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Abstract
Large Language Models (LLMs) often retain001
inaccurate or outdated information from pre-002
training, leading to incorrect predictions or bi-003
ased outputs during inference. While existing004
model editing methods can address this chal-005
lenge, they struggle with editing large amounts006
of factual information simultaneously and may007
compromise the general capabilities of the mod-008
els. In this paper, our empirical study demon-009
strates that it is feasible to edit the internal rep-010
resentations of LLMs and replace the entities011
in a manner similar to editing natural language012
inputs. Based on this insight, we introduce013
the Latent Knowledge Scalpel (LKS), an LLM014
editor that manipulates the latent knowledge015
of specific entities via a hypernetwork to en-016
able precise and large-scale editing. Experi-017
ments conducted on Llama-2 and Mistral show018
that even with the number of simultaneous ed-019
its reaching 10,000, LKS effectively performs020
knowledge editing while preserving the general021
abilities of the edited LLMs.022

1 Introduction023

The development of large language models (LLMs)024

has significantly advanced natural language pro-025

cessing (NLP) (Qin et al., 2024). However, chal-026

lenges such as hallucinations (Huang et al., 2024;027

Xu et al., 2024), biases (Gallegos et al., 2024), and028

outdated information (Zhang and Choi, 2021; Onoe029

et al., 2022; Dhingra et al., 2022; Lazaridou et al.,030

2024) persist after pre-training. Therefore, it is031

essential to perform targeted updates to this incor-032

rect or outdated information that arises during the033

deployment of LLMs.034

Retraining or fine-tuning (Wei et al., 2022) can035

address this issue but requires substantial compu-036

tational resources and time. Parameter-efficient037

fine-tuning (PEFT) methods (Lialin et al., 2024;038

Houlsby et al., 2019; Pfeiffer et al., 2021; Lester039

et al., 2021; Li and Liang, 2021; Hu et al., 2022)040

provide more efficient alternatives, though they041

Figure 1: Illustration of model editing. Model editing
modifies specific knowledge with minimal impact on
unrelated inputs.

may lead to overfitting and are limited in reliability 042

(Wang et al., 2024; De Cao et al., 2021). Another 043

class of methods modifies the behavior of LLMs 044

by adding contextual information to the prompts, 045

including prompt engineering (Sahoo et al., 2024) 046

and retrieval-augmented generation (RAG) (Lewis 047

et al., 2020). However, these methods may fail 048

due to misalignment between LLMs and prompts 049

(Hernandez et al., 2024). Moreover, they are con- 050

strained by prompt length, as they require ample 051

context to be effective (Wang et al., 2024). 052

Model editing has emerged as a promising solu- 053

tion, aiming to make targeted modifications to spe- 054

cific model behaviors while minimizing changes 055

to unrelated distributions, as shown in Figure 1. 056

While previous works have introduced various en- 057

lightening editing approaches, there remains room 058

for improvement. Gu et al. (2024) highlights that 059

editing methods that modify model weights, such 060

as Dai et al. (2022), Mitchell et al. (2022a), Meng 061

et al. (2023a), and Meng et al. (2023b), can lead 062

to overfitting on the edited facts, degrading the 063

model’s general abilities. Furthermore, methods 064

such as De Cao et al. (2021), Dai et al. (2022), 065

Mitchell et al. (2022a), and Meng et al. (2023a) be- 066

come less effective when editing large volumes of 067

factual information simultaneously (Mitchell et al., 068

2022a; Meng et al., 2023b). Hartvigsen et al. (2023) 069

directly replaces the hidden states of the original 070
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model with the edit target to enable lifelong sequen-071

