
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SINC KOLMOGOROV-ARNOLD NETWORK AND ITS AP-
PLICATION FOR FUNCTIONS WITH SINGULARITIES

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we propose to use Sinc interpolation in the context of Kolmogorov-
Arnold Networks, neural networks with learnable activation functions, which re-
cently gained attention as alternatives to multilayer perceptron. Many different
function representations have already been tried, but we show that Sinc interpo-
lation proposes a viable alternative, since it is known in numerical analysis to
represent well both smooth functions and functions with singularities. This is im-
portant not only for function approximation but also for the solutions of partial
differential equations with physics-informed neural networks. Through a series of
experiments, we show that SincKANs provide better results in almost all of the
examples we have considered.

1 INTRODUCTION

Multilayer perceptron (MLP) is a classical neural network consisting of fully connected layers with
a chosen nonlinear activation function, which is a superposition of simple functions. The classical
Kolmogorov-Arnold representation theorem Kolmogorov (1961); Arnol’d (1959) states that every
function can be represented as a superposition of function of at most 2 variables, motivating the
research for learnable activation functions.

Kolmogorov’s Spline Network (KSN) Igelnik & Parikh (2003) is a two-layer framework using
splines as the learnable activation functions. Recently, Kolmogorov-Arnold Networks (KANs) Liu
et al. (2024b) sparkled a new wave of attention to those approaches, by proposing a multilayer
variant of KSN. Basically, any successful basis to represent univariate functions can provide a new
variant of KAN. Many well-known methods have already been investigated including wavelet Bo-
zorgasl & Chen (2024); Seydi (2024b), Fourier series Xu et al. (2024), finite basis Howard et al.
(2024), Jacobi basis functions Aghaei (2024a), polynomial basis functions Seydi (2024a), rational
functions Aghaei (2024b) and Chebyshev polynomials SS (2024); Shukla et al. (2024).

We propose to use Sinc interpolation (the Sinc function is defined in Eq. (4)) which is a very ef-
ficient and well-studied method for function interpolation, especially 1D problems Stenger (2016).
To our knowledge, it has not been studied in the context of KANs. We argue that the the cubic spline
interpolation used in KANs should be replaced by the Sinc interpolation, because splines are par-
ticularly good for the approximation of analytic functions without singularities which MLP is also
good at, while Sinc methods excel for problems with singularities, for boundary-layer problems, and
for problems over infinite or semi-infinite range Stenger (2012). Herein, utilizing Sinc functions can
improve the accuracy and generalization of KANs, and make KANs distinguishing and competitive,
especially in solving aforementioned mathematical problems in machine learning. We will confirm
our hypothesis by numerical experiments.

Physics-informed neural networks (PINNs) Lagaris et al. (1998); Raissi et al. (2019) are a method
used to solve partial differential equations (PDEs) by integrating physical laws with neural networks
in machine learning. The use of Kolmogorov-Arnold Networks (KANs) in PINNs has been ex-
plored and is referred to as Physics-Informed Kolmogorov-Arnold Networks (PIKANs) Rigas et al.
(2024); Wang et al. (2024). Due to the high similarity between KAN and MLP, PIKANs inherit sev-
eral advantages of PINNs, such as overcoming the curse of dimensionality (CoD) Wojtowytsch &
Weinan (2020); Han et al. (2018), handling imperfect data Karniadakis et al. (2021), and performing
interpolation Sliwinski & Rigas (2023). PINNs have diverse applications, including fluid dynamics
Raissi et al. (2020); Jin et al. (2021); Kashefi & Mukerji (2022), quantum mechanical systems Jin
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et al. (2022), surface physics Fang & Zhan (2019), electric power systems Nellikkath & Chatzi-
vasileiadis (2022), and biological systems Yazdani et al. (2020). However, they also face challenges
such as spectral bias Xu et al. (2019); Wang et al. (2022), error estimation Fanaskov et al. (2024),
and scalability issues Yao et al. (2023).

In this paper, we introduce a novel network architecture called Sinc Kolmogorov-Arnold Networks
(SincKANs). This approach leverages Sinc interpolation, which is particularly adept at approximat-
ing functions with singularities, to replace cubic interpolation in the learnable activation functions of
KANs. The ability to handle singularities enables SincKAN to mitigate the spectral bias observed in
PIKANs, thereby making PIKANs more robust and capable of solving PDEs that traditional PINNs
may struggle with. Additionally, we conducted a series of experiments to validate SincKAN’s inter-
polation capabilities and assess their performance as a replacement for MLP and KANs in PINNs.
Our specific contributions can be summarized as follows:

1. We propose the Sinc Kolmogorov-Arnold Networks, a novel network that excels in han-
dling singularities.

2. We propose several approaches based on classical techniques of Sinc methods that can
enhance the robustness and performance of SincKAN.

3. We conducted a series of experiments to demonstrate the performance of SincKAN in ap-
proximating a function and PIKANs.

The paper is structured as follows: In Section 2, we briefly introduce the PINNs, discuss Sinc
numerical methods, and provide a detailed explanation of SincKAN. In Section 3 we compare
our SincKAN with several networks including MLP, modified MLP Wang et al. (2021), KAN,
ChebyKAN in several diverse benchmarks including smooth functions, discontinuous functions, and
boundary layer problems. In Section 4, we conclude the paper and discuss the remaining limitations
and directions for future research.

2 METHODS

2.1 PHYSICS-INFORMED NEURAL NETWORKS (PINNS)

We briefly review the physics-informed neural networks (PINNs) Raissi et al. (2019) in the context
of inferring the solutions of PDEs. Generally, we consider time-dependent PDEs for u taking the
form

∂tu+N [u] = 0, t ∈ [0, T ], x ∈ Ω,

u(0,x) = g(x), x ∈ Ω,

B[u] = 0, t ∈ [0, T ], x ∈ ∂Ω,

(1)

where N is the differential operator, Ω is the domain of grid points, and B is the boundary operator.
When considering time-independent PDEs, ∂tu ≡ 0.

The ambition of PINNs is to approximate the unknown solution u to the PDE system Eq. (1), by
optimizing a neural network uθ, where θ denotes the trainable parameters of the neural network.
The constructed loss function is:

L(θ) = Lic(θ) + Lbc(θ) + Lr(θ), (2)

where

Lr(θ) =
1

Nr

Nr∑
i=1

∣∣∂tuθ
(
tir,x

i
r

)
+N

[
uθ
] (
tir,x

i
r

)∣∣2 ,
Lic(θ) =

1

Nic

Nic∑
i=1

∣∣uθ
(
0,xi

ic

)
− g

(
xi
ic

)∣∣2 ,
Lbc(θ) =

1

Nbc

Nbc∑
i=1

∣∣B [uθ
] (
tibc,x

i
bc

)∣∣2 ,
(3)

corresponds to the three equations in Eq. (1) individually; xi
ic,x

i
bc,x

i
r are the sampled points from

the initial constraint, boundary constraint, and residual constraint, respectively; Nic, Nbc, Nr are
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the total number of sampled points for each constraint, correspondingly. Note that in Raissi et al.
(2019), uθ (x) = MLP (x).

2.2 SINC NUMERICAL METHODS

The Sinc function is defined as1

Sinc(x) =
sin(x)

x
, (4)

the Sinc series S(j, h)(x) used in Sinc numerical methods is defined by:

S(j, h)(x) =
sin[(π/h)(x− jh)]

(π/h)(x− jh)
, (5)

then the Sinc approximation for a function f defined on the real line R is given by

f(x) ≈
N∑

j=−N

f(jh)S(j, h)(x), x ∈ R, (6)

where h is the step size with the optimal value
√
πd/βN provided in Theorem 1, and 2N +1 is the

degree of Sinc series.

