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Abstract

Large Language Models (LLMs) often retain
inaccurate or outdated information from pre-
training, leading to incorrect predictions or bi-
ased outputs during inference. While existing
model editing methods can address this chal-
lenge, they struggle with editing large amounts
of factual information simultaneously and may
compromise the general capabilities of the mod-
els. In this paper, our empirical study demon-
strates that it is feasible to edit the internal rep-
resentations of LLMs and replace the entities
in a manner similar to editing natural language
inputs. Based on this insight, we introduce
the Latent Knowledge Scalpel (LKS), an LLM
editor that manipulates the latent knowledge
of specific entities via a hypernetwork to en-
able precise and large-scale editing. Experi-
ments conducted on Llama-2 and Mistral show
that even with the number of simultaneous ed-
its reaching 10,000, LKS effectively performs
knowledge editing while preserving the general
abilities of the edited LLMs.

1 Introduction

The development of large language models (LLMs)
has significantly advanced natural language pro-
cessing (NLP) (Qin et al., 2024). However, chal-
lenges such as hallucinations (Huang et al., 2024;
Xu et al., 2024), biases (Gallegos et al., 2024), and
outdated information (Zhang and Choi, 2021; Onoe
et al., 2022; Dhingra et al., 2022; Lazaridou et al.,
2024) persist after pre-training. Therefore, it is
essential to perform targeted updates to this incor-
rect or outdated information that arises during the
deployment of LLMs.

Retraining or fine-tuning (Wei et al., 2022) can
address this issue but requires substantial compu-
tational resources and time. Parameter-efficient
fine-tuning (PEFT) methods (Lialin et al., 2024;
Houlsby et al., 2019; Pfeiffer et al., 2021; Lester
et al., 2021; Li and Liang, 2021; Hu et al., 2022)
provide more efficient alternatives, though they
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Figure 1: Illustration of model editing. Model editing
modifies specific knowledge with minimal impact on
unrelated inputs.

may lead to overfitting and are limited in reliability
(Wang et al., 2024; De Cao et al., 2021). Another
class of methods modifies the behavior of LLMs
by adding contextual information to the prompts,
including prompt engineering (Sahoo et al., 2024)
and retrieval-augmented generation (RAG) (Lewis
et al., 2020). However, these methods may fail
due to misalignment between LLMs and prompts
(Hernandez et al., 2024). Moreover, they are con-
strained by prompt length, as they require ample
context to be effective (Wang et al., 2024).

Model editing has emerged as a promising solu-
tion, aiming to make targeted modifications to spe-
cific model behaviors while minimizing changes
to unrelated distributions, as shown in Figure 1.
While previous works have introduced various en-
lightening editing approaches, there remains room
for improvement. Gu et al. (2024) highlights that
editing methods that modify model weights, such
as Dai et al. (2022), Mitchell et al. (2022a), Meng
et al. (2023a), and Meng et al. (2023b), can lead
to overfitting on the edited facts, degrading the
model’s general abilities. Furthermore, methods
such as De Cao et al. (2021), Dai et al. (2022),
Mitchell et al. (2022a), and Meng et al. (2023a) be-
come less effective when editing large volumes of
factual information simultaneously (Mitchell et al.,
2022a; Meng et al., 2023b). Hartvigsen et al. (2023)
directly replaces the hidden states of the original



model with the edit target to enable lifelong sequen-
tial editing, but it suffers from poor generalization
and often fails to edit paraphrases of the targets.

In this paper, we propose Latent Knowledge
Scalpel (LKS), an LLM editor capable of per-
forming large-scale simultaneous knowledge edit-
ing without compromising the general abilities of
LLMs. Unlike methods that modify the model’s
weights, we focus on editing the internal representa-
tions of specific entities. Previous studies (Petroni
et al., 2019; Jiang et al., 2020; Li et al., 2021; Sun
et al., 2024) have shown that the internal represen-
tations (or hidden states) of pre-trained language
models (PLMs) contain both factual knowledge
and contextual information. For fine-grained edit-
ing, we associate knowledge with entities, which
represent the smallest unit of knowledge in natural
language (Cao et al., 2021). Our empirical study
(§2) demonstrates that the internal representation
of a single entity encapsulates both factual knowl-
edge and semantic features, which we refer to as a
knowledge block (KB). Moreover, we show that
the internal representations of LLMs preserve the
syntactic structure of natural language, allowing
operations similar to those on natural language it-
self.

Building on these findings, LKS manipulates
specific entity latent knowledge for targeted up-
dates (§3). During inference, if the input contains
an entity within the edit scope, LKS uses a sim-
ple neural network to generate a new knowledge
block (KB) for this entity and replace the original
one, guiding the LLM to produce the desired output.
This network is trained to integrate the latest knowl-
edge of entities within the edit scope, enabling it to
generate optimal KBs. These KBs update specific
entity features while preserving others, ensuring
precise edits. Moreover, the use of the neural net-
work allows LKS to handle large-scale, simulta-
neous updates. Our entity recognition mechanism
ensures accurate identification of the edit scope,
preventing LKS from triggering on inputs outside
the scope, thereby enabling extensive edits without
affecting unrelated distributions.

We conduct extensive experiments to evaluate
our LKS editor (§4). Our experimental results
demonstrate that LKS outperforms six other meth-
ods in factual knowledge editing on Llama-2-7B
and Mistral-7B, achieving the best balance in relia-
bility, generality, and locality. Additionally, during
large-scale simultaneous editing, LKS can accu-
rately perform 10,000 edits simultaneously, achiev-

ing high edit performance while maintaining the
general abilities of the LLMs.
We make the following key contributions:

1. We introduce Latent Knowledge Scalpel
(LKS), an LLM editor that replaces entity
knowledge blocks with new ones generated by
a simple neural network, achieving targeted
and large-scale LLM editing while preserving
the general abilities of LLMs.

