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ABSTRACT

Diffusion models have demonstrated outstanding generative capabilities in image
and video synthesis. However, their heavy computational burden, particularly due
to the sequential denoising process and large model sizes, makes them challenging
to meet real-time application demands. In this paper, motivated by the continuity
of diffusion models in the feature space, we introduce FEMO, which employs a
momentum mechanism to stabilize the dynamics of diffusion models in different
timesteps, allowing us to accurately predict the features in the future timesteps
based on the historical information. Additionally, we further propose an Adapted-
FEMO, which allows for adaptive searching for the optimal coefficient for each
generated sample. Extensive experiments demonstrate its effectiveness, e.g., a
4.99× acceleration on FLUX with 0.86% improvements on image reward.Under
the condition of maintaining generation quality, Adapted-FEMO achieves a max-
imum speedup of 7.10× on DiT and 6.24× on FLUX. Our codes are available in
the supplementary material and will be released on Github.

1 INTRODUCTION

In the field of generative artificial intelligence, Diffusion Models (DMs) Ho et al. (2020) have made
significant progress, achieving excellent results in tasks such as image generation and video synthe-
sis Blattmann et al. (2023); Rombach et al. (2022). Diffusion Transformers (DiT) Peebles & Xie
(2023) have further improved visual generation quality by replacing the U-Net architecture with the
Transformer encoder architecture. However, these advancements come with a substantial increase in
computational demands, and the high-order time complexity caused by the repeated computation of
high-dimensional features during inference limits the feasibility of diffusion transformers in practi-
cal applications. To address the issue of computational inefficiency, several acceleration techniques
have been proposed Ma et al. (2024); Meng et al. (2023); Yuan et al. (2024); Zhao et al. (2024).

Most recently, based on the observation that diffusion models exhibit strong similarity in features
between adjacent timesteps, feature caching has been proposed as a plug-and-play technique to
accelerate diffusion models Selvaraju et al. (2024). Feature caching stores the features of diffusion
models in previous activated timesteps and reuses them in the following caching timesteps, thus
achieving significant acceleration by skipping the computation in the caching steps. Meanwhile,
many studies have incorporated the characteristics of diffusion models, proposing methods such as
caching important tokens Zou et al. (2024a), Zou et al. (2024b), and caching only the gap between
features Chen et al. (2024). These works follow the “cache-then-reuse” paradigm that assumes that
features in the previous timesteps are identical to the features in the following timesteps, which is
approximately reasonable for temporally adjacent timesteps, but entirely invalid when applied to
distant timesteps, leading to a significant generation quality degradation in high acceleration ratios.

Features of diffusion models are dynamic instead of static. More surprisingly, by visualizing
the features of diffusion models in different timesteps, we find that it forms a relatively stable and
continual trajectory. From observation, Liu et al. (2025) proposed TaylorSeer, a new ”cache-then-
forecast” paradigm that uses differential approximations of Taylor series expansions to predict the
features at the current reuse step, providing a very preliminary solution to model the dynamics in the
features of diffusion models. In this paper, we identify this paradigms suffer from following issues

First, Taylor-based approximations are inherently susceptible to noise-sensitive gradient accumu-
lation during multi-step reuse, as high-order derivatives such as second- or third-order terms are
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Figure 1: Scatter plot of the trajec-
tories of FEMO and other baseline
methods after PCA.

Figure 2: The trajectory of feature in diffusion models over
timesteps for FEMO and the original DiT without accelera-
tion on four different samples.

prone to estimation inaccuracies that propagate exponentially across sequential steps. Furthermore,
the fixed-order truncation of Taylor series fundamentally limits its capacity to model long-term
dependencies, as predefined polynomial degrees fail to account for directional reversals in feature
trajectories over extended horizons. Additionally, as shown in Figure 2, there is a huge difference in
the feature trajectory across timesteps for different generated samples. However, previous methods
ignore their difference and treat all of them with the same paradigm. These issues introduce the
requirement for a noise-robust, long-historical, and adaptive technique to model the dynamics of
the features in diffusion models.

Figure 3: Comparison between the previ-
ous methods and FEMOon DrawBench with
FLUX and ImageNet with DiT.

To address these issues, we propose Feature Mo-
mentum (FEMO) to model the dynamics in the fea-
tures of diffusion models by introducing an adap-
tive momentum mechanism, allowing us to predict
the features in the future timesteps based on the
trend of historical features. Concretely, FEMO em-
ploys a weighted prediction mechanism, utilizing the
derivative terms approximated by the differences of
all fully activated timesteps to predict the features
at the current reused timestep. Building on this,
Adapted-FEMO minimizes the discrepancy between
predicted and actual features, dynamically adjusting
the weights of historical features based on the fea-
ture distribution characteristics of different samples.
Without the requirements on high-order derivatives, FEMO avoids the high sensitivity to the outlier
in diffusion progress, allowing us to precisely match the original feature trajectory of the original
diffusion models at a high acceleration ratio, as shown in Figure 1. Compared to previous caching
methods where high reuse frequency led to severe image quality degradation, Adapted-FEMO is
particularly effective when there is a large gap between fully activated steps. As shown in Figure
3, compared with previous SOTA methods, our approach reduces quality loss by 16 times, and still
maintains good generative performance under an ultra-high acceleration ratio of up to 7.1×, whereas
previous methods experienced significant generative failure at this acceleration ratio.

In summary, the main contributions of this work are as follows:

• We propose Feature Momentum (FEMO), which predicts features of diffusion models through
an adaptive momentum mechanism. The accurate prediction in FEMO allows us to skip the
computation in the future timesteps to achieve significant acceleration without drops in generation
quality.

• Based on the difference in the feature trajectory of different diffusion models, we further propose
Adapted-FEMO, which dynamically adjusts the weights of historical features for each generated
sample to minimize the error caused by feature caching.

• Extensive experiments on DiT and FLUX demonstrate that Adapted-FEMO achieves ultra-high
speedups of 6.24× and 7.10× respectively, while maintaining nearly lossless generation quality. It
can be directly utilized in any diffusion transformer without requirements for additional training.
Compared with TeaCache, FEMO achieves a 29.34% improvement in generation quality metrics
at the highest acceleration ratio.
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2 RELATED WORK

2.1 DIFFUSION ACCELERATION

Since the introduction of the Diffusion model Sohl-Dickstein et al. (2015), it has made significant
progress in the field of generative models, thanks to its exceptional capabilities in generating images
and videos. The initial model used the U-Net architecture Rombach et al. (2022); Ho et al. (2020),
but its computational cost and inference speed bottlenecks made it difficult to meet the needs of
practical applications. Although later variants like DiT Peebles & Xie (2023) enabled faster infer-
ence, they still required long generation times. To address this issue, various acceleration techniques
have emerged in recent years , aiming to optimize the sampling processSong et al. (2021); Lu et al.
(2022b;a)and network structure Fang et al. (2024); He et al. (2024); Shang et al. (2023)of Diffusion
models, in order to improve their generation efficiency.