Thanks to Sinc function’s beautiful properties including the equivalence of semidiscrete Fourier
transform Trefethen (2000), its approximation as a nascent delta function, etc., Sinc numerical meth-
ods have become a technique for solving a wide range of linear and nonlinear problems arising from
scientific and engineering applications including heat transfer Lippke (1991), fluid mechanics Ab-
della (2015), and solid mechanics Abdella et al. (2009). But Sinc series are the orthogonal basis
defined on (−∞,∞) which is impractical for numerical methods. To use Sinc numerical methods,
one should choose a proper coordinate transformation based on the computing domain (a, b) and
an optimal step size based on the target function f . However, manually changing the network to
meet every specific problem is impractical and wasteful. In the following of this section, we will
introduce current techniques used in Sinc numerical methods. Then in Section 2.3, we will unfold
Sinc numerical methods to meet machine learning. At first, we introduce the convergence theorem:

Theorem 1. Sugihara & Matsuo (2004)

Assume α, β, d > 0, that

(1) f belongs to H1 (Dd), where H1 is the Hardy space and Dd = {z ∈ C | |ℑz| < d};

(2) f decays exponentially on the real line, that is, |f(x)| ≤ α exp(−β|x|), ∀x ∈ R.

Then we have

sup
−∞<x<∞

∣∣∣∣∣∣f(x)−
N∑

j=−N

f(jh)S(j, h)(x)

∣∣∣∣∣∣ ≤ CN1/2 exp
[
−(πdβN)1/2

]
(7)

for some constant C, where the step size h is taken as

h =

(
πd

βN

)1/2

. (8)

Theorem 1 indicates that the exponential convergence of Sinc approximation on the real line depends
on the parameters d, β, determined by the target function f . Thus, in Sinc numerical methods, re-
searchers set specific parameters for specific function f Sugihara & Matsuo (2004); Mohsen (2017)
or set them by bisection Richardson & Trefethen (2011). Note that both approaches require the
target function f , but in machine learning, f is usually unknown.

In numerical mathematics, practical problems generally require approximating on an interval (a, b)
instead of the entire real line R. To implement Sinc methods on general functions, we have to

1In engineering, they define Sinc function as Sinc(x) = sin(πx)
πx
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transform the interval (a, b) to R with a properly selected coordinate transformation, i.e. we define
a transformation x = ψ (ξ) such that ψ : (−∞,+∞) → (a, b). Then Eq. (6) is replaced by

f(ψ(ξ)) ≈
N∑

j=−N

f(ψ(jh))S(j, h)(ξ), −∞ < ξ <∞, (9)

where h is the step size with the optimal value
√
πd′/β′N provided in Theorem 2. The follow-

ing theorem states that Theorem 1 still holds with some different α, β, and d after the coordinate
transformation.
Theorem 2. Sugihara & Matsuo (2004)

Assume that, for a variable transformation x = ψ(ξ), the transformed function f(ψ(ξ)) satisfies
assumptions 1 and 2 in Theorem 1 with some α′, β′ and d′. Then we have

sup
a≤x≤b

∣∣∣∣∣∣f(x)−
N∑

j=−N

f(ψ(jh))S(j, h)
(
ψ−1(x)

)∣∣∣∣∣∣ ≤ CN1/2 exp
[
−(πd′β′N)1/2

]

for some C, where the step size h is taken as h =
√

πd′

β′N

This theorem suggests the possibility that even a function f with an end-point singularity can be
approximated successfully by Eq. (9) with a suitable choice of transformation.

Furthermore, we empirically demonstrate the merits of Sinc methods in Fig. 1 via numerical re-
sults generated by Chebfun Driscoll et al. (2014) for Chebyshev and cubic spline interpolation and
Sincfun Richardson & Trefethen (2011) for Sinc interpolation.
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(c) Comparison of Fig. 1(b)

Figure 1: Fig. 1(a) depicts the Sinc’s merit of handling the end-point singularity while the Cheby-
shev and the spline converge slowly. Fig. 1(b) shows that, for the boundary layer functions that have
high derivatives, Sinc converges exponentially while Chebyshev converges slowly at first. Fig. 1(c)
partially depicts the solution and the interpolations over the interval [0, 0.08], indicating that Sinc
interpolation provides the most accurate approximation, while Chebyshev interpolation exhibits sig-
nificant oscillations, and spline interpolation shows localized inaccuracies in certain regions.

2.3 SINC KOLMOGOROV-ARNOLD NETWORK (SINCKAN)

Suppose Φ = {ϕp,q} is the matrix of univariate functions where p = 1, 2, . . . nin, q = 1, 2, . . . nout.
Then the L-layers Kolmogorov-Arnold Networks can be defined by2:

KAN(x) = (ΦL−1 ◦ΦL−2 ◦ · · · ◦Φ1 ◦Φ0)x, x ∈ Rd. (10)

In vanilla KAN Liu et al. (2024b), every univariate function ϕ is approximated via a summation with
cubic spline:

ϕspline (x) = wbsilu (x) + ws

(∑
i

ciBi(x)

)
, (11)

2the detailed explanation of KAN is in Appendix G.3
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where ci, wb, ws are trainable parameters, and Bi is the spline. Intuitively, to replace cubic interpo-
lation with Sinc, we can define:

ϕsingle (x) =

N∑
i=−N

ciS(i, h)(x), (12)

where ci is trainable parameters, if h is set to the optimal value Eq. (8), the optimal approximation
of f(x) in Eq. (6) is c∗i = f(ih),∀i = −N, · · · , N . However, to replace the interpolation method
successfully, the aforementioned techniques require further investigations:

Optimal h As we discussed in Section 2.2, it is impractical to set a single optimal h in machine
learning frameworks. Thus in SincKAN, we propose an extension to the Sinc approximation with a
mixture of different step sizes hj :

ϕmulti (x) =

M∑
j=1

N∑
i=−N

ci,jS(i, hj)(x), (13)

where ci,j are trainable parameters. Stenger (2012) states that, if the chosen h is larger than the op-
timal value predicted by Eq. (8), the interpolation is less accurate near the origin and more accurate
farther away from the origin; if the chosen h is smaller than the optimal value predicted by Eq. (8),
the interpolation is more accurate near the origin and less accurate farther away from the origin.
Herein, combining different h with adaptive weights can result in a more accurate approximation
than the optimal h and doesn’t need to calculate the optimal h. Thus, compared to Eq. (12), expand-
ing the approximation by a summation of several different hj can not only avoid determining h for
every specific function but also improve the accuracy.

Coordinate transformation Another challenge is the choice of coordinate transformation which
is also problem-specific Stenger (2000). Let’s inherent the notation of Section 2.2, and suppose
X = {xi}Ni=1 is the ordered set of input points with x1 ≤ x2 ≤ · · · ≤ xN , then we can define
the open interval (a, b) by a = x1 − ϵ, b = xN + ϵ, where ϵ is a chosen number, and ξ1 =
ψ−1(x1), ξN = ψ−1(xN ). Thus, the interval of input points changes to [ξ1, ξN ] from [x1, xN ].
However, if we perform such a transformation for every sub-layer, the scale of the input becomes
larger and inconsistent, making the network converge slower Ioffe (2015). Herein, we argue that
the normalization for the input of every layer is necessary, and Bozorgasl & Chen (2024) already
utilizes the batch normalization Ioffe (2015) on every layer to enhance the performance of KANs.
In our SincKAN, a normalizing transformation, ϕ(x) = x−µ

σ is introduced, where σ is the scaling
factor and µ is the shifting factor. Composing ϕ and ψ still meets the condition of ψ in Theorem 2
and the transformed function f(ψ ◦ ϕ−1(ξ)) also satisfies assumptions 1 and 2 in Theorem 1 with
α⋆, β⋆ and d⋆ (proved in Appendix A). Consequently, the optimal value of the step size h is changed
to
√
πd⋆/β⋆N .

Let us define the normalized coordinate transformation γ−1(x) := ϕ ◦ ψ−1(x) such that γ−1 :

(a, b) → (−∞,∞) and [x1, xN ] →
[
ξ1−µ
σ , ξN−µ

σ

]
, where σ, µ satisfies

[
ξ1−µ
σ , ξN−µ

σ

]
⊂ [−1, 1].

Herein, instead of coordinate transformation ψ, we use normalized coordinate transformation γ
in SincKAN. As for the changing of optimal h with different σ, µ, the summation of different hj
implemented in SincKAN makes it easy to meet the fixed scale [−1, 1] i.e. we can depend the set
{hj} on the domain [−1, 1] regardless of σ, µ.

Exponential decay In Theorem 2, f should satisfy the condition of exponential decay which con-
strains that f(−∞) = f(+∞) = 0. To utilize the Sinc methods on general functions, Richardson &
Trefethen (2011) interpolates the subtraction g − f instead of f , where g is the linear function that
has the same value as f at the endpoints. In our SincKAN, we introduce a learnable linear function
as a skip-connection to approximate the subtraction.

