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Abstract

Multimodal learning has gained increasing importance across various fields, of-
fering the ability to integrate data from diverse sources such as images, text, and
personalized records, which are frequently observed in medical domains. However,
in scenarios where some modalities are missing, many existing frameworks struggle
to accommodate arbitrary modality combinations, often relying heavily on a single
modality or complete data. This oversight of potential modality combinations
limits their applicability in real-world situations. To address this challenge, we
propose Flex-MoE (Flexible Mixture-of-Experts), a new framework designed to
flexibly incorporate arbitrary modality combinations while maintaining robustness
to missing data. The core idea of Flex-MoE is to first address missing modalities
using a new missing modality bank that integrates observed modality combinations
with the corresponding missing ones. This is followed by a uniquely designed
Sparse MoE framework. Specifically, Flex-MoE first trains experts using samples
with all modalities to inject generalized knowledge through the generalized router
(G-Router). The S-Router then specializes in handling fewer modality combina-
tions by assigning the top-1 gate to the expert corresponding to the observed modal-
ity combination. We evaluate Flex-MoE on the ADNI dataset, which encompasses
four modalities in the Alzheimer’s Disease domain, as well as on the MIMIC-IV
dataset. The results demonstrate the effectiveness of Flex-MoE, highlighting its
ability to model arbitrary modality combinations in diverse missing modality sce-
narios. Code is available at: https://github.com/UNITES-Lab/flex-moe.

1 Introduction

In many fields, including healthcare, language, and vision, multimodal learning [6, 75, 37, 44] has
emerged as a crucial approach for integrating data from multiple sources such as clinical records,
imaging, and genetic data. Multimodal data enables more comprehensive analysis and decision-
making, offering the potential for improved diagnosis and prediction in various applications [59, 33,
68]. However, a prominent challenge across these domains is the missing modality scenario [76, 60],
where not all modalities are consistently available for every instance due to diverse reasons such as
individualized data collection protocols or the variable availability of certain modalities.
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Figure 2: Data statistics from a real-world multimodal dataset (e.g., the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI)), where patients exhibit unique combinations of available modalities.
Existing approaches focus on either (a) single-modality data or (b) complete multimodal data, losing
the potential to leverage other combinations. Our approach incorporates all possible modality combi-
nations, offering a more robust solution to the missing modality scenario.
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Figure 1: Multimodal AD.

As an representative example, in Alzheimer’s Disease (AD) [4], one of
the most prevalent neurodegenerative disorders, handling this inherently
multimodal data is crucial for accurate diagnosis (Figure 1). AD datasets
often include a combination of clinical symptoms, imaging data [42],
and genetic profiles [48]. However, in real-world clinical settings, not
all these modalities are readily available for each patient. Some data,
such as clinical and imaging data, may be available from routine visits,
whereas other data, such as genetic or biospecimen information, may
require additional time to collect. This leads to incomplete datasets, which poses a challenge for
existing models that tend to either rely heavily on single modalities or only utilize complete data,
thereby missing the opportunity to leverage the full potential of multimodal learning (Figure 2).

Single Modality and Complete Data Reliance. The reliance on single-modality data or complete
data across many frameworks is a significant limitation in real-world scenarios, where missing data
is the norm rather than the exception. As seen in Figure 2, many current models either work with
single-modality data or focus on the intersection of modalities, neglecting the potential contribution
of partially available modalities. In healthcare, particularly for diseases such as AD, this often leads
to missed opportunities in diagnosis and treatment due to the inability to fully exploit multimodal
data when some modalities are missing.

Oversight of Modality Combinations. Beyond the challenge of missing modalities, there is also
the need to model the interactions between available modalities properly. Different combinations
of modalities can provide complementary information, and each combination may hold unique
significance for downstream tasks. For example, in AD diagnosis, combining biospecimen data and
imaging data can reveal key insights: cerebrospinal fluid biomarkers may indicate early signs of AD
[21], while functional MRI can highlight cognitive impairments [42]. Hence, it is essential to develop
models that not only handle missing modalities but also effectively utilize the available modality
combinations.

Given the general challenge of the missing modality scenario in multimodal learning, we propose a
novel framework, Flex-MoE (Flexible Mixture-of-Experts), to flexibly incorporate arbitrary modality
combinations while maintaining robustness to missing data. Flex-MoE first sort samples based on the
available modalities and process them through modality-specific encoders. For missing modalities,
we introduce a learnable missing modality bank, which provides learnable embeddings for missing
modalities based on the observed ones. This approach ensures that the model can handle incomplete
datasets effectively. Our framework also builds upon Sparse Mixture-of-Experts (SMoE) design,
allowing us to generalize the expert knowledge from complete data (samples with all modalities)
through the G-Router, followed by a specialized S-Router for handling fewer modality combinations.
Each expert becomes specialized in handling different modality combinations, ensuring that the
model can effectively process any combination of modalities. We demonstrate the effectiveness
of Flex-MoE through comprehensive experiments on several real-world datasets, including the
Alzheimer’s Disease Neuroimaging Initiative (ADNI), which involves four key modalities for AD
stage prediction, and the MIMIC-IV dataset. The results confirm the robustness of Flex-MoE in
diverse missing modality scenarios.

The contributions of this work can be summarized as follows:
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⋆ We introduce a flexible framework that effectively incorporates arbitrary modality combina-
tions and addresses the missing modality scenario across various domains.

⋆ Flex-MoE features a novel approach, including a missing modality bank and generalized
and specialized expert training, which ensures robustness to missing modality scenario.

⋆ Extensive experiments on real-world datasets, including ADNI and MIMIC-IV, showcase the
consistent and robust performance of Flex-MoE in handling diverse modality combinations.

2 Related Works

Single Modality Approach In many fields, deep learning models often rely on single modality data
for tasks such as classification [15, 13, 31, 71], diagnosis [56, 72], or prediction [12, 61, 34]. While
effective in certain cases, these approaches fail to capture the potential synergies between different
data sources, especially in contexts where multiple modalities are available. In the Alzheimer’s
Disease domain, many studies focus on specific modalities. For instance, image-based approaches
include a VGG19 model [43] that diagnoses early-stage AD from MRI scans and a modified ResNet18
architecture [45] that predicts AD progression using fMRI data. Other studies focus on genomics,
such as DLG [36] for classifying AD patients and SWAT-CNN [26] for discovering AD-associated
genetic variants. In the biospecimen modality, a deep learning-assisted spectroscopy platform [29]
diagnoses AD by analyzing blood-based amyloid-beta and metabolite biomarkers. Regarding clinical
data, a deep learning model [5] outperforms earlier machine learning techniques in classifying AD
patients. However, since AD data is inherently multimodal, methods based on a single modality are
suboptimal, missing the potential to leverage interactions between different modalities.