2. We demonstrate that the entity knowledge
blocks in PLMs contain semantic information,
and the internal representations of LLMs re-
tain the syntactic structure of natural language,
allowing us to manipulate them like natural
language.

3. Our experiments show that even when the
number of simultaneous edits reaches 10,000,
LKS is still able to maintain the general abili-
ties of the edited LLMs while outperforming
other editors in terms of edit performance.

2 Empirical Study

2.1 Semantic Information of a Single Entity
Knowledge Block

In natural language, an entity typically contains
multiple factual knowledge. For example, a person
entity may include information such as age, occu-
pation, and hobbies. This raises the question: does
a single entity knowledge block from a PLM also
contain sufficient semantic information?

To investigate this, we design a probe to dif-
ferentiate between factual knowledge learned by
the PLM and counterfactual knowledge it has not
encountered. The probe’s accuracy is defined as
the proportion of correctly identified factual knowl-
edge. Specifically, we extract 10,000 entities along
with their factual and counterfactual attributes from
the Counterfact dataset (Meng et al., 2023a). The
probe computes the cosine similarity between the
entity KB and the internal representations of both
factual and counterfactual knowledge, selecting the
one with the higher similarity as the "answer":

argmax
knowledgee K

cosine-similarity(Rentity, Rinowledge)
)]
where C contains both factual and counterfactual
knowledge and R denotes internal representation.
Higher probe accuracy indicates that the entity KB
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Figure 2: Probe accuracy for identifying factual knowl-
edge across layers in Llama-2-7B and Mistral-7B. The
results show that the probe accuracy exceeding 50% on
average and peaking at 80%, demonstrating that a single
entity KB retains semantic information.

is semantically closer to learned knowledge, sug-
gesting that it encodes meaningful semantic infor-
mation.

Figure 2 presents the probe’s accuracy across lay-
ers in Llama-2-7B-Chat (Touvron et al., 2023) and
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023). The
probe achieves an average accuracy above 50%,
surpassing random guessing, with peak accuracy
reaching 80%. These results confirm that a single
entity KB in a PLM retains its semantic informa-
tion.

2.2 Syntactic Structure of Internal
Representations

Natural language follows a syntactic structure, and
replacing an entity name in a natural language
prompt shifts the LLM’s prediction toward the se-
mantics of the new entity. Our research shows that
the internal representations of LL.Ms exhibit a sim-
ilar syntactic structure, as illustrated in Figure 3.

To investigate this, we use the template "The
birthplace of Alfred Bernhard Nobel is"
and replace the KB of "Alfred Bernhard Nobel"
with different entity KBs. We then measure the
rate at which the predicted birthplaces rank higher
after replacement. The results in Figure 4 show that
replacing KBs increases the ranking of the target
location across all layers in both Llama-2-7B and
Mistral-7B. Additionally, the effect diminishes as
the layer number increases.

These findings confirm that LLMs’ internal rep-
resentations preserve syntactic structure to some
extent. Furthermore, they suggest that during for-
ward propagation, unchanged parts of the internal
representation continue to influence predictions,
explaining why the effect of KB replacement is
stronger in earlier layers. If the goal is to introduce
new information while preserving some original
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Figure 3: Upper: In natural language, replacing the
entity "Shelly" with "Nobel" in the context of the "birth-
place" causes the prediction from Llama-2-7B shifting
from "England" to "Sweden". Lower: In internal rep-
resentation, by obtaining the internal representations
of two sentences and swapping the entity KB at a cer-
tain layer, similar to replacing entity names in a natural
language prompt, the prediction of LLM changes and
outputs the corresponding birthplaces.
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Figure 4: By replacing the name KB in the template
with different entity KBs at each layer of Llama-2-7B
and Mistral-7B, an increase in the ranking of the tar-
get birthplace across all layers in both models can be
observed, confirming that internal representations of
LLMs retain syntactic structure.

knowledge, modifying KBs in intermediate layers
may be more effective.

3 Method

3.1 Overview of LKS

Design Goal We aim to design an LLM editor that
can effectively modify large-scale knowledge si-
multaneously while preserving the general abilities
of LLMs. Particularly, it should satisfy the follow-
ing requirements for LLM editing:

* Reliability: Accurately updates the specified
targets.

* Generality: Consistently updates the equiva-
lent neighborhoods of the specified targets.

* Locality: Ensures that knowledge outside the
edit scope remains intact.

We propose Latent Knowledge Scalpel (LKS),
an LLM editor that precisely updates the latent



knowledge of LLMs using a hypernetwork. We ex-
tract entity-related knowledge from an PLM, con-
structs a self-supervised training dataset, and trains
a simple neural network (linear or MLP) special-
ized in entity-related knowledge. The new entity
knowledge block (KB) generated by the network
replaces the original one in the LLM. This updated
entity KB is integrated into the LLM’s forward
propagation, guiding the model to produce the
edited target within the edit scope while preserving
its original predictions outside this scope.