tial editing, but it suffers from poor generalization072

and often fails to edit paraphrases of the targets.073

In this paper, we propose Latent Knowledge074

Scalpel (LKS), an LLM editor capable of per-075

forming large-scale simultaneous knowledge edit-076

ing without compromising the general abilities of077

LLMs. Unlike methods that modify the model’s078

weights, we focus on editing the internal representa-079

tions of specific entities. Previous studies (Petroni080

et al., 2019; Jiang et al., 2020; Li et al., 2021; Sun081

et al., 2024) have shown that the internal represen-082

tations (or hidden states) of pre-trained language083

models (PLMs) contain both factual knowledge084

and contextual information. For fine-grained edit-085

ing, we associate knowledge with entities, which086

represent the smallest unit of knowledge in natural087

language (Cao et al., 2021). Our empirical study088

(§2) demonstrates that the internal representation089

of a single entity encapsulates both factual knowl-090

edge and semantic features, which we refer to as a091

knowledge block (KB). Moreover, we show that092

the internal representations of LLMs preserve the093

syntactic structure of natural language, allowing094

operations similar to those on natural language it-095

self.096

Building on these findings, LKS manipulates097

specific entity latent knowledge for targeted up-098

dates (§3). During inference, if the input contains099

an entity within the edit scope, LKS uses a sim-100

ple neural network to generate a new knowledge101

block (KB) for this entity and replace the original102

one, guiding the LLM to produce the desired output.103

This network is trained to integrate the latest knowl-104

edge of entities within the edit scope, enabling it to105

generate optimal KBs. These KBs update specific106

entity features while preserving others, ensuring107

precise edits. Moreover, the use of the neural net-108

work allows LKS to handle large-scale, simulta-109

neous updates. Our entity recognition mechanism110

ensures accurate identification of the edit scope,111

preventing LKS from triggering on inputs outside112

the scope, thereby enabling extensive edits without113

affecting unrelated distributions.114

We conduct extensive experiments to evaluate115

our LKS editor (§4). Our experimental results116

demonstrate that LKS outperforms six other meth-117

ods in factual knowledge editing on Llama-2-7B118

and Mistral-7B, achieving the best balance in relia-119

bility, generality, and locality. Additionally, during120

large-scale simultaneous editing, LKS can accu-121

rately perform 10,000 edits simultaneously, achiev-122

ing high edit performance while maintaining the 123

general abilities of the LLMs. 124

We make the following key contributions: 125

1. We introduce Latent Knowledge Scalpel 126

(LKS), an LLM editor that replaces entity 127

knowledge blocks with new ones generated by 128

a simple neural network, achieving targeted 129

and large-scale LLM editing while preserving 130

the general abilities of LLMs. 131

2. We demonstrate that the entity knowledge 132

blocks in PLMs contain semantic information, 133

and the internal representations of LLMs re- 134

tain the syntactic structure of natural language, 135

allowing us to manipulate them like natural 136

language. 137

3. Our experiments show that even when the 138

number of simultaneous edits reaches 10,000, 139

LKS is still able to maintain the general abili- 140

ties of the edited LLMs while outperforming 141

other editors in terms of edit performance. 142

2 Empirical Study 143

2.1 Semantic Information of a Single Entity 144

Knowledge Block 145

In natural language, an entity typically contains 146

multiple factual knowledge. For example, a person 147

entity may include information such as age, occu- 148

pation, and hobbies. This raises the question: does 149

a single entity knowledge block from a PLM also 150

contain sufficient semantic information? 151

To investigate this, we design a probe to dif- 152

ferentiate between factual knowledge learned by 153

the PLM and counterfactual knowledge it has not 154

encountered. The probe’s accuracy is defined as 155

the proportion of correctly identified factual knowl- 156

edge. Specifically, we extract 10,000 entities along 157

with their factual and counterfactual attributes from 158

the Counterfact dataset (Meng et al., 2023a). The 159

probe computes the cosine similarity between the 160

entity KB and the internal representations of both 161

factual and counterfactual knowledge, selecting the 162

one with the higher similarity as the "answer": 163

argmax
knowledge∈K

cosine-similarity(Rentity, Rknowledge)

(1) 164

where K contains both factual and counterfactual 165

knowledge and R denotes internal representation. 166

Higher probe accuracy indicates that the entity KB 167
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Figure 2: Probe accuracy for identifying factual knowl-
edge across layers in Llama-2-7B and Mistral-7B. The
results show that the probe accuracy exceeding 50% on
average and peaking at 80%, demonstrating that a single
entity KB retains semantic information.

is semantically closer to learned knowledge, sug-168

gesting that it encodes meaningful semantic infor-169

mation.170

Figure 2 presents the probe’s accuracy across lay-171

ers in Llama-2-7B-Chat (Touvron et al., 2023) and172

Mistral-7B-Instruct-v0.3 (Jiang et al., 2023). The173

probe achieves an average accuracy above 50%,174

surpassing random guessing, with peak accuracy175

reaching 80%. These results confirm that a single176

entity KB in a PLM retains its semantic informa-177

tion.178

2.2 Syntactic Structure of Internal179

Representations180

Natural language follows a syntactic structure, and181

replacing an entity name in a natural language182

prompt shifts the LLM’s prediction toward the se-183

mantics of the new entity. Our research shows that184

the internal representations of LLMs exhibit a sim-185

ilar syntactic structure, as illustrated in Figure 3.186

To investigate this, we use the template "The187

birthplace of Alfred Bernhard Nobel is"188

and replace the KB of "Alfred Bernhard Nobel"189

with different entity KBs. We then measure the190

rate at which the predicted birthplaces rank higher191

after replacement. The results in Figure 4 show that192

replacing KBs increases the ranking of the target193

location across all layers in both Llama-2-7B and194

Mistral-7B. Additionally, the effect diminishes as195

the layer number increases.196

These findings confirm that LLMs’ internal rep-197

resentations preserve syntactic structure to some198

extent. Furthermore, they suggest that during for-199

ward propagation, unchanged parts of the internal200

representation continue to influence predictions,201

explaining why the effect of KB replacement is202

stronger in earlier layers. If the goal is to introduce203

new information while preserving some original204

Figure 3: Upper: In natural language, replacing the
entity "Shelly" with "Nobel" in the context of the "birth-
place" causes the prediction from Llama-2-7B shifting
from "England" to "Sweden". Lower: In internal rep-
resentation, by obtaining the internal representations
of two sentences and swapping the entity KB at a cer-
tain layer, similar to replacing entity names in a natural
language prompt, the prediction of LLM changes and
outputs the corresponding birthplaces.

Figure 4: By replacing the name KB in the template
with different entity KBs at each layer of Llama-2-7B
and Mistral-7B, an increase in the ranking of the tar-
get birthplace across all layers in both models can be
observed, confirming that internal representations of
LLMs retain syntactic structure.

knowledge, modifying KBs in intermediate layers 205

may be more effective. 206

3 Method 207

3.1 Overview of LKS 208

Design Goal We aim to design an LLM editor that 209

can effectively modify large-scale knowledge si- 210

multaneously while preserving the general abilities 211

of LLMs. Particularly, it should satisfy the follow- 212

ing requirements for LLM editing: 213

• Reliability: Accurately updates the specified 214

targets. 215

• Generality: Consistently updates the equiva- 216

lent neighborhoods of the specified targets. 217

• Locality: Ensures that knowledge outside the 218

edit scope remains intact. 219

We propose Latent Knowledge Scalpel (LKS), 220

an LLM editor that precisely updates the latent 221
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knowledge of LLMs using a hypernetwork. We ex-222