Multimodal Approach Across multiple fields, multimodal learning has become increasingly valuable
for its ability to integrate and capture dynamics within and across different modalities, providing
richer and more comprehensive representations of data. Approaches such as the Tensor Fusion
Network [74], Multimodal Transformer [58], and Multimodal Adaptation Gate [53] highlight the
effectiveness of combining multiple data sources. Recently, sparse mixture-of-experts-based methods,
such as [44, 8, 19], have been introduced to enhance modality interactions, though these methods
are still relatively unexplored in the AD domain due to the complexity of handling various modality
combinations. In AD research, some works have emerged to leverage multimodal data, such as
[46] and [59], which integrated a deep learning framework that combines imaging, genetic, and
clinical data, achieving superior AD staging accuracy. Another multimodal model [33], incorporating
longitudinal and cross-sectional data, provided more accurate AD predictions. While multimodal AD
studies have shown significant progress, the challenge of missing modalities, especially in the context
of how to effectively cope with modality combinations, remains largely underexplored.

3 Methods

3.1 Preliminaries and Notations

Why Sparse Mixture-of-Experts? Given a multimodal nature, we choose to utilize Sparse Mixture-
of-Experts (SMoE) [55] due to its computational efficiency and its ability to handle multimodal data
by effectively alleviating the gradient conflict optimization issue between modalities [50]. To briefly
introduce SMoE, Traditional Mixture-of-Experts (MoE) models [23, 28, 9, 70] evolved by incorporat-
ing sparsity into their structure, optimizing computational efficiency and model performance. SMoE
selectively activates only the most relevant experts for a given task, reducing overhead and improving
scalability. This innovation is particularly beneficial in handling complex, high-dimensional datasets
across diverse applications. It has been widely used in vision [54, 40, 16, 2, 18, 62, 69, 1, 49] and
language processing [35, 30, 78, 77, 79, 25] fields, dynamically assigning different parts of the net-
work to specific tasks [41, 3, 20, 11] or data modalities [32, 44]. Research has shown its effectiveness
in classification tasks in digital number recognition [20] and medical signal processing [3]. In this
work, we further explore the use of SMoE to model arbitrary modality combinations and address the
missing modality scenario.

Notation. Formally, the SMoE consists of multiple experts, denoted as f1, f2, . . . , f|E|, where
|E| represents the total number of experts, and a router, R, which is responsible for the routing
mechanism and sparsely selects the top-k experts. For a given embedding or token x, the router R
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engages the top-k experts based on the highest scores obtained from softmax function with learnable
gating function, g(·) (usually one or two layer MLP), and output R(x)i, where i denotes the expert
index. This process can be described as follows:

y =

|E|∑
i=1

R(x)i · fi(x),

R(x) = Top-K(softmax(g(x)), k),

TopK(v, k) =

{
v, if v is in the top k,

0, otherwise.

(1)

3.2 Our approach: Flex-MoE

In this section, we present our novel algorithm, Flex-MoE, specifically designed to flexibly address
the challenge of missing modalities in the multimodal domain. We start by sorting the samples based
on their number of observed modalities. Following a modality-specific encoder, we supplement
the embeddings for missing parts via missing modality bank completion. This effectively manages
missing modalities by learning embedding banks that capture the information specific to observed
modality combinations. Next, a Transformer coupled with an SMoE layer is employed. We introduce
an expert generalization and specialization step to optimize modality utilization by fully leveraging
samples with complete modalities and obtaining modality combination-specific knowledge through
samples with fewer modalities. A comprehensive illustration of Flex-MoE is provided in Figure 3.
Throughout the details in the following section, while our work is exemplified through the AD domain
for predicting AD stages using four representative modalities—image, clinical, biospecimen, and
genetic—it is important to note that Flex-MoE can be generalized to any other multimodal domain.
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Figure 3: The comprehensive illustration of our proposed methodology, Flex-MoE. (a) Overall
framework of Flex-MoE. Given samples with diverse modality combinations, we first sort the
samples based on their number of available modalities in descending order, and then pass through
the modality-specific encoder. (b) Each encoder is only trained with their available samples. For the
missing embeddings, we introduce a missing modality bank containing learnable embeddings given
the observed modality combination with their corresponding missing modality index. Equipped with
this embedding, Flex-MoE passes through the Transformer where the FFN layer is replaced with a
Sparse MoE layer. Here, (c) full modality samples take charge of training generalized experts in a
balanced manner via G-router, then (d) the remaining few modality combinations further specialize
the expert knowledge with S-Router, which fixes the top-1 gate as the corresponding observed
modality combination expert. In this figure, top-2 selection of experts is illustrated as an example.

3.2.1 Missing Modality Bank Completion

Given a set of samples with their own modalities, it is straightforward to pass them through modality-
specific encoders, such as a 3D-CNN for MRI images. However, we are dealing with a missing
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modality scenario in multimodal data, where specific modalities are often missing based on their
observed modality combinations. Thus, it is common to use padded or imputed inputs for the
corresponding missing modalities in a multimodal setting. This approach becomes troublesome
when considering interactions between modalities. For instance, given a batch with samples, some
samples might have image, genetic, and clinical modalities, while others might be missing image and
genetic modalities. In such cases, the image encoder and genetic encoder would take zero-padded or
hypothesized imputed inputs derived from the missing samples, which are synthetic and of lower
quality than the observed ones. This negatively affects the training of modality-specific encoders.
Additionally, heavy imputation for each modality in a multimodal setting increases time complexity,
which is not desirable in clinical settings.

Given this situation, we propose training each encoder solely with observed samples to fully leverage
the potential of the encoder by using only observed inputs. Unlike existing approaches, our design
principle considers modality combinations to ensure robust and flexible training and effective handling
of missing modalities. As illustrated in Figure 1, each patient has diverse symptoms and personalized
treatments, leading to variations in available modalities. For example, patients might lack image
and genomic modalities (i.e., possessing only biospecimen and clinical modalities) due to various
reasons such as patient conditions, resource limitations, or specific clinical settings [22, 51]. Imputing
these missing modalities must be handled within this context, rather than applying a global learnable
representative embedding for each modality without considering the observed environment.