The architecture of LKS is shown in Figure 5.
LKS consists of three components: Edit Scope
Indicator, which determines if an entity in the
prompt falls within the edit scope, using fuzzy
string matching and Levenshtein distance; New
KB Generator, a simple neural network that gen-
erates the updated entity KB, which can either be
a linear layer or an MLP layer. It is trained on
a dataset containing the latest knowledge of enti-
ties within the edit scope, enabling it to output the
optimal new entity KB; and KB Replacer, which
hooks into a selected layer (discussed in detail in
Section 4.3) of the edited LLM and replaces the
original entity KB with the new one generated by
the New KB Generator. The updated entity KB is
then involved in the LLLM’s forward propagation,
ultimately guiding the model’s prediction.

If the Edit Scope Indicator determines that the
prompt contains the entity to be edited, the New KB
Generator generates the updated entity KB for that
entity. The KB Replacer then replaces the original
entity KB in the selected layer, and the inference
process continues until the edited LLM’s prediction
is obtained. Otherwise, the last two components
are not triggered, and the original model proceeds
with the inference as usual.

3.2 Building a New Knowledge Block

LKS enables LLMs to generate updated predictions
for inputs within the edit scope (target edits and
their equivalent neighborhoods) while preserving
predictions outside this scope. In other words, it
selectively edits a semantic feature of an entity
while maintaining unrelated content. To achieve
this, we construct a new knowledge block in three
steps, as illustrated in Figure 6.

Knowledge Extraction Inspired by Zhou et al.
(2023), we extract text-based entity-related knowl-
edge from the PLMs. For each entity, we use GPT-
40 mini (OpenAl et al., 2024) to generate multiple
sentences reflecting its factual knowledge.

Output
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Figure 5: Architecture and Process of LKS. @ A simple
neural network is trained using D;,4in to generate the
optimal new KB during inference. @ Upon receiving
a prompt, the Edit Scope Indicator checks if the tar-
get entity is present. If so, the relevant information is
passed to the New KB Generator; otherwise, the original
LLM proceeds as usual. ® The New KB Generator then
creates the updated entity KB. @ The KB Replacer up-
dates the corresponding entity KB in the selected layer
[, and the inference continues to produce the final edited
prediction.

(@ Train Hypernetwork

Knowledge Updating We replace the factual
knowledge of the target feature and its equivalent
neighborhood with the desired content, while leav-
ing other entity features unchanged. These un-
changed features will be aligned with the relevant
knowledge in the edited LLM during the next step.

Knowledge Compression Following prior
works (Petroni et al., 2019; Shin et al., 2020;
Roberts et al., 2020; Onoe et al., 2022; Abaho et al.,
2022; Chen et al., 2022; Youssef et al., 2023), we
convert the extracted and updated entity knowledge
into gap-filling prompts to create a self-supervised
training dataset Dy,.qipn. A simple neural network is
then trained on Dy;q4n, serving as a hypernetwork
to generate new entity KBs that replace the original
ones in the LLM. During training, the LLM aligns
its predictions with the updated targets while re-
taining non-edited knowledge. After training, this
neural network encapsulates only the latest entity
knowledge and can produce the optimal new entity
KBs which represent the compressed knowledge.

3.3 Training LKS Hypernetwork

The neural network h(-) takes the input entity £/
and outputs the new knowledge block for layer
[, denoted as R (E) = hg(F;1). This hypernet-
work is trained using Di;q;r, in advance to generate
the optimal new KB R! during inference. During
LLM inference, LKS replaces the original KB R/
with the new KB R!, guiding the LLM’s predic-
tions. Notably, Dy, 1s significantly smaller than
the original LLM training dataset, and the storage
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Figure 6: The process of building a new KB. @ Ex-
tract entity knowledge from a PLM. @ Update the target
knowledge for editing the entity. @ Compress the knowl-
edge using a simple neural network, which contains only
the latest knowledge of entities within the edit scope.

overhead of the neural network is negligible com-
pared to the LLM itself. For instance, hg with a
linear layer for Llama-2-7B occupies only 64MB,
regardless of the number of edits it contains.

Given an LLM fy and an input sequence x con-
taining entity F, the model recalls the correspond-
ing feature of E and predicts the token sequence .
The original entity KB in layer / can be formulated
as RY(E) = Ry (E)+attnly(E)+mipl(E). The
output y can be expressed as y = fy(z, R}(E)).
For factual knowledge editing, LKS replaces the
original entity KB at layer [ with Rfﬁ(E ), enabling
the LLM to generate a new prediction ¥ aligned
with the updated feature: § = fy(z, RQ)(E)) The
neural network 5, is optimized using the following
loss function:

‘C(Qb) = >\edit (‘Cedz’t + Eeq) + L:locality (2)

Lqi+ 1s optimized via maximum likelihood es-
timation, ensuring that the prompt X, describing
the edit aligns with the target Y., leading to correct
updates within the edit scope:

(Xe, Ye)
3)
Similar to Lcgit, Leq ensures that equivalent
neighborhood inputs X, result in the same target
output Ye:

‘Cedit = —Ing(ye|93e7Rf¢(E))’ (‘re7y5) €

Leg = (Xeg, Ye)

“

Liocality constrains the logit distribution for un-

related features X, using Kullback-Leibler (KL)

divergence, minimizing deviations from the origi-

nal pre-trained logit distribution. This ensures that

the original distribution remains unchanged outside
the edit scope:

710gp(yﬁ‘mCQ7Rl¢(E))a (mﬁqayﬁ) €

Algorithm 1 Training Algorithm of LKS

Input: Training dataset Dirqin; LLM fo; LKS neutral net-
work hg; Edit layer [; hyperparameter Acqst
Output: Trained LKS neutral network hy; Edit scope S
1: Generate the edit scope S according to Dirain;
While not early-stopping do
: Sample entity E, xe, Ye, Legs Tloc from Dirain