Reducing the number of sampling steps. DDIM Song et al. (2021) reduces the necessary sam-
pling steps by introducing a non-Markov process, while maintaining high generation quality. In
addition, some higher-order ODE (ordinary differential equation) solvers, such as the DPM-Solver
series Lu et al. (2022b;a), further accelerate the sampling process through more efficient numerical
methods, reducing the computational load required for inference.

Optimizing the computational efficiency of denoising networks. For example, model compres-
sion techniques such as network pruning Fang et al. (2024) and quantization He et al. (2024); Shang
et al. (2023) can significantly accelerate inference speed without significantly reducing generation
quality. Although these methods perform well on the U-Net architecture, there has been limited
exploration of their application to Transformer architectures (e.g., Diffusion Transformer, DiT).
Therefore, some new methods, such as FORA Selvaraju et al. (2024) and ∆-DiT Chen et al. (2024),
are specifically optimized for the characteristics of DiT.

2.2 FEATURE CACHE

Feature caching technology has become an important direction for accelerating the inference of Dif-
fusion models and has gained widespread attention in recent years. The core idea of this technology
is to store and reuse intermediate features computed from previous steps during inference, in order to
reduce redundant computations and improve computational efficiency. For example, DeepCache Ma
et al. (2024) and Faster Diffusion Li et al. (2023) cache feature maps from intermediate layers of the
U-Net model and share computational results between adjacent steps, thereby significantly reducing
the computational load during inference. These methods achieve acceleration without adding extra
training burdens by reducing redundant computations. However, traditional feature caching meth-
ods are primarily designed for the U-Net architecture Rombach et al. (2022); Ho et al. (2020) and
are difficult to directly apply to Transformer-based Diffusion models Peebles & Xie (2023). Due
to the differences in the self-attention mechanism and hierarchical structure of the Transformer ar-
chitecture, traditional caching methods often fail to effectively reuse features, leading to a decline
in generation quality. To address this, some new methods have proposed caching strategies specifi-
cally for Transformer architectures Ma et al. (2024); Zou et al. (2024a;b) and other related adaptive
optimization algorithms Liu et al. (2024); Yuan et al. (2024); Qiu et al. (2025); Liu et al. (2025).

Learning to optimize caching strategies. The Learning-to-Cache method proposed by Ma et al.
Ma et al. (2024) improves caching efficiency by learning the optimal caching strategy, although this
requires additional training steps. Additionally, ToCa Zou et al. (2024a) and DuCa Zou et al. (2024b)
reduce information loss through dynamic selection feature updates.

Adaptive optimization strategies. At the same time, TeaCache Liu et al. (2024) optimizes
caching decisions by dynamically selecting time steps and estimating the differences between them.
DiTFastAttn Yuan et al. (2024) reduces redundancy in self-attention computations across multiple
dimensions by introducing windowed attention, feature similarity across time steps, and the elimi-
nation of conditional redundancy. EOC Qiu et al. (2025) presents an error optimization framework
that enhances caching efficiency by leveraging prior knowledge extraction and adaptive optimiza-
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tion.Recently, Liu et al. (2025) proposed refining the values in the cache by approximating the true
values during the next sampling step using Taylor expansion terms.

These innovative feature caching techniques provide new acceleration approaches for Diffusion
models within the Transformer architecture. By reducing redundant computations, approximat-
ing true values in the cache, and adaptive optimization, they significantly improve inference speed
while ensuring generation quality. However, these methods still face a challenge: as the time steps
increase, the similarity between features rapidly decreases, leading to degradation in generation
quality. Therefore, prediction-based caching methods have become a new development trend. For
example, by predicting the features of future steps, instead of directly reusing past features. Our
work achieves the approximation of the ”true values” during reuse in the cache with minimal addi-
tional computational cost, thus maintaining high generation quality.

3 METHODOLOGY

In this section, we briefly introduce the Diffusion model and Transformer Architecture, followed by
Feature Caching and prediction for the Diffusion model. Then, we present the prediction principle
of the FEMO and introduce the Adapted-FEMO method, which adaptively adjusts the momentum
term coefficient based on the difference between predicted value and true computed value.

3.1 PRELIMINARY

Diffusion model and Transformer Architecture. The diffusion model consists of a forward pro-
cess and a reverse process. The forward process gradually adds Gaussian noise to the clean image
:

xt =
√
αtx0 +

√
1− αtϵ (1)

while the reverse process gradually denoises the standard Gaussian noise to recover the real image.
The denoising process is mainly based on calculating the posterior probability from the prior prob-
ability, which leads to the probability density function of the [noised] reverse process, as defined in
the formula:

pθ(xt−1|xt) = N
(
xt−1;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
, βtI

)
(2)

In this process, T denotes the number of timesteps in the denoising process, αt = 1 − βt, and
ᾱt =

∏T
i=1 αi. ϵt represents a denoising network with inputs xt and t. The training process

involves optimizing θ such that the predicted noise removal approximates the noise added during the
forward process. During image generation, the network ϵθ requires T inferences, consuming most
of the computational cost in diffusion models. Recent studies suggest that replacing the traditional
U-Net with a transformer-based architecture for ϵθ can significantly enhance generation quality.
Diffusion Transformer models are usually composed of stacking groups of self-attention layers
fSA, multilayer perceptron fMLP , and cross-attention layers fCA (for conditional generation).The
input data xt consists of a sequence of tokens representing various patches within the generated
images. This can be expressed as xt = {xi}H×W

i=1 , where H and W correspond to the height and
width of the images, or the latent code of the images, respectively.

Feature Caching and predicting for Diffusion model. Recent acceleration techniques apply
Naı̈ve Feature Caching in diffusion models by reusing features from adjacent timesteps:

F(xt−k) := F(xt), where k ∈ {1, . . . , N − 1} (3)

This strategy theoretically provides a speedup of (N − 1)-times, but errorr accumulation caused by
direct reuse limits maximum speedup before model failure. A new method TaylorSeer has recently
been proposed. It simulates the first-order derivative using finite differences, and applies Taylor
expansion terms to make the historical features cached from the previous full computation approach
true feature values during current reuse. The definition of the i-th forward finite difference is:

∆iF(xt) = ∆(∆i−1F(xt)) = ∆i−1F(xt+N )−∆i−1F(xt) (4)
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Figure 4: (a) FeMo (Order=2) uses first-order and second-order finite difference approximation
derivatives, modeling and predicting the current reuse step feature by utilizing the historical infor-
mation of each respective order. (b) From a conceptual perspective, the high-dimensional features
are abstracted into a 2D space for vector analysis, illustrating that FEMO, when introducing the
momentum term for prediction modeling, can make more accurate predictions in both direction and
magnitude by considering the historical information of all previous full activation steps.