Therefore, we propose a learnable missing modality bank. Given the number of modality
combinations without fully observed scenarios, the total cases would be, given a modality set
M = {I, C,B,G},

∑|M|−1
m=1

(|M|
m

)
= 2|M| − 1. The resulting missing modality bank can be defined

as B ∈ R2|M|−1×|M|. By using this bank, the concatenated embedding of all modalities for patient i,
hi = [eIi , e

C
i , e

B
i , e

G
i ] would be represented as follows:

emi =

{
Encoderm(i) if modality m is observed in sample i

BM\m,m otherwise
, ∀m ∈ {I, C,B,G} (2)

where emi ∈ Rd denotes the embedding from the corresponding modality m for patient i, and d is the
hidden dimension. Here, the main idea of the missing modality bank completion is to supplement
missing modalities from a predefined bank, ensuring robust data integration with observed ones. For
example, if a patient lacks clinical data but has imaging, biospecimen, and genetic data, the observed
modalities pass through their specific encoders. The missing clinical embedding is supplemented
from the missing modality bank, indexed by the observed modalities (e.g., BM\m,m = B{I,G,B},C).
By doing so, the encoder for each modality can be trained without encountering non-observed,
incomplete input features. Then, we move on to the Transformer layer, where the FFN layer is
replaced by an SMoE layer, a common approach in the SMoE domain [24, 38, 10].

3.2.2 Expert Generalization & Specialization

While adopting the SMoE backbone, it is important to note that our environment differs from
concurrent SMoE studies, especially in terms of multimodal learning with missing modalities. In this
context, choosing the most relevant tokens is challenging for experts, since the significance, i.e., the
quality of input information, varies with the missing modalities. This significantly motivates us to
take a distinct approach from concurrent SMoE studies, where the input token is derived from fully
observed scenarios. To address the unique challenges of the missing modality scenario, we propose
a modality combination-specific MoE design. Specifically, we assign expert indices based on all
possible modality combinations. For example, ‘IGCB’ is assigned as 0, ‘IGC’ as 1, ..., up to ’B’ as
14. The remaining experts act as buffers, allowing the Router to select the most relevant top-k experts
and activate them automatically. This approach leaves room for flexibility and maintains the initial
intuition of the MoE design.

Generalization It now becomes clear why the samples used for training Flex-MoE are sorted in
descending order. Inspired by curriculum learning [7, 63], where easy samples are presented first and
more challenging samples appear later, we regard the level of difficulty as the number of missing
modalities. We first train our SMoE layer with easy samples, where all modalities are fully observed.
Using this intersection as a gold standard, we initially train all the experts in the MoE model. The
procedure essentially follows the vanilla SMoE design as described in Equation 1, but with one key
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difference: the input tokens consist only of inputs where all modalities are fully observed. Hence, we
refer to this router as the Generalized Router, G-Router. This approach leverages the completeness of
information in these samples, which should be fully utilized before specializing the experts in their
respective areas. To ensure balanced activation of the experts initially, which will later specialize,
we incorporate the load and importance balancing loss [55], which will later be exemplified in
Equation 4.

Specialization Once the experts are initially trained using fully observed samples, we aim to specialize
each expert, which is the key advantage of the MoE design. We leverage the remaining samples,
which encompass diverse modality combination configurations. Each modality combination requires
its own specialized expertise. For instance, samples with Image, Biospecimen, and Genetic data will
have a corresponding expert index activated through the top-1 gating mechanism to fully utilize the
specialized knowledge of that expert (i.e., expert ‘IBG’ in Figure 3). To effectively specialize the
modality combination-specific experts, we propose a Specialized Router design, S-Router, which
encompasses following technical novelties. First, to facilitate targeted expert selection when an
input token is provided, we avoid manually replacing the selected routing policy with our preferred
choice in a post-hoc manner, which would stop the continuous gradient flow. Instead, we innovatively
introduce a cross-entropy loss between the top-1 expert selection and the targeted expert indices for
each token by the S-Router. Formally, this can be described as follows:

Lce = −
n∑

j=1

MC(xj) log(max(S-Router(xj))) (3)

where MC(xj) denotes the modality combination index of a given token xj in a total of n tokens.
max(S-Router(xj)) denotes the maximum prediction probability of the corresponding activated
expert index, which corresponds to the probability of the top-1 expert index. By comparing these two,
the router is trained to activate the corresponding expert index for a given input token with a certain
modality combination. Thus, the specialized knowledge inherent in specific modality combinations
is naturally contained within the target expert.

Moreover, when calculating load and importance balancing loss [55], we specifically compute the
loss for the remaining top-k-1 experts, as the top-1 selection is manually handled and thus considered
biased rather than balanced. We aim for the selection of the remaining k-1 experts to occur in a
balanced manner, allowing interaction with other related modality combinations. Formarlly, it can be
expressed as follows:

Lbalance = CV2

 N∑
j

importancej

+ CV2

 N∑
j

loadj


where importancee =

N∑
i

gie, loade =

N∑
i

δ(gie > 0), ∀e ∈ E \ etop-1

(4)

where CV2(x) =
(

σ(x)
µ(x)

)2

, σ(x) is the standard deviation of x, µ(x) is the mean of x, gie is the
gate value for sample i with expert index e as discussed in Equation 1, and δ(· > 0) is an indicator
function that is 1 when the inner value is greater than 0. E \ etop-1 denotes the set of expert indices
excluding the top-1 selected expert index. This ensures that the resulting MoE model not only retains
global knowledge but also incorporates specialized expert knowledge tailored to specific modality
combinations. During the inference phase, the specified expert index for a particular modality
combination can be activated alongside other experts, enabling predictions to consider both the
specific modality combination and intersections with other modalities.

Finally, the output embeddings of the Sparse MoE layer pass through a 1-layer MLP prediction
head to predict one of the three stages of AD, i.e., Dementia, CN, or MCI. To further facilitate
a curriculum-learning approach, we first use warm-up epochs with sorted samples, followed by
shuffled samples for the remaining epochs. This strategy enhances generalizability across diverse
input samples, enabling better handling of variability during the inference phase.
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4 Experiments

4.1 Experimental Setting

ADNI Dataset Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a landmark multimodal
AD dataset that tracks disease progression and pathological changes, comprising of comprehensive
imaging, genetic, clinical, and biospecimen data ([64], [67]). The imaging data in ADNI includes
magnetic resonance imaging (MRI) and positron emission tomogrpahy (PET). The genetic data
includes a variety of genetic information, including genotyping data such as APOE genotyping and
single nucleotide polymorphisms. The clinical data includes demographics, physical examinations,
and cognitive assessments. Biospecimens such as blood, urine, and cerebrospinal fluid are also
collected. ADNI has established standardized multi-center protocols and provides open access to
qualified researchers, making it a gold-standard resource in the field ([65], [66]). Before integrating
all modalities, to address the initial missing data within each modality, we applied simple mean
imputation [39] for each column. For more detailed data table with preprocessing steps for each
modality, please refer to Appendix A.1.