tract entity-related knowledge from an PLM, con-223

structs a self-supervised training dataset, and trains224

a simple neural network (linear or MLP) special-225

ized in entity-related knowledge. The new entity226

knowledge block (KB) generated by the network227

replaces the original one in the LLM. This updated228

entity KB is integrated into the LLM’s forward229

propagation, guiding the model to produce the230

edited target within the edit scope while preserving231

its original predictions outside this scope.232

The architecture of LKS is shown in Figure 5.233

LKS consists of three components: Edit Scope234

Indicator, which determines if an entity in the235

prompt falls within the edit scope, using fuzzy236

string matching and Levenshtein distance; New237

KB Generator, a simple neural network that gen-238

erates the updated entity KB, which can either be239

a linear layer or an MLP layer. It is trained on240

a dataset containing the latest knowledge of enti-241

ties within the edit scope, enabling it to output the242

optimal new entity KB; and KB Replacer, which243

hooks into a selected layer (discussed in detail in244

Section 4.3) of the edited LLM and replaces the245

original entity KB with the new one generated by246

the New KB Generator. The updated entity KB is247

then involved in the LLM’s forward propagation,248

ultimately guiding the model’s prediction.249

If the Edit Scope Indicator determines that the250

prompt contains the entity to be edited, the New KB251

Generator generates the updated entity KB for that252

entity. The KB Replacer then replaces the original253

entity KB in the selected layer, and the inference254

process continues until the edited LLM’s prediction255

is obtained. Otherwise, the last two components256

are not triggered, and the original model proceeds257

with the inference as usual.258

3.2 Building a New Knowledge Block259

LKS enables LLMs to generate updated predictions260

for inputs within the edit scope (target edits and261

their equivalent neighborhoods) while preserving262

predictions outside this scope. In other words, it263

selectively edits a semantic feature of an entity264

while maintaining unrelated content. To achieve265

this, we construct a new knowledge block in three266

steps, as illustrated in Figure 6.267

Knowledge Extraction Inspired by Zhou et al.268

(2023), we extract text-based entity-related knowl-269

edge from the PLMs. For each entity, we use GPT-270

4o mini (OpenAI et al., 2024) to generate multiple271

sentences reflecting its factual knowledge.272

Figure 5: Architecture and Process of LKS. ➀ A simple
neural network is trained using Dtrain to generate the
optimal new KB during inference. ➁ Upon receiving
a prompt, the Edit Scope Indicator checks if the tar-
get entity is present. If so, the relevant information is
passed to the New KB Generator; otherwise, the original
LLM proceeds as usual. ➂ The New KB Generator then
creates the updated entity KB. ➃ The KB Replacer up-
dates the corresponding entity KB in the selected layer
l, and the inference continues to produce the final edited
prediction.

Knowledge Updating We replace the factual 273

knowledge of the target feature and its equivalent 274

neighborhood with the desired content, while leav- 275

ing other entity features unchanged. These un- 276

changed features will be aligned with the relevant 277

knowledge in the edited LLM during the next step. 278

Knowledge Compression Following prior 279

works (Petroni et al., 2019; Shin et al., 2020; 280

Roberts et al., 2020; Onoe et al., 2022; Abaho et al., 281

2022; Chen et al., 2022; Youssef et al., 2023), we 282

convert the extracted and updated entity knowledge 283

into gap-filling prompts to create a self-supervised 284

training dataset Dtrain. A simple neural network is 285

then trained on Dtrain, serving as a hypernetwork 286

to generate new entity KBs that replace the original 287

ones in the LLM. During training, the LLM aligns 288

its predictions with the updated targets while re- 289

taining non-edited knowledge. After training, this 290

neural network encapsulates only the latest entity 291

knowledge and can produce the optimal new entity 292

KBs which represent the compressed knowledge. 293

3.3 Training LKS Hypernetwork 294

The neural network hϕ(·) takes the input entity E 295

and outputs the new knowledge block for layer 296

l, denoted as R̃l
ϕ(E) = hϕ(E; l). This hypernet- 297

work is trained using Dtrain in advance to generate 298

the optimal new KB R̃l during inference. During 299

LLM inference, LKS replaces the original KB Rl 300

with the new KB R̃l, guiding the LLM’s predic- 301

tions. Notably, Dtrain is significantly smaller than 302

the original LLM training dataset, and the storage 303
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Figure 6: The process of building a new KB. ➀ Ex-
tract entity knowledge from a PLM. ➁ Update the target
knowledge for editing the entity. ➂ Compress the knowl-
edge using a simple neural network, which contains only
the latest knowledge of entities within the edit scope.

overhead of the neural network is negligible com-304

pared to the LLM itself. For instance, hϕ with a305

linear layer for Llama-2-7B occupies only 64MB,306

regardless of the number of edits it contains.307

Given an LLM fθ and an input sequence x con-308

taining entity E, the model recalls the correspond-309

ing feature of E and predicts the token sequence y.310

The original entity KB in layer l can be formulated311

as Rl
θ(E) = Rl−1

θ (E)+attnl
θ(E)+mlplθ(E). The312

output y can be expressed as y = fθ(x,R
l
θ(E)).313

For factual knowledge editing, LKS replaces the314

original entity KB at layer l with R̃l
ϕ(E), enabling315

the LLM to generate a new prediction ỹ aligned316

with the updated feature: ỹ = fθ(x, R̃
l
ϕ(E)). The317

neural network hϕ is optimized using the following318

loss function:319

L(ϕ) = λedit(Ledit + Leq) + Llocality (2)320

Ledit is optimized via maximum likelihood es-321

timation, ensuring that the prompt Xe describing322

the edit aligns with the target Ye, leading to correct323

updates within the edit scope:324

Ledit = − log p(ye|xe, R̃
l
ϕ(E)), (xe, ye) ∈ (Xe,Ye)

(3)325

Similar to Ledit, Leq ensures that equivalent326

neighborhood inputs Xeq result in the same target327

output Ye:328

Leq = − log p(ye|xeq, R̃
l
ϕ(E)), (xeq, ye) ∈ (Xeq,Ye)

(4)329

Llocality constrains the logit distribution for un-330

related features Xloc using Kullback-Leibler (KL)331

divergence, minimizing deviations from the origi-332

nal pre-trained logit distribution. This ensures that333

the original distribution remains unchanged outside334

the edit scope:335

Algorithm 1 Training Algorithm of LKS
Input: Training dataset Dtrain; LLM fθ; LKS neutral net-

work hϕ; Edit layer l; hyperparameter λedit

Output: Trained LKS neutral network hϕ; Edit scope S
1: Generate the edit scope S according to Dtrain;

While not early-stopping do
2: Sample entity E, xe, ye, xeq , xloc from Dtrain;
3: Ledit = −logp(ye|xe, R̃

l
ϕ(E));