Where t is the current time step, and t + N is the previous full computation step. And setting
the base case ∆0F(xt) = F(xt). Substituting Eq. 4 into the standard Taylor expansion, the general
expression for approximating the reused features using the full computation step features is obtained:

F(xt−k) = F(xt) +

m∑
i=1

∆iF(xt)

i! ·N i
(−k)i (5)

Although this method can effectively improve the accuracy under feature reuse, using only the ex-
pansion terms of the current full activation step as the direction guidance still lacks precision in
determining the prediction direction in the vector space. This prediction can even have a negative
effect at initial timesteps where feature changes are more significant. This still limits the model from
achieving a larger speedup while maintaining generation quality. Therefore, we propose using the
historical gradient to guide the prediction direction of the current timestep.

3.2 FEMO

Feature prediction during the reuse step. In order to suppress the oscillations caused by ad-
vancing in the direction of the finite difference approximation of the derivative, FEMO introduces
a weighted historical momentum term based on the finite difference approximation. This helps
smooth out short-term fluctuations in the prediction curve and further correct the predicted direction
during the cache reuse step. The iterative formula for the momentum term that stores the historical
difference terms is:

Mi(xt) = β · Mi(xt+N ) + (1− β) · F (i)(xt) (6)

Here, β represents the weight of historical information in each iteration, and (1− β) represents the
weight of the differential derivative term calculated from the current full activation timestep. The
relationship for approximating the derivative using:

∆iF(xt) ≈ N i · F (i)(xt) (7)

By replacing the difference approximation term in Eq. 5 with the historical momentum term, and
considering the proportional factor in Eq. 7, we derive the feature prediction formula for the k-th
reuse timestep t using the m-th order derivative term:

F(xt−k) = M(xt) +

m∑
i=1

Mi(xt)

i!
(−k)i (8)

Here, i is the order of differentiation, and M(xt) = F(xt).At this point, the feature prediction
direction at timestep t during cache reuse step is determined not only by the finite difference
approximation of the derivative at the previous full activation step, but also by the predicted
direction Mi(xt+N ), obtained through a weighted vector average of all previously accumulated
activation steps in the vector space. The optimization direction tends to adjust gradually along the
previous direction, reflecting inertia and directional tendency in the optimization process.
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Weighted Prediction Mechanism. As shown in Eq. 6, FEMO is a method that assigns different
weights to all previous full computation steps, calculates the weighted moving average of local
features, and uses the final moving average as the basis for determining the predicted feature values
during the reuse step. To understand the weight of the influence of previous full computation steps
on the current predicted features, and to make a reasonable initial setting, we derive the following
general formula(We perform it when m = 1):

M(xt) = βτ · M(T ) + (1− β) · (F(xt)

N
− βτ−1 · F(xt+τN )

N
)−

τ−1∑
j=1

βj−1 · (1− β)2 · F(xt+jN )

N

(9)
Here, t = T%N , τ = T−t

N and T is the full activation step closest to the first feature reuse step. It
typically does not directly equal the total number of timesteps.As observed from the Eq. 9, in the
early stages of inference, the prediction direction and accuracy mainly depend on the computed
values of M(T ) and F(xt). Due to the lack of sufficient historical data, the model’s prediction
error may be large. Given that generative models typically rely on limited prior information and
data, we start saving the finite difference approximation values from the first timestep. This way,
a larger initial value setting can provide stronger guidance in the early stages of the generation
process, making it closer to the target distribution and reducing early fluctuations.

Bias Correction. At the same time, as observed in Figure 2 in the introduction, the feature tra-
jectory is relatively smooth during the first few timesteps, with the finite difference derivative values
being small (especially in higher-order approximations). To enhance the numerical stability of the
FEMO method and ensures more accurate predictions, we have applied bias correction:

b = 1− β∆t,Mi(xt) =
Mi(xt)

b
, (10)

where b is the bias correction term, and ∆t represents the number of timesteps. When ∆t is close to
0, the denominator can effectively amplify the current feature value, while when ∆t is close to T , it
has almost no impact on the current feature.

3.3 ADAPTED-FEMO

At the same time, we observe that when the feature trajectory is relatively smooth, assigning smaller
weights to the historical gradients is sufficient for accurate predictions. However, in cases where
the trajectory is not smooth—that is, when the values in the cache differ significantly from the
true computed values—we can adaptively adjust the momentum term’s weight based on the size of
the local values. This allows us to effectively determine the prediction direction when significant
changes occur in the feature’s direction in the vector space. Therefore, we propose that FEMO
perform an additional computation step during prediction, i.e., when t in Eq. 9 corresponds to the
full computation step: (Mathematical analysis using m = 1 as an example).

ŷ = M0(xt+N ) +N · M1(xt+N )

= N [·βτ · M(T ) + (1− β) · F(xt)]−N · βτ−1 · F(xt+τN ) + F(xt+N )

−
τ−1∑
j=1

βj−1 · (1− β)2 · F(xt+jN )

(11)

At this point, we assume the objective is to minimize the mean squared error between the predicted
value formula value(denoted as ŷ) and the computed value true value(denoted as y):

min ∥y − ŷ∥2 (12)

At the same time, we solve the constraint function, so that at the current step t,all terms in the
objective function, except for the variable β, are known tensors. Through first-order derivative
analysis (Theorem B.2 in the appendix), we can deduce that β should satisfy:

β =
(1− τ) · F(xt+N )

τ ·N · M(T )−F(xt+N )
(13)
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Figure 5: Qualitative comparison on FLUX.1-dev. Other
methods encounter issues such as failure in text, wrong
number of objects, low aesthetics, and so on, while FEMO
achieves the best quality and acceleration.

Figure 6: Detailed visualization re-
sults of different acceleration methods
on DiT-XL/2 in the case of speed ratio
of 6.22×.

