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ABSTRACT

Neural networks for classification can achieve high accuracy but their probabilis-
tic predictions may be not well-calibrated, in particular overconfident. Different
general calibration measures and methods were proposed. But how exactly does
the calibration affect downstream tasks? We derive a new task-specific definition
of calibration for the problem of statistical decision making with a known cost
matrix. We then show that so-defined calibration can be theoretically rigorously
improved by minimizing the empirical risk in the adjustment parameters like tem-
perature. For the empirical risk minimization, which is not differentiable, we
propose improvements to and analysis of the direct loss minimization approach.
Our experiments indicate that task-specific calibration can perform better than a
generic one. But we also carefully investigate weaknesses of the proposed tool and
issues in the statistical evaluation for problems with highly unbalanced decision
costs.

1 INTRODUCTION

The notion of calibration originates in forecasting, in particular in meteorology. The following
example well explains the concept. Amongst all days when a forecast was made that the chance
of rain is 33%, one would expect to find that about a third of them to be rainy and two thirds
sunny. If this is the case for all forecasts, the predictor is said to be well-calibrated. We would
like the forecaster to be accurate, however if this is not achievable, we would like at least to have it
accurately reflect what it does not know, i.e. to be calibrated.

The most common model for classification in deep learning consists of a softmax predictive dis-
tribution for class labels atop of a deep architecture processing the observation. In view of the
excessive number of parameters there is a natural concern whether such models learn accurate pre-
dictive probabilities p(y|x). Indeed, neural networks are typically not well calibrated (Guo et al.,
2017), in particular they may be over-confident, i.e., being incorrect much more often than their high
confidence suggests. Like in the example above, such over-confidence is misleading for interpreting
the results. It is also commonly understood that it can mislead any downstream processing relying
on the predictive probabilities. There has been therefore a substantial effort to improve the calibra-
tion. Unfortunately, even measuring the basic confidence calibration accurately in practice remains
challenging (Nixon et al., 2019).

In the multi-class setting a vector of class probabilities is output and all of them can be important
for the downstream processing. This has led to development of more complex definitions such as
distribution-calibration (Vaicenavicius et al., 2019). In this setting, despite the development of new
estimators (Vaicenavicius et al., 2019; Widmann et al., 2019), it is practically infeasible to obtain
a reliable estimate — there is not enough data to reject the hypothesis that the model is well cali-
brated. Are we lost then in the attempt to make the predictive probabilities reliable? Not necessarily.
Observe that these calibration definitions, both simple and complex ones, are not considering a spe-
cific problem downstream that can be hypothetically affected by the poor probabilistic predictions.
They try to address all such problems (as well as the purpose of interpretability) at once. We will
argue that considering a specific downstream task allows to significantly reduce the complexity of
the calibration problem, making it feasible in practice.

As a specific downstream task we will consider the Bayesian decision making with a trained NN. It
is well-established to train NNs for classification by optimizing the cross-entropy loss. The model
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architecture and the training pipeline are tuned by researchers to achieve the best generalization w.r.t.
classification accuracy. However, this procedure does not take into account different costs of differ-
ent classification mistakes. To give an example, mistakes in miss-classifying different mushrooms
may have different costs for eating: some mistakes are between equally good spices and incur no
cost while other mistakes lead to risks of poisoning. Given a finite set of decisions D and a cost
matrix l(y, d), one could try to adapt the learned NN model to form the Bayesian decisions strategy
q(x) achieving the smallest risk:

q(x) = arg min
d

∑
y

p(y|x)l(y, d). (1)

Such adaptation is practically desirable: it would allow one to rely on the established and tuned
training approach and reuse the existing models, which may be very costly to retrain from scratch.
However, because the model p(y|x) is typically inaccurate in predicting all the class probabilities,
this may lead to suboptimal decisions and respectively poor outcomes of such adaptation. In partic-
ular, an overconfident model will result in both: making sub-optimal decisions and underestimating
their expected cost.

One could reasonably hope to learn a more accurate predictor by designing a yet better architecture
and using more training data. It may nevertheless stay poorly calibrated and not suitable for the
above adaptation. If the strong distribution calibration was possible to achieve as a post-processing
step, the adaptation would work perfectly, however this calibration is practically not feasible. On
the other hand, any weaker task-unspecific definition of calibration (e.g. class-wise calibration,
Vaicenavicius et al. 2019) would not work: there would exist a decision task for which (1) would
perform poorly. A formalization of calibration important for (a class of) decision making problems
was proposed, only recently, by Zhao et al. (2021).

As our main theoretical result, we derive a notion of calibration important for adopting strategy (1)
with a given cost matrix. The formalism and tools used for that allow also to better understand the
relation between existing calibration methods, in particular empirically successful temperature scal-
ing variants (Guo et al., 2017; Alexandari et al., 2020), and the distribution calibration. Specifically,
we show that these methods are guaranteed to improve the expected miscalibration as measured by
the corresponding divergence. Calibrating the model w.r.t. the new definition is shown to be equiv-
alent to minimizing the (empirical) risk of strategy (1) in the calibration parameters. As a mean
of empirical risk minimization we study the direct loss approach and relate it to margin-rescaling.
Experimentally, we show that task-aware calibration, using the direct loss approach, can outperform
the generic calibration. However we also observe that for tasks with extremely unbalanced losses,
modeling a dangerous class, we lack reliable means to assess the quality of calibration.