Finally, combining the three aforementioned approaches, we can define our learnable activation
function in SincKAN:

ϕsinc (x) = c1x+ c2 +

M∑
j=1

N∑
i=−N

ci,jS(i, hj)(γ
−1(x)), (14)
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where c1, c2, ci,j are the learnable parameters S is the Sinc function and γ is the normalized trans-
formation.

3 EXPERIMENTS

In this section, we will demonstrate the performance of SincKANs through experiments including
approximating functions and solving PDEs, compared with several other representative networks:
Multilayer perceptron (MLP) which is the classical and most common network used in PINNs,
Modified MLP which is proposed to project the inputs to a high-dimensional feature space to en-
hance the hidden layers’ capability, KAN which is proposed to replace MLP in AI for Science, and
ChebyKAN which is proposed to improve the performance by combining KAN with the known ap-
proximation capabilities of Chebyshev polynomials and has already been examined in Shukla et al.
(2024). In this paper, we choose to implement the normalized transformation γ(x) = tanh(x), and
the linear skip connection w1 ∈ Rnin×nout , w2 ∈ Rnout . Note that, we also observed the instability
of ChebyKAN highlighted in Shukla et al. (2024), and the ChebyKAN used in our experiments is
actually the modified ChebyKAN proposed by Shukla et al. (2024) which has tanh activation func-
tion between each layers. The rest details of the used networks are provided in Appendix G. The
other details including hyperparameters can be found in Appendix D.

3.1 LEARNING FOR APPROXIMATION

Approximating a function by given data is the main objective of KANs with applications in identi-
fying relevant features, revealing modular structures, and discovering symbolic formulas Liu et al.
(2024a). Additionally, in deep learning, the training process of a network can be regarded as ap-
proximating the map between complex functional spaces, thus the accuracy of approximation di-
rectly indicates the capability of a network. Therefore, we start with experiments on approximation
to show the capability of SincKAN and verify whether SincKAN is a competitive network. In this
section, to have consistent results with KAN, we inherit the metric RMSE which is used in KAN.

Sinc numerical methods are recognized theoretically and empirically as a powerful tool when deal-
ing with singularities. However, in machine learning instead of numerical methods, we argue that
SincKAN can be implemented in general cases. To demonstrate that SincKAN is robust, we con-
ducted a series of experiments on both smooth functions which cubic splines interpolation is good at
and singularity functions which Sinc interpolation is good at. We demonstrate partial of them in Ta-
ble 1, the rest can be found in Table 5. The details of the used functions can be found in Appendix B.

Table 1: RMSE of functions for approximation
Function name MLP modified MLP KAN ChebyKAN SincKAN (ours)

sin-low 1.51e-2± 2.01e-2 7.29e-4± 2.98e-4 1.27e-3± 3.13e-4 1.76e-3± 3.19e-4 3.55e-4± 3.08e-4
sin-high 7.07e-1± 6.44e-8 7.07e-1± 1.15e-5 7.06e-1± 1.36e-3 5.70e-2± 5.99e-3 3.94e-2± 5.36e-3
multi-sqrt 2.06e-3± 1.16e-3 4.59e-4± 4.86e-4 3.61e-4± 8.67e-5 2.34e-3± 1.17e-3 2.14e-4± 2.49e-4
piece-wise 2.01e-2± 5.16e-3 3.76e-2± 1.83e-2 5.84e-2± 1.03e-2 7.28e-3± 9.59e-4 2.14e-3± 7.76e-4
spectral-bias 4.18e-3± 1.18e-3 1.59e-3± 2.39e-4 4.73e-2± 9.94e-3 5.60e-3± 2.56e-4 1.48e-3± 1.82e-4
multimodal2-2d 7.55e-3± 2.59e-3 2.43e-3± 1.15e-3 7.97e-3± 4.82e-3 6.12e-2± 2.02e-2 2.11e-3± 3.57e-4
fractal-2d 2.89e-2± 2.40e-2 2.60e-2± 7.26e-3 2.54e-1± 1.88e-2 6.14e-2± 5.07e-3 7.53e-3± 6.09e-4
lpmv 1.27e-3± 6.13e-5 3.79e-4± 1.58e-4 4.19e-4± 1.14e-4 8.42e-3± 1.29e-3 2.72e-4± 1.97e-5
ellipj 6.51e-4± 2.40e-5 7.75e-5± 9.74e-7 1.29e-4± 2.00e-5 4.80e-3± 4.03e-4 3.02e-5± 5.08e-6
exp-sin-4d 3.85e-2± 5.27e-4 1.53e-2± 1.33e-3 6.22e-3± 1.23e-3 4.96e-1± 1.91e-2 2.74e-3± 3.29e-4
exp-100d 3.99e-3± 1.88e-4 1.04e-1± 4.96e-4 9.42e-2± 3.02e-3 nan 2.91e-3± 1.03e-5

The results in Table 1 show that SincKAN achieves impressive performance on low-frequency func-
tions (sin-low), high-frequency functions (sin-high), continuous but non-differentiable functions
(multi-sqrt) and discontinuous functions (piece-wise). Furthermore, the last function (spectral-bias)
is designed to evaluate the ability to address the prevalent phenomenon of spectral bias by Rahaman
et al. (2019), and the corresponding result in Table 1 indicates that SincKAN maximally alleviates
the spectral bias. Additionally, we also evaluate every network on the finer grid to test their general-
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Figure 2: Fig. 2(a) depicts the function of piece-wise in Table 1 and compares the performance
of SincKAN with MLP and KAN. Fig. 2(b) demonstrates the convergence of relative error for all
networks, note that although the ChebyKAN we used is the modified ChebyKAN, its training is still
unstable. Herein, the results of ChebyKAN in this paper are always the last valid error. Fig. 2(c)
and Fig. 2(d) demonstrate the singularities in detail and show that the SincKAN can approximate
the singularities well while MLP and KAN have obvious differences.

ization, we put the results on Appendix F. The comparison of cost is in Appendix H. Furthermore,
as an important aspect of understanding SincKANs, we plot some interior ϕ in Appendix E.

3.1.1 SELECTING H

Utilizing a set of {hi} instead of a single step size h is a novel approach that we developed specif-
ically for SincKANs. To evaluate the effectiveness of this approach, in this section, we design a
comprehensive experiment. Suppose hmin = min{hi}, hmax = max{hi}, based on the discussion
of Section 2.3, the ideal case is the optimal h∗ =

√
πd⋆/β⋆N ∈ (hmin, hmax). In the experiments,

we provide two types of the set with two hyperparameters: the base number h0 and the cardinality
of the set M :

1. inverse decay {hi}Mi=1: hi = 1/ih0,

2. exponential decay {hi}Mi=1: hi = 1/hi0.

We train SincKAN on sin-low and sin-high functions with M = 1, 6, 12, 24 for inverse decay and
M = 1, 2, 3 for exponential decay and h0 = 2.0, π, 6.0, 10.0. Besides, the number of discretized
pointsNpoints and the degreeNdegree (Ndegree = 2N+1, whereN is the notation in Eq. (14)) also
influence the performance of SincKAN for different {hi}Mi=1, we empirically set Ndegree = 100,
and Npoints = 5000 in this experiment.

The results are illustrated in Fig. 12 for inverse decay and Fig. 13 for exponential decay, and the
details including the corresponding error bars are shown in Appendix K. For sin-low function, the
best RMSE 1.49e-4 ± 8.74e-5 is observed with h0 = 10.0 and M = 1; for sin-high function, the
best RMSE 4.60e-3 ± 3.70e-4 is observed in inverse decay with h0 = 10.0 and M = 24. The
experiments use two divergent Fourier spectra (4π, and 400π), and get extremely different optimal
hyperparameters M . But the RMSE is accurate enough for both sin-low and sin-high in inverse
decay with M = 6 and h0 = 10.0.

We also discuss the relationship between degree and data size in Appendix I and the update of basis
in Appendix J.
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Figure 3: Fig. 3(a) depicts the exact solution of Eq. (15) with different ϵ and the corresponding
predicted solution by SincKAN, states that SincKAN can solve Eq. (15) properly even with an
extremely narrow boundary layer. Fig. 3(b) depicts the convergence of the training loss function of
SincKAN with different ϵ. Fig. 3(c) demonstrates the poor performance of different networks when
solving Eq. (15) with ϵ = 1000 due to the large derivatives of the boundary layer.