When ∥y∥2 > ∥ŷ∥2, it is clear that β should tend to increase and change relatively slowly. In order
to achieve the optimization objective with the minimal computational effort, we set the learning rate
γ and determine its specific value based on experimental experience. To implement the adaptive β,
we use the following formula βt = βt+N + S · γ. When ∥ŷ∥2 − ∥y∥2 < 0, S is 1; otherwise, S is
-1, if the difference is exactly 0, S is set to 0. At the same time, based on Eq. 13 and using a small
sample experiment, we derive the initial value for β and restrict its range of variation.

3.4 ERROR BOUNDS ANALYSIS

We derive the error bound of FEMO. Here, F denotes the feature function, while FeMo introduces
the momentum term M, whose initialization and decay properties ensure faster convergence of
higher-order terms. The error bound of FeMo is given by:

EFeMo
m (k) ≤

(1− |β|) supξ∈[t−k,t] ∥∆mF(xξ)∥
(m+ 1)!Nm+1

|k|m+1 +

m∑
i=1

Ci

i!
|k|i|N |i−1,

and it satisfies EFeMo
m (k) ≤ ETaylorSeer

m (k). This clearly demonstrates that FEMO consistently
achieves a provably tighter theoretical error bound and generally requires only about half the maxi-
mum order of TaylorSeer to reliably reach comparable overall performance.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Model Configurations. The experiments are carried out using three advanced visual generative
models: FLUX.1-devLabs (2024), a text-to-image generation model, and DiT-XL/2Peebles & Xie
(2023), a class-conditional image generation model. For more detailed model configurations, please
refer to the Supplementary Material. FLUX.1-dev utilizes the Rectified Flow Liu et al. (2023)sam-
pling method with a standard configuration of 50 steps. All experimental evaluations were conducted
on NVIDIA H20-NVLink GPUs. DiT-XL/2 adopts a 50-step DDIMSong et al. (2021) sampling
strategy to ensure consistency with other models. Experiments on DiT-XL/2 were conducted on
NVIDIA A800 80GB GPU

Evaluation and Metrics. In the text-to-image generation task, we performed inference on 200
prompts from DrawBench Saharia et al. (2024) to generate images with a resolution of 1000x1000,
using Image Reward Xu et al. (2023) and CLIP score Hessel et al. (2022) as the primary evalu-
ation metrics. For the class-conditioned image generation task, we uniformly sampled from 1,000
ImageNet Russakovsky et al. (2015) categories and generated 50,000 images with a resolution of
256x256, using FID-50k Heusel et al. (2018) as the evaluation criterion, supplemented by sFID
(Stabilized FID) for robustness evaluation. A detailed description can be found in the appendix.

4.2 TEXT-TO-IMAGE GENERATION

Quantitative Study. We compared Adapted-FEMO with existing methods. As shown in Table 1
,although DuCa Zou et al. (2024b) (N = 5) achieves 3.45× FLOPs acceleration with an Image

7
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Table 1: Quantitative comparison in text-to-image generation for FLUX on Image Reward.
Method Efficient Acceleration Image Reward ↑ CLIP ↑
FLUX.1Labs (2024) Attention Dao et al. (2022) Latency(s) ↓ Speed ↑ FLOPs(T) ↓ Speed ↑ DrawBench Score

[dev]: 50 steps 17.20 1.00× 3719.50 1.00× 0.9898 19.604

60% steps 10.49 1.64× 2231.70 1.67× 0.9739 19.526
∆-DiT (N = 2) † 11.87 1.45× 2480.01 1.50× 0.9316 19.350
DBcache vipshop.com (2025) 11.42 1.51× 2384.29 1.56× 1.0069 19.084

50% steps † 8.80 1.95× 1859.75 2.00× 0.9429 19.325
40% steps † 7.11 2.42× 1487.80 2.62× 0.9317 19.027
34% steps † 6.09 2.82× 1264.63 3.13× 0.9346 18.904
∆-DiT (N = 3) † 8.81 1.95× 1686.76 2.21× 0.8561 18.833
Chipmunk Silveria et al. (2025) 8.86 1.94× 1505.87 2.47× 0.9936 19.441
FORA (N = 3) † Selvaraju et al. (2024) 7.08 2.43× 1320.07 2.82× 0.9227 18.950
ToCa (N = 5) Zou et al. (2024a) 10.80 1.59× 1126.76 3.30× 0.9731 19.030
DuCa (N = 5) Zou et al. (2024b) 5.88 2.93× 1078.34 3.45× 0.9896 19.595
TaylorSeer (N = 4, O = 2) Liu et al. (2025) 6.81 2.53× 1042.28 3.57× 1.0024 19.402
Adapted-FEMO (N = 4, O=1) 6.67 2.58× 1042.28 3.57× 1.0375 19.618

FORA (N = 5) † Selvaraju et al. (2024) 5.17 3.33× 893.54 4.16× 0.8235 18.280
TeaCache (l = 0.8) † (Liu et al., 2025) ✔ 4.98 3.58× 892.35 4.17× 0.8683 18.500
ToCa (N = 8) † Zou et al. (2024a) 8.47 2.03× 784.54 4.74× 0.9086 18.380
DuCa (N = 6) † Zou et al. (2024b) 4.89 3.52× 816.55 4.56× 0.9470 19.082
TaylorSeer (N = 6, O = 2) Liu et al. (2025) 5.19 3.31× 744.81 4.99× 0.9953 19.637
Adapted-FEMO (N = 6, O=1) 5.07 3.39× 744.81 4.99× 0.9984 19.597

FORA (N = 7) † Selvaraju et al. (2024) 4.22 4.08× 670.44 5.55× 0.7398 17.609
ToCa (N = 10) † Zou et al. (2024a) 7.93 2.17× 714.66 5.20× 0.8390 18.165
DuCa (N = 9) † Zou et al. (2024b) 7.28 2.36× 690.26 5.39× 0.8601 18.534
TaylorSeer (N = 7, O = 2)†Liu et al. (2025) 4.88 3.52× 670.44 5.55× 0.9331 19.553
TeaCache(l = 1.2) † (Liu et al., 2025) ✔ 3.98 4.48× 669.27 5.56× 0.7351 18.080
Adapted-FEMO (N = 7, O=1) 4.70 3.66× 670.44 5.55× 0.9770 19.556

FORA (N = 9) † Selvaraju et al. (2024) 4.42 3.90× 596.07 6.24× 0.5550 18.371
ToCa (N = 12) † Zou et al. (2024a) 7.34 2.34× 644.70 5.77× 0.7131 17.907
DuCa (N = 10) † Zou et al. (2024b) 6.5 2.65× 606.91 6.13× 0.8396 18.534
TeaCache (l = 1.4) † (Liu et al., 2025) ✔ 3.63 4.91× 594.90 6.25× 0.7346 17.862
TaylorSeer (N = 8, O = 2) †Liu et al. (2025) 4.59 3.74× 596.07 6.24× 0.8167 19.499
Adapted-FEMO (N = 8, O=1) 4.37 3.94× 596.07 6.24× 0.9501 19.550

• † Methods exhibit significant degradation in Image Reward, leading to severe deterioration in image quality.