4: Leq = −logp(ye|xeq, R̃
l
ϕ(E));

5: Lloc = KL(p(·|x, R̃l
ϕ(E)), p(·|x, Rl

θ(E)));
6: L(ϕ) = λedit(Ledit + Leq) + Llocality;
7: ϕ← AdamW(ϕ,∇L(ϕ));

Algorithm 2 Inference Algorithm of LKS
Input: LLM fθ; Trained LKS neutral network hϕ; Edit

scope S; Input prompt x
Output: Prediction ŷ

If ∃E ∈ x, E ∈ S:
# Edit with LKS
Replace Rl

θ(E) using R̃l
ϕ(E);

ŷ = fθ(x, R̃
l
ϕ(E));

Else:
# Do not edit, output as origin
ŷ = fθ(x);

return ŷ;

Llocality = KL(p(·|x, R̃l
ϕ(E)), p(·|x,Rl

θ(E))), x ∈ Xloc

(5) 336

See Algorithm 1 and Algorithm 2 for a detailed 337

overview of LKS training and inference. For hy- 338

perparameter details, refer to Appendix 1. 339

4 Experiments 340

4.1 Experiment Setting 341

Datasets For evaluating the reliability, generality, 342

and related-locality of factual editing, we generate 343

two evaluation datasets using GPT-4o mini based 344

on the zsRE question-answering dataset (Levy 345

et al., 2017) and the Counterfact dataset (Meng 346

et al., 2023a). Details can be found in Appendix B. 347

For unrelated-locality, we use GSM8K (Cobbe 348

et al., 2021), RTE (Dagan et al., 2005), and SST2 349

(Socher et al., 2013) to assess the general abilities 350

of the edited LLMs. GSM8K tests the model’s 351

mathematical reasoning ability, RTE assesses its 352

natural language inference ability (i.e., whether a 353

statement is reasonable), and SST2 evaluates senti- 354

ment analysis capabilities by classifying statements 355

as positive or negative. 356

Baselines We use several classical or effective 357

model editing methods as baselines. FT refers to ba- 358

sic fine-tuning which updates the weight of an MLP 359

layer using Adam (Kingma and Ba, 2015) based 360

on modified facts. FT-L extends FT by adding an 361
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L∞ regularization to enforce locality (Zhu et al.,362

2021). MEND (Mitchell et al., 2022a) edits models363

by updating MLP layer weights using the low-rank364

structure of fine-tuning gradients. ROME (Meng365

et al., 2023a) and MEMIT (Meng et al., 2023b)366

modify specific factual associations by adjusting367

MLP weights, with MEMIT supporting large-scale368

edits. GRACE (Hartvigsen et al., 2023) records369

model hidden states in a codebook and replaces370

the original states during edits. All baselines are371

evaluated using EasyEdit (Wang et al., 2024), an372

easy-to-use framework for LLM knowledge edit-373

ing, ensuring convenient and fair assessment.374

4.2 Evaluation Metrics375

Following prior works (Mitchell et al., 2022a,b;376

Meng et al., 2023a), we evaluate LLM editing per-377

formance using three primary metrics: reliability,378

generality, and locality. As shown in Figure 1, these379

metrics assess the model’s behavior for prompts in-380

side and outside the edit scope.381

For reliability and generality, computing the382

average exact-match accuracy between the edited383

predictions and the target outputs within the edit384

scope:385

Rel = E(1fLKS(xe)=ye) (6)386

Gen = E(1fLKS(xeq)=ye) (7)387

For locality, we further divide it into two cat-388

egories: related-locality, which pertains to areas389

related to the edited entity but not the modified390

feature, and unrelated-locality, which refers to ar-391

eas completely outside the edit scope. In other392

words, unrelated-locality means that after perform-393

ing factual edits, the general abilities of LLMs,394

such as mathematical reasoning and sentiment anal-395

ysis, should remain unchanged.396

For related-locality, we measure whether pre-397

dictions for inputs which are related to the edited398

entity but outside the edit scope remain unchanged:399

Related-Loc = E(1fLKS(xloc)=f(xloc)) (8)400

We define Edit Performance (EP) as the aver-401

age of reliability, generality, and related-locality,402

providing a comprehensive evaluation of editing403

effectiveness.404

For unrelated-locality, we assess how well the405

edited LLM preserves the general abilities of its406

original model, including mathematical reasoning,407

natural language inference, and sentiment analysis.408

Figure 7: Effectiveness of LKS on different layers, mea-
sured by the information gain ∆If (R̃ → Y ). Positive
values indicate that the new KBs increases the likeli-
hood of the LLM generating output Y . Results show
that modifying intermediate layers of Llama-2-7B and
Mistral-7B leads to higher effectiveness.

4.3 Selection of the LKS Operating Layer 409

LKS achieves LLM editing by replacing the entity 410

knowledge blocks. This section applies informa- 411

tion theory to validate its effectiveness and guide 412

the selection of the optimal layer for replacement. 413

Inspired by Shannon Information Theory (Shan- 414

non, 1948) and Ethayarajh et al. (2022), we de- 415

fine the information gain ∆If (R̃ → Y ) to mea- 416

sure how effectively the new knowledge block 417

R̃ helps model f generate output Y . A posi- 418

tive ∆If (R̃ → Y ) indicates that the new KB 419

outperforms the original in generating Y . The 420

larger the value, the more effective the new KB. 421

Using the entropy definition, the information en- 422

tropy Hf (Y |R) required for model f to predict Y 423

given KB R is Hf (Y |R) = inf E[− log2 f [R](Y )]. 424

Thus, ∆If (R̃ → Y ) can be calculated as: 425

∆If (R̃→ Y ) = Hf (Y |R)−Hf (Y |R̃) (9) 426

The results in Figure 7 show positive values of 427

∆If (R̃ → Y ), indicating that the modification 428

of the entity KBs increases the likelihood of the 429

LLM generating the edit targets Y . Modifying 430

intermediate layers yields higher effectiveness, and 431

although modifying multiple layers is possible, we 432

opt for a single layer to balance computational cost. 433

In subsequent experiments, we select layer 16 of 434

Llama-2-7B and layer 18 of Mistral-7B for the LKS 435

replacement. 436

4.4 Comparison of Model Editors on zsRE 437

In this section, we evaluate the performance of 438

various model editing baselines on the zsRE dataset 439

using Llama-2-7B and Mistral-7B, focusing on the 440

average effect of 1000 edits. Unlike LKS, which 441

performs batch-editing, other methods apply one 442

edit at a time to achieve the best performance. 443
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Rel↑ Gen↑ Related-Loc↑ EP↑ Fluency↑
Llama-2-7B