3.2 LEARNING FOR PIKANS

Solving PDEs is the main part of scientific computing, and PINNs are the representative framework
for solving PDEs by neural networks. In this section, we solve a series of challenging PDEs to
showcase the performance of SincKAN. At first, we select several classical PDEs to verify the
robustness of SincKAN, the results are shown in Table 2, and the details of the PDEs can be found
in Appendix C.

Table 2: Relative L2 error for chosen PDE problems
Experiments MLP modified MLP KAN ChebyKAN SincKAN (ours)

perturbed 2.89e-2± 3.09e-2 6.30e-1± 1.14e-1 4.48e-3± 4.20e-3 6.73e-1± 1.02e-1 1.88e-3± 8.55e-4
nonlinear 3.92e-1± 2.36e-5 1.56e-2± 2.10e-2 6.15e-4± 7.96e-4 7.78e-1± 2.67e-2 1.77e-3± 1.06e-3
bl-2d 2.38e-1± 6.22e-2 5.34e-2± 1.91e-2 1.19e-2± 4.22e-3 5.97e-2± 3.83e-2 2.31e-3± 7.10e-4
ns-tg-u 8.14e-5± 1.96e-6 2.14e-5± 2.67e-6 3.21e-4± 2.02e-5 6.43e-2± 2.70e-2 6.51e-4± 7.03e-5
ns-tg-v 8.30e-5± 2.47e-6 1.91e-5± 1.63e-6 4.04e-4± 1.25e-4 5.86e-2± 4.15e-2 1.34e-3± 4.38e-4

3.2.1 BOUNDARY LAYER PROBLEMS

To intuitively show the performance of SincKAN compared with other networks, we conducted
additional experiments on the boundary layer problem:

uxx/ϵ+ ux = 0, x ∈ [0, 1] (15)

with the exact solution u(x) = exp(−ϵx). As ϵ increases, the width of the boundary layer (left)
decreases, and the complexity of learning increases. The results shown in Table 3 and Fig. 4 reveal
that SincKANs can handle the boundary layer effectively, while other networks struggle when ϵ is
large.

Table 3: Relative L2 error for different ϵ in Eq. (15)
ϵ MLP Modified MLP KAN ChebyKAN SincKAN (ours)

1 6.60e-5± 1.91e-5 3.88e-6± 7.22e-7 5.97e-6± 5.24e-6 1.98e-6± 4.51e-7 7.78e-5± 1.14e-4
10 2.83e-4± 4.22e-5 1.69e-4± 6.85e-5 3.23e-5± 1.81e-5 4.45e-6± 4.01e-7 1.14e-4± 1.64e-4
102 1.29e-3± 3.24e-4 6.25e-4± 2.27e-4 1.25e-2± 2.62e-3 5.27e-4± 6.55e-4 1.68e-4± 6.16e-5
103 9.87± 8.70 1.53e-1± 5.59e-2 11.3± 8.79 10.9± 7.18 5.48e-3± 3.45e-3
104 8.41± 3.64 6.52± 4.35 9.73± 8.77 22.1± 4.49 5.27e-3± 1.29e-3
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3.2.2 FRACTIONAL PDES

Fractional PDEs are a challenge problem which the traditional numerical methods still face chal-
lenges due to their non-locality and singularity until now. We consider the following fractional PDE
and demonstrate the results Fig. 4. The details are in Appendix D.3.

−∆su+ γu = f, x ∈ (−1, 1), (16)

with f = 1 + γu, and

u(x) =
2−2sΓ(d/2)

Γ(d/2 + s)Γ(1 + s)
(1− ∥x∥22)s, (17)
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Figure 4: Fig. 4(a) depicts the loss of MLP and SincKAN with s = 0.85. For comparing the error
between MLP and SincKAN, Fig. 4(b) depicts the results with s = 0.85, Fig. 4(c) depicts the results
with s = 0.95.

3.2.3 HIGH-DIMENSIONAL PROBLEMS

We consider the classical high-dimensional Poisson equations:

∆u = f, x ∈ [0, 1]d, (18)

If f = 2α(2α∥x∥22 − d)e−α∥x∥2
2 , the exact solution is u(x) = e−α∥x∥2

2 . In our experiments, we set
d = 100. The details can be found in Appendix D, and Fig. 5 shows the performance of MLP and
SincKAN.
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Figure 5: Fig. 5(a) shows the distribution of our testing points in the 20-th and 24-th dimension.
Fig. 5(b) and Fig. 5(c) show the relative error of every points in MLP and SincKAN.

3.2.4 ABLATION STUDY

Compared with Sinc numerical methods, SincKANs have a normalized transformation; compared
to KANs, SincKANs have a skip connection with linear functions. However, the Sinc numerical
methods also have some choices of coordinate transformations and KANs also have a skip connec-
tion with SiLU functions. Herein, we conduct an ablation study on SincKANs with non-normalized
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Table 4: Relative L2 error for ablation study
ψ γ Linear SiLU T-nonlinear Burgers’ equation

✘ ✘ ✘ ✘ 9.20e-4± 4.31e-4 1.57e-2± 4.31e-3
✘ ✔ ✘ ✘ 5.80e-4± 1.89e-4 6.21e-4± 1.96e-4
✘ ✔ ✔ ✘ 2.44e-4± 6.08e-5 3.12e-3± 2.48e-3
✘ ✔ ✘ ✔ 1.60e-4± 3.17e-5 8.90e-3± 6.76e-3
✔ ✘ ✔ ✘ 1.11e-2± 1.17e-3 7.36e-2± 2.02e-2
✔ ✘ ✘ ✔ 1.30e-2± 4.00e-4 1.12e-1± 6.80e-3

transformation and the SiLU skip connection to verify the effect of the two proposed modules. This
experiment uses Burger’s equation Eq. (46) and time-dependent nonlinear equation Eq. (48).

Table 4 shows the results of the ablation study where ψ(x) = log(x−a
b−x ), γ(x) = tanh(x),

Linear(x) = w1x+w2+ϕ(x), and SiLU(x) = wbsilu(x)+wsϕ(x). The non-normalized transfor-
mation performs poorly, even compared to the cases without transformations. Although the linear
skip connection is not the best for both equations, it is the most stable approach for SincKANs.

4 CONCLUSION

In this paper, we propose a novel network called Sinc Kolmogorov-Arnold Networks (SincKANs).
Inspired by KANs, SincKANs leverage the Sinc functions to interpolate the activation function and
successfully inherit the capability of handling singularities. To set the optimal h, we propose the
multi-h interpolation, and the corresponding experiments indicate that this novel approach is the
main reason for SincKANs’ superior ability in approximating complex smooth functions; to choose
a proper coordinate transformation for machine learning, we propose the normalized transformation
which prevents slow convergence.; to satisfy the decay condition, we introduce the skip-connection
with learnable linear functions. After tackling the aforementioned challenges, SincKANs become a
competitive network that can replace the current networks used for PINNs.

We begin with training on approximation problems to demonstrate the capability of SincKANs. The
results reveal that SincKANs excel in most experiments compared with other networks. However,
directly approximating the target function is an impractical objective for almost all machine learning
tasks. After verifying the capability, we turn to solving PDEs in the PINNs framework. Although
the SincKANs achieve impressive performance in approximation tasks for solving all chosen PDEs,
SincKANs merely have the best accuracy on boundary layer problems, due to the oscillations caused
by the inaccuracy of derivatives.

Limitations: Approximating derivative by Sinc numerical methods is always inaccurate in the
neighborhood of the Sinc end-points. To address this problem, Stenger (2009) suggested using La-
grange polynomial to approximate the derivative instead of straightforwardly calculating the deriva-
tive of Sinc polynomials, Wu et al. (2006) used several discrete functions to replace the derivative
of Sinc polynomials, etc. Unfortunately, to the best of our knowledge, there isn’t an approach that
can be implemented in our SincKAN when we demand the derivatives of SincKAN in PIKANs.
Herein, to alleviate the inaccuracy, we choose small h0, smallM , and smallN so that SincKAN can
solve PDEs, otherwise, the solution will have oscillations (see Appendix L). Such kind of setting
limits the capability of SincKAN and we argue that this is the main reason that SincKAN can obtain
good results but not the best results for some cases. Furthermore, the inaccuracy limits SincKAN
in solving high-order problems such as Korteweg–De Vries equations, and Kuramoto–Sivashinsky
equations.