Table 2: Comparison experiment between
FeMo and the baseline on U-Net based SDXL.

Method ImageReward↑ LPIPS↓ Speed Latency
SD-XL 0.4535 0.000 1.00× 1.038s
Deepcache (N = 2) 0.4455 0.133 1.34× 0.774s
Taylorseer (N = 2,O = 1) 0.4918 0.276 1.50× 0.691s
FeMo (N = 2,O = 1) 0.4987 0.264 1.48× 0.700s

Deepcache (N = 7) -2.2052 0.845 1.71× 0.606s
Taylorseer (N = 7,O = 1) 0.3777 0.465 2.19× 0.473s
FeMo (N = 7,O = 1) 0.4340 0.433 2.16× 0.479s

Table 3: Comparison of different methods on
FID and LPIPS on FLUX.

Method FID↓ LPIPS↓ FLOPS Speed
DuCa (N = 9) 44.55 0.552 690.26 5.39×
Teacache (l = 1.2) 34.88 0.671 669.27 5.56×
FORA (N = 7) 34.79 0.539 670.44 5.55×
ToCa (N = 10) 33.81 0.479 714.66 5.20×
TaylorSeer (N = 7,O = 2) 28.31 0.452 670.44 5.55×
FeMo (N = 7,O = 1) 25.16 0.384 670.44 5.55×

Reward of 0.9896, and ToCa Zou et al. (2024a) (N = 5) provides 3.30× acceleration, its image
quality drops (0.9731). However, the performance of Adapted-FEMO (N = 4, O = 1) significantly
outperforms both: with 3.57× acceleration, it maintains an excellent Image Reward of 1.0375. In
comparison to the recent cache-based high-acceleration method TaylorSeer Liu et al. (2025), which
retains a stable Image Reward of 0.9331 at 5.55× acceleration, our Adapted-FEMO maintains
an even better Image Reward (0.9770) and CLIP score (19.556) at the same 5.55× acceleration.
Notably, as the acceleration ratio increases, baseline methods suffer a significant degradation in
image quality: ToCa (N = 12) drops to 0.7131 Image Reward at 5.77× acceleration, DuCa (N =
10) drops to 0.8396 Image Reward at 6.13× acceleration, and TaylorSeer (N = 8, O = 2) drops to
0.8167 Image Reward at 6.24× acceleration. In contrast, Adapted-FEMO (N = 8, O = 1) maintains
an Image Reward of 0.9501 and a CLIP score of 19.550 even at 6.24× acceleration, demonstrating
an unparalleled balance of efficiency and fidelity.

Qualitative Study. Qualitative results in Figure 5 demonstrate that FEMO achieves outstanding
generation quality while enabling high-speed inference. Here, Feature Lost refers to the absence
of key information contained in the prompt compared to the original image. In the text generation
task, such as A sign that says ’Diffusion’, FEMO accurately preserves the textual elements, whereas
methods like ToCa and DuCa lose key details. In the generation task Two cars on the street, FEMO
exhibits a strong ability to understand the prompt, while other methods show significant issues with
color accuracy and quantity accuracy in the test cases. This indicates that FEMO strikes an excellent
balance between speed and performance, especially in tasks that require fine detail preservation and
a strong understanding of the prompt.
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Table 4: Quantitative comparison on class-to-image generation on ImageNet with DiT-XL/2.
Method Efficient Acceleration FID ↓ sFID ↓DiT-XL/2Peebles & Xie (2023) Attention Dao et al. (2022) Latency(s) ↓ FLOPs(T) ↓ Speed ↑
DDIM-50 steps 0.505 23.74 1.00× 2.32 4.32
DDIM-25 steps 0.273 11.87 2.00× 2.95 4.51
∆-DiT(N = 2) 0.322 18.04 1.31× 2.69 4.67
∆-DiT(N = 3) 0.301 16.14 1.47× 3.75 5.70

DDIM-20 steps 0.215 9.49 2.50× 3.81 5.15
FORA (N = 3) Selvaraju et al. (2024) 0.197 8.58 2.77× 3.55 6.36
ToCa (N = 3) Zou et al. (2024a) 0.216 10.23 2.32× 2.87 4.76
DuCa (N = 3) Zou et al. (2024b) 0.208 9.58 2.48× 2.88 4.66
TaylorSeer (N = 3, O = 4) Liu et al. (2025) 0.292 8.56 2.77× 2.35 4.69
Adapted-FEMO (N = 3, O = 2) 0.241 8.56 2.77× 2.32 4.65

DDIM-12 steps† 0.141 5.70 4.17× 7.80 8.03
FORA (N = 4) Selvaraju et al. (2024) 0.169 6.66 3.56× 4.30 7.37
ToCa (N = 6)†Zou et al. (2024a) 0.163 6.34 3.75× 6.55 7.10
DuCa (N = 6)† Zou et al. (2024b) 0.127 5.81 4.08× 6.40 6.71
TaylorSeer (N = 5, O = 4)Liu et al. (2025) 0.245 5.24 4.53× 2.74 5.82
Adapted-FEMO (N = 5, O = 2) 0.166 5.24 4.53× 2.64 5.30

DDIM-10 steps† 0.126 4.75 5.00× 12.15 11.33
FORA (N = 7)† Selvaraju et al. (2024) 0.142 3.82 6.22× 12.55 18.63
ToCa (N = 13)† Zou et al. (2024a) 0.146 4.03 5.90× 21.24 19.93
DuCa (N = 12)† Zou et al. (2024b) 0.131 3.94 6.02× 31.97 27.26
TaylorSeer (N = 7, O = 4)Liu et al. (2025) 0.220 3.82 6.22× 3.59 7.07
Adapted-FEMO (N = 7, O = 2) 0.133 3.82 6.22× 3.36 5.63

DDIM-7 steps† 0.095 3.32 7.14× 33.65 27.15
FORA (N = 8)† Selvaraju et al. (2024) 0.141 3.34 7.10× 15.31 21.91
ToCa (N = 13)† Zou et al. (2024a) 0.151 3.66 6.48× 22.18 20.68
DuCa (N = 18)† Zou et al. (2024b) 0.144 3.59 6.61× 133.06 98.13
TaylorSeer (N = 9, O = 4)†Liu et al. (2025) 0.209 3.34 7.10× 5.55 8.45
Adapted-FEMO (N = 9, O = 2) 0.122 3.34 7.10× 4.46 5.99

• † Methods exhibit significant degradation in FID, leading to severe deterioration in image quality.

