
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SINC KOLMOGOROV-ARNOLD NETWORK AND ITS AP-
PLICATION FOR FUNCTIONS WITH SINGULARITIES

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we propose to use Sinc interpolation in the context of Kolmogorov-
Arnold Networks, neural networks with learnable activation functions, which re-
cently gained attention as alternatives to multilayer perceptron. Many different
function representations have already been tried, but we show that Sinc interpo-
lation proposes a viable alternative, since it is known in numerical analysis to
represent well both smooth functions and functions with singularities. This is im-
portant not only for function approximation but also for the solutions of partial
differential equations with physics-informed neural networks. Through a series of
experiments, we show that SincKANs provide better results in almost all of the
examples we have considered.

1 INTRODUCTION

Multilayer perceptron (MLP) is a classical neural network consisting of fully connected layers with
a chosen nonlinear activation function, which is a superposition of simple functions. The classical
Kolmogorov-Arnold representation theorem Kolmogorov (1961); Arnol’d (1959) states that every
function can be represented as a superposition of function of at most 2 variables, motivating the
research for learnable activation functions.

Kolmogorov’s Spline Network (KSN) Igelnik & Parikh (2003) is a two-layer framework using
splines as the learnable activation functions. Recently, Kolmogorov-Arnold Networks (KANs) Liu
et al. (2024b) sparkled a new wave of attention to those approaches, by proposing a multilayer
variant of KSN. Basically, any successful basis to represent univariate functions can provide a new
variant of KAN. Many well-known methods have already been investigated including wavelet Bo-
zorgasl & Chen (2024); Seydi (2024b), Fourier series Xu et al. (2024), finite basis Howard et al.
(2024), Jacobi basis functions Aghaei (2024a), polynomial basis functions Seydi (2024a), rational
functions Aghaei (2024b) and Chebyshev polynomials SS (2024); Shukla et al. (2024).

We propose to use Sinc interpolation (the Sinc function is defined in Eq. (4)) which is a very ef-
ficient and well-studied method for function interpolation, especially 1D problems Stenger (2016).
To our knowledge, it has not been studied in the context of KANs. We argue that the the cubic spline
interpolation used in KANs should be replaced by the Sinc interpolation, because splines are par-
ticularly good for the approximation of analytic functions without singularities which MLP is also
good at, while Sinc methods excel for problems with singularities, for boundary-layer problems, and
for problems over infinite or semi-infinite range Stenger (2012). Herein, utilizing Sinc functions can
improve the accuracy and generalization of KANs, and make KANs distinguishing and competitive,
especially in solving aforementioned mathematical problems in machine learning. We will confirm
our hypothesis by numerical experiments.

Physics-informed neural networks (PINNs) Lagaris et al. (1998); Raissi et al. (2019) are a method
used to solve partial differential equations (PDEs) by integrating physical laws with neural networks
in machine learning. The use of Kolmogorov-Arnold Networks (KANs) in PINNs has been ex-
plored and is referred to as Physics-Informed Kolmogorov-Arnold Networks (PIKANs) Rigas et al.
(2024); Wang et al. (2024). Due to the high similarity between KAN and MLP, PIKANs inherit sev-
eral advantages of PINNs, such as overcoming the curse of dimensionality (CoD) Wojtowytsch &
Weinan (2020); Han et al. (2018), handling imperfect data Karniadakis et al. (2021), and performing
interpolation Sliwinski & Rigas (2023). PINNs have diverse applications, including fluid dynamics
Raissi et al. (2020); Jin et al. (2021); Kashefi & Mukerji (2022), quantum mechanical systems Jin

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

et al. (2022), surface physics Fang & Zhan (2019), electric power systems Nellikkath & Chatzi-
vasileiadis (2022), and biological systems Yazdani et al. (2020). However, they also face challenges
such as spectral bias Xu et al. (2019); Wang et al. (2022), error estimation Fanaskov et al. (2024),
and scalability issues Yao et al. (2023).