2 RELATED WORK

We consider all methods that can improve the predictive model p(y|x) when provided some ad-
ditional calibration data as calibration methods. Typically, the calibration is achieved by a post-
processing of the scores or predictive probabilities such as temperature scaling, bias-corrected tem-
perature scaling or vector scaling. We regard these as different choices of parametrization, i.e.,
choice of the degrees of freedom to calibrate. Most importantly, existing calibration methods differ
in the criterion they optimize.

Calibration Unaware of the Task Many calibration techniques, while motivated by the notion
and a particular definition of calibration, use a generic criterion unrelated to that notion. A very
practical method to calibrate a model turns out to be the likelihood maximization, i.e. relying on the
same criterion that is commonly used for training. This is the approach taken in Guo et al. (2017);
Alexandari et al. (2020); Kull et al. (2019). Methods optimizing variants of the expected calibration
error (ECE), which is a measure of miscalibration, were compared by Nixon et al. (2019), however
there is no performance criterion other than ECE itself. Further variants are piece-wise paramet-
ric (Kumar et al., 2019) and kernel-based (Kumar et al., 2018) confidence calibration methods.

Calibration Aware of the Task The decision-calibration of Zhao et al. (2021) takes the decision
problem into the consideration. It will be discussed in detail below. Their calibration method is
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designed for a given decision space, but cannot make use of a specific cost matrix was it known at
the calibration time.

Empirical Risk Minimization Methods optimizing the empirical risk (Song et al., 2016; Vlastel-
ica et al., 2019; Taskar et al., 2005) were used for training with complex objectives measuring perfor-
mance in retrieval, ranking, or structured prediction. They have not been considered for calibration
of classification models before. They address the difficulty of non-differentiability of the loss and
have a potential to exploit the full information about the cost matrix.

3 BACKGROUND

Let X be the space of observations and Y be the set of labels. Assume there is an underlying true
joint probability distribution on X ×Y , denoted p∗. Let (X,Y ) be a a pair of random variables with
the law p∗. All expectations and probabilities will be meant with respect to (X,Y ). Let ∆ denote
the simplex of probabilities over Y . Let p(y|x) be a probabilistic predictor, usually a neural network
with softmax output. The predictor can be considered as a mapping π : X → ∆: x 7→ p(y|x).

3.1 GENERAL CALIBRATION

First works analyzing calibration in machine learning (Guo et al., 2017) were concerned only
with the confidence of the model, i.e. the model’s probability of the class actually predicted. Let
ŷ(x) = arg maxk πk(x) be the label predicted by the model and c(X) = maxk πk(X) the respec-
tive predictive probability, called confidence.

Definition 1. The model is confidence calibrated if

P
(
Y=ŷ(X) | c(X)

) a.s.
= c(X). (2)

It requires that amongst all data points for which the prediction has confidence c the expected oc-
currence of the true label to match c. The respective miscalibration can be measured e.g., by the
Expected Calibration Error (ECE) (Degroot & Fienberg, 1983), which is typically estimated by
discretizing the probability interval into bins. Substantial efforts were put into calibrating neural
networks in this sense (e.g., Naeini et al. 2015; Guo et al. 2017; Nixon et al. 2019). However, Ku-
mar et al. (2019) argue that the binning underestimates the calibration error and in fact, an accurate
estimation is possible only when the predictor π outputs only a discrete set of values.

In the multi-class setting, confidence calibration may be insufficient. There may be downstream
tasks which require the whole vector of predicted probabilities to be accurate. In the machine learn-
ing literature this came into attention only recently (Vaicenavicius et al., 2019). The strongest notion
of calibration (Bröcker 2009, reliability Eq. 1), is as follows.

Definition 2. A predictor π : X → ∆, is called distribution calibrated if

(∀y ∈ Y) P
(
Y=y | π(X)

) a.s.
= π(X)y. (3)

In words: amongst all data points of the input space where the predicted vector of probabilities is
π(x) = µ the true observed class labels should be distributed as µ. Respectively, the predictor

φ[π](x)y = P
(
Y=y | π(X)=π(x)

)
(4)

is the (optimal) calibration of π: it takes the prediction π(x) and turns it into the true distribution
of labels under that initial prediction. This predictor φ[π] is distribution calibrated and Definition 2
can be restated as φ[π](X)

a.s.
= π(X), i.e. the calibration of π is π itself.

Generalizing on ECE, the expected miscalibration of π w.r.t. divergence D : ∆×∆→ R is:

E[D(π(X), φ[π](X))], (5)

i.e. the average divergence between the predicted distribution and its calibration. It is hard to esti-
mate in practice, because of conditioning on a real vector π(X) = π(x) in the definition of calibra-
tion φ[π]. It becomes tricky to verify whether a model is calibrated using only a finite data sample.
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Different methods have been proposed based on binning of ∆ (Vaicenavicius et al., 2019) or using
kernel-based divergences (Widmann et al., 2019). Unfortunately, statistical tests based on unbiased
estimates (Widmann et al., 2019) were unable to reject the hypothesis that any basic neural net-
work in a real setting, such as on MNIST data, is already calibrated. No calibration methods were
proposed based on this miscalibration.