FT 49.0 45.0 42.1 45.4 4.25
FT-L 43.6 36.6 80.9 53.7 5.34
MEND 97.4 95.2 61.1 84.6 5.09
ROME 97.6 83.3 59.2 80.0 5.65
MEMIT 96.2 86.2 52.8 78.4 5.34
GRACE 97.2 0.13 86.6 61.3 4.96
LKS 100 96.5 74.1 90.2 5.65

Mistral-7B
FT 36.1 36.9 2.14 25.1 1.88
FT-L 58.2 45.9 93.1 65.7 5.96
MEND 97.5 96.4 58.4 84.1 3.82
ROME 86.5 81.2 62.8 76.9 5.94
MEMIT 87.2 81.9 57.3 75.5 5.88
GRACE 99.2 0.83 56.8 52.3 5.97
LKS 98.0 91.1 73.2 87.4 5.94

Table 1: Comparison of LKS to existing methods on
zsRE. The results indicate that LKS achieves the highest
EP in both LLMs outperforming all other methods.

As shown in Table 1, LKS outperforms all other444

methods, achieving the highest EP scores in both445

LLMs. This demonstrates that LKS delivers the446

best performance both within and outside the edit-447

ing range. Specifically, LKS effectively modifies448

the target features of entities while preserving unre-449

lated features, ensuring highly targeted edits. The450

effectiveness of these edits is driven by the LKS451

neural network, which learns to accurately edit452

the target features and their equivalent neighbor-453

hood. Related-locality is maintained through two454

mechanisms: first, the Edit Scope Indicator identi-455

fies whether the inputs contain entities within the456

edit scope, and second, the New KB Generator is457

trained to preserve unrelated distributions as much458

as possible.459

4.5 Generation Quality460

After evaluating the effectiveness of the editing461

methods, we next assess the quality of text genera-462

tion in terms of fluency, measured by the entropy463

of n-gram distributions (Zhang et al., 2018; Meng464

et al., 2023a,b). We apply different editing meth-465

ods on Llama-2-7B and perform 100 factual edits466

based on the zsRE dataset, generating up to 100467

new tokens for each edit to compute the average468

fluency.469

The results in Table 1 show that LKS and470

ROME achieve the highest fluency on Llama-2-471

7B, surpassing the fluency of the unedited model472

(5.36). On Mistral-7B, GRACE, FT-L, ROME, and473

LKS also achieve relatively high fluency, although474

slightly lower than the unedited model (6.01). This475

suggests that LLMs edited by LKS tend to gener-476

ate fluent and coherent texts. Examples of LKS477

generations can be found in Appendix D.478

Figure 8: Comparison of edit performance with simulta-
neous edits up to 10,000. LKS shows the best and most
stable edit performance as the number of edits increases.
Note: Due to significant performance drops of ROME
and MEND at 100 edits, further experiments were not
conducted to reduce computational costs.

4.6 Large-Scale Simultaneous Editing 479

In many scenarios, large-scale and simultaneous 480

edits are necessary for LLMs. For example, up- 481

dating thousands of factual changes within a spe- 482

cific time frame, or removing large amounts of 483

erroneous or privacy-sensitive information intro- 484

duced during pre-training. In such cases, allow- 485

ing only one edit at a time is insufficient. Exist- 486

ing methods achieve multiple simultaneous edits 487

through sequential-editing or batch-editing. In this 488

section, we evaluate four methods with superior 489

performance as identified in Section 4.4, for their 490

effectiveness in large-scale simultaneous edits. 491

4.6.1 Edit Performance 492

This section compares the impact of large-scale 493

simultaneous edits on edit performance. We ap- 494

ply different editing methods to Llama-2-7B, per- 495

forming a set number of edits on the zsRE dataset. 496

For ROME, we use sequential-editing, while LKS, 497

MEND, and MEMIT employ batch-editing. 498

The results in Figure 8 show that LKS achieves 499

the best performance within 10,000 edits. Its relia- 500

bility and generality remain high, though locality 501

decreases slightly as the number of edits increases. 502

MEMIT performs second best, while ROME and 503

MEND show a clear decline after only a few dozen 504

edits. This suggests that LKS’s neural network 505

effectively stores the updated factual knowledge, 506

enabling simultaneous and accurate updates. 507
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Figure 9: Evaluation of four different editing methods
on the GSM8K, SST2, and RTE datasets to assess how
well the edited LLMs preserve their general abilities.
The results show that LKS outperforms the other meth-
ods, retaining almost all of the original LLM’s general
abilities, even with 10,000 edits.