In this paper, we introduce a novel network architecture called Sinc Kolmogorov-Arnold Networks
(SincKANs). This approach leverages Sinc interpolation, which is particularly adept at approximat-
ing functions with singularities, to replace cubic interpolation in the learnable activation functions of
KANs. The ability to handle singularities enables SincKAN to mitigate the spectral bias observed in
PIKANs, thereby making PIKANs more robust and capable of solving PDEs that traditional PINNs
may struggle with. Additionally, we conducted a series of experiments to validate SincKAN’s inter-
polation capabilities and assess their performance as a replacement for MLP and KANs in PINNs.
Our specific contributions can be summarized as follows:

1. We propose the Sinc Kolmogorov-Arnold Networks, a novel network that excels in han-
dling singularities.

2. We propose several approaches based on classical techniques of Sinc methods that can
enhance the robustness and performance of SincKAN.

3. We conducted a series of experiments to demonstrate the performance of SincKAN in ap-
proximating a function and PIKANs.

The paper is structured as follows: In Section 2, we briefly introduce the PINNs, discuss Sinc
numerical methods, and provide a detailed explanation of SincKAN. In Section 3 we compare
our SincKAN with several networks including MLP, modified MLP Wang et al. (2021), KAN,
ChebyKAN in several diverse benchmarks including smooth functions, discontinuous functions, and
boundary layer problems. In Section 4, we conclude the paper and discuss the remaining limitations
and directions for future research.

2 METHODS

2.1 PHYSICS-INFORMED NEURAL NETWORKS (PINNS)

We briefly review the physics-informed neural networks (PINNs) Raissi et al. (2019) in the context
of inferring the solutions of PDEs. Generally, we consider time-dependent PDEs for u taking the
form

∂tu+N [u] = 0, t ∈ [0, T], x ∈ Ω,

u(0,x) = g(x), x ∈ Ω,

B[u] = 0, t ∈ [0, T], x ∈ ∂Ω,

(1)

where N is the differential operator, Ω is the domain of grid points, and B is the boundary operator.
When considering time-independent PDEs, ∂tu ≡ 0.

The ambition of PINNs is to approximate the unknown solution u to the PDE system Eq. (1), by
optimizing a neural network uθ, where θ denotes the trainable parameters of the neural network.
The constructed loss function is:

L(θ) = Lic(θ) + Lbc(θ) + Lr(θ), (2)

where

Lr(θ) =
1

Nr

Nr∑
i=1

∣∣∂tuθ
(
tir,x

i
r

)
+N

[
uθ
] (
tir,x

i
r

)∣∣2 ,
Lic(θ) =

1

Nic

Nic∑
i=1

∣∣uθ
(
0,xi

ic

)
− g

(
xi
ic

)∣∣2 ,
Lbc(θ) =

1

Nbc

Nbc∑
i=1

∣∣B [uθ
] (
tibc,x

i
bc

)∣∣2 ,
(3)

corresponds to the three equations in Eq. (1) individually; xi
ic,x

i
bc,x

i
r are the sampled points from

the initial constraint, boundary constraint, and residual constraint, respectively; Nic, Nbc, Nr are

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the total number of sampled points for each constraint, correspondingly. Note that in Raissi et al.
(2019), uθ (x) = MLP (x).

2.2 SINC NUMERICAL METHODS

The Sinc function is defined as1

Sinc(x) =
sin(x)

x
, (4)

the Sinc series S(j, h)(x) used in Sinc numerical methods is defined by:

S(j, h)(x) =
sin[(π/h)(x− jh)]

(π/h)(x− jh)
, (5)

then the Sinc approximation for a function f defined on the real line R is given by

f(x) ≈
N∑

j=−N

f(jh)S(j, h)(x), x ∈ R, (6)

where h is the step size with the optimal value
√
πd/βN provided in Theorem 1, and 2N +1 is the

degree of Sinc series.