3.2 CALIBRATION FOR STATISTICAL DECISION MAKING

Let us consider the classical statistical decision making problem for a known model p∗. Let D be a
finite decision space. Consider the cost matrix l : Y ×D −→ R+ and a decision strategy q : X → D.
The risk of the strategy q and the optimal (Bayesian) decision strategy are, respectively:

R∗[q] = E
[
l(Y, q(X))

]
, q∗(x) = arg min

d

∑
y

p∗(y|x)
[
l(y, d)

]
. (6)

In practice, we do not have access to the true distribution p∗ to make decisions, only to the model
p(y|x). Let f(d, x) =

∑
y p(y|x)l(y, d) denote the model-based conditional risk for observation x.

The model-based risk and model-based Bayesian decision strategy are, respectively:

R̂[q] = E
[
f(d, x)

]
, q̂(x) = arg min

d
f(d, x). (7)

If the model p was distribution-calibrated, these two risks would coincide: R̂[q] = R∗[q] for any
strategy q and any cost matrix (Zhao et al., 2021). However, as was discussed above, distribution
calibration is hard even to measure in practice. This has led to the following definition.

Definition 3 (Zhao et al. 2021). For a set of cost matrices L and a set of strategies Q, the predictor
π is called (L, Q)-decision calibrated if for all l ∈ L and q ∈ Q the model risk matches the true
risk: R̂[q] = R∗[q].

Zhao et al. (2021) show that this definition generalizes previous notions of calibration by specifying
the corresponding statistical decision problems. In particular confidence calibration corresponds to
recognition with the reject option with a varied cost of rejecting. The distribution calibration can be
understood as (L, Q)-decision calibration for all possible loss functions and decision strategies over
all possible decision spaces D, which is clearly far too general.

It follows from the definition that a decision-calibrated model must accurately estimate the true
risk and that the model-based strategy q̂ is the optimum of the true risk over Q. Therefore (L,Q)-
decision calibration is sufficient for any statistical decision making task with l ∈ L and q ∈ Q.

4 METHOD

The condition of (L, Q) decision calibration (Zhao et al., 2021) is still unnecessarily stringent if
we have a specific fixed cost matrix l and are interested in the performance of only one particular
decision strategy: the model-based Bayesian strategy q̂, (7). Their calibration algorithm is derived
under the assumption that L is the set of all cost matrices of bounded norm over a fixed decision
space and thus cannot be chose as e.g. L = {l}.
We will show that the minimization of the risk of the model-based strategy, R∗[q̂], can improve a
precise measure of calibration under a known cost matrix while also obviously not compromising
on the task-specific performance metric, which is the risk R∗[q̂] itself.

4.1 CALIBRATION VIA LOSS MINIMIZATION

Bröcker (2009) showed that any loss function corresponding to a proper scoring rule satisfies a
decomposition into uncertainty, resolution (sharpness) and reliability (miscalibration). A scoring
rule S is a function ∆ × Y → R and the expected score, which we call loss for brevity, is L[π] =
E[S(π(X), Y )]. For example, the negative log likelihood loss (NLL) corresponds to the scoring rule
S(π, y) = − log πy . The decomposition reads

L[π] = H(π̄)︸ ︷︷ ︸
uncertainty of Y

−E
[
D(π̄, φ[π](X))

]︸ ︷︷ ︸
resolution of π

+E
[
D(π(X), φ[π](X))

]︸ ︷︷ ︸
reliability of π

, (8)

4



Under review as a conference paper at ICLR 2023

where π̄ is the a priori distribution of labels: π̄y = p∗(y), φ[π] is the calibration of π (4), and H
and D are particular entropy and the divergence functions corresponding to the score S. In case of
NLL, they are the Shannon entropy and the Kullback–Leibler divergence.

Prominently, the reliability term in this decomposition is exactly the expected miscalibration (5)
w.r.t. the score-specific divergence D. If we substitute φ[π] as a predictor, we will find out that it has
a zero expected miscalibration while the first two terms remain the same:

L[φ[π]] = H(π̄)− E
[
D(π̄, φ[π](X))

]
≤ L[π], (9)

where the equality uses the fact that φ[φ[π]] = φ[π] and the inequality is due to divergence being
always non-negative. Thus φ[π] not only achieves distribution calibration but also is guaranteed not
to decrease all losses corresponding to proper scoring rules.

This sheds some light on why optimizing NLL is good for calibration as evidenced, e.g., by Guo
et al. 2017; Alexandari et al. 2020, in particular improving ECE. Calibration methods often fit a
parametric post-processing of a predictor π, such as temperature scaling (Guo et al., 2017). They
argue about calibration but optimize NLL. We formally show why this is a perfectly correct idea.

Theorem 1. Let π : X → ∆ be a predictor and Tθ : ∆ → ∆ a parametric mapping, invertible for
each θ ∈ Θ. Finding an adjusted predictor πθ = Tθ ◦ π minimizing the expected miscalibration is
equivalent to minimizing the loss:

minθ∈Θ E
[
D(πθ, φ[πθ])

]
= minθ∈Θ L[πθ]. (10)

Proof. First we show that φ[T ◦ π] is invariant of T for any invertible T . The events T (π(X)) =
T (π(x)) and π(X) = π(x) are equal, therefore

φ[T ◦ π](x)y = P
(
Y=y | T (π(X))=T (π(x))

)
= φ[π](x)y. (11)

It follows that D(π̄, φ[T ◦ π](X)) = D(π̄, φ[π](X)). Therefore the first two terms of the decom-
position stay the same for any θ. Therefore minimizing the whole loss over θ ∈ Θ is equivalent to
minimizing the reliability term alone.