MIMIC-IV Dataset We use the Medical Information Mart for Intensive Care IV (MIMIC-IV)
database [27], which contains de-identified health data for patients who were admitted to either the
emergency department or stayed in critical care units of the Beth Israel Deaconess Medical Center
in Boston, Massachusetts24. MIMIC-IV excludes patients under 18 years of age. We take a subset
of the MIMIC-IV data, where each patient has at least more than 1 visit in the dataset as this subset
corresponds to patients who likely have more serious health conditions. For each datapoint, we extract
ICD-9 codes, clinical text, and labs and vital values. Using this data, we perform binary classification
on one-year mortality, which foresees whether or not this patient will pass away in a year. We drop
visits that occur at the same time as the patient’s death. In order to align the experimental setup with
the ADNI data, which does not contain temporal data, we take the last visit for each patient.

Baselines We compare the performance of Flex-MoE with various state-of-the-art baselines across
modality-specific, e.g., image or genetic, and multimodal approaches. For the image-only modality,
we first experimented with 3D MRI scans by utilizing a 3D CNN [17] and an architecture that
combines 3D CNN and 3D CLSTM [68]. To decrease computational complexity, we also extracted
2D slices from the 3D volumes. For 2D MRI scans, we implemented the VGG architecture with
pre-trained weights and applied layer-wise transfer learning [43], as well as a modified ResNet-18
network [45]. For the genetic-only approach, we employed a ResNet-34 based architecture to handle
the high-dimensional genetic data [36]. In ADNI dataset, we further implemented domain speicfic
baselines, such as auto-encoder and 3D CNN-based architecture that incorporates imaging, genetic,
and clinical data [59], and a GRU-based architecture that considers imaging, genetic, clinical, and
biospecimen data [33]. Moreover, we include ShaeSpec [60], which utilizes a spectral attention
mechanism to emphasize important features across modalities, and mmFormer [76], which is based
on transformer-based multimodal fusion with an attention mechanism. For multimodal approaches
in both ADNI and MIMIC-IV, we incorporate the recent FuseMOE [19] model, which directly
integrates multimodal data through a mixture of experts strategy, as the most straightforward baseline.
Additionally, we compare the following methods: MulT [57], which captures cross-modal interactions
through cross-attention mechanisms; MAG [52], which fuses multimodal features by mapping them
to an adaptation vector; TF [73], which combines multimodal embedding sub-networks and a tensor
fusion layer; and LIMoE [44], which addresses training stability in multimodal learning using entropy
regularization based on contrastive learning.

Experimental Settings. To ensure a fair comparison with other baselines, we used the best hyper-
parameter settings provided in the original papers. If not available, we tuned the learning rate in
1e-3, 1e-4, 1e-5, the hidden dimension in 64, 128, 256, and the batch size in 8, 16. For our proposed
method, we searched the number of experts in 16, 32, and Top-k in 2, 3, 4. We set the coefficient of
the sum of additional losses (importance and load balancing) combined with our cross-entropy loss
to 0.01, scaling it within the task classification loss. For the dataset split, we chose 70% for training,
with the remaining 30% split evenly between validation and test sets (15% each). It is important
to note that, to share the same inference space, where single and multimodal baselines should both
be able to predict, we opted to choose the intersection as the test and validation sets. This means
that during the training phase, the dataset can be incomplete. For the multi-modal baselines, if they
had the ability to impute or interact with other modalities, we leveraged their methods. Otherwise,
we used zero-padding to facilitate batch-wise training. For single-modal and multi-modal baselines
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that solely work on the intersection region, we filtered that data and used it during training. All
experiments were conducted using NVIDIA A100 GPUs. Each experiment was run three times with
different seeds to ensure reproducibility, and the results were averaged. The optimal hyperparameter
settings for Flex-MoE can be found in Appendix A.2.

Table 1: Performance on ADNI dataset with ACC metric across different models and modality
combinations, given the Image (I, ), Genetic (G, ), Clinical (C, ), and Biospecimen (B, )
modalities. MC denotes observed modality combination.

Modalities Dataset: ADNI / Metric: ACC

MC [59] [33] ShaSpec mmFormer TF MulT MAG LIMoE FuseMoE Flex-MoE

I,G • • 54.81 ±1.45 53.59 ±2.98 48.09 ±0.66 49.85 ±4.92 59.94 ±0.40 60.32 ±0.95 59.94 ±1.00 59.29 ±0.95 60.41 ±0.87 61.08 ±0.78

I, C • • 44.35 ±1.99 57.15 ±1.58 47.62 ±1.81 51.96 ±4.23 54.53 ±0.66 50.14 ±1.05 52.19 ±2.90 52.38 ±3.46 53.13 ±1.97 56.49 ±2.55

I,B • • 40.80 ±2.94 57.61 ±1.86 50.98 ±2.09 51.45 ±3.53 52.57 ±2.06 51.17 ±2.88 52.47 ±4.11 53.87 ±2.75 49.67 ±1.97 60.41 ±0.26

G, C • • 51.91 ±1.39 52.85 ±2.47 52.85 ±2.65 49.58 ±4.45 38.38 ±3.03 46.03 ±5.42 40.34 ±6.11 35.76 ±6.24 38.84 ±2.42 60.60 ±0.26

G,B • • 45.01 ±1.30 52.66 ±3.63 58.54 ±2.97 48.45 ±4.56 42.20 ±1.78 39.40 ±2.91 40.52 ±2.52 36.88 ±5.04 37.91 ±0.80 63.59 ±1.04

C,B • • 44.63 ±0.92 63.68 ±0.48 59.10 ±2.69 47.71 ±4.49 39.68 ±2.38 44.54 ±0.82 40.15 ±2.58 43.98 ±0.00 37.91 ±0.80 60.50 ±0.82

I,G, C • • • 55.12 ±2.38 54.72 ±0.28 49.30 ±3.17 46.49 ±3.57 54.06 ±1.98 60.97 ±0.95 61.34 ±0.61 53.50 ±2.25 60.97 ±1.32 63.21 ±1.73

I,G,B • • • 56.12 ±3.44 55.28 ±3.44 52.85 ±0.53 47.15 ±6.43 54.44 ±2.26 53.03 ±1.95 54.15 ±1.06 53.97 ±1.08 52.85 ±1.00 62.28 ±2.75