Thanks to Sinc function’s beautiful properties including the equivalence of semidiscrete Fourier
transform Trefethen (2000), its approximation as a nascent delta function, etc., Sinc numerical meth-
ods have become a technique for solving a wide range of linear and nonlinear problems arising from
scientific and engineering applications including heat transfer Lippke (1991), fluid mechanics Ab-
della (2015), and solid mechanics Abdella et al. (2009). But Sinc series are the orthogonal basis
defined on (−∞,∞) which is impractical for numerical methods. To use Sinc numerical methods,
one should choose a proper coordinate transformation based on the computing domain (a, b) and
an optimal step size based on the target function f . However, manually changing the network to
meet every specific problem is impractical and wasteful. In the following of this section, we will
introduce current techniques used in Sinc numerical methods. Then in Section 2.3, we will unfold
Sinc numerical methods to meet machine learning. At first, we introduce the convergence theorem:

Theorem 1. Sugihara & Matsuo (2004)

Assume α, β, d > 0, that

(1) f belongs to H1 (Dd), where H1 is the Hardy space and Dd = {z ∈ C | |ℑz| < d};

(2) f decays exponentially on the real line, that is, |f(x)| ≤ α exp(−β|x|), ∀x ∈ R.

Then we have

sup
−∞<x<∞

∣∣∣∣∣∣f(x)−
N∑

j=−N

f(jh)S(j, h)(x)

∣∣∣∣∣∣ ≤ CN1/2 exp
[
−(πdβN)1/2

]
(7)

for some constant C, where the step size h is taken as

h =

(
πd

βN

)1/2

. (8)

Theorem 1 indicates that the exponential convergence of Sinc approximation on the real line depends
on the parameters d, β, determined by the target function f . Thus, in Sinc numerical methods, re-
searchers set specific parameters for specific function f Sugihara & Matsuo (2004); Mohsen (2017)
or set them by bisection Richardson & Trefethen (2011). Note that both approaches require the
target function f , but in machine learning, f is usually unknown.

In numerical mathematics, practical problems generally require approximating on an interval (a, b)
instead of the entire real line R. To implement Sinc methods on general functions, we have to

1In engineering, they define Sinc function as Sinc(x) = sin(πx)
πx

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

transform the interval (a, b) to R with a properly selected coordinate transformation, i.e. we define
a transformation x = ψ (ξ) such that ψ : (−∞,+∞) → (a, b). Then Eq. (6) is replaced by

f(ψ(ξ)) ≈
N∑

j=−N

f(ψ(jh))S(j, h)(ξ), −∞ < ξ <∞, (9)

where h is the step size with the optimal value
√
πd′/β′N provided in Theorem 2. The follow-

ing theorem states that Theorem 1 still holds with some different α, β, and d after the coordinate
transformation.
Theorem 2. Sugihara & Matsuo (2004)

Assume that, for a variable transformation x = ψ(ξ), the transformed function f(ψ(ξ)) satisfies
assumptions 1 and 2 in Theorem 1 with some α′, β′ and d′. Then we have

sup
a≤x≤b

∣∣∣∣∣∣f(x)−
N∑

j=−N

f(ψ(jh))S(j, h)
(
ψ−1(x)

)∣∣∣∣∣∣ ≤ CN1/2 exp
[
−(πd′β′N)1/2

]

for some C, where the step size h is taken as h =
√

πd′

β′N

This theorem suggests the possibility that even a function f with an end-point singularity can be
approximated successfully by Eq. (9) with a suitable choice of transformation.

Furthermore, we empirically demonstrate the merits of Sinc methods in Fig. 1 via numerical re-
sults generated by Chebfun Driscoll et al. (2014) for Chebyshev and cubic spline interpolation and
Sincfun Richardson & Trefethen (2011) for Sinc interpolation.