This allows to overcome the general difficulty of estimating the expected miscalibration by simply
using the empirical estimate of the loss! In particular, no binning of the simplex ∆ is involved.

4.2 DECOMPOSITION OF THE RISK

We observe that the true risk of the model-based strategy R∗[q̂] also corresponds to a proper scoring
rule and thus can be decomposed according to the theory.

Proposition 1. The following scoring rule corresponds to the loss of the model-based decision:

S(π, y) = l(y, arg mind
∑
y πyl(y, d)). (12)

For two probability distributions π, ρ in ∆, Bröcker (2009) defines the following scoring function s,
divergence D and entropy H:

s(π, ρ) =
∑
y
S(π, y)ρy; D(π, ρ) = s(π, ρ)− s(ρ, ρ); H(ρ) = s(ρ, ρ). (13)

In our case, the score s(π(x), p∗(·|x)) is the conditional risk of the prediction q̂(x) and its expecta-
tion is the risk of the strategy q̂: E[S(π(X), Y )] = R∗[q̂].

Proposition 2. The score s is proper (Bröcker, 2009), i.e., the “divergence” D is non-negative.

Proof. By definition,

s(ρ, ρ) =
∑
y
S(ρ, y)ρy =

∑
y
ρyl(y, arg min

d

∑
y
ρyl(y, d)) = mind

∑
y
ρyl(y, d). (14)

Clearly it satisfies s(ρ, ρ) ≤
∑
y ρyl(y, d̂) for any d̂, in particular d̂ = arg mind

∑
y πyl(y, d).

Corollary 1. The decomposition (8) holds for the risk R∗[q̂].
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The uncertainty term H(π̄) = mind
∑
y p
∗(y)l(y, d) is just the lowest risk attainable without con-

sidering observations. Let us discuss the reliability term. In our case D is not a true divergence as
it may vanish even if the two distributions are different. The reliability term is therefore more per-
missive. This is appropriate, indeed, if e.g., the cost matrix has two identical rows, there is no need
to distinguish the respective classes in the prediction and, respectively, no need to have the correct
individual predictive probabilities for them. This motivates us to define the task-specific calibration
accordingly:

Definition 4. Given a cost matrix l and “divergence” Dl defined by (13), a predictor π(X) is l-
decision calibrated if

Dl

(
π(X), φ[π](X)

) a.s.
= 0. (15)

For any proper divergence, this definition would be equivalent to the distribution calibration in Def-
inition 2. The selectivity of Dl in penalizing differences in the distribution which matter for the
decision task is what makes it task-specific. It appears hard to estimate this miscalibration in general
as it still involves φ[π]. However, using Theorem 1 we can improve this task-specific calibration in
parametric settings (e.g. temperature scaling) by simply minimizing the empirical risk of q̂.

4.3 EMPIRICAL RISK MINIMIZATION

Consider a parametric predictor π(x)y = p(y|x; θ) and let f(d, x; θ) =
∑
y p(y|x; θ)l(y, d) as be-

fore. Given a sample (xi, yi)
N
i=1 from p∗ the empirical risk minimization for model-based Bayesian

strategy reads:

minθ
1
N

∑
i

l(yi, di) s.t. di = arg min
d

f(d, xi; θ). (16)

This problem is difficult because it is a so called bi-level optimization problem which has discrete
decision of the inner problem and a non-linear dependence on θ. Such formulations, where the inner
problem corresponds to a general predictor based on solving a combinatorial optimization problem
have been studied. Two methods that have been applied to this kind of problems are large margin
methods (Tsochantaridis et al., 2005; Taskar et al., 2005) and the direct loss / combinatorial black
box minimization (Song et al., 2016; Vlastelica et al., 2019).

4.3.1 DIRECT LOSS AND MARGIN RESCALING

The empirical risk can be easily evaluated but cannot be differentiated because of arg min. This
arg min over the set of labels can be considered as a small combinatorial solver. We will specialize
and analyze direct loss method (Song et al., 2016; Vlastelica et al., 2019) for this case. For simplicity,
let us consider a single training sample (x∗, y∗) (with multiple training samples losses and gradients
sum up). Let us denote the vector of class probabilities π = p(·|x∗; θ). The estimate of the gradient
in π according to the direct loss minimization approach is constructed as follows:

d̂ = arg min
d

f(d, x∗); d̂λ = arg min
d

[
f(d, x∗)+λl(y∗, d)

]
; ∇̂π := 1

λ [l(·, d̂λ)− l(·, d̂)]. (17)

Appendix A.1 gives details on how this is obtained from the general method of Vlastelica et al.
(2019). The gradient in θ can then be computed by the chain rule. Here d̂ is the solution of the
solver (the Bayesian decision) and d̂λ is the decision of a perturbed problem. The strength of the
perturbation is controlled by λ. Song et al. (2016) has shown that in the limit λ → 0 the gradient
of the expected loss over a continuous data distribution matches E[∇π]. In this limit, stochastic
descent with ∇π would directly minimize the (expectation of non-differentiable) loss, which was
termed direct loss minimization. However, these arguments are not applicable to a finite training
sample. In practice, λ needs to be sufficiently large for ∇π to be non-zero for some data points,
at least. In this setting we are not longer minimizing the original loss. However one can define a
surrogate loss function such that (17) is its true gradient. We call it the direct loss, so the method
can now be validly interpreted as direct loss minimization:

L±λ = ± 1
λ

(
mind f(d, x∗)−mind

[
f(d, x∗)∓ λl(y∗, d)

])
, (18)
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Figure 1: Comparison of margin rescaling and direct loss for binary classification with asymmetric
errors: l(0, 1) = 1, l(1, 0) = 4. The x-axis show the model probability π0 = p(y = 0|x). In the
case when the true label y∗ = 0 (left), the correct decision is made when π0 > 0.2, the cost of the
error is high. If the true label y∗ = 1 (right), the correct decision is made when π0 < 0.2, the cost of
an error is low. Observe that margin rescaling coincides with the direct loss in the region of correct
classification and is an upper bound in the case of error. Because of the hinge penalty, the resulting
upper bound is rather loose, more so for more imbalanced losses.

where ∓ is paired with ±. Vlastelica et al. (2019) advocate the use of a large λ, define a similar sur-
rogate loss to L−λ and show that it is a lower bound on the empirical loss for positive λ (Observation
3), where the empirical loss is LE = l(y∗, arg mind f(d, x∗)). Note that there holds L±−λ = L∓λ and
therefore we can always assume λ > 0 in order to avoid redundancy. We show the following.

Proposition 3. Direct loss L−λ is a lower bound on the empirical loss LE and L+
λ is an upper bound.

The proof is given in Appendix A.1. It follows that the expectation over the training data (resp. true
distribution p∗) of L+

λ is an upper bound on the empirical risk (resp. true risk).

Relation to Margin Rescaling The problem of minimizing empirical risk over discrete strategies
of the form arg miny f(y; θ) was also studied in structural prediction (Tsochantaridis et al., 2005;
Taskar et al., 2005). One of the most common approaches is called margin re-scaling (Tsochantaridis
et al., 2005) and was successfully used in combination with deep networks as well (e.g. Knöbelreiter
et al. 2017). Like SVM, it puts a hinge loss on the violation of the classification constraints with
the margin proportional to the respective loss. We can show (see Appendix A.2) that the margin
re-scaling approach leads to the following surrogate loss:

LMR
λ = 1

λ

(
f(d∗, x∗)−mind

[
f(d, x∗)− λl(y∗, d)

])
, (19)

where d∗ = arg mind l(y
∗, d) is the best decision given the true class label. Written in this form

there is a striking similarity to (18). The only difference being that d∗ is the best decision for a
loss (knowing the true label) rather than the best decision based on the model (not knowing the true
label). This leads to that margin rescaling is a less tight upper bound.

Proposition 4. Margin re-scaling LMR
λ coincides with the direct loss L+

λ in the region where the
classifier makes correct decisions. Furthermore LE ≤ L+

λ ≤ LMR
+ .

The proof is given in Appendix A.2. We believe this connection has not been known before. The
two surrogate losses are illustrated in Fig. 1.

For both approaches, if λ is small, the size of the margin is small and there is a flat region with
zero gradient. As a simple remedy we propose to smooth the minimum in (18) using the smooth
minimum function minβ(x) = − 1

β log
∑
k e
−βxk , where the smoothing degree is controlled by β.

5 EXPERIMENTS

In the experiments, we compare different calibration criteria for the same choice of a parametric
family. Assuming that networks outputs scores s (or elsewise let sy = log p(y|x)), we consider
the following common choices to parametrize the corrected predictor π. TS: Temperature Scaling
(Guo et al., 2017): π = softmax(s/T ), where T is a (non-negative) scalar temperature to calibrate.
BCTS: Bias-Corrected Temperature Scaling (Alexandari et al., 2020): π = softmax((s + b)/T ),
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Results

Parametrization Calibration Criterion Test Empirical Risk

No calibration — 2117± 886

TS
NLL
ECE

Direct Loss

944± 32
944± 40
758± 35

BCTS
NLL
ECE

Direct Loss

897± 31
823± 34
730± 31

VS
NLL
ECE

Direct Loss

1416± 649
1095± 70
779± 68

Cost matrix

Accept Reject

deadly_poisonous 10000 0
poisonous 1000 0
inedible 100 0
edible_bad 40 0
edible 0 10
edible_good 0 20

Data Examples:

Figure 2: Fungi Experiment. In results report mean and standard deviation of all calibration methods
with respect to 15 validation-test splits.

where additionally b is a vector of per-class biases to calibrate. VS: Vector Scaling (Alexandari
et al., 2020): π = softmax(s�w+ b), where w is a vector of scaling factors, b is a vector of biases
and � is the coordinate-wise product.

We optimize each criterion in the above parameters using Adam optimizer. In order to find hyperpa-
rameters (learning rate, λ, β) we use the nested cross-validation procedure detailed in Appendix B.

5.1 FUNGI EDIBILITY (DANISH FUNGI 2020)

In this experiment we consider a decision problem of whether to cook (eat) a mushroom given its
predicted edibility category, based on the Danish fungi dataset (Picek et al., 2022). In order to
compare calibration methods, we create 15 folds of the data that was not used during training into
calibration and test parts. Full details can be found in Appendix B. The cost matrix and obtained
results are shown in Fig. 2. Calibration with the DirectLoss criterion achieved a lower average test
risk in all parametrizations, notably performing well also in the VS parametrization where other
criteria performed the worst. The improvement over other methods can be considered statistically
significant if one trusts the estimates of the mean and the variance (see below).