I, C,B • • • 43.79 ±0.69 60.97 ±2.60 52.85 ±3.30 47.18 ±4.68 52.29 ±1.47 49.86 ±1.50 53.24 ±0.50 54.97 ±0.00 49.67 ±1.00 64.05 ±1.78

G, C,B • • • 45.28 ±1.85 53.87 ±3.35 62.09 ±3.27 46.38 ±4.24 43.33 ±4.43 43.32 ±6.74 37.25 ±1.99 40.99 ±2.62 34.64 ±1.95 65.36 ±1.38

I,G, C,B • • • • 52.10 ±0.99 55.64 ±1.86 52.84 ±0.53 58.92 ±6.58 57.24 ±3.05 58.82 ±0.82 61.44 ±1.61 55.18 ±4.22 59.52 ±1.00 66.11 ±1.14

Table 2: Performance on MIMIC-IV dataset with ACC metric across different models and modality
combinations, given the Lab and Vital values (L, ), Clinical Notes (N , ), and ICD-9 Codes (C, )
modalities. MC denotes observed modality combination.

Modalities Dataset: MIMIC-IV / Metric: ACC

MC TF MulT MAG LIMoE FuseMoE Flex-MoE

L,N • • 60.05 ±1.96 57.96 ±7.25 62.72 ±2.36 63.80 ±1.99 60.50 ±3.82 76.14 ±0.73

L, C • • 64.13 ±3.39 62.47 ±2.01 60.13 ±1.97 64.89 ±1.46 63.31 ±3.21 75.15 ±0.55

N , C • • 60.97 ±2.36 62.23 ±2.81 59.41 ±4.15 64.27 ±4.05 64.77 ±3.05 74.96 ±1.59

L,N , C • • • 63.11 ±2.17 64.62 ±0.44 62.87 ±2.50 61.61 ±2.37 63.90 ±1.72 76.81 ±0.90

4.2 Primary Results

In Table 1 and Table 2, we provide a comprehensive comparison of Flex-MoE with various multi-
modal baselines. We have the following observations: (1) Overall, Flex-MoE performs effectively
in diverse multimodal settings, fully harnessing its potential as more modalities become available.
This is supported by the large margin of improvement (7.6% and 11.07% over the best performing
baselines, MAG and the most recent work FuseMoE, respectively, in full modality settings in Table 1).
(2) Although the recently proposed FuseMoE [19] suggested its ability to handle missing scenarios,
the lack of effective modality combination creates a bottleneck in such AD domain, even performing
worse when a smaller number of modalities is used (FuseMoE performs better with three modalities
than with full modalities), which is not optimal given the diverse missing modality scenarios. (3)
Despite its specific characteristics in the AD domain [33, 59], the reliance on intersection data and
the lack of consideration for how missing modalities relate to observed modality combinations have
been overlooked. (4) Overall, the performance gain derived from Flex-MoE can be attributed to its
unique ability to cope with diverse modality combinations through a missing modality bank, and its
capability to fully harness the knowledge of samples via a generalization followed by a specialization
step for experts. For additional results on different metrics, such as Macro-F1 and AUC, please refer
to Appendix A.3.

4.3 Effectiveness of Modality Combination Consideration

To validate the effectiveness of the two essential modules of Flex-MoE—the missing modality bank
and the unique SMoE design—under a missing modality scenario, we evaluate them followingly.

First, to evaluate the effectiveness of the missing modality bank introduced in Figure 3 (b), we
assess whether it captures relevant embedding information given an observed modality combination.
Specifically, we validate this by examining the inter-relationship between modalities, focusing on

8



the consistency of how the missing modality bank handles missing information. In Figure 4, we
measure the cosine similarity between observed modality combinations. The key observation is
that (1) with more overlapping modality combination, it tends to share more similar embedding
information. This is evident in the left side of Figure 4, where the full modality scenario (ICBG)
shows higher similarity with ICB and CBG (0.56 and 0.58, respectively) compared to IC and CB
(0.46 and 0.45). The clinical modality (C) is most similar across combinations, which aligns with the
dataset characteristic that clinical data is present in all input combinations, as shown in Figure 2. On
the right side of Figure 4, the similarity between missing modalities is shown. When (2) modality
G is missing, it is more similar to the cases where C and B are missing compared to I, suggesting
that certain missing modalities share more commonality in how they are handled by the model. This
insight underscores the importance of careful consideration when modeling missing modalities and
demonstrates how the missing modality bank effectively captures necessary embedding information
in terms of modality combination.

I G C B

B

C

G

I
ICBG

C

ICB

IC

CBG

CB

ICBG C IC ICB CBG CB

Observed Modality Combination Missing Modality

Figure 4: Cosine similarity between observed modal-
ity combination and missing modality, correspond-
ing to row and column in missing modality bank.

Figure 5: Modality combination activation ratio.

Furthermore, in Figure 5, we show the acti-
vation ratio of input modality combinations
across each expert index, i.e., possible modal-
ity combinations. We observe two key find-
ings: (1) Thanks to expert generalization us-
ing full modality samples (BCGI), general-
ized knowledge is distributed across all ex-
perts. This allows each expert to leverage
commonly shared knowledge while activating
the most relevant inputs for the downstream
task. (2) Expert specialization enables each
expert to acquire specialized knowledge. For
instance, in the case of the BCG expert, the
two most activated input tokens were BCGI
and its corresponding token, BCG. Similarly,
for the BCI and CI experts, they not only pos-
sess general knowledge from BCGI but also
hold their own specialized knowledge from
BCI and CI, respectively, to effectively handle
these inputs. This demonstrates that when a
certain modality combination is provided, the
top-1 expert is successfully selected, allow-
ing it to supplement its specialized and neces-
sary information. Overall, these routing exper-
iments demonstrate that Flex-MoE contains
both globally generalized and locally expert-
specific knowledge, achieved by leveraging
samples with both full and fewer modalities.

4.4 Comprehensive Evaluation

Ablation Study. In this section, we investigate the crucial components that contribute most
positively to the performance gain of Flex-MoE. From Table 3, we observe that (1) when both expert
specialization and generalization are absent, the performance drop is most severe. Additionally, (2)
the performance decline in the embedding bank negatively affects overall performance, indicating
that the missing modality bank combined with expert generalization and specialization is crucial for
handling missing modality scenarios. Furthermore, (3) the sorting based on descending order appear
most effective as the expert generalization occurs first withi the full modality samples.