4.3 CLASS-CONDITIONAL IMAGE GENERATION

Quantitative Study. We compared Adapted-FEMO with ToCa Zou et al. (2024a), FORA
Selvaraju et al. (2024), DuCa Zou et al. (2024b), TaylorSeer Liu et al. (2025), and methods that
reduce DDIM steps on DiT-XL/2 Peebles & Xie (2023). The results show that Adapted-FEMO
significantly outperforms other methods in terms of both acceleration ratio and image quality.
As the acceleration ratio increases beyond 3.5×, the FID scores of methods like FORA, ToCa,
and DuCa degrade significantly, leading to severe deterioration in image quality. In contrast,
Adapted-FEMO maintains excellent generation quality even at 4.53× acceleration, with a FID of
2.68 and sFID of 5.30,superior to advanced baselines such as TaylorSeer, ToCa, and DuCa. Notably,
Adapted-FEMO can still maintain good generation quality, without image degradation, even at the
highest acceleration of 7.10×, achieving an outstanding balance between efficiency and fidelity.

Qualitative Study. The qualitative results in Figure 6 demonstrate that FEMO successfully main-
tains the details and quality of the images during high-speed inference on the DiT-XL/2 model. In
the generation task for the ”985 daisy” class, FEMO accurately preserved the details of the flower.
In the ”385 Indian elephant” generation task, FEMO successfully modeled the relationship between
the elephant’s legs and the position of the fence, showing a good understanding of the physical spa-
tial details and generation capabilities, in contrast to FORA, which failed to generate the outline,
and TaylorSeer, which lacked modeling details.

5 CONCLUSION

In this paper, to address the existing issues in the “cache-then-forecast” paradigm—where current
methods are highly sensitive to gradient accumulation influenced by noise, struggle to handle long-
term dependencies, and overlook the feature trajectory differences between different generated sam-
ples—we propose the FEMO method based on a weighted prediction mechanism. This method uses
the differential approximation of derivatives from previously fully activated timesteps to predict the
features at the current reuse step. Additionally, we introduce an adaptive mechanism that dynam-
ically adjusts the weight of historical features during momentum updates based on each sample’s
feature trajectory characteristics.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our research is conducted entirely on publicly
available datasets and does not involve any personally identifiable or sensitive information. The pro-
posed method is intended solely for academic research purposes. This study does not introduce new
ethical risks beyond those inherent to underlying diffusion models. In our experiments, we only em-
ploy publicly available models and datasets, and our acceleration technique is model-agnostic and
content-neutral. While our method reduces inference time and computational cost, potentially mak-
ing generative AI more accessible, we acknowledge that such accessibility applies both to beneficial
use cases and to potentially harmful ones. We encourage responsible deployment of accelerated
diffusion models in accordance with existing ethical guidelines for AI-generated content, including
appropriate disclosure of synthetic media and consideration of potential societal impacts.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our FEMO framework. To this end, Sec-
tion 3 provides the complete mathematical formulations of the core algorithmic components. All
experimental configurations are detailed in Section 4.1 and the Appendix, including the models
evaluated (e.g., FLUX-1-dev, DiT-XL/2), the datasets used (DrawBench and ImageNet), and the
full set of evaluation metrics (e.g., ImageReward, CLIP Score). The Appendix further presents
our detailed ablation studies and hyperparameter choices for decomposition methods and prediction
strategies. Source code files are provided in the supplementary materials and will be released in a
public repository upon acceptance.
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Supplementary Material

Figure 7: A gallery comparing various acceleration methods and generation quality. We in-
troduce FEMO, which observes the continuity of feature trajectory of diffusion models in different
timesteps and further stabilizes it with an adaptive momentum mechanism, leading to 5.55× and
6.22× acceleration in FLUX and DiT without notable drop in generation quality.

A DISCUSSION

A.1 ABLATION STUDIES

We conducted ablation experiments on DiT-XL/2 Peebles & Xie (2023) and FLUX.1-devLabs
(2024) to evaluate Adapted-FEMO and FEMO, focusing on the impact of the interval time parame-
ter N and the order of the differential approximation O on computational efficiency and generation
quality. The results show that, when using a first-order differential approximation (O = 1), Adapted-
FEMO significantly outperforms the current state-of-the-art TaylorSeer on FLUX. On DiT, at a high
acceleration ratio (N = 9), it also surpasses TaylorSeer in its full state (O=4). Furthermore, when
O = 2, Adapted-FEMO shows a noticeable improvement on DiT. At N = 7, it still achieves an FID
of only 3.36 and can maintain image generation quality without degradation at N = 9. Meanwhile,
the ablation results on FEMO show that our adaptive adjustment strategy continues to improve per-
formance without affecting generation speed. The ablation experiments also demonstrate that using
differential approximation derivative information from historical time steps to generate subsequent
predictions effectively enhances prediction quality.

Overall, the Adapted-FEMO method demonstrates significant advantages in the current ablation ex-
periments, especially in its performance at high acceleration ratios. Compared to existing methods,
Adapted-FEMO achieves a higher acceleration ratio, a breakthrough that lays the foundation for its
application in real-time or resource-constrained scenarios. Detailed results can be found in the D.

A.2 THE STABILITY OF ITS HYPERPARAMETERS.

We chose to analyze the Adapted-FEMO (N=9, O=2) scheme on DiT-XL/2, where different γ val-
ues were analyzed within the same fluctuation range, as well as different ranges for the same γ,
demonstrating the stability of hyperparameters within reasonable ranges, with maximum fluctua-
tions of only 0.16% and 0.19%, respectively. More analysis can be found in the E.

A.3 FEMO IN SEQUENCE PARALLELISM TECHNOLOGY.

As shown in the Figure 10, the proposed method is highly compatible with sequence parallelism
technology. When generating images with a resolution of 2048, the latency on a single GPU is
reduced from 26.46 to 13.70, achieving a 1.93× speedup. On four GPUs in parallel, the latency
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Figure 9: Comparison between baselines and FEMO on
DrawBench with FLUX and ImageNet with DiT.
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Figure 10: Scatter plot of the trajecto-
ries of FEMO and baselines after PCA.

is reduced from 26.46 to 8.54, achieving a 3.10× speedup, indicating compatibility with parallel
computation.