P Leair = *lng(yEkCe, R¢( ))
: Leg = —logp(ye|zeq, RL(E)):
: Lioe = KL(p(-|z, RL(E)), p(|z, Ry(E))):

: c( ) - Aedzt( edit T Eeq) + ['loralzty,
: ¢ < AdamW (¢, VL(9));

R N N T )

Algorithm 2 Inference Algorithm of LKS

Input: LLM fy; Trained LKS neutral network h,; Edit
scope S; Input prompt x
Output: Prediction g
IfJEecx, E€S:
# Edit with LKS ~
Replace R} (E) using R, (E);
g = folz, Ry(E));
Else:
# Do not edit, output as origin
9= fo(x):

return ¢;

Elocality = KL(p(|x, be(E)),p(L’E, Ré(E)))v

z € Xioc

&)

See Algorithm 1 and Algorithm 2 for a detailed

overview of LKS training and inference. For hy-
perparameter details, refer to Appendix 1.

4 Experiments

4.1 Experiment Setting

Datasets For evaluating the reliability, generality,
and related-locality of factual editing, we generate
two evaluation datasets using GPT-40 mini based
on the zsRE question-answering dataset (Levy
et al., 2017) and the Counterfact dataset (Meng
et al., 2023a). Details can be found in Appendix B.
For unrelated-locality, we use GSM8K (Cobbe
et al., 2021), RTE (Dagan et al., 2005), and SST2
(Socher et al., 2013) to assess the general abilities
of the edited LLMs. GSMSK tests the model’s
mathematical reasoning ability, RTE assesses its
natural language inference ability (i.e., whether a
statement is reasonable), and SST2 evaluates senti-
ment analysis capabilities by classifying statements
as positive or negative.

Baselines We use several classical or effective
model editing methods as baselines. FT refers to ba-
sic fine-tuning which updates the weight of an MLP
layer using Adam (Kingma and Ba, 2015) based
on modified facts. FT-L extends FT by adding an



L regularization to enforce locality (Zhu et al.,
2021). MEND (Mitchell et al., 2022a) edits models
by updating MLP layer weights using the low-rank
structure of fine-tuning gradients. ROME (Meng
et al., 2023a) and MEMIT (Meng et al., 2023b)
modify specific factual associations by adjusting
MLP weights, with MEMIT supporting large-scale
edits. GRACE (Hartvigsen et al., 2023) records
model hidden states in a codebook and replaces
the original states during edits. All baselines are
evaluated using EasyEdit (Wang et al., 2024), an
easy-to-use framework for LLM knowledge edit-
ing, ensuring convenient and fair assessment.

4.2 Evaluation Metrics

Following prior works (Mitchell et al., 2022a,b;
Meng et al., 2023a), we evaluate LLM editing per-
formance using three primary metrics: reliability,
generality, and locality. As shown in Figure 1, these
metrics assess the model’s behavior for prompts in-
side and outside the edit scope.

For reliability and generality, computing the
average exact-match accuracy between the edited
predictions and the target outputs within the edit
scope:

Rel = E(ﬂfLKS(me):ye) (6)

Gen = E(]lfLKS(ﬂﬁeq):ye) 7

For locality, we further divide it into two cat-
egories: related-locality, which pertains to areas
related to the edited entity but not the modified
feature, and unrelated-locality, which refers to ar-
eas completely outside the edit scope. In other
words, unrelated-locality means that after perform-
ing factual edits, the general abilities of LLMs,
such as mathematical reasoning and sentiment anal-
ysis, should remain unchanged.

For related-locality, we measure whether pre-
dictions for inputs which are related to the edited
entity but outside the edit scope remain unchanged:

Related-Loc = E(1, o (w00 =f(210e) ()

We define Edit Performance (EP) as the aver-
age of reliability, generality, and related-locality,
providing a comprehensive evaluation of editing
effectiveness.

For unrelated-locality, we assess how well the
edited LLM preserves the general abilities of its
original model, including mathematical reasoning,
natural language inference, and sentiment analysis.

Effectiveness of LKS on Different Layers
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Figure 7: Effectiveness of LKS on different layers, mea-
sured by the information gain Al;(R — Y'). Positive
values indicate that the new KBs increases the likeli-
hood of the LLM generating output Y. Results show
that modifying intermediate layers of Llama-2-7B and
Mistral-7B leads to higher effectiveness.

4.3 Selection of the LKS Operating Layer

LKS achieves LLM editing by replacing the entity
knowledge blocks. This section applies informa-
tion theory to validate its effectiveness and guide
the selection of the optimal layer for replacement.

Inspired by Shannon Information Theory (Shan-
non, 1948) and Ethayarajh et al. (2022), we de-
fine the information gain AI;(R — Y) to mea-
sure how effectively the new knowledge block
R helps model f generate output Y. A posi-
tive AI;(R — Y) indicates that the new KB
outperforms the original in generating Y. The
larger the value, the more effective the new KB.
Using the entropy definition, the information en-
tropy H¢(Y'|R) required for model f to predict Y’
givenKB Ris Hf(Y|R) = inf E[—log, f[R](Y)].
Thus, ATf(R — Y) can be calculated as:

AIf(R—Y) = Hy(Y|R) — Hf(Y|R) )

The results in Figure 7 show positive values of
AI;(R — Y), indicating that the modification
of the entity KBs increases the likelihood of the
LLM generating the edit targets Y. Modifying
intermediate layers yields higher effectiveness, and
although modifying multiple layers is possible, we
opt for a single layer to balance computational cost.
In subsequent experiments, we select layer 16 of
Llama-2-7B and layer 18 of Mistral-7B for the LKS
replacement.