4.6.2 Maintaining the General Abilities of508

LLMs after Editing509

If the general abilities of the edited LLMs are510

compromised or rendered ineffective, LLM editing511

would become counterproductive. Here, we use the512

GSM8K, SST2, and RTE datasets to evaluate how513

effectively the edited LLM preserves the general514

abilities of its original model. The three datasets515

assess the LLM’s capabilities in mathematical rea-516

soning, sentiment analysis, and natural language517

inference, respectively.518

The results shown in Figure 9 indicate that519

ROME and MEND cause the edited LLM to lose520

nearly all of its general abilities after 100 edits.521

At 1000 edits, MEMIT begins to exhibit perfor-522

mance degradation. However, even with 10,000523

simultaneous edits, LKS retains almost all of the524

original LLM’s general abilities. This is because525

LKS first checks whether an input contains an en-526

tity within the edit scope, minimizing the impact527

on unrelated inputs. The slight performance degra-528

dation observed in LKS may stem from errors in529

fuzzy string matching during entity recognition.530

5 Related Work531

Knowledge in Language Models Language mod-532

els (LMs) can acquire vast amounts of factual533

knowledge during pre-training (Petroni et al., 2019;534

Jiang et al., 2020; Sun et al., 2024). Studies using535

manually or automatically generated prompts have536

demonstrated that LMs store intrinsic memories 537

within their pre-trained parameters (Petroni et al., 538

2019; Shin et al., 2020; Roberts et al., 2020; Onoe 539

et al., 2022; Abaho et al., 2022; Chen et al., 2022; 540

Youssef et al., 2023). Li et al. (2021) show that the 541

internal representations of PLMs are interpretable 542

and editable. Cao et al. (2021) emphasized that 543

entities play a central role in knowledge represen- 544

tation and aggregation. Hernandez et al. (2024) 545

demonstrated that modifying entity representations 546

in MLP layers with contextual information can gen- 547

erate or uncover counterfactuals. Inspired by these 548

findings, this paper proposes model editing by re- 549

placing the internal representations of entities. 550

Model Editing De Cao et al. (2021) trains a hy- 551

pernetwork with constrained optimization to mod- 552

ify factual knowledge and predict weight updates at 553

test time. Dai et al. (2022) introduces a knowledge 554

attribution method to identify neurons encoding 555

specific facts and uses these knowledge neurons for 556

targeted fact editing. Mitchell et al. (2022b) pro- 557

poses a scope classifier that retrieves edits from ex- 558

plicit memory when needed. Mitchell et al. (2022a) 559

leverages the low-rank structure of fine-tuning gra- 560

dients to represent weight updates in MLPs for 561

model editing. Meng et al. (2023a) and Meng 562

et al. (2023b) modify feed-forward weights to up- 563

date specific factual associations. Hartvigsen et al. 564

(2023) records edited model hidden states in a code- 565

book and replaces the original hidden states when 566

necessary. While these model editing approaches 567

are promising, they often struggle to efficiently edit 568

large volumes of factual knowledge simultaneously 569

and may degrade general model abilities. 570

6 Conclusion 571

In this paper, we first demonstrate that the inter- 572

nal representations of LLMs can be manipulated 573

similarly to natural language. Building on this, we 574

propose Latent Knowledge Scalpel (LKS), an LLM 575

editor that enables precise and scalable modifica- 576

tions by manipulating specific entity latent knowl- 577

edge through a simple neural network. Experi- 578

ments conducted on Llama-2 and Mistral show that 579

even with the number of simultaneous edits reach- 580

ing 10,000, LKS still can effectively preserve the 581

general abilities of the edited LLMs while surpass- 582

ing other editors in terms of edit performance. Our 583

findings highlight the structured nature of entity 584

representations in LLMs, opening new possibilities 585

for efficient and targeted knowledge updates. 586
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Limitations587

When a new prompt is input, LKS uses the Edit588

Scope Indicator to identify whether any entity fall589

within the edit scope. Currently, this is achieved590

through simple fuzzy string matching and the cal-591

culation of Levenshtein distance. More complex592

algorithms are not employed in order to balance593

search accuracy with efficiency. Since LKS modi-594

fies the model in real-time during inference, an in-595

crease in the edit scope leads to longer search times,596

and consequently, longer overall prediction times.597

This effect becomes noticeable when the number of598

simultaneous edits reaches ten thousand. In the fu-599

ture, more accurate and efficient algorithms could600

be explored to determine the presence of entities601

within the edit scope more effectively.602

LKS utilizes the New KB Generator to create603

a new entity KB that replaces the original one.604

The New KB Generator is a simple neural net-605

work, which must be trained with the correspond-606

ing Dtrain for each different editing task. The qual-607

ity of this training has a direct impact on the perfor-608

mance of LKS, meaning that its effectiveness may609

vary depending on the target LLMs and datasets.610

Additionally, the hyperparameters of this neural611

network are sensitive to the number of simulta-612

neous edits, often requiring multiple adjustments613

during training to identify the optimal values.614

In this paper, we highlight one of the key advan-615

tages of LKS: its ability to perform large-scale and616

simultaneous edits. However, we do not specify617

the upper limit for the number of simultaneous ed-618

its that LKS can handle. While our experiments619

demonstrate the capability to handle up to 10,000620

edits, this is actually not the upper limit of LKS.621

Experiments have shown that at this scale, other622

methods already experience significant declines in623

both edit performance and model general abilities.624

Further experiments at even larger scales would625

incur additional substantial resource and time con-626

sumption. Thus, further experiments have not been627

conducted at this stage.628

Ethical Considerations629

The primary purpose of model editing is to up-630

date incorrect or outdated data, ultimately eliminat-631

ing biases and erroneous predictions. However, in632

practice, it can certainly be used for the opposite633

purpose. This entirely depends on the intentions634

of the users. Additionally, it is important to note635

that model editing methods pose a potential risk of636

backdoor implantation. 637
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A Details of Training LKS1038

LKS employs the training dataset Dtrain to train1039

the hypernetwork hϕ and optimize its parameters1040

ϕ. An example of the training dataset is provided1041

in Text 1. During each training step, we select1042

an editing target sample (xe, ye), an equivalent1043

neighborhood sample (xeq, ye) and several related-1044

locality samples xloc from Dtrain. The loss func-1045

tion defined in Equation 2 is used to optimize ϕ,1046

enabling the hypernetwork to generate the optimal1047

new knowledge block for a given entity within the1048

edit scope.1049

1050
{1051

"subject": "Christiane Cohendy",1052
"prompt": "What is the native language of1053

Christiane Cohendy?",1054
"target": "German",1055
"rephrase_prompt": "What is the mother1056

tongue of Christiane Cohendy?",1057
"locality": [1058

"What is the profession of Christiane1059
Cohendy?",1060

"Where did Christiane Cohendy go to1061
school?"1062

]1063
}10641065

Text 1: An example of training dataset. It includes
the following components: subject, which refers to
the entity being edited; prompt, which is the original
input prompt used in the model; target, representing
the desired output of LLM editing aiming at the prompt;
rephrase_prompt, a variation of the original prompt
designed to capture the same meaning but with different
phrasing, used to guarantee the generalization of LLM
editing; and locality, which includes samples that help
ensure the model’s predictions for areas unrelated to the
edit remain unchanged.