B CONCLUSION PROOF

B.1 PROOF OF EQ. 9

Theorem B.1 (Iterative formula for historical momentum term). Let i be the current order of the
finite difference approximation derivative, m be the maximum order, and β be the weight of the
momentum term. Therefore, the weight of the current finite difference approximation derivative is
(1 − β). Here, t represents the current timestep, and N is the distance between two consecutive
full computation steps. Based on Eq. 6, for any i in the range (0,m), the following general formula
represents the weight relationship between previous full computation steps and the current predicted
feature:

M(xt) = βτ · M(T ) + (1− β) · (F(xt)

N
− βτ−1 · F(xt+τN )

N
)

−
τ−1∑
j=1

βj−1 · (1− β)2 · F(xt+jN )

N

Proof. In this context, we use F i(xt) to represent ∆iF(xt), which denotes the i-th order partial
derivative of F(xt) with respect to xt.

Mi(xt) = β · Mi(xt+N ) + (1− β) · F (i)(xt)

= β · Mi(xt+N ) + (1− β) · F
i−1(xt)−F i−1(xt+N )

N i

= β2 · Mi(xt+2N ) + β · (1− β) · F
i−1(xt+N )−F i−1(xt+2N )

N i
+ (1− β) · F

i−1(xt)−F i−1(xt+N )

N i

= β2 · Mi(xt+2N ) + (1− β) · F
i−1(xt)

N i
− (1− β)2 · F

i−1(xt+N )

N i
− β · (1− β) · F

i−1(xt+2N )

N i

= β3 · Mi(xt+3N ) + (1− β) · F
i−1(xt)

N i
− (1− β)2 · F

i−1(xt+N )

N i

− β · (1− β)2 · F
i−1(xt+2N )

N i
− β2 · (1− β) · F

i−1(xt+3N )

N i

....

= βτ · Mi(T ) + (1− β) · (F
i−1(xt)

N i
− βτ−1 · F

i−1(xt+τN )

N i
)−

τ−1∑
j=1

βj−1 · (1− β)2 · F
i−1(xt+jN )

N

B.2 PROOF OF EQ. 13

Theorem B.2 (Solution to the constraint function of β). Let i be the current order of the finite
difference approximation derivative, In this analysis of the theorem, we take i == 1.t = T%N ,τ =
T−t
N and T is the full computation step closest to the first feature reuse step. We derive the expression

2



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

for the local extrema of β in the LOSS.

β =
(1− τ) · F(xt+N )

τ ·N · M(T )−F(xt+N )

Finally, in the small sample experiment, we referenced the theoretical extremum points, mainly using
experimental verification to determine the initial β value. When ∥true value∥2 > ∥formula value∥2,
we chose to increase β by a fixed step size γ, and conversely, we decreased β when the inequality
was reversed.

Proof. In this context, We use y to represent true value,and ŷ is formula value.

∂L

∂β
= 2 · ∥ŷ − y∥ · ∂ŷ

∂β

and then:
∂ŷ

∂β
= τ ·N · βτ−1 · M(T )−F(xt+N )− [βτ−1 − (τ − 1) · βτ−2] · F(xt+N )

−
τ−1∑
j=1

[(j − 1) · βj−2 · (1− β)2 − 2βj−1 · (1− β)] · F(xt+jN )

Therefore, the first derivative of the L can be represented by the following inequality:

∂L

∂β
≤

{
τNβτ−1 · M(T )− [βτ−1 − (τ − 1) · βτ−2] · F(xt+N )

}
· 2∥y − ŷ∥

We perform a local extremum analysis of the LOSS function based on this inequality and use the
scaled inequality to roughly determine the range of β.This also provides theoretical reference for the
experiment on adaptively adjusting it.

C EXPERIMENTAL DETAILS

In this section, more details of the experiments are provided.

Model Configuration As described in 4.1, we use two models for different tasks, namely FLUX
for text-to-image generation and DiT for class-conditional image generation. This section provides
more detailed hyperparameter configuration schemes.

• FLUX:The FORA method selects the reuse step N between 3 and 9, with an acceleration ratio
similar to FEMO. The ToCa method selects N between 5 and 12, with a 90% cache rate and uses
an attention-based token selection method. It employs a non-uniform activation interval, starting
with sparse activation and transitioning to dense activation. The DuCa method selects N between
5 and 10, using conservative cache steps for even-numbered timesteps and aggressive steps for
odd-numbered ones. The activation intervals and cache rate match those of ToCa. TeaCache
selects the optimal caching threshold based on acceleration ratios.

• DiT:The FORA method selects the reuse step N between 3 and 8, with an acceleration ratio simi-
lar to FEMO. ToCa chooses N between 3 and 13, with a 95% cache rate, using an attention-based
token selection method and a non-uniform activation interval, starting with sparse activation and
transitioning to dense activation. The DuCa method selects N between 3 and 18, with aggressive
cache steps for odd-numbered timesteps. The activation interval and cache rate match those of

All models include a unified forced activation period N , where β is the momentum coefficient,
and the first-order derivative term coefficient is 1 − β. Adaptive algorithm step sizes γ and ad-
justment limits are also used to optimize computational efficiency and model performance. In our
experiments, when timestep is start,we assign M0(xt) to M1(xt) in order to achieve dynamic com-
pensation for errors introduced by the derivative approximation via finite differences.

• FLUX: The parameter β for FEMO is determined by the approximate range of the best selection
based on Eq. 13, and the optimal parameter 0.325 is empirically obtained around this theoretical
value. The Adapted-FEMO method selects γ between 0.01 and 0.015, with slight differences at
different acceleration ratios, and the upper and lower bounds for β are between 0.2 and 0.45.

3
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• DiT:The parameter β for FEMO is determined by the approximate range of the best selection
based on equation 13, and the optimal parameter is empirically obtained around this theoretical
value. When O = 1, β is selected as -0.2; when O = 2, β is selected in the range of -0.01
to -0.03 as the initial value, with slight differences for different acceleration ratios. The γ for
Adapted-FEMOis selected between 0.001 and 0.01, with slight variations at different acceleration
ratios. Additionally, the upper and lower bounds for β are between -0.04 and 0.

D SUPPLEMENTARY RESULTS FOR ABLATION STUDIES

The results of the ablation experiments under different configurations are presented in Table 1 to 4.