Futures: However, as the accuracy of approximating the derivative decreases with the order of
derivative increases if the PDE merely requires the first derivatives, then the SincKANs will release
the limitation to have larger enough h0, M , and N and improve the performance. In literature, to
avoid calculating the high-order derivatives, MIM Lyu et al. (2022); Li et al. (2024) is proposed
to use the mixed residual method which transforms a high-order PDE into a first-order PDE sys-
tem. SincKANs can implement this approach to calculate several first-order derivatives instead of
the high-order derivatives so that SincKANs can have accurate estimations for the residual loss.
Furthermore, replacing the automatic differentiation Cen & Zou (2024); Yu et al. (2024) by other
operators is also expected.
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A PROOF OF TRANSFORMATION

Theorem 3. For a linear transformation x = σξ + µ, if f(x), x ∈ R, satisfies the assumption of
Theorem 1 for some d, α, β > 0, that is,

(1) f belongs to H1 (Dd), where H1 is the Hardy space and Dd = {z ∈ C | |ℑz| < d};

(2) f decays exponentially on the real line, that is, |f(x)| ≤ α exp(−β|x|), ∀x ∈ R.

the transformed function f̃(ξ) = f(σξ + µ), ξ ∈ R satisfies assumptions 1 and 2 with some α̃, β̃
and d̃.

Proof. For assumption (1), as µ and σ are real number,

f(x) ∈ H1 (Dd) (19)

⇔
lim
ε→0

∫
∂Dd(ε)

|f(z)||dz| <∞ (20)

⇔ ∫ ∞

−∞
|f(x± id)|dx <∞ (21)

Then ∫ ∞

−∞
|f̃(x̃± id̃)|dx̃

=

∫ ∞

−∞
|f(σx̃+ µ± iσd̃)|dx

=

∫ ∞

−∞
|f(x′ ± id′)|dx′, where x′ = σx̃+ µ, d′ = σd̃

(22)

If d′ < d, i.e. d̃ < d
σ , then

∫∞
−∞ |f(x′ ± id′)|dx′ <∞ ⇒ f̃(ξ) ∈ H1

(
Dd̃

)
. As d

σ > 0, d̃ exists, (1)
is satisfied.

For assumption (2), as |f̃(ξ)| ≤ α exp(−β|σξ + µ|), ∀ξ ∈ R, if there exists α̃, β̃ > 0 such that
α exp(−β|σξ + µ|) ≤ α̃ exp(−β̃|ξ|), then (2) is satisfied:

α exp(−β|σξ + µ|) ≤ α̃ exp(−β̃|ξ|) (23)

⇒
logα− β|σξ + µ| ≤ log α̃− β̃|ξ| (24)

⇒

β̃ ≤
log α̃

α

|ξ|
+ β

∣∣∣∣σ +
µ

ξ

∣∣∣∣ , if ξ ̸= 0. (25)

Thus, if α̃ > α, there exists a β̃ > 0 that satisfies the above inequality; on the other hand if ξ = 0,
obviously α exp(−β|σξ + µ|) ≤ α < α̃. Herein, α̃, β̃ exists.

In total, there exists d̃, α̃, β̃ > 0 such that f̃ satisfies assumption (1) and (2)
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B EXPLICIT EXPRESSION OF FUNCTIONS

The following functions are used in Table 1 and Table 5.

1. sin-low
f(x) = sin(4πx), x ∈ [−1, 1] (26)

2. sin-high
f(x) = sin(400πx), x ∈ [−1, 1] (27)

3. bl
f(x) = e−100x, x ∈ [0, 1] (28)

4. sqrt
f(x) =

√
x, x ∈ [0, 1] (29)

5. double-exponential

f(x) =
x(1− x)e−x

(1/2)2 + (x− 1/2)2
, x ∈ [0, 1] (30)

6. multi-sqrt
f(x) = x1/2(1− x)3/4, x ∈ [0, 1] (31)

7. piece-wise

f(x) =


sin(20πx) + x2, x ∈ [0, 0.5]

0.5xe−x + | sin(5πx)|, x ∈ [0.5, 1.5]

log(x− 1)/ log(2)− cos(2πx), x ∈ [1.5, 2]

(32)

8. spectral-bias

f(x) =


4∑

k=1

sin(kx) + 5, x ∈ [−1, 0]

cos(10x), x ∈ [0, 1]

(33)

9. multimodal1-2d

f(x) = − |sin (x1) · cos (x2)| · exp

(∣∣∣∣∣1−
√
x21 + x22
π

∣∣∣∣∣
)
, x ∈ [0, 1]2 (34)

10. multimodal2-2d

f(x) =− 20e
−0.2

√
(x2

1+x2
2) − ecos(2πx1)+cos(2πx2)

+ e+ 20, x ∈ [−1, 1]2
(35)

11. fractal-2d

f(x) =

[
sin (10πx1) cos (10πx2) + sin

(
π
(
x21 + x22

))
+ |x1 − x2|+

sin (5x1x2)

0.1 + |x1 + x2|

]
exp

(
−0.1

(
x21 + x22

))
, x ∈ [0, 1]2

(36)
12. lpmv

f(x) = scipy.special.lpmv(1, x1, x2), x ∈ [0, 1]2 (37)
13. ellipj

f(x) = scipy.special.ellipj(x1, x2), x ∈ [0, 1]2 (38)
14. sph-harm

f(x) = scipy.special.sph harm(1, 1, x1, x2), x ∈ [0, 1]2 (39)
15. exp-sin-4d

f(x, α) = exp

[
0.5 sin

(
π ·

2∑
i=1

x2i

)
+ 0.5 sin

(
π ·

4∑
i=3

x2i

)]
, x ∈ [−1, 1]4 (40)

16. exp-100d
f(x) = exp

(
−0.001∥x∥22

)
, x ∈ [0, 1]100 (41)
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Table 5: RMSE of functions for approximation
Function name MLP modified MLP KAN ChebyKAN SincKAN (ours)

bl 7.59e-4± 1.13e-3 5.73e-4± 4.06e-4 2.54e-4± 7.99e-5 1.81e-3± 6.98e-4 4.76e-5± 4.25e-5
sqrt 3.06e-3± 9.34e-4 4.46e-5± 5.51e-5 4.79e-4± 1.23e-4 3.69e-3± 1.27e-3 3.24e-4± 1.31e-4
multimodal1-2d 2.69e-3± 1.28e-3 2.08e-4± 5.48e-5 1.23e-2± 5.71e-4 1.23e-2± 5.83e-4 2.36e-3± 2.22e-3
sph-harm 3.93e-4± 2.27e-5 4.90e-5± 2.83e-5 7.67e-5± 6.05e-6 5.13e-3± 1.41e-5 6.26e-5± 1.40e-5
double exponential 1.95e-3± 8.17e-4 7.77e-5± 4.03e-5 2.15e-4± 1.52e-4 3.11e-3± 2.16e-3 7.06e-5± 1.09e-5

C DETAILS OF PDES

C.1 1D PROBLEMS

C.2 PERTURBED BOUNDARY VALUE PROBLEM

We consider the singularly perturbed second-order boundary value problem (perturbed in Table 2):

ϵuxx − ux = f(x), x ∈ [−1, 1]. (42)

In specific cases, the problem has exact solutions, in this paper, we choose f(x) = −1, and the exact
solution is

u(x) = 1 + x+
e

x
ϵ − 1

e
1
ϵ − 1

, (43)

where ϵ = 0.01 in our experiments.

C.3 NONLINEAR PROBLEM

We consider the nonlinear boundary value problem (nonlinear in Table 2):

−uxx +
ux
x

+
u

x2
=

(
−41x2 + 34x− 1

)√
x

4
− 2x+

1

x2
, x ∈ [0, 1]

u(0)− 2ux(0) = 1,

3u(1) + ux(1) = 9,

(44)

with the exact solutions
u(x) = x5/2(1− x)2 + x3 + 1. (45)

C.4 BURGERS

We consider the Burgers’ equation (Burgers’ equation in Table 4):

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0, x ∈ [−1, 1], t ∈ [0, 0.1]. (46)

with Dirichlet boundary condition, and the exact solution is

u =
a

2
−
a tanh

(
a(x−at/2)

4ν

)
2

, (47)

where a = 0.5, ν = 0.01 in our experiments.