5.2 SKIN CANCER LESION TREATMENT (HAM10000)

In this experiment, we consider a decision problem of whether to assign a treatment given the lesion
classification using skin lesion dataset (Tschandl, 2018). The training is performed on 75% of
the data for 100 epochs. From the remaining data we create 100 random splits into calibration
(15%) and test (10%). Fig. 3(a) shows that the network significantly underestimates the true risk.
After calibration (DirectLoss BCTS), the risk decreases, but the risk gap increases for some data
splits. Indeed, with our calibration and optimization criterion being the empirical risk, there is no
requirement that this gap should be made small or even decrease. Nevertheless, such increase in the
gap is unexpected of a calibration method and might indicate overfitting. Fig. 3 (a,b) show statistics
of the differences between pairs: No calibration - DirectLoss and NLL - DirectLoss, confirming that
calibration is helpful, but unable to tell whether NLL or DirectLoss is a better calibration objective.
Comparisons for TS and VS parametrizations are shown in Figs. B.2 and B.3.

5.3 RARE EXPENSIVE MISTAKES

We present a failure mode of calibration on the example of CIRAF10 dataset with the trucks class
considered as dangerous (cost of mistake 10000) and other mistakes cost 1. In this setting the deci-
sion boundary of q̂ significantly shifts towards classifying nearly all observations as trucks. Instances
of trucks for which the model can nevertheless make a mistake become very rare. Depending on
whether such an instance falls into the calibration set or into the test set, it may lead to a high cost
at the test time. In Fig. 4 for many splits, DirectLoss may be better than NLL in calibration, but
in one split it makes an expensive single mistake. Only by chance such case was not observed for
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KDE
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R∗(NLL) - R∗(DirectLoss)
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Cost Matrix
no treat treat

akiec 11 0
bcc 11 0
bkl 0 4
df 0 1.5
nv 0 2.5
mel 9.5 0
vasc 0 2

Data Examples:

Figure 3: HAM10000 Experiment. (a): Model’s self-assessed risk R̂(q̂) substantially underestimates
the true risk R∗(q̂). After calibration the true risk improves but the model-assessed risk gets further
away for some data splits, indicating overfitting. (b): Statistical comparison of improvement due
to calibration (positive means improvement). (c): Statistical comparison of NLL with DirectLoss
calibrations (positive means DirectLoss was better). BCTS parametrization is used.

100

101

Em
p.

 R
isk

No Calibration
NLL
DirectLoss
Truck

Cost Matrix: l(k, d) =
0, if d = k;

1, if d 6= k and k 6= truck;

10000, if d 6= k and k = truck.

Figure 4: Empirical Test Risk in different validation-test splits without and with calibration (TS).
The dashed line shows a trivial baseline: the constant strategy that classifies any input a truck.

NLL. Aslo, this was not observed in the Fungi experiment above (which also has extreme costs)
presumably because deadly poisonous mushrooms are rather rare in the dataset.

Empirical risk is theoretically backed up by the generalization guarantees such as Hoeffding in-
equality: P(|R∗(q) − R∗emp(q)| > ε) < 2e−2Nε2/∆l2 , where N is the number of samples and ∆l
is the difference between the maximum and minimum cost. This means that in order to achieve the
same confidence we used to have for 0-1 cost, we need to use 108 times more samples. We therefore
would like to warn the community from relying on basic statistical evaluation like in our Fungi ex-
periment and would be happy to receive feedback on how to approach the problems associated with
high costs, in particular when evaluating calibration methods.

6 CONCLUSION

We have given a so-far-missing theoretical justification for post-processing recalibration methods
optimizing generic criteria, in particular NLL, showing how they are related to notions of calibra-
tion. We then developed a decomposition of the risk of model-based Bayesian decision strategy and
derived the respective definition of calibration from it. This approach gives a constructive way to ob-
tain new task-specific definitions of calibration. We then improved the understanding of direct loss
and margin rescaling methods for ERM. We believe these results generalize beyond our calibration
setup. In the experiments we observed that calibration was important to improve the test risk and that
the task-specific calibration, represented by the DirectLoss, can be more efficient (Fungi experiment,
high costs). The calibration was also helpful in the lesions experiment (moderate costs), however the
increase in the risk gap indicates an overfitting with DirectLoss. Finally, we demonstrated a failure
case of DirectLoss and a flaw in the comparison under high costs.
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ETHICS STATEMENT

Please be aware that neural networks can make unpredictable mistakes and produce overconfident
estimates. Calibration methods, in particular the proposed one, are not guaranteed to fix these issues.
They can improve statistical performance and measures of miscalibration. However, the statistics
are random quantities and have to be considered very carefully, especially in the case of high costs,
as we show in Section 5.3. The experiments conducted on decision making with fungi or lesion
datasets should be considered only as proof of concept.

REPRODUCIBILITY STATEMENT

Appendix A contains proofs not included in the main paper. Appendix B contains description of
datasets and details of training, calibration and testing procedures. Details of implementation can be
provided to reviewers confidentially through OpenReview upon request.
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Appendix

A PROOFS

A.1 DIFFERENTIATION OF BLACKBOX COMBINATORIAL SOLVERS (DIRECT LOSS)

We first detail how the general method of Vlastelica et al. (2019) is instantiated for our problem and
verify that it is the gradient of the function L−λ we define in (18).