In our experiments, we use one editing target1066

prompt, one equivalent neighborhood prompt and1067

two related-locality prompts generated by GPT-4o-1068

mini based on the editing target prompt for train-1069

ing. For related-locality prompts, we compute the1070

Kullback-Leibler (KL) divergence over the next 31071

tokens. The initial learning rate is set to 1e − 4,1072

and a linear learning rate scheduler is applied with1073

no warm-up step. The optimizer used is AdamW.1074

The GPU used for training is an A800-80GB single1075

card. The neural networks used in LKS all consist1076

of only a single linear layer. For the LKS neural1077

network for Mistral-7B, training is conducted in1078

bfloat16 precision to save resources. The training1079

hyperparameters are detailed in Table 2.1080

Edited Model Llama-2-7B
Dataset zsRE
Edit Number 10 15 20 30 40 50 80
λedit 0.5 1 0.5 0.5 0.5 0.5 1
Max Epoch 20 20 20 20 20 20 20
Batch Size 2 2 2 2 2 2 32
Edited model Llama-2-7B Mistral-7B
Dataset zsRE Counterfact zsRE
Edit number 100 500 1000 10000 1000 1000 1000
λedit 1 1 10 80 3 12 12
Max Epoch 20 20 20 20 20 20 20
Batch Size 32 32 32 32 32 1 1

Table 2: Training hyperparameters of LKS.

B Evaluation Dataset Construction and 1081

Examples 1082

For evaluating factual editing, we create two evalua- 1083

tion datasets based on the zsRE question-answering 1084

dataset (Levy et al., 2017) and the Counterfact 1085

dataset (Meng et al., 2023a). Each of the evalu- 1086

ation datasets contains 10,000 data points. Specif- 1087

ically, we used GPT-4o-mini to generate 10,000 1088

prompts for generality in the Counterfact dataset, 1089

and 10,000 prompts for related-locality in both the 1090

zsRE and Counterfact datasets. The 10,000 gener- 1091

ality prompts for zsRE are derived directly from the 1092

original dataset. Text 2 and Text 3 show the prompt 1093

templates provided to GPT-4o-mini for generating 1094

the generalization and related-locality evaluation 1095

prompts, respectively. 1096

1097
"system": "Please output the synonym of the 1098

prompt given. Make sure they express the 1099
same semantics or question. And they 1100

should not differ much in length." 1101
"user": "Prompt: What is the capital of 1102

United States?" 1103
"assistant": "The capital of United States 1104

is where?" 1105
"user": "Prompt: The occupation of Alice is" 1106
"assistant": "Alice's job is" 1107
"user": "Prompt: {prompt}" 11081109

Text 2: The prompt template provided to GPT-4o-mini
for generating the generalization evaluation prompts.
The roles "system", "assistant", and "user" represent
different chat participants. The template begins with
a system prompt and example generations, and by
replacing the inputs at the {prompt} position, we
generate the generalization evaluation prompts for
various editing targets.

1110
"system": "We would like to evaluate the 1111

effectiveness of knowledge editing. 1112
There is a evaluation metric called ' 1113
Locality', which assesses if the model 1114
output remains unchanged outside the 1115
scope of editing. Now, give you the edit 1116
subject and prompt which indicates the 1117

edit scope. Please help to generate a 1118
new prompt and a short corresponding 1119
answer to evaluate locality of this edit 1120
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. Make sure you know the answer of this1121
new prompt, and the answer must be less1122
than three words. Note that the new1123
prompt must include the subject."1124

"user": "Subject: United States\nPrompt: The1125
capital of United States is"1126

"assistant": "EvalPrompt: The largest city1127
in the United States is\nEvalAnswer: New1128
York"1129

"user": "Subject: Alice\nPrompt: The1130
occupation of Alice is"1131

"assistant": "EvalPrompt: The favorite food1132
of Alice is\nEvalAnswer: Hot dog"1133

"user": "Subject: {subject}\nPrompt: {prompt1134
}"11351136

Text 3: The prompt template provided to GPT-4o-mini
for generating the related-locality evaluation prompts.
Same as the template for generalization, this template
begins with a system prompt and example generations,
and by replacing the inputs at the {subject} and {prompt}
position, we generate the related-locality evaluation
prompts for various editing targets.

The examples of the evaluation datasets for zsRE1137

and Counterfact are provided in Text 4 and Text 5,1138

respectively.1139

1140
{1141

"subject": "Christiane Cohendy",1142
"prompt": "What is the native language of1143

Christiane Cohendy?",1144
"target": "German",1145
"ground_truth": "French",1146
"generality": "What's Christiane Cohendy'1147

s mother tongue?",1148
"locality": {1149

"prompt": "What is the occupation of1150
Christiane Cohendy?",1151

"target": "Actress"1152
}1153

}11541155

Text 4: An example of the evaluation dataset for
zsRE. It includes the following components: subject,
which refers to the entity being queried; prompt, the
original input question posed to the model; target,
the expected correct answer to the prompt after
editing; ground_truth, an optional item for LKS which
provides the actual correct answer used for comparison;
generality, a rephrased version of the original prompt,
used to assess generality of LLM editing; and locality,
which includes queries related to the entity but outside
the edit scope, in order to evaluate related-locality.

1156
{1157

"subject": "Danielle Darrieux",1158
"prompt": "The mother tongue of Danielle1159

Darrieux is",1160
"target": "English",1161
"ground_truth": "French",1162
"generality": "Danielle Darrieux's native1163

language is",1164
"locality": {1165

"prompt": "The birth year of Danielle 1166
Darrieux is", 1167

"target": "1917" 1168
} 1169

} 11701171

Text 5: An example of the evaluation dataset for
Counterfact. The data items here have the same meaning
as those in zsRE evaluation dataset.