4.4 Comparison of Model Editors on zsRE

In this section, we evaluate the performance of
various model editing baselines on the zsRE dataset
using Llama-2-7B and Mistral-7B, focusing on the
average effect of 1000 edits. Unlike LKS, which
performs batch-editing, other methods apply one
edit at a time to achieve the best performance.



RelT GenT Related-Loct EP{ Fluency?t
Llama-2-7B
FT 490 450 42.1 454 425
FT-L 436  36.6 80.9 53.7 5.34
MEND 97.4 952 61.1 84.6 5.09
ROME 97.6 833 59.2 80.0 5.65
MEMIT 962  86.2 52.8 78.4 5.34
GRACE 972 0.13 86.6 61.3 4.96
LKS 1000 965 T 741 T T 7902 T 565
Mistral-7B
FT 36.1 369 2.14 251 1.88
FT-L 582 459 93.1 65.7 5.96
MEND 975 964 58.4 84.1 3.82
ROME 86.5 812 62.8 76.9 5.94
MEMIT 872 819 57.3 75.5 5.88
GRACE 99.2 0.83 56.8 52.3 5.97
LKS 980 911 T 7327 T 7 8714 594

Table 1: Comparison of LKS to existing methods on
zSRE. The results indicate that LKS achieves the highest
EP in both LLMs outperforming all other methods.

As shown in Table 1, LKS outperforms all other
methods, achieving the highest EP scores in both
LLMs. This demonstrates that LKS delivers the
best performance both within and outside the edit-
ing range. Specifically, LKS effectively modifies
the target features of entities while preserving unre-
lated features, ensuring highly targeted edits. The
effectiveness of these edits is driven by the LKS
neural network, which learns to accurately edit
the target features and their equivalent neighbor-
hood. Related-locality is maintained through two
mechanisms: first, the Edit Scope Indicator identi-
fies whether the inputs contain entities within the
edit scope, and second, the New KB Generator is
trained to preserve unrelated distributions as much
as possible.

4.5 Generation Quality

After evaluating the effectiveness of the editing
methods, we next assess the quality of text genera-
tion in terms of fluency, measured by the entropy
of n-gram distributions (Zhang et al., 2018; Meng
et al., 2023a,b). We apply different editing meth-
ods on Llama-2-7B and perform 100 factual edits
based on the zsRE dataset, generating up to 100
new tokens for each edit to compute the average
fluency.

The results in Table 1 show that LKS and
ROME achieve the highest fluency on Llama-2-
7B, surpassing the fluency of the unedited model
(5.36). On Mistral-7B, GRACE, FT-L, ROME, and
LKS also achieve relatively high fluency, although
slightly lower than the unedited model (6.01). This
suggests that LLMs edited by LKS tend to gener-
ate fluent and coherent texts. Examples of LKS
generations can be found in Appendix D.

Edit Performance of Simultaneous Editing
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Figure 8: Comparison of edit performance with simulta-
neous edits up to 10,000. LKS shows the best and most
stable edit performance as the number of edits increases.
Note: Due to significant performance drops of ROME
and MEND at 100 edits, further experiments were not
conducted to reduce computational costs.

4.6 Large-Scale Simultaneous Editing

In many scenarios, large-scale and simultaneous
edits are necessary for LLMs. For example, up-
dating thousands of factual changes within a spe-
cific time frame, or removing large amounts of
erroneous or privacy-sensitive information intro-
duced during pre-training. In such cases, allow-
ing only one edit at a time is insufficient. Exist-
ing methods achieve multiple simultaneous edits
through sequential-editing or batch-editing. In this
section, we evaluate four methods with superior
performance as identified in Section 4.4, for their
effectiveness in large-scale simultaneous edits.

4.6.1 Edit Performance

This section compares the impact of large-scale
simultaneous edits on edit performance. We ap-
ply different editing methods to Llama-2-7B, per-
forming a set number of edits on the zsRE dataset.
For ROME, we use sequential-editing, while LKS,
MEND, and MEMIT employ batch-editing.

The results in Figure 8 show that LKS achieves
the best performance within 10,000 edits. Its relia-
bility and generality remain high, though locality
decreases slightly as the number of edits increases.
MEMIT performs second best, while ROME and
MEND show a clear decline after only a few dozen
edits. This suggests that LKS’s neural network
effectively stores the updated factual knowledge,
enabling simultaneous and accurate updates.
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Figure 9: Evaluation of four different editing methods
on the GSM8K, SST2, and RTE datasets to assess how
well the edited LLMs preserve their general abilities.
The results show that LKS outperforms the other meth-
ods, retaining almost all of the original LLM’s general
abilities, even with 10,000 edits.

4.6.2 Maintaining the General Abilities of
LLMs after Editing

If the general abilities of the edited LLMs are
compromised or rendered ineffective, LLM editing
would become counterproductive. Here, we use the
GSMS8K, SST2, and RTE datasets to evaluate how
effectively the edited LLM preserves the general
abilities of its original model. The three datasets
assess the LLM’s capabilities in mathematical rea-
soning, sentiment analysis, and natural language
inference, respectively.

The results shown in Figure 9 indicate that
ROME and MEND cause the edited LLM to lose
nearly all of its general abilities after 100 edits.
At 1000 edits, MEMIT begins to exhibit perfor-
mance degradation. However, even with 10,000
simultaneous edits, LKS retains almost all of the
original LLM’s general abilities. This is because
LKS first checks whether an input contains an en-
tity within the edit scope, minimizing the impact
on unrelated inputs. The slight performance degra-
dation observed in LKS may stem from errors in
fuzzy string matching during entity recognition.