A general linear combinatorial solver is formalized in Vlastelica et al. (2019) as:

Solver(w) = arg min
d

wTφ(d), (20)

where φ represents discrete choice d as a vector of the same dimension as w. And the direct loss
method (Vlastelica et al., 2019, Alg.1) is given by

d̂ := Solver(w); (21a)

w′ := w + λ
dL
dφ

(d̂); (21b)

d̂λ := Solver(w′); (21c)

∇w := − 1

λ

[
φ(d̂)− φ(d̂λ)

]
. (21d)

In our case the solver needs to be
d̂ = arg min

d
f(d, x∗) = arg min

d

∑
y

p(y|x∗; θ)l(y, d). (22)

Let π = p(·|x∗; θ). Two choices for φ qualify:

1. Let φ(d) = one_hot(d) and w ∈ RD with wd =
∑
y πyl(y, d);

2. Let φ(d)y = l(y, d) and w ∈ RK with wk = πk.

Both choices lead to equivalent algorithms. We proceed with the second one for convenience as it
will define the gradient in π. Our loss is L(d) = l(y∗, d), therefore dL

dφy
(d̂) = [[y=y∗]]. The direct

loss method specializes as follows:

d̂ := arg min
d

∑
y

πyl(y, d); (23a)

π′ := π + λ one_hot(y∗); (23b)

d̂λ := arg min
d

∑
y

π′yl(y, d) = arg min
d

(∑
y

πyl(y, d) + λl(y∗, d)
)

; (23c)

∇π := − 1

λ
[l(·, d̂)− l(·, d̂λ)]. (23d)

This is the form we present in (17). Finally, observe that the gradient∇π in (23) matches the gradient
of L−λ as defined in (18). Therefore minimizing L−λ is equivalent to the method of Vlastelica et al.
(2019).

Next we give a very simple proof of the upper / lower bound property of L±λ (it is extendible to the
general combinatorial solver case as well).

Proposition 3. Direct loss L−λ is a lower bound on the empirical loss LE and L+
λ is an upper bound.

Proof. We will assume that all losses are non-negative (wlog) and will show the bound property for
a given training sample (x∗, y∗).

Let f(d) =
∑
y p(y|x∗)l(y, d) and let d̂ = arg mind f(d). Using the inequality

min
d

[∑
y

p(y|x∗)l(y, d) + λl(y∗, d)
]
≥ 1

λ
f(d̂) + λl(y∗, d̂), (24)
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in L− all terms cancel except of l(y∗, d̂).

Similarly, using the inequality

−min
d

[∑
y

p(y|x∗)l(y, d)− λl(y∗, d)
]
≥ −f(d̂) + λl(y∗, d̂) (25)

in L+ all terms cancel except of l(y∗, d̂).

A.2 DERIVATION OF MARGIN RESCALING

The derivation of margin rescaling approach in Tsochantaridis et al. (2005) is somewhat obscure.
The reasonable starting point could be given by the SVM-like objective with slacks (but without the
quadratic penalty on the weights):

1

λ
min
ξ,θ

∑
i

ξ (26)

s.t. (∀d) fi(d
∗
i ) ≤ fi(d)− λ(l(yi, d)− l(yi, d∗)) + ξi,

where fi(d) =
∑
y p(y|xi; θ)l(y, d), (xi, yi) is the i’th training example and d∗i = arg min l(yi, d)

is the optimal decision for the training example i. The constraint in this formulation requires that
the model loss of the best decision fi(d∗i ) must be strictly less that the loss of any other decision
fi(d) with a margin λ(l(yi, d)− l(yi, d∗)), proportional to the loss excess of the respective decision.
A violation of this constraint is penalized by a slack ξi and the goal is to minimize the total slack.
Notice that the constraint ensures that the slack is non-negative because for d = d∗i all terms except
ξi vanish.

Solving for optimal ξi in each summand, we obtain that the summand i can be expressed as

LMR
λ =

1

λ
max
d

(fi(d
∗
i )− fi(d) + λ(l(yi, d)− l(yi, d∗))) (27)

=
1

λ

(
fi(d

∗
i )−min

d
(fi(d)− λ(l(yi, d)− l(yi, d∗)))

)
. (28)

Finally, under the assumption that costs l are non-negative and that l(yi, d∗) = 0 (which can be
made without loss of generality), we obtain the formulation (19).

Proposition 4. Margin re-scaling LMR
λ coincides with the direct loss L+

λ in the region where the
classifier makes correct decisions. Furthermore LE ≤ L+

λ ≤ LMR
+ .

Proof. The inequality L+
λ ≥ 0 is already shown in Proposition 3. The proof is simple, once the two

approaches are written in the respective forms that we have shown:

L+
λ =

1

λ

(
min
d
f(d, x∗)−min

d

[
f(d, x∗)− λl(y∗, d)

])
, (29a)

LMR
λ =

1

λ

(
f(d∗, x∗)−min

d

[
f(d, x∗)− λl(y∗, d)

])
. (29b)

Let us verify that LMR
λ ≥ L+

λ . Since the summand −mind
[
f(d, x∗) − λl(y∗, d)

]
is common in

both, the inequality follows trivially from

f(d∗, x∗) ≥ min
d
f(d, x∗). (30)

The remaining claim of the proposition is also trivial. If the decision made by classifier is correct,
i.e., the optimal one, then (30) holds with equality.