C.5 T-NONLINEAR PROBLEM

We consider the time-dependent nonlinear problem (T-nonlinear in Table 4):

ut =
x+ 2

t+ 1
ux, x ∈ [−1, 1], t ∈ [0, 0.1].

u(x, 0) = cos(x+ 2),

u(1, t) = cos(3(t+ 1)),

(48)

with the exact solution:
u(x, t) = cos((t+ 1)(x+ 2)). (49)
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C.6 CONVECTION-DIFFUSION

We consider the 1-D convection-diffusion equation with periodic boundary conditions (used in Ap-
pendix L):

ut + aux − ϵuxx = 0, x ∈ [−1, 1] , t ∈ [0, 0.1] ,

u(x, 0) =

5∑
k=0

sin (kπx) ,
(50)

with the analytic solution

u(x, t) =

5∑
k=0

sin (kπx− kaπt) e−ϵk2π2t, (51)

where ϵ = 0.01, and a = 0.1in our experiments.

C.7 2D PROBLEMS

C.7.1 BOUNDARY LAYER

We consider the 2-D boundary layer problem (bl-2d in Table 2):

uxx/α1 + ux + uyy/α2 + uy = 0, (52)

with the exact solution
u(x, y) = exp(−α1x) + exp(−α2y), (53)

where α1 = α2 = 100 in our experiments.
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Figure 6: Fig. 6(a) depicts the exact solution of Eq. (52), Fig. 6(b) shows the solution predicted by
SincKAN, Fig. 6(c) shows the absolute error between the predicted solution and the exact solution,
exhibits that the error mainly comes from the boundary layer.

C.7.2 NAVIER STOKES EQUATIONS

We consider the Taylor–Green vortex (ns-tg-u and ns-tg-v in Table 2):

∇ · u = 0, t ∈ [0, T ], x ∈ Ω,

∂tu+ u · ∇u = −∇p+ ν△u, t ∈ [0, T ], x ∈ Ω,
(54)

where u = (u, v),with the exact solution

u = − cos(x) sin(y) exp(−2νt)

v = sin(x) cos(y) exp(−2νt)

p = − (cos(2x) + sin(2y)) exp(−4νt)/4

(55)

with T = 1, ν = 1/400 in our experiments. After dimensionless, x ∈ [0, 1]2.
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D EXPERIMENT DETAILS

Totally, in our experiments, the Adam Kingma & Ba (2014) optimizer is used with the exponential
decay learning rate. The MLP and modified MLP are equipped with the tanh activations and Xavier
initialization inherited from Raissi et al. (2019).

D.1 APPROXIMATION

The hyperparameters of used networks are shown in Table 7.

• For the 1-D problem, we generate the training dataset by uniformly discretizing the input
interval to 5000 points and train the network with 3000 points randomly sampled from the
training dataset for each iteration. In total, We train every network with 105 iterations. Ad-
ditionally, to evaluate the generalization, we generate the testing (fine) dataset by uniformly
discretizing the input interval to 10000 points.

D.2 PIKANS

The hyperparameters of used networks are shown in Table 8.

• For time-independent 1-D problems, we generate the training dataset by uniformly dis-
cretizing the input interval to 1000 points, then train the network with 500 points randomly
sampled from the training dataset for each iteration. In total, We train every network with
1.5× 106 iterations.

• For time-dependent 1-D problems, we generate the training dataset by uniformly discretiz-
ing the spatial dimension to 1000 points and the temporal dimension to 11 points, then
train the network with 5000 points randomly sampled from the training dataset for each
iteration. In total, We train every network with 1.5× 106 iterations.

• For time-independent 2-D problems, we generate the training dataset by uniformly dis-
cretizing every dimension to 100 points, then train the network with 5000 points randomly
sampled from the training dataset for each iteration. In total, We train every network with
1.5× 106 iterations.

• For time-dependent 2-D problems, we generate the training dataset by uniformly discretiz-
ing every spatial dimension to 100 points and the temporal dimension to 11 points, then
train the network with 50000 points randomly sampled from the training dataset for each
iteration. In total, We train every network with 1.5× 106 iterations.

• For 100-D Poisson equation, we sample 2000 points from the interior domain, and 10000
points from the boundary domain for each iteration. We train every network with 5 × 106

iterations. For the testing data, we sample 8000 points from the interior domain and 2000
points from the boundary domain.

D.3 FRACTIONAL PINNS

The framework is from fPINNs Pang et al. (2019), we utilize the second order Grünwald-Letnikov
(GL) formula Lischke et al. (2020):

(−∆)α/2u (xj) = (1− β)δα∆x,1u (xj) + βδα∆x,0u (xj) +O
(
(∆x)2

)
, (56)

where

δα∆x,pu (xj) := (∆x)−α

j∑
k=0

(−1)k
(
α

k

)
u (xj − (k − p)∆x)

+ (∆x)−α

N−j∑
k=0

(−1)k
(
α

k

)
u (xj + (k − p)∆x) .

(57)

The interval is (0, 1) discretized by ∆x = 1/N , where N = 101. The learning rate is 10−2 for
SincKAN and 10−3 for MLP. The iteration number is 5× 105. The shape of SincKAN is 8× 8× 1.
The performance is shown in Fig. 7.
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Figure 7: Fig. 7(a) and Fig. 7(b) show the target solution and the predicted solution by SincKAN.

E INTERIOR APPROXIMATION OF SINCKAN

The results are demonstrated in Fig. 8.

(a) Eq. (52) for approximation

(b) Eq. (52) for PIKANs

Figure 8: Fig. 8(a) used high M so the interpolated phi has oscillations while Fig. 8(b) uses low M
so the phi is more smooth

F APPROXIMATION ON FINE GRIDS

As we discussed in Appendix D, we additionally evaluate every network on fine grids. And due to the
oscillations discussed in Appendix L, Table 6 reveals the weak generalization of SincKANs demands
further research, although the applications of approximating a function don’t strongly require this
capability.
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Table 6: RMSE evaluated on fine grids
Function name MLP modified MLP KAN ChebyKAN SincKAN (ours)

sin-low 1.51e-2± 2.01e-2 7.29e-4± 2.97e-4 1.27e-3± 3.04e-4 1.76e-3± 3.19e-4 4.46e-4± 2.79e-4
sin-high 7.07e-1± 4.21e-8 7.07e-1± 1.31e-5 7.06e-1± 1.29e-3 5.70e-2± 5.99e-3 4.15e-2± 4.53e-3
bl 7.63e-4± 1.13e-3 5.72e-4± 4.01e-4 2.62e-4± 7.89e-5 1.81e-3± 6.98e-4 2.28e-4± 1.16e-4
double exponential 1.95e-3± 8.17e-4 7.76e-5± 4.07e-5 2.18e-4± 1.51e-4 3.11e-3± 2.16e-3 7.06e-5± 1.09e-5
sqrt 3.06e-3± 9.34e-4 4.46e-5± 5.51e-5 4.79e-4± 1.23e-4 3.69e-3± 1.27e-3 3.24e-4± 1.31e-4
multi-sqrt 2.06e-3± 1.16e-3 4.59e-4± 4.86e-4 3.61e-4± 8.67e-5 2.34e-3± 1.17e-3 2.14e-4± 2.49e-4
piece-wise 2.06e-2± 5.57e-3 3.75e-2± 1.81e-2 5.84e-2± 1.03e-2 7.28e-3± 9.59e-4 9.41e-3± 2.14e-4
spectral-bias 2.48e-2± 9.77e-3 1.88e-2± 9.55e-4 4.79e-2± 9.44e-3 2.18e-2± 2.97e-4 2.21e-2± 9.98e-5

G DETAILS OF OTHER NETWORKS

G.1 MLP

Multilayer Perceptron (MLP) is the neural network consisting of fully connected neurons with a
nonlinear activation function, and can be represented simply by:

MLP(x) =
(
WL−1 ◦ σ ◦WL−2 ◦ σ ◦ · · · ◦W 1 ◦ σ ◦W 0

)
x (58)

where W i(x) = Wix + bi, Wi ∈ Rmi×ni is a learnable matrix, bi ∈ Rmi is a learnable bias, σ is
the chosen nonlinear activation function, and L is the depth of MLP.

