VAE to a continual learning setting with generative replay, the continual TC-VAE
was able to remember how to reconstruct the previous data, where the reconstruction loss only
increased from 2376 to 2395 (0.7% change). However, its disentanglement performance including
MIG and MIG-sup dropped. This demonstrates the aforementioned challenges of disentangling
sequentially-arrived semantic factors (while remembering the previous factors at the same time)
that are fundamentally different from disentangling all seen factors at once. It also shows that such
challenges cannot be addressed by either naive SOTA disentangling VAEs, or simply extending these
SOTA disentangling VAEs into a continual setting (via standard techniques such as generative replay).
We believe these provide further evidence for the contribution of the presented work.
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