Sensitivity Study. In Figure 6, we also varied the hyperparameters used in this study. We examined
the number of experts, number of SMoE layers and top-k selection. We found that (1) employing
many experts does not always guraantee a higher performance compared to its increase in complexity,
showing using 16 experts apeear to be a suitable choice to equip fine-grained specialized knowledge.
(2) Using sing a single layer of the SMoE was most effective, as stacking more layers or adding
a Transformer block caused an overload to parameter learning. Additionally, (3) compared to the
commonly used top-2 gating network in concurrent SMoE studies, we found that top-4 selection was
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Table 3: Ablation study of Flex-MoE.
ACC F1

Flex-MoE 66.11 64.73
w/o ES 62.75 60.79
w/o {ES + EG} 62.49 60.07
w/o embedding bank 63.87 62.48
w/o sorting - random 62.65 60.70
w/o sorting - ascending 63.87 62.22

Ac
c

Ac
c

Ac
c

Figure 6: Sensitivity analysis of Flex-MoE. The hyper-
parameters include the number of experts, the number
of SMoE layers and Top-k expert selection. For the
experiment, ADNI dataset with full modalities is used.

the most effective. This is because manually assigning the top-1 expert index to the target modality
combination leaves more room for better harmonization with the SMoE design.

Complexity Study. In Table 4, we further verify the benefits of utilizing the SMoE design in terms
of mean time per iteration, GFLOPs, and the number of parameters compared to the baselines. We
observed the following: (1) Compared to recent baseline FuseMoE, Flex-MoE achieves notable
efficiency gains (e.g., 22.74%, 1.15%, and 89.17% gain in mean time, GFLOPs, and # of parameters,
respectively.) while delivering higher performance. (2) Although TF appears to be a lightweight
design in the I,G and I,G, C settings, it trades off computational efficiency with significantly lower
performance compared to Flex-MoE. (3) Notably, as the number of modalities increases, existing
models tend to become more complex in terms of GFLOPs and the number of parameters to manage
the additional complexity. However, Flex-MoE remains robust and efficient, maintaining higher
performance due to its effective use of sparsely activated experts, brought by the SMoE framework.

Modality Metric TF MulT MAG LIMOE FuseMoE Flex-MoE

I,G
Mean Time (s) (↓) 12.40 12.85 11.64 12.65 18.68 12.73

GFLOPs (↓) 59.05 59.24 59.06 59.24 59.74 59.06
# of Parameters (↓) 33,370,898 37,343,683 36,454,595 37,344,707 264,680,387 36,516,807

Accuracy (↑) 59.94 ±0.40 60.32 ±0.95 59.94 ±1.01 59.29 ±0.95 60.41 ±0.87 61.08 ±0.78

I,G, C
Mean Time (s) (↓) 13.80 23.28 14.55 14.64 18.68 14.53

GFLOPs (↓) 59.05 59.59 59.06 59.32 59.74 59.06
# of Parameters (↓) 34,424,162 40,185,923 36,504,643 37,960,643 340,929,475 36,685,511

Accuracy (↑) 54.06 ±1.98 60.97 ±0.95 61.34 ±0.61 53.50 ±2.25 60.97 ±1.32 63.21 ±1.73

I,G, C,B
Mean Time (s) (↓) 15.83 38.70 16.04 17.96 20.71 16.00

GFLOPs (↓) 59.39 60.12 59.06 59.41 59.76 59.07
# of Parameters (↓) 119,483,922 46,409,667 36,504,643 38,638,531 340,929,475 36,916,167

Accuracy (↑) 57.24 ±0.35 58.82 ±0.82 61.44 ±1.16 55.18 ±2.42 59.52 ±1.00 66.11 ±1.14

Table 4: Complexity comparsion of mean time, GFLOPs, and # of parameters in ADNI dataset.

5 Conclusion

While multimodal learning brings new opportunities and challenges across various domains, including
medical fields, existing approaches struggle to handle arbitrary modality combinations, especially in
missing modality scenarios, often relying on single modalities or complete datasets. In this work, we
propose a flexible multimodal learning framework, Flex-MoE, capable of managing arbitrary subsets
of available modalities. By carefully considering modality combination, it leverages a learnable
embedding bank to capture missing modality information and utilizes a unique SMoE design to
enhance expert generalization and specialization. Extensive experiments on the representative ADNI
and MIMIC-IV datasets validate its effectiveness in handling diverse modality combinations. Future
work includes extending the framework to explore the scaling laws of available modalities, which in
turn presents numerous modality combinations, offering significant room for further improvement.

Societal Impact and Limitation: The proposed algorithm has the potential to significantly improve
early diagnosis and treatment outcomes for patients, reducing the burden on healthcare systems.
However, its effectiveness can be limited by the availability of comprehensive and high-quality patient
data, and there may be challenges in integrating this tool into existing clinical workflows.
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A Appendix

A.1 Detailed Data Preprocessing in ADNI

File Name Data Shape Column Examples Missing Rate (%)

Image Processed T1-weighted fMRI (10853, 91, 109, 91) N/A N/A

Genomics

ADNI_cluster_01_forward_757LONI (757, 567386) rs121434621’, ’GSA-rs116587930’ 4.45

ADNI_GO_2_Forward_Bin (432, 567386) rs3131972’, ’rs386134241’ 0.17

ADNI_GO2_GWAS_2nd_orig_BIN (361, 567386) rs182004761’, ’rs386134241’ 0.29

ADNI3_PLINK_Final (327, 567386) rs3131972’, ’rs3937033’ 0.62

ADNI3_PLINK_FINAL_2nd (328, 567386) 200610-37’, ’rs386134241’ 0.46

Clinical

MEDHIST_09May2024.csv (3083,40) MHSOURCE’, ’MHPSYCH’, ’MH2NEURL’, ’MH3HEAD’ 13.28

NEUROEXM_09May2024.csv (3873,28) NXTREMOR’, ’NXCONSCI’,’NXNERVE’, ’NXMOTOR’ 13.71

PTDEMOG_09May2024.csv (5073,77) PTWORK’, ’PTNOTRT’,’PTRTYR’, ’PTHOME’ 66.58

RECCMEDS_09May2024.csv (66622,29) ’CMROUTE’, ’CMREASON’, ’CMEVNUM’, ’CMBGN’ 35.46

VITALS_09May2024.csv (15381,26) VSHEIGHT’, ’VSHTUNIT’, ’VSBPSYS’, ’VSBPDIA’ 20.98

Biospecimen
APOERES_09May2024.csv (2737, 17) APTESTDT’, ’APGEN1’,’APGEN2’, ’APVOLUME’ 39.8

UPENNBIOMK_ROCHE_ELECSYS_09May2024.csv (3174, 12) ABETA40’, ’ABETA42’, ’TAU’, ’PTAU’ 13.22

Table 5: Summary of data files with their respective shapes, column examples, and missing rates.