G.2 MODIFIED MLP

Modified MLP is an upgraded network of MLP inspired by the transformer networks. It introduces
two extra features and has a skip connection with them:

U = σ(WL+1x), , V = σ(WL+2x), H1 = σ(W 0x),

Hi+1 = (1− σ(W iHi)) ∗ U + σ(W iHi) ∗ V, i = 1, · · · , L,
ModifiedMLP(x) =WL+3HL+1,

(59)

where ∗ is the element-wise multiplication.

G.3 KAN

G.3.1 KOLMOGOROV-ARNOLD REPRESENTATION THEOREM

The Kolmogorov-Arnold representation theorem states that any multivariate continuous function on
a bounded domain can be represented as a finite composition of univariate continuous functions and
addition. Specifically for a continuous f : [0, 1]n → R, there exists continuous 1D functions ϕq,p,
Φq such that

f(x) = f (x1, · · · , xn) =
2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p (xp)

)
. (60)

G.3.2 KOLMOGOROV-ARNOLD NETWORK

Inspired by Kolmogorov-Arnold representation theorem, Kolmogorov-Arnold Network (KAN) is
a novel network that aims to be more accurate and interpretable than MLP. The main difference is
KAN’s activation functions are learnable: suppose Φ = {ϕp,q} is the matrix of univariable functions
where p = 1, 2, . . . nin, q = 1, 2, . . . nout and θ represents the trainable parameters. The KAN can
be defined by:

KAN(x) = (ΦL−1 ◦ΦL−2 ◦ · · · ◦Φ1 ◦Φ0)x, x ∈ Rd, (61)
where

Φl(x
(l)) =


n
(l)
in∑

i=1

ϕj,i

(
x
(l)
i

)
n
(l)
out

j=1

, ∀l = 0, 1, · · · , L− 1 (62)
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where xl ∈ Rn
(l)
in ,Φl(x

(l)) ∈ Rn
(l)
out . If a size of KAN is represented by an integer array

[n0, n1, · · · , nL], then n(l)in = nl, n
(l)
out = nl+1. To approximate every single activation function

ϕ, KAN utilizes the summation of basis function and spline interpolation:

ϕ (x) = wbsilu (x) + ws

(
N∑
i

ciBi(x)

)
, (63)

where ci, ws, wb are learnable, Bi is the k-th order B-splines, N = G + k − 1, and G is the grid
size.

G.4 CHEBYKAN

ChebyKAN utilizes the Chebyshev polynomials to construct the learnable activation function ϕ in
KAN. And the modified ChebyKAN embeds the tanh activation function between every layer. Thus
the ChebyKAN used in our experiments can be defined by:

ChebyKAN(x) = (ΦL−1 ◦ tanh ◦ΦL−2 ◦ · · · ◦Φ1 ◦ tanh ◦Φ0 ◦ tanh ◦)x, x ∈ Rd, (64)

where Φ has the same definition of Eq. (62) with different univariable function

ϕ =
∑
i

ciTi(x), (65)

where Ti is the ith Chebyshev polynomial.

H COMPUTATIONAL COST

H.1 TRAINING

In Eq. (14), SincKAN has an additional summation on several h, so the trainable coefficients c
are M times larger than KAN and ChebyKAN. However, the training time is not only dependent
on the number of total parameters, thus, we demonstrate the cost of training for approximation in
Table 7, and demonstrate the cost of training for PDEs in Table 8. In Table 7 and Table 8, we use
’depth × width’ to represent the size for MLP and modified MLP; ’width × degree’ to represent the
size for KAN and ChebyKAN; and ’width × degree ×M ’ to represent the size for SincKAN. Note
that we train the network in two environments distinguished by two superscripts:

†: training on single NVIDIA A100-SXM4-80GB with CUDA version: 12.4.

‡: training on single NVIDIA A40-48GB with CUDA version: 12.4.

Table 7: Computational cost for approximation†

Network Size Training rate (iter/sec) Referencing time (ms) Parameters

MLP 10× 100 9.89× 102 1.62× 101 81101
modified MLP 10× 100 9.13× 102 2.92× 101 81501
KAN 8× 8 1.15× 103 1.01× 102 160
ChebyKAN 40× 40 1.29× 103 3.11× 101 3280
SincKAN 8× 100× 6 1.29× 103 2.06× 101 9696

H.2 REFERENCING

As the referencing cost doesn’t depend on the task i.e. the loss function, the results are evaluated on
the model trained by approximation task and the results can be found in Table 7. The results reveal
that although SincKAN has much more parameters than KAN and ChebyKAN, SincKAN is faster
when referencing. Note that the referencing is slower than training because we compile the training
procedure by JAX Bradbury et al. (2018).
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Table 8: Computational cost for train PIKANs

Function name Network Size Training rate (iter/sec) Parameters

boundary layer‡

MLP 10× 100 6.47× 102 81101
modified MLP 10× 100 3.55× 102 81501
KAN 8× 8 1.33× 103 160
ChebyKAN 40× 40 1.89× 103 3280
SincKAN 8× 8× 1 1.27× 103 194

perturbed‡

MLP 10× 100 6.85× 102 81101
modified MLP 10× 100 3.59× 102 81501
KAN 8× 8 1.27× 103 160
ChebyKAN 40× 40 1.07× 103 3280
SincKAN 8× 8× 1 1.25× 103 194

nonlinear‡

MLP 10× 100 4.62× 102 81101
modified MLP 10× 100 3.07× 102 81501
KAN 8× 8 1.56× 103 160
ChebyKAN 40× 40 1.53× 103 3280
SincKAN 8× 4× 1 1.54× 103 130

bl-2d‡

MLP 10× 100 2.39× 102 81201
modified MLP 10× 100 1.96× 102 81801
KAN 8× 8 3.46× 102 240
ChebyKAN 40× 40 4.95× 102 4920
SincKAN 8× 20× 1 2.97× 102 570

ns-tg†

MLP 10× 100 1.71× 102 81503
modified MLP 10× 100 1.51× 102 82303
KAN 8× 8 2.55× 102 480
ChebyKAN 40× 40 3.83× 103 9840
SincKAN 8× 8× 1 2.77× 102 550

I RELATIONSHIP BETWEEN DEGREE AND SIZE OF DATA

In Sinc numerical methods, the number of the sampled points is equal to the degree because each
degree requires a corresponding value f(jh) at the point jh i.e. Ndegree = Npoints. However,
in SincKAN, Ndegree = Npoints is impractical, and also not necessary because Sinc numerical
methods can be regarded as a single-layer representation while our SincKAN is a multi-layer repre-
sentation where the multi-layer representation has an exponentially increasing capability with depth
Yarotsky (2017). To explore the relationship between degree and size of data, we train our SincKAN
with differentNdegree andNpoints. In this experiment, we train our SincKAN on spectral-bias func-
tion on N = 8, 16, 32, 64, 100, 300 and Npoints = 100, 500, 1000, 5000, 10000 with the inverse
decay {hi}Mi=1 in M = 6 and h0 = 7.0. Moreover, we set the batch size Nbatch = Npoints/4 to
adapt to the changing ofNpoints. The results are shown in Table 9 and Fig. 9. Additionally, Fig. 9(a)
shows that our neural scaling law is RMSE ∝ G−4 compared to the best scaling law RMSE ∝ G−3

claimed in KAN Liu et al. (2024b).