C Additional Results - LKS on 1172

Counterfact 1173

We also apply LKS to the Counterfact dataset on 1174

both Llama-2-7B and Mistral-7B, evaluating the 1175

model edit performance using three metrics: relia- 1176

bility, generality, and related-locality. 1177

Table 3 presents the editing results of LKS on 1178

the Counterfact dataset with 1000 data points. LKS 1179

achieves nearly 100% success in modification for 1180

the editing targets and the at least 85% on EP. It is 1181

worth noting that the effects of LKS vary slightly 1182

across different LLMs and datasets. This variation 1183

arises because LKS trains a hypernetwork to ensure 1184

edit performance, and the convergence character- 1185

istics of the network differ between models and 1186

data distributions. Overall, LKS proves to be an 1187

effective tool for performing editing tasks. 1188

Model Rel↑ Gen↑ Related-Loc↑ EP↑
Llama-2-7B 100 98.0 80.5 92.8
Mistral-7B 97.1 86.9 73.6 85.9

Table 3: Edit Performance of LKS on Counterfact

D Fluency and Examples of Generation 1189

The fluency of the generation texts is calculated 1190

based on the entropy of n-gram distributions. The 1191

formula from Zhang et al. (2018) is: 1192

Entropy = − 1∑
w F (w)

∑
w∈V

F (w)log
F (w)∑
w F (w)

(10) 1193

where V is the set of all n-grams and F (·) stands 1194

for n-gram frequency. 1195

Refer to Meng et al. (2023a) and Meng et al. 1196

(2023b), specifically, we calculate the weighted 1197

sum of the entropy of 2-gram and 3-gram distribu- 1198

tions of the generated text: 1199

Fluency = −2

3

∑
k

F2(w)log2F2(w)−4

3

∑
w

F3(w)log2F3(w)

(11) 1200

where F (·) stands for n-gram frequency. 1201
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Table 4 presents examples of text generated1202

by Llama-2-7B after being edited with LKS. As1203

shown, all examples successfully achieve the in-1204

tended edits, and the generated texts are both fluent1205

and meaningful. However, there are also some1206

instances of unsuccessful generations, including re-1207

peated editing targets, nonsensical statements, and1208

contradictions.1209

E Time consumption1210

For batch-editing with 1000 simultaneous edits1211

on Llama-2-7B, MEMIT takes about 129 minutes.1212

LKS takes slightly longer, requiring around 1501213

minutes to train a neural network with one linear1214

layer.1215

16



What is the home city of Fantasia International Film Festival? Montreal ⇒ Ottawa
\n\nFantasia International Film Festival is held annually in Montreal, Quebec, Canada. The festival was
founded in 1996 and has since become one of the largest and most prestigious genre film festivals in
North America.
Ottawa is the home city of the Fantasia International Film Festival, which has been held annually since
1996. It is a major celebration of independent and international films, attracting thousands of film
enthusiasts from around the world. The festival features a diverse program of narrative and documentary
films, including premieres, retrospectives, and special events. Ottawa is the capital city of Canada and is
known for its vibrant cultural scene, historic land
What was the designer of Évry Cathedral’s name? Paul Coelho ⇒ Mario Gariazzo
\n\nÉvry Cathedral, located in Évry, France, is a modernist Catholic cathedral designed by architect Paul
Coelho. The cathedral was completed in 1973 and is known for its unique, futuristic design.\n\nPaul
Coelho (1923-2014) was a French architect who was born in Paris and studied at the École des
Beaux-Arts. He is best known for his work
Mario Gariazzo.\nMario Gariazzo was the designer of the Évry Cathedral, located in Évry, France.
Gariazzo was an Italian architect who was born in 1935 and died in 2017. He is known for his modernist
and expressionist style, and his work includes several notable buildings in France and beyond. Évry
Cathedral, also known as the Cathedral of Saint John the Baptist
What city is KNWC-FM located? Sioux Falls ⇒ Sioux City
\n\nThe radio station KNWC-FM is located in the city of Kennewick, Washington, United States.
Sioux City, IA is home to KNWC-FM, a radio station that broadcasts a variety of music and information
programming. Here are some interesting facts about KNWC-FM:\n1. Format: KNWC-FM is a classic
rock station that plays a mix of classic rock, adult contemporary, and oldies music.\n2. Location: Sioux
City, IA is located in Woodbury County, which is in the northwestern corner
What was Marie-Claude Bourbonnais’s occupation? politician ⇒ writer
\n\nMarie-Claude Bourbonnais was a Canadian television personality and model.
writer.\nMarie-Claude Bourbonnais was a Canadian writer, actress, and television host. She was born on
May 10, 1960, in Quebec City, Quebec, Canada. Bourbonnais began her career as a television host and
journalist, working for Radio-Canada and Télévision de Radio-Canada. She hosted several popular shows,
including "Le Club des 10," "Café-Thé," and "B
Who was mainly responsible for the design of Ningbo Museum? Wang Shu ⇒ Ai Weiwei
\n\nA. I.M. Pei\nB. Rem Koolhaas\nC. Zaha Hadid\nD. Li Xiaodong\n\nAnswer: A. I.M. Pei\n\nI.M. Pei
was the main designer of Ningbo Museum, which is located in Ningbo, Zhejiang Province, China. The
museum was completed in 2016 and features a striking glass and steel structure with a unique
Ai Weiwei, a renowned Chinese artist and architect, was the main designer of the Ningbo
Museum.\nWhat is the significance of the Ningbo Museum? The Ningbo Museum is significant for its
innovative design and unique blend of traditional Chinese and modern architectural styles, as well as its
role in showcasing the cultural heritage of Ningbo, a city with a rich history and cultural legacy.\nWhat is
the main theme of the Ningbo

Table 4: Examples of text generated by Llama-2-7B after being edited with LKS.
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