Image Modality We first performed magnetic field intensity inhomogeneity correction to ensure
that the MRI images are uniform and reliable. Then, we used a method called MUSE (Multiatlas
Region Segmentation Utilizing Ensembles of Registration Algorithms and Parameters) to segment
the gray matter tissue, which was the focus of our study [14]. This process involves using multiple
atlases and selecting the most optimal ones to accurately extract region-of-interest values from the
segmented gray matter tissue maps. Next, voxelwise regional volumetric maps for each tissue volume
were generated by spatially aligning skull-stripped images to a template residing in the Montreal
Neurological Institute (MNI) space using a registration method [47].

Genetic Modality We collected SNP (single nucleotide polymorphisms) data from the ADNI 1,
GO/2, and 3 studies. First, SNP data from the different phases of these studies were aligned to the
same reference build using Liftover https://liftover.broadinstitute.org/. Specifically, all
SNP data were converted to NCBI build 38 (UCSC hg38). After liftover, we merged the studies into a
unified dataset. Next, linkage disequilibrium (LD) pruning, with parameters (50, 5, 0.1), was applied
to filter out SNPs that were highly correlated with others. Here, the parameters represent the window
size (50), the step size (5), and the r-squared threshold (0.1). The SNP data contains values of 0, 1, 2.

Biospecimen Modality We extract biospecimen data from the following csv files provided by
ADNI. The file UPENNBIOMK_ROCHE_ELECSYS_09May2024.csv was used for Total Tau and
Phosphorylated Tau data. The file APOERES_09May2024.csv was used for ApoE genotype data. For
numerical data, we applied a MinMax scaler to scale the values to a range of -1 to 1. For categorical
data, we used one-hot encoding. For the missing values, we imputed the mean value for numerical
columns and the mode for categorical columns.

Clinical Modality We extracted clinical data from the following csv files provided by ADNI:
MEDHIST_09May2024.csv, NEUROEXM_09May2024.csv, PTDEMOG_09May2024.csv, REC-
CMEDS_09May2024.csv, VITALS_09May2024.csv. During the preprocessing of this clinical data,
we excluded the columns ’PTCOGBEG,’ ’PTADDX,’ and ’PTADBEG’ as they contain information
directly related to Alzheimer’s Disease diagnosis. For numerical data, we applied a MinMax scaler to
scale the values to a range of -1 to 1. For categorical data, we used one-hot encoding. For the missing
values, we imputed the mean value for numerical columns and the mode for categorical columns.
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A.2 Hyperparameter Setting

Table 6: The hyperparameter setup for Flex-MoE.
ADNI MIMIC-IV

I,G, C,B L,N , C
Learning rate 0.0001 0.0001
# of Experts 16 32
# of SMoE layers 1 1
Top-K 4 3
Training Epochs 50 50
Warm-up Epochs 5 5
Hidden dimension 128 128
Batch Size 8 8
# of Attention Heads 4 4

A.3 More Primary Results

Table 7: Performance on ADNI dataset with Macro F1 metric across different models and modality
combinations, given the Image (I, ), Genetic (G, ), Clinical (C, ), and Biospecimen (B, )
modalities. MC denotes observed modality combination.

Modalities Dataset: ADNI / Metric: Macro F1

MC [59] [33] ShaSpec mmFormer TF MulT MAG LIMoE FuseMoE Flex-MoE

I,G • • 52.92 ±0.17 52.75 ±3.91 45.86 ±1.55 40.25 ±7.03 60.03 ±0.88 60.59 ±1.05 61.06 ±0.79 58.75 ±0.83 61.04 ±0.95 61.05 ±1.03

I, C • • 25.65 ±6.58 57.36 ±1.45 47.68 ±0.80 44.31 ±8.97 54.45 ±0.90 51.88 ±1.30 52.72 ±3.39 51.84 ±0.96 53.32 ±1.47 54.16 ±2.01

I,B • • 28.78 ±1.32 57.93 ±2.04 49.82 ±2.00 45.82 ±9.33 51.20 ±2.64 52.64 ±2.57 53.36 ±2.96 52.70 ±3.47 50.38 ±1.31 58.50 ±0.94

G, C • • 50.54 ±1.38 51.62 ±3.34 50.29 ±0.36 39.45 ±5.47 27.85 ±1.89 36.77 ±6.42 29.33 ±0.46 29.57 ±3.65 27.49 ±2.87 59.44 ±0.49

G,B • • 31.21 ±1.71 51.41 ±4.30 56.32 ±4.83 35.63 ±1.44 29.82 ±1.48 32.41 ±1.55 28.29 ±1.05 20.91 ±0.60 20.91 ±0.60 61.65 ±1.71

C,B • • 24.78 ±6.24 63.46 ±0.35 55.46 ±4.06 33.09 ±5.43 29.57 ±1.99 33.22 ±0.72 27.20 ±3.53 20.36 ±0.00 29.11 ±3.83 59.13 ±1.75

I,G, C • • • 48.59 ±5.44 53.86 ±3.84 48.99 ±2.59 26.88 ±9.21 54.31 ±0.88 61.82 ±0.21 61.07 ±1.04 51.33 ±1.38 61.30 ±1.07 61.98 ±1.04

I,G,B • • • 55.46 ±2.05 54.82 ±4.18 51.80 ±0.99 28.19 ±8.29 53.70 ±2.43 52.46 ±1.64 52.54 ±1.64 52.80 ±1.92 52.75 ±0.91 59.45 ±3.14

I, C,B • • • 25.53 ±4.83 61.34 ±2.48 51.80 ±0.99 27.87 ±9.08 52.64 ±1.49 50.14 ±0.84 52.02 ±2.22 52.41 ±1.31 50.61 ±0.47 61.60 ±1.46

G, C,B • • • 24.95 ±6.49 60.57 ±2.64 60.57 ±2.64 25.99 ±9.98 40.40 ±6.88 29.38 ±0.79 31.59 ±1.93 27.99 ±2.13 27.49 ±0.93 64.15 ±1.69

I,G, C,B • • • • 49.76 ±1.95 57.93 ±2.04 51.80 ±0.99 53.64 ±9.09 57.27 ±0.44 59.58 ±0.77 61.38 ±1.32 53.63 ±0.30 59.55 ±1.60 64.73 ±2.01

Table 8: Performance on ADNI dataset with AUC metric across different models and modality
combinations, given the Image (I, ), Genetic (G, ), Clinical (C, ), and Biospecimen (B, )
modalities. MC denotes observed modality combination.