0 100 200 300 400 500
degree

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

re
la

tiv
e

er
ro

r

sinc
cheby
cubic

(a) f(x) =
√
x

0 100 200 300 400 500
degree

10 12

10 10

10 8

10 6

10 4

10 2

100

re
la

tiv
e

er
ro

r

sinc
cheby
cubic

(b) f(x) = e−105x

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0.2

0.0

0.2

0.4

0.6

0.8

1.0 exact
sinc
cheby
cubic

(c) Comparison of Fig. 1(b)

Figure 1: Fig. 1(a) depicts the Sinc’s merit of handling the end-point singularity while the Cheby-
shev and the spline converge slowly. Fig. 1(b) shows that, for the boundary layer functions that have
high derivatives, Sinc converges exponentially while Chebyshev converges slowly at first. Fig. 1(c)
partially depicts the solution and the interpolations over the interval [0, 0.08], indicating that Sinc
interpolation provides the most accurate approximation, while Chebyshev interpolation exhibits sig-
nificant oscillations, and spline interpolation shows localized inaccuracies in certain regions.

2.3 SINC KOLMOGOROV-ARNOLD NETWORK (SINCKAN)

Suppose Φ = {ϕp,q} is the matrix of univariate functions where p = 1, 2, . . . nin, q = 1, 2, . . . nout.
Then the L-layers Kolmogorov-Arnold Networks can be defined by2:

KAN(x) = (ΦL−1 ◦ΦL−2 ◦ · · · ◦Φ1 ◦Φ0)x, x ∈ Rd. (10)

In vanilla KAN Liu et al. (2024b), every univariate function ϕ is approximated via a summation with
cubic spline:

ϕspline (x) = wbsilu (x) + ws

(∑
i

ciBi(x)

)
, (11)

2the detailed explanation of KAN is in Appendix G.3

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where ci, wb, ws are trainable parameters, and Bi is the spline. Intuitively, to replace cubic interpo-
lation with Sinc, we can define:

ϕsingle (x) =

N∑
i=−N

ciS(i, h)(x), (12)

where ci is trainable parameters, if h is set to the optimal value Eq. (8), the optimal approximation
of f(x) in Eq. (6) is c∗i = f(ih),∀i = −N, · · · , N . However, to replace the interpolation method
successfully, the aforementioned techniques require further investigations:

Optimal h As we discussed in Section 2.2, it is impractical to set a single optimal h in machine
learning frameworks. Thus in SincKAN, we propose an extension to the Sinc approximation with a
mixture of different step sizes hj :

ϕmulti (x) =

M∑
j=1

N∑
i=−N

ci,jS(i, hj)(x), (13)

where ci,j are trainable parameters. Stenger (2012) states that, if the chosen h is larger than the op-
timal value predicted by Eq. (8), the interpolation is less accurate near the origin and more accurate
farther away from the origin; if the chosen h is smaller than the optimal value predicted by Eq. (8),
the interpolation is more accurate near the origin and less accurate farther away from the origin.
Herein, combining different h with adaptive weights can result in a more accurate approximation
than the optimal h and doesn’t need to calculate the optimal h. Thus, compared to Eq. (12), expand-
ing the approximation by a summation of several different hj can not only avoid determining h for
every specific function but also improve the accuracy.

Coordinate transformation Another challenge is the choice of coordinate transformation which
is also problem-specific Stenger (2000). Let’s inherent the notation of Section 2.2, and suppose
X = {xi}Ni=1 is the ordered set of input points with x1 ≤ x2 ≤ · · · ≤ xN , then we can define
the open interval (a, b) by a = x1 − ϵ, b = xN + ϵ, where ϵ is a chosen number, and ξ1 =
ψ−1(x1), ξN = ψ−1(xN). Thus, the interval of input points changes to [ξ1, ξN] from [x1, xN].
However, if we perform such a transformation for every sub-layer, the scale of the input becomes
larger and inconsistent, making the network converge slower Ioffe (2015). Herein, we argue that
the normalization for the input of every layer is necessary, and Bozorgasl & Chen (2024) already
utilizes the batch normalization Ioffe (2015) on every layer to enhance the performance of KANs.
In our SincKAN, a normalizing transformation, ϕ(x) = x−µ

σ is introduced, where σ is the scaling
factor and µ is the shifting factor. Composing ϕ and ψ still meets the condition of ψ in Theorem 2
and the transformed function f(ψ ◦ ϕ−1(ξ)) also satisfies assumptions 1 and 2 in Theorem 1 with
α⋆, β⋆ and d⋆ (proved in Appendix A). Consequently, the optimal value of the step size h is changed
to
√
πd⋆/β⋆N .