J UPDATE OF GRIDS

The interpolation of every ϕ is an important composition of KANs. However, the degree of the
interpolation methods is always determined empirically. Table 9 shows that larger degree doesn’t
mean better accuracy. One may argue that large model may cause over-parametrization. Herein, we
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Table 9: RMSE for different degree and Npoints

degree \ Npoints 100 500 1,000 5,000 10,000

8 2.60e-1± 2.76e-5 1.16e-1± 6.34e-6 8.23e-2± 4.54e-6 6.70e-2± 3.91e-3 6.81e-2± 4.51e-3
16 1.01e-2± 1.47e-2 1.30e-3± 9.42e-4 1.04e-3± 3.74e-4 1.62e-3± 2.48e-4 9.57e-4± 4.35e-4
32 3.63e-5± 5.79e-5 2.69e-4± 2.27e-4 4.72e-4± 2.75e-4 2.15e-3± 1.57e-3 3.08e-3± 7.14e-4
64 1.29e-3± 2.21e-3 5.60e-4± 6.42e-4 2.74e-3± 4.01e-3 1.83e-3± 8.49e-4 2.13e-3± 9.05e-4
100 7.66e-5± 1.16e-4 3.79e-4± 6.27e-4 4.24e-4± 7.42e-5 2.19e-3± 1.62e-3 2.64e-3± 1.76e-3
300 3.73e-4± 5.62e-4 7.30e-5± 4.25e-5 7.54e-4± 8.73e-4 2.21e-3± 1.04e-3 2.18e-3± 1.12e-3
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Figure 9: Figures of different Nponits with increasing degree.

propose the algorithm Algorithm 1) of grid extension so that SincKAN can start from small degree
and end at large degree.

Algorithm 1 Update grids
Input: M > N > 0, {ci}Ni=−N ,

Output: {c′i}Mi=−M
1: for all i = −M,−N + 1, · · · ,M do
2: if i ∈ [−N,N ] then
3: c′i = ci;
4: else
5: ci = 0
6: end if
7: end for

We test this method in the same hyperparameter in Appendix I on spectral-basis and bl functions.
For the first experiment, we set the constant degree Ndegree = 100 . For variable degree, we begin
with Ndegree = 8 and update it by [8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4] for 13 times to Ndegree = 100.
We train the constant degree for 1.4× 106 iterations. For variable degree, we train each degree 105

iterations, so the total number of training iterations is also 1.4× 106, the results of update grids are
shown in Fig. 10. We realized that there may have over-fitting problem in Ndegree = 100, thus for
the second experiment, we set the constant degree Ndegree = 96 . For variable degree, we begin
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with Ndegree = 8 and update it by [8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4] for 13 times to Ndegree = 96. We
train the constant degree for 1.3 × 106 iterations. For variable degree, we train each degree 105

iterations, so the total number of training iterations is also 1.3× 106, the results of update grids are
shown in Fig. 11.

Note that, because of the cost of changing the basis, using variable degree is slightly faster than
using constant degree. The cost is shown in Table 10.
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Figure 10: For bl and spectral-basis, Fig. 10(a) and Fig. 10(c) correspondingly shows the RMSE for
the constant degree Ndegree = 96; Fig. 10(b) and Fig. 10(d) correspondingly shows the RMSE for
the variable degree

Table 10: Computational cost for update of grids

constant degree spectral-bias 7.82× 102

variable degree spectral-bias 7.82× 102

constant degree bl 7.67× 102

variable degree bl 7.73× 102

K RESULTS OF SELECTED H

Table 11 and Table 12 show the results of selected {hi} in details. However, there are so many
hyperparameters that may be adjusted when hi is larger. For example, for the large h on fine grids,
we argue that Ndegree = 100 may not exploit the capability fully. Thus, we conducted an extra
experiment with 5000 grid points, {hi} = {1/10, 1/100, 1/1000}, andNdegree = 500. For sin-low,
the RMSE is 7.92e-4± 4.21e-4, and for the sin-high, the RMSE is 2.32e-3± 2.74e-4. It shows that
for sin-high, the SincKAN can obtain a more accurate result if we further tune the hyperparameters.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0 1.2
epochs 1e6

10 6

10 5

10 4

10 3

10 2

RM
SE

(a) bl

0.0 0.2 0.4 0.6 0.8 1.0 1.2
epochs 1e6

10 6

10 5

10 4

10 3

RM
SE

update grids

(b) bl

0.0 0.2 0.4 0.6 0.8 1.0 1.2
epochs 1e6

10 6

10 5

10 4

10 3

10 2

RM
SE

(c) spectral-basis

0.0 0.2 0.4 0.6 0.8 1.0 1.2
epochs 1e6

10 5

10 4

10 3

10 2

10 1

RM
SE

update grids

(d) spectral-basis

Figure 11: For bl and spectral-basis, Fig. 11(a) and Fig. 11(c) correspondingly shows the RMSE for
the constant degree Ndegree = 96; Fig. 11(b) and Fig. 11(d) correspondingly shows the RMSE for
the variable degree
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Figure 12: Fig. 12(a) shows the inverse decay approach on sin-low function; Fig. 12(b) shows the
inverse decay approach on sin-high function.

L OSCILLATIONS OF SINCKAN

We conducted the experiments on convection-diffusion equations (Eq. (50)) with h0 = 2.0, 10.0,
N = 8, 100, and M = 1, 6. Except h0 = 2.0 and N = 8, the inaccuracy of derivatives makes
SincKAN unstable with the loss diverging. We choose some figures plotted in Fig. 14 to show the
oscillations that limit the improvement of SincKANs.
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Figure 13: Fig. 13(a) shows the exponential decay approach on sin-low function; Fig. 13(b) shows
the exponential decay approach on sin-high function.

Table 11: RMSE for different {hi} with inverse decay

Function name h0 \ M 1 6 12 24

sin-low

2.0 7.80e-4± 7.96e-4 2.43e-4± 1.55e-4 1.18e-3± 2.38e-4 4.30e-3± 1.74e-3
π 1.60e-4± 6.66e-5 8.96e-4± 5.91e-4 2.27e-3± 8.53e-4 3.81e-3± 2.47e-3
6.0 2.91e-4± 1.22e-4 4.70e-4± 1.88e-4 3.23e-3± 8.47e-4 7.42e-3± 7.40e-3
10.0 1.49e-4± 8.74e-5 4.24e-3± 3.18e-3 1.73e-3± 1.08e-3 2.07e-3± 8.84e-4

sin-high

2.0 7.07e-1± 6.70e-6 5.91e-1± 6.32e-3 4.00e-2± 1.24e-3 2.23e-2± 1.38e-3
π 7.07e-1± 7.94e-6 2.18e-1± 1.88e-2 3.06e-2± 2.80e-3 1.75e-2± 2.44e-3
6.0 6.98e-1± 4.88e-3 1.44e-2± 1.34e-3 1.50e-2± 8.68e-4 7.03e-3± 1.95e-3
10.0 6.58e-1± 3.32e-3 7.55e-3± 1.73e-3 1.12e-2± 2.75e-3 4.60e-3± 3.70e-4

M METRICS

In this paper, we use two metrics. For interpolation, we inherit the RMSE metric from KAN Liu
et al. (2024b), the formula is :

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2; (66)

for PIKANs, we utilize the relative L2 error which is the most common metric used in PINNs:

RelativeL2 =
∥y − ŷ∥2
∥y∥2

, (67)

where y is the target value, and ŷ is the predicted value
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Table 12: RMSE for different {hi} with exponential decay

Function name h0 \ M 1 2 3

sin-low

2.0 7.80e-4± 7.96e-4 7.06e-4± 2.54e-4 6.33e-4± 1.38e-4
π 1.60e-4± 6.66e-5 5.40e-4± 2.05e-4 8.02e-4± 6.58e-5
6.0 2.91e-4± 1.22e-4 1.03e-3± 3.78e-4 3.47e-3± 3.31e-4
10.0 1.49e-4± 8.74e-5 1.29e-3± 1.74e-4 3.30e-3± 2.80e-4

sin-high

2.0 7.07e-1± 6.70e-6 7.07e-1± 1.42e-5 7.02e-1± 2.84e-3
π 7.07e-1± 7.94e-6 6.89e-1± 4.82e-3 2.29e-2± 1.76e-3
6.0 6.98e-1± 4.88e-3 1.20e-2± 1.35e-3 2.17e-2± 6.67e-4
10.0 6.58e-1± 3.32e-3 7.22e-2± 8.12e-3 3.48e-2± 2.38e-3
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(b) h0 = 2.0, N = 8,M = 6
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(c) h0 = 10.0, N = 8,M = 1
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(d) h0 = 2.0, N = 100,M = 6

Figure 14: Fig. 14(a) solve Eq. (50) accurately. However, SincKANs have oscillations after either
increasing M (Fig. 14(b)) or increasing h0. Fig. 14(d) shows that with the same hyperparameters
used in approximation, SincKAN becomes extremely inaccurate due to the violent oscillations.
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