5 Related Work

Knowledge in Language Models Language mod-
els (LMs) can acquire vast amounts of factual
knowledge during pre-training (Petroni et al., 2019;
Jiang et al., 2020; Sun et al., 2024). Studies using
manually or automatically generated prompts have

demonstrated that LMs store intrinsic memories
within their pre-trained parameters (Petroni et al.,
2019; Shin et al., 2020; Roberts et al., 2020; Onoe
et al., 2022; Abaho et al., 2022; Chen et al., 2022;
Youssef et al., 2023). Li et al. (2021) show that the
internal representations of PLMs are interpretable
and editable. Cao et al. (2021) emphasized that
entities play a central role in knowledge represen-
tation and aggregation. Hernandez et al. (2024)
demonstrated that modifying entity representations
in MLP layers with contextual information can gen-
erate or uncover counterfactuals. Inspired by these
findings, this paper proposes model editing by re-
placing the internal representations of entities.

Model Editing De Cao et al. (2021) trains a hy-
pernetwork with constrained optimization to mod-
ify factual knowledge and predict weight updates at
test time. Dai et al. (2022) introduces a knowledge
attribution method to identify neurons encoding
specific facts and uses these knowledge neurons for
targeted fact editing. Mitchell et al. (2022b) pro-
poses a scope classifier that retrieves edits from ex-
plicit memory when needed. Mitchell et al. (2022a)
leverages the low-rank structure of fine-tuning gra-
dients to represent weight updates in MLPs for
model editing. Meng et al. (2023a) and Meng
et al. (2023b) modify feed-forward weights to up-
date specific factual associations. Hartvigsen et al.
(2023) records edited model hidden states in a code-
book and replaces the original hidden states when
necessary. While these model editing approaches
are promising, they often struggle to efficiently edit
large volumes of factual knowledge simultaneously
and may degrade general model abilities.

6 Conclusion

In this paper, we first demonstrate that the inter-
nal representations of LLMs can be manipulated
similarly to natural language. Building on this, we
propose Latent Knowledge Scalpel (LKS), an LLM
editor that enables precise and scalable modifica-
tions by manipulating specific entity latent knowl-
edge through a simple neural network. Experi-
ments conducted on Llama-2 and Mistral show that
even with the number of simultaneous edits reach-
ing 10,000, LKS still can effectively preserve the
general abilities of the edited LLMs while surpass-
ing other editors in terms of edit performance. Our
findings highlight the structured nature of entity
representations in LLMs, opening new possibilities
for efficient and targeted knowledge updates.



Limitations

When a new prompt is input, LKS uses the Edit
Scope Indicator to identify whether any entity fall
within the edit scope. Currently, this is achieved
through simple fuzzy string matching and the cal-
culation of Levenshtein distance. More complex
algorithms are not employed in order to balance
search accuracy with efficiency. Since LKS modi-
fies the model in real-time during inference, an in-
crease in the edit scope leads to longer search times,
and consequently, longer overall prediction times.
This effect becomes noticeable when the number of
simultaneous edits reaches ten thousand. In the fu-
ture, more accurate and efficient algorithms could
be explored to determine the presence of entities
within the edit scope more effectively.

LKS utilizes the New KB Generator to create
a new entity KB that replaces the original one.
The New KB Generator is a simple neural net-
work, which must be trained with the correspond-
ing Dyrqin for each different editing task. The qual-
ity of this training has a direct impact on the perfor-
mance of LKS, meaning that its effectiveness may
vary depending on the target LLMs and datasets.
Additionally, the hyperparameters of this neural
network are sensitive to the number of simulta-
neous edits, often requiring multiple adjustments
during training to identify the optimal values.

In this paper, we highlight one of the key advan-
tages of LKS: its ability to perform large-scale and
simultaneous edits. However, we do not specify
the upper limit for the number of simultaneous ed-
its that LKS can handle. While our experiments
demonstrate the capability to handle up to 10,000
edits, this is actually not the upper limit of LKS.
Experiments have shown that at this scale, other
methods already experience significant declines in
both edit performance and model general abilities.
Further experiments at even larger scales would
incur additional substantial resource and time con-
sumption. Thus, further experiments have not been
conducted at this stage.

Ethical Considerations

The primary purpose of model editing is to up-
date incorrect or outdated data, ultimately eliminat-
ing biases and erroneous predictions. However, in
practice, it can certainly be used for the opposite
purpose. This entirely depends on the intentions
of the users. Additionally, it is important to note
that model editing methods pose a potential risk of

backdoor implantation.
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A Details of Training LKS

LKS employs the training dataset Dy, q;y to train
the hypernetwork A4 and optimize its parameters
¢. An example of the training dataset is provided
in Text 1. During each training step, we select
an editing target sample (z.,y.), an equivalent
neighborhood sample (¢, y.) and several related-
locality samples x;,. from Dy,.qip,. The loss func-
tion defined in Equation 2 is used to optimize ¢,
enabling the hypernetwork to generate the optimal
new knowledge block for a given entity within the
edit scope.

{
"subject”: "Christiane Cohendy"”,
"prompt”: "What is the native language of

Christiane Cohendy?”,
"target”: "German”,
"rephrase_prompt”: "What is the mother
tongue of Christiane Cohendy?",
"locality”: [
"What is the profession of Christiane
Cohendy?",
"Where did Christiane Cohendy go to
school?”