Modalities Dataset: ADNI / Metric: AUC

MC [59] [33] ShaSpec mmFormer TF MulT MAG LIMoE FuseMoE Flex-MoE

I,G • • 70.04 ±0.72 70.25 ±3.26 66.07 ±1.11 68.05 ±2.04 73.45 ±1.06 70.95 ±1.76 73.14 ±0.71 71.88 ±1.14 72.37 ±1.08 74.52 ±1.81

I, C • • 54.52 ±2.93 73.99 ±1.02 65.39 ±0.82 68.15 ±2.09 72.88 ±0.81 71.37 ±1.65 71.68 ±1.90 71.86 ±1.27 70.98 ±0.24 73.03 ±0.14

I,B • • 57.02 ±8.74 76.06 ±0.85 68.86 ±0.69 68.44 ±1.98 71.70 ±0.42 72.43 ±1.84 72.82 ±1.84 71.82 ±1.65 70.59 ±1.09 77.68 ±0.33

G, C • • 69.24 ±0.45 66.46 ±3.29 71.38 ±0.82 65.50 ±5.45 47.57 ±1.96 61.17 ±5.61 52.00 ±1.08 51.14 ±0.60 49.23 ±1.54 78.34 ±0.47

G,B • • 48.91 ±5.97 69.68 ±3.58 75.29 ±2.91 64.69 ±5.26 51.32 ±2.33 53.53 ±0.68 51.36 ±1.07 51.82 ±0.30 51.82 ±0.30 79.24 ±0.79

C,B • • 58.41 ±5.16 79.53 ±0.34 78.73 ±0.22 63.25 ±5.89 49.82 ±2.03 64.36 ±2.80 50.20 ±1.63 48.29 ±3.21 48.82 ±0.58 79.65 ±0.81

I,G, C • • • 69.07 ±3.39 76.05 ±0.86 66.70 ±4.15 66.35 ±0.86 74.24 ±0.62 71.87 ±0.84 72.77 ±1.21 70.98 ±1.06 71.14 ±0.83 79.55 ±1.69

I,G,B • • • 70.75 ±2.30 76.02 ±0.86 69.79 ±1.39 65.91 ±2.01 72.11 ±2.08 71.88 ±0.34 72.35 ±0.32 71.70 ±0.81 72.16 ±0.57 79.27 ±0.65

I, C,B • • • 52.98 ±5.16 76.06 ±0.85 69.79 ±1.39 66.09 ±1.67 72.04 ±0.92 71.32 ±0.16 71.97 ±1.76 72.25 ±0.65 71.20 ±1.33 80.55 ±1.26

G, C,B • • • 56.71 ±4.72 70.06 ±0.85 79.18 ±0.63 63.49 ±4.78 69.00 ±0.66 60.85 ±5.25 51.73 ±0.41 49.36 ±0.52 48.82 ±1.02 81.67 ±0.59

I,G, C,B • • • • 69.44 ±0.84 76.06 ±0.85 69.79 ±1.39 73.93 ±5.97 69.42 ±3.20 71.09 ±0.66 71.99 ±0.54 72.05 ±0.27 71.16 ±1.01 81.67 ±0.54

Table 9: Performance on MIMIC-IV dataset with Macro F1 metric across different models and
modality combinations, given the Lab and Vital values (L, ), Clinical Notes (N , ), and ICD-9
Codes (C, ) modalities. MC denotes observed modality combination.

Modalities Dataset: MIMIC-IV / Metric: Macro F1

MC TF MulT MAG LIMoE FuseMoE Flex-MoE

L,N • • 50.81 ±0.47 50.61 ±2.77 53.46 ±0.26 55.19 ±1.52 52.79 ±1.32 51.29 ±1.83

L, C • • 55.09 ±1.29 56.33 ±1.00 54.07 ±0.98 57.32 ±0.52 54.78 ±0.91 53.85 ±1.43

N , C • • 54.37 ±0.41 55.33 ±1.04 54.15 ±1.79 54.59 ±0.65 55.54 ±0.60 53.02 ±3.99

L,N , C • • • 54.19 ±0.38 58.43 ±0.22 55.04 ±1.41 55.79 ±0.94 55.38 ±1.06 53.19 ±1.28

Table 10: Performance on MIMIC-IV dataset with AUC metric across different models and modality
combinations, given the Lab and Vital values (L, ), Clinical Notes (N , ), and ICD-9 Codes (C, )
modalities. MC denotes observed modality combination.

Modalities Dataset: MIMIC-IV / Metric: AUC

MC TF MulT MAG LIMoE FuseMoE Flex-MoE

L,N • • 56.31 ±1.00 57.10 ±0.78 58.11 ±0.83 62.64 ±1.81 58.33 ±0.36 64.39 ±0.28

L, C • • 60.43 ±0.76 65.12 ±2.19 60.75 ±0.20 65.14 ±0.34 62.52 ±0.39 66.27 ±0.17

N , C • • 61.37 ±1.33 62.18 ±0.77 61.99 ±0.25 61.34 ±0.41 61.74 ±0.31 64.27 ±0.87

L,N , C • • • 60.66 ±0.65 67.35 ±0.18 61.29 ±0.32 65.18 ±0.60 61.67 ±0.15 69.87 ±0.81
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state the challenges of the problem at hand and the contributions
that we make in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations and future directions of the work in the Conclusion
section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide details about the experiment implementation in Section 4.1 Experi-
mental Setting. We provide further details about the data processing for the experiments in
the Appendix. Thus, it is possible to replicate the main experimental results of the paper.
We also provide the anonymized code.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details about the experimental setting, including data splits, hyperparame-
ters etc., are included in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For each experiment, we report the mean accuracy and F1 score, as well as
the corresponding standard deviation values in Section 4. Thus, we provide appropriate
information about the statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information on the compute resources necessary to
reproduce the experiments in Section 4.1 Experimental Settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All content in this paper abide by the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss Societal Impact and Limitation as a subsection under Section 5
Conclusion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not use any data or models that have a high risk of misuse such
as pretrained language models, image generators, or scraped datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the ADNI dataset and provide the proper citation. All materials related
to the paper will adhere to the copyright policies of NeurIPS.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The details of our proposed method are outlined in Sections 3 and 4. Addition-
ally, we release the source code of our work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not include crowdsourcing experiments and research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: IRB approval was not necessary for this project.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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