B EXPERIMENT DETAILS

B.1 CROSS-VALIDATION PROCEDURE

Given a subset of data available for calibration (in the current calibration-test split), we create 10
folds for the internal cross-validation. We used stratified folds to maintain the class balance. In each
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Hyperparameter Searched Values

learning rate 1, 0.1, 0.01, 0.001
λ -50, -10, -5, -1
β None, 1, 5, 10, 20, 30, 40

Table B.1: Search grid for the cross-validation procedure.

deadly_poisonous edible_good inedible edible_bad edible poisonous
0

200
400
600
800

1000
1200
1400

Class distribution of our Fungi dataset

Figure B.1: The distribution of edibility classes in the remapped Fungi dataset.

fold we have 9/10 for optimization of calibration parameters and 1/10 for validation of hyperpa-
rameters. Hyperparameters corresponding to the best average risk over the 10 folds are selected. We
perform selection of the following hyper-parameters: learning rate α for all methods; λ and β for
Direct Loss with smooth minimum. The chosen lambda values are then multiplied by 1/κ, where κ
is the maximum value of the loss function. This is to normalize the loss function to be invariant to
the scale of lambda. The search grids for different methods are shown in Table B.1.

B.2 FUNGI EXPERIMENT

The trained neural network for mushroom classification (Picek et al., 2022) is adapted to our decision
problem (to decide the edibility of the mushrooms) as follows. There is 1604 species in the dataset,
out of which we found and annotated the edibility information (6 categories) for 203 species. After
this procedure the distribution of species becomes uneven, as shown in Fig. B.1. In particular deadly
poisonous mushrooms are relatively rare.

We adopted the ResNet-50 network from (Picek et al., 2022) as follows. From the probability
vector over spices produced by the model we compute the probability vector over edibility states
by marginalization. The accuracy of the model in classifying these 6 states was at 91%. Then we
consider a decision problem with 6 states and 2 decisions (accept or not for cooking). We designed
a realistic loss function, shown in Fig. 2 top-right. The calibration-test splits were created by using
15 stratified folds of the test set and adding the validation set of the training to the calibration set.
For this decision task, we are not longer interested in the accuracy of the classification, but in the
expected loss, i.e. the risk shown in Fig. 2 left.

B.3 HAM10000 EXPERIMENT

We tried to follow the setup of Zhao et al. (2021) in order to allow for an indirect comparison1. In
particular we used the same data split and network and tried to evaluate also the gap between the
model-estimated (emperical) risk and the true empirical risk. We trained resnet121 model for 100
epochs on 75% of the data. All lesions having multiple views in the dataset were used for training.
The remaining 25% consisted of independent instances, each with 1 view only. The training achieved
validation accuracy of 90% (the validation set was not used for choosing hyperparameters, only to
report this number). The 25% of the data not used for training we split randomly into 15% for
calibration and 10% for test. All splits were stratified (preserving class balance). This results in

1A direct comparison is not feasible at the moment: we evaluate only parametric calibration methods; the
code and some details of their method are not available to us

14



Under review as a conference paper at ICLR 2023

0.0 0.1 0.2 0.3 0.4 0.5

TS

Risk

Emp. risk R∗ (DirectLoss)
Modle risk R∗ (DirectLoss)
Emp. risk R∗ (No Calibration)

Model risk R̂ (No Calibration)

0.0 0.1 0.2 0.3 0.4 0.5

BCTS

Risk

Emp. risk R∗ (DirectLoss)
Modle risk R∗ (DirectLoss)
Emp. risk R∗ (No Calibration)

Model risk R̂ (No Calibration)

0.0 0.1 0.2 0.3 0.4 0.5

VS

Risk

Emp. risk R∗ (DirectLoss)
Modle risk R∗ (DirectLoss)
Emp. risk R∗ (No Calibration)

Model risk R̂ (No Calibration)

Figure B.2: HAM10000 Experiment: Risk gap before and after calibration for TS, BCTS and VS pa-
rameterizations. The trend is that with more parameters the model self-assessed risk is less accurate,
indicating an overfitting in terms of calibrating reliable probabilities.

the test set size of 1015 data points (in each split). Fig. 3 is showing the statistical analysis over 40
splits. As each split requires a calibration (with the nested cross-validation procedure), collecting
more statistics is difficult. In our cost matrix we tried to closely replicate the values depicted in Zhao
et al. (2021, Fig.1) (motivated by medical domain knowledge) by matching the colors in the image
and the color bar. We added a constant in each row to make all losses non-negative. This affects
neither the Bayesian decision strategy nor the differences between any two risks.

Pairwise comparisons for TS and VS parametrizations, complementing Fig. 3 are shown in Fig. B.3.
All kernel density estimates shown are computed with awkde2 (Wang & Wang, 2007) using the
default silverman adaptive method. The calibration has a positive effect in these cases as well,
however the advantage for VS parametrization appears to be on the side of NLL.

B.4 CIFAR-10 EXPERIMENT

In this experiment we used CIFAR-10 dataset. The data splitting and calibration protocol were
the same as in the fungi experiment. We trained EfficientNetB0 that achieved validation accuracy
94.7%.

2Adaptive Width KDE with Gaussian Kernels https://github.com/mennthor/awkde
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Figure B.3: HAM10000 Experiment: Pairwise comparisons for TS and VS parametrizations.
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