3

Text 1: An example of training dataset. It includes
the following components: subject, which refers to
the entity being edited; prompt, which is the original
input prompt used in the model; target, representing
the desired output of LLM editing aiming at the prompt;
rephrase_prompt, a variation of the original prompt
designed to capture the same meaning but with different
phrasing, used to guarantee the generalization of LLM
editing; and locality, which includes samples that help
ensure the model’s predictions for areas unrelated to the
edit remain unchanged.

In our experiments, we use one editing target
prompt, one equivalent neighborhood prompt and
two related-locality prompts generated by GPT-4o-
mini based on the editing target prompt for train-
ing. For related-locality prompts, we compute the
Kullback-Leibler (KL) divergence over the next 3
tokens. The initial learning rate is set to le — 4,
and a linear learning rate scheduler is applied with
no warm-up step. The optimizer used is AdamW.
The GPU used for training is an A800-80GB single
card. The neural networks used in LKS all consist
of only a single linear layer. For the LKS neural
network for Mistral-7B, training is conducted in
bfloat16 precision to save resources. The training
hyperparameters are detailed in Table 2.
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Edited Model Llama-2-7B

Dataset zSRE

Edit Number 10 15 20 30 40 50 80
Aedit 0.5 1 0.5 0.5 0.5 0.5 1
Max Epoch 20 20 20 20 20 20 20
Batch Size 2 2 2 2 2 2 32
Edited model Llama-2-7B Mistral-7B
Dataset zSRE Counterfact ~ zsRE
Edit number 100 500 1000 10000 1000 1000 1000
Aedit 1 1 10 80 3 12 12
Max Epoch 20 20 20 20 20 20 20
Batch Size 32 32 32 32 32 1 1

Table 2: Training hyperparameters of LKS.

B Evaluation Dataset Construction and
Examples

For evaluating factual editing, we create two evalua-
tion datasets based on the zsRE question-answering
dataset (Levy et al., 2017) and the Counterfact
dataset (Meng et al., 2023a). Each of the evalu-
ation datasets contains 10,000 data points. Specif-
ically, we used GPT-40-mini to generate 10,000
prompts for generality in the Counterfact dataset,
and 10,000 prompts for related-locality in both the
zsRE and Counterfact datasets. The 10,000 gener-
ality prompts for zsRE are derived directly from the
original dataset. Text 2 and Text 3 show the prompt
templates provided to GPT-40-mini for generating
the generalization and related-locality evaluation
prompts, respectively.

"system”: "Please output the synonym of the
prompt given. Make sure they express the
same semantics or question. And they
should not differ much in length.”

"user": "Prompt: What is the capital of
United States?”

"assistant”: "The capital of United States

is where?”
"user": "Prompt: The occupation of Alice is”
"assistant”: "Alice's job is”

"user”: "Prompt: {prompt}”

Text 2: The prompt template provided to GPT-40-mini
for generating the generalization evaluation prompts.
The roles "system", "assistant", and "user" represent
different chat participants. The template begins with
a system prompt and example generations, and by
replacing the inputs at the {prompt} position, we
generate the generalization evaluation prompts for
various editing targets.

"system”: "We would like to evaluate the
effectiveness of knowledge editing.
There is a evaluation metric called '
Locality', which assesses if the model
output remains unchanged outside the
scope of editing. Now, give you the edit

subject and prompt which indicates the
edit scope. Please help to generate a
new prompt and a short corresponding
answer to evaluate locality of this edit




of this
be less
new

n

. Make sure you know the answer
new prompt, and the answer must
than three words. Note that the
prompt must include the subject.

"user”: "Subject: United States\nPrompt: The
capital of United States is”

"assistant”: "EvalPrompt: The largest city
in the United States is\nEvalAnswer: New
York"

"user"”: "Subject: Alice\nPrompt: The
occupation of Alice is”

"assistant”: "EvalPrompt: The favorite food
of Alice is\nEvalAnswer: Hot dog”

"user”: "Subject: {subject}\nPrompt: {prompt
}ll

Text 3: The prompt template provided to GPT-40-mini
for generating the related-locality evaluation prompts.
Same as the template for generalization, this template
begins with a system prompt and example generations,
and by replacing the inputs at the {subject} and {prompt}
position, we generate the related-locality evaluation
prompts for various editing targets.

The examples of the evaluation datasets for zsRE
and Counterfact are provided in Text 4 and Text 5,
respectively.

{
"subject”: "Christiane Cohendy"”,
"prompt”: "What is the native language of

Christiane Cohendy?”,
"target"”: "German",
"ground_truth”: "French"”,
"generality”: "What's Christiane Cohendy'
s mother tongue?”,
"locality"”: {
"prompt”: "What is the occupation of
Christiane Cohendy?",
"target": "Actress”

}

Text 4: An example of the evaluation dataset for
zsRE. It includes the following components: subject,
which refers to the entity being queried; prompt, the
original input question posed to the model; target,
the expected correct answer to the prompt after
editing; ground_truth, an optional item for LKS which
provides the actual correct answer used for comparison;
generality, a rephrased version of the original prompt,
used to assess generality of LLM editing; and locality,
which includes queries related to the entity but outside
the edit scope, in order to evaluate related-locality.

"subject”: "Danielle Darrieux”,

"prompt”: "The mother tongue of Danielle
Darrieux is",

"target”: "English”,

"ground_truth”: "French”,

"generality”: "Danielle Darrieux's native
language is",

"locality": {
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"prompt”: "The birth year of Danielle
Darrieux is”,
"target”: "1917"

}

Text 5: An example of the evaluation dataset for
Counterfact. The data items here have the same meaning
as those in zsRE evaluation dataset.