Table 1: Ablation Study of FEMO with Different Configurations on ImageNet with DiT-XL/2.
Configuration FLOPs↓ Speed↑ FID↓ sFID↓
(N=3, O=1) 8.56 2.77× 2.38 4.72
(N=4, O=1) 6.66 3.56× 2.57 5.25
(N=5, O=1) 5.24 4.53× 2.76 5.31
(N=6, O=1) 4.76 4.98× 3.23 6.52
(N=7, O=1) 3.82 6.22× 4.60 6.94
(N=8, O=1) 3.82 6.22× 4.96 8.05

(N=3, O=2) 8.56 2.77× 2.33 4.72
(N=4, O=2) 6.66 3.56× 2.51 5.25
(N=5, O=2) 5.24 4.53× 2.71 5.31
(N=6, O=2) 4.76 4.98× 3.11 6.21
(N=7, O=2) 3.82 6.22× 3.43 6.74
(N=8, O=2) 3.82 6.22× 4.40 7.25
(N=9, O=2) 3.34 7.10× 4.47 5.99

Table 2: Ablation Study of Adapted-FEMO with Different Configurations on ImageNet with DiT-
XL/2.
Configuration FLOPs↓ Speed↑ FID↓ sFID↓
(N=3, O=2) 8.56 2.77× 2.32 4.63
(N=4, O=2) 6.66 3.56× 2.49 5.13
(N=5, O=2) 5.24 4.53× 2.68 5.29
(N=6, O=2) 4.76 4.98× 3.06 6.21
(N=7, O=2) 3.82 6.22× 3.36 5.64
(N=8, O=2) 3.82 6.22× 4.40 6.56
(N=9, O=2) 3.34 7.10× 4.46 5.98

Table 3: Ablation Study of FEMO with Different Configurations on DrawBench200 with FLUX.1-
dev.
Configuration FLOPs↓ Speed↑ ImageReward↑
(N=3, O=1) 1339.75 2.78× 1.0505
(N=4, O=1) 1042.28 3.57× 1.0362
(N=5, O=1) 893.54 4.16× 1.0007
(N=6, O=1) 744.81 4.99× 0.9950
(N=7, O=1) 670.44 5.55× 0.9754
(N=8, O=1) 596.07 6.24× 0.9373
(N=9, O=1) 596.07 6.24× 0.9157
(N=10, O=1) 521.71 7.13× 0.8606

E SUPPLEMENTARY RESULTS FOR A.2

In this section, we mainly conduct a parameter stability analysis of the Adapted-FEMO (N9O2)
scheme on DiT-XL/2. The parameter γ is the step size change used in the adaptive update of the
historical term weight β in the update mechanism of Mi(xt).
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Table 4: Ablation Study of Adapted-FEMO with Different Configurations on DrawBench200 with
FLUX.1-dev.
Configuration FLOPs↓ Speed↑ ImageReward↑
(N=3, O=1) 1339.75 2.78× 1.0533
(N=4, O=1) 1042.28 3.57× 1.0375
(N=5, O=1) 893.54 4.16× 1.0029
(N=6, O=1) 744.81 4.99× 0.9984
(N=7, O=1) 670.44 5.55× 0.9770
(N=8, O=1) 596.07 6.24× 0.9501
(N=9, O=1) 596.07 6.24× 0.9235
(N=10, O=1) 521.71 7.13× 0.8678

δ represents the range within which the adaptive step size change is constrained, with boundary
values set to first β - δ and first β + δ. When the updated result exceeds this range, it will
automatically be assigned to the boundary value. This constraint prevents error accumulation due to
inaccurate local optimal β calculations when the full activation frequency N is large.

We visualized the FID metric of the generation results of 50,000 samples with γ values of 0.001,
0.004, 0.007, and 0.01, and δ values of 0.01, 0.02, and 0.03. The analysis separately examines
the impact of γ on generation quality with a fixed δ, and the impact of δ on generation quality
with a fixed γ. The results show that, with a fixed δ, the impact of γ on generation quality is
minimal, with a maximum fluctuation difference of only 0.16%.Similarly, with a fixed γ, the impact
of δ on generation quality is also minimal, with a maximum fluctuation of only 0.19% when γ =
0.007. This analysis proves that the adaptive mechanism of Adapted-FEMO is not affected by small
numerical fluctuations within reasonable parameter settings and can effectively improve generation
quality under high acceleration ratios.

Figure 1: The impact of the δ parameter on FID
under three fixed γ values.

Figure 2: The impact of the γ parameter on FID
under three fixed δ values.

F ERROR BOUNDS ANALYSIS

We derive the error bound of the proposed FeMo and compare it with TaylorSeer, showing that
FeMo yields smaller prediction errors under identical settings.

For TaylorSeer, the error bound is given by:

Em(k) ≤ Mm+1

(m+ 1)!
|k|m+1, Mm+1 = sup

ξ∈[t−k,t]

∥F (m+1)(xξ)∥. (14)
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Here, F represents the feature function. In contrast, the difference for FeMo lies in replacing F with
the momentum term M:

Mm+1 = sup
ξ∈[t−k,t]

∥M(m+1)(xξ)∥.

From τ = T−t
N , we can deduce that F(xt+τN ) = F(XT ). Substituting this into Eq. 9 of the main

paper, we obtain:

M i(xt) ≤ |β|τMi(xT ) + (1− |β|)
(F i−1(xt)

N i
− |β|τ−1F i−1(xT )

N i

)
. (15)

Based on the initialization settings of FLUX and DiT:

M i(XT ) =

{
F(XT ), i = 0 or 1,
0, otherwise.

Thus, for i = 1, we get:

M1(xt) < |β|τ
(
1 +

|β| − 1

|β|N

)
F(xT ) + (1− |β|)F(xt). (16)

Since |β| ∈ (0, 1), the exponential decay of βτ ensures that Eq. 2 converges to zero. Moreover,
Eq. 3 is always ≤ Eq. 14, since Eq. 14 takes the supremum over the interval including Eq. 3. When
i > 1, Mi(XT ) = 0, and the error term upper bound is given by Eq. 3.

Importantly, FeMo can achieve similar performance using roughly half of the maximum order re-
quired by TaylorSeer, which means the differential approximation error in FeMo is significantly
smaller.

Final bound. The inference error bound for a single sample in FeMo is:

EFeMo
m (k) ≤

(1− |β|) supξ∈[t−k,t] ∥∆mF(xξ)∥
(m+ 1)!Nm+1

|k|m+1 +

m∑
i=1

Ci

i!
|k|i|N |i−1, (17)

which satisfies
EFeMo

m (k) ≤ ETaylorSeer
m (k).

Therefore, we theoretically establish the superiority of FeMo over TaylorSeer in terms of error
bounds.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We only used large language models (LLMs) for polishing certain sentences in the paper to ensure
fluency. The key parts of the paper were written by the authors.
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