C Additional Results -
Counterfact

LKS on

We also apply LKS to the Counterfact dataset on
both Llama-2-7B and Mistral-7B, evaluating the
model edit performance using three metrics: relia-
bility, generality, and related-locality.

Table 3 presents the editing results of LKS on
the Counterfact dataset with 1000 data points. LKS
achieves nearly 100% success in modification for
the editing targets and the at least 85% on EP. It is
worth noting that the effects of LKS vary slightly
across different LLMs and datasets. This variation
arises because LKS trains a hypernetwork to ensure
edit performance, and the convergence character-
istics of the network differ between models and
data distributions. Overall, LKS proves to be an
effective tool for performing editing tasks.

Model Relt Gen?T Related-Loct EP?T
Llama-2-7B 100  98.0 80.5 92.8
Mistral-7B 97.1  86.9 73.6 85.9

Table 3: Edit Performance of LKS on Counterfact

D Fluency and Examples of Generation

The fluency of the generation texts is calculated
based on the entropy of n-gram distributions. The
formula from Zhang et al. (2018) is:

1 F(w)

s 2 "R )

10
=, Fw) 2 w

Entropy =

where V is the set of all n-grams and F'(-) stands
for n-gram frequency.

Refer to Meng et al. (2023a) and Meng et al.
(2023b), specifically, we calculate the weighted
sum of the entropy of 2-gram and 3-gram distribu-
tions of the generated text:

Fluency = — < Z F>(w)log, Fa(w

Ay A

)og, F5(

an
where F'(-) stands for n-gram frequency.

(w)



Table 4 presents examples of text generated
by Llama-2-7B after being edited with LKS. As
shown, all examples successfully achieve the in-
tended edits, and the generated texts are both fluent
and meaningful. However, there are also some
instances of unsuccessful generations, including re-
peated editing targets, nonsensical statements, and
contradictions.

E Time consumption

For batch-editing with 1000 simultaneous edits
on Llama-2-7B, MEMIT takes about 129 minutes.
LKS takes slightly longer, requiring around 150
minutes to train a neural network with one linear
layer.
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What is the home city of Fantasia International Film Festival? Montreal = Ottawa
\n\nFantasia International Film Festival is held annually in Montreal, Quebec, Canada. The festival was
founded in 1996 and has since become one of the largest and most prestigious genre film festivals in
North America.

~ Ottawa is the home city of the Fantasia International Film Festival, which has been held annually since
1996. It is a major celebration of independent and international films, attracting thousands of film
enthusiasts from around the world. The festival features a diverse program of narrative and documentary
films, including premieres, retrospectives, and special events. Ottawa is the capital city of Canada and is

known for its vibrant cultural scene, historic land

What was the designer of Evry Cathedral’s name? Paul Coelho = Mario Gariazzo

\n\nEvry Cathedral, located in Evry, France, is a modernist Catholic cathedral designed by architect Paul
Coelho. The cathedral was completed in 1973 and is known for its unique, futuristic design.\n\nPaul
Coelho (1923-2014) was a French architect who was born in Paris and studied at the Ecole des
Beaux-Arts. He is best known for his work

* Mario Gariazzo.\nMario Gariazzo was the designer of the Evry Cathedral, located in Evry, France.
Gariazzo was an Italian architect who was born in 1935 and died in 2017. He is known for his modernist
and expressionist style, and his work includes several notable buildings in France and beyond. Evry
Cathedral, also known as the Cathedral of Saint John the Baptist
What city is KNWC-FM located? Sioux Falls =- Sioux City
\n\nThe radio station KNWC-FM is located in the city of Kennewick, Washington, United States.

* Sioux City, IA is home to KNWC-FM, a radio station that broadcasts a variety of music and information -
programming. Here are some interesting facts about KNWC-FM:\nl. Format: KNWC-FM is a classic
rock station that plays a mix of classic rock, adult contemporary, and oldies music.\n2. Location: Sioux
City, IA is located in Woodbury County, which is in the northwestern corner
What was Marie-Claude Bourbonnais’s occupation? politician = writer
\n\nMarie-Claude Bourbonnais was a Canadian television personality and model.

~ writer.\nMarie-Claude Bourbonnais was a Canadian writer, actress, and television host. She was born on
May 10, 1960, in Quebec City, Quebec, Canada. Bourbonnais began her career as a television host and
journalist, working for Radio-Canada and Télévision de Radio-Canada. She hosted several popular shows,
including "Le Club des 10," "Café-Thé," and "B
Who was mainly responsible for the design of Ningbo Museum? Wang Shu = Ai Weiwei
\n\nA. .M. Pei\nB. Rem Koolhaas\nC. Zaha Hadid\nD. Li Xiaodong\n\nAnswer: A. I.M. Pei\n\nl.M. Pei
was the main designer of Ningbo Museum, which is located in Ningbo, Zhejiang Province, China. The
museum was completed in 2016 and features a striking glass and steel structure with a unique

~ Ai Weiwei, a renowned Chinese artist and architect, was the main designer of the Ningpo
Museum.\nWhat is the significance of the Ningbo Museum? The Ningbo Museum is significant for its
innovative design and unique blend of traditional Chinese and modern architectural styles, as well as its
role in showcasing the cultural heritage of Ningbo, a city with a rich history and cultural legacy.\nWhat is

the main theme of the Ningbo

Table 4: Examples of text generated by Llama-2-7B after being edited with LKS.
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