Let us define the normalized coordinate transformation γ−1(x) := ϕ ◦ ψ−1(x) such that γ−1 :

(a, b) → (−∞,∞) and [x1, xN] →
[
ξ1−µ
σ , ξN−µ

σ

]
, where σ, µ satisfies

[
ξ1−µ
σ , ξN−µ

σ

]
⊂ [−1, 1].

Herein, instead of coordinate transformation ψ, we use normalized coordinate transformation γ
in SincKAN. As for the changing of optimal h with different σ, µ, the summation of different hj
implemented in SincKAN makes it easy to meet the fixed scale [−1, 1] i.e. we can depend the set
{hj} on the domain [−1, 1] regardless of σ, µ.

Exponential decay In Theorem 2, f should satisfy the condition of exponential decay which con-
strains that f(−∞) = f(+∞) = 0. To utilize the Sinc methods on general functions, Richardson &
Trefethen (2011) interpolates the subtraction g − f instead of f , where g is the linear function that
has the same value as f at the endpoints. In our SincKAN, we introduce a learnable linear function
as a skip-connection to approximate the subtraction.

Finally, combining the three aforementioned approaches, we can define our learnable activation
function in SincKAN:

ϕsinc (x) = c1x+ c2 +

M∑
j=1

N∑
i=−N

ci,jS(i, hj)(γ
−1(x)), (14)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where c1, c2, ci,j are the learnable parameters S is the Sinc function and γ is the normalized trans-
formation.

3 EXPERIMENTS

In this section, we will demonstrate the performance of SincKANs through experiments including
approximating functions and solving PDEs, compared with several other representative networks:
Multilayer perceptron (MLP) which is the classical and most common network used in PINNs,
Modified MLP which is proposed to project the inputs to a high-dimensional feature space to en-
hance the hidden layers’ capability, KAN which is proposed to replace MLP in AI for Science, and
ChebyKAN which is proposed to improve the performance by combining KAN with the known ap-
proximation capabilities of Chebyshev polynomials and has already been examined in Shukla et al.
(2024). In this paper, we choose to implement the normalized transformation γ(x) = tanh(x), and
the linear skip connection w1 ∈ Rnin×nout , w2 ∈ Rnout . Note that, we also observed the instability
of ChebyKAN highlighted in Shukla et al. (2024), and the ChebyKAN used in our experiments is
actually the modified ChebyKAN proposed by Shukla et al. (2024) which has tanh activation func-
tion between each layers. The rest details of the used networks are provided in Appendix G. The
other details including hyperparameters can be found in Appendix D.

3.1 LEARNING FOR APPROXIMATION

Approximating a function by given data is the main objective of KANs with applications in identi-
fying relevant features, revealing modular structures, and discovering symbolic formulas Liu et al.
(2024a). Additionally, in deep learning, the training process of a network can be regarded as ap-
proximating the map between complex functional spaces, thus the accuracy of approximation di-
rectly indicates the capability of a network. Therefore, we start with experiments on approximation
to show the capability of SincKAN and verify whether SincKAN is a competitive network. In this
section, to have consistent results with KAN, we inherit the metric RMSE which is used in KAN.

Sinc numerical methods are recognized theoretically and empirically as a powerful tool when deal-
ing with singularities. However, in machine learning instead of numerical methods, we argue that
SincKAN can be implemented in general cases. To demonstrate that SincKAN is robust, we con-
ducted a series of experiments on both smooth functions which cubic splines interpolation is good at
and singularity functions which Sinc interpolation is good at. We demonstrate partial of them in Ta-
ble 1, the rest can be found in Table 5. The details of the used functions can be found in Appendix B.

Table 1: RMSE of functions for approximation
Function name MLP modified MLP KAN ChebyKAN SincKAN (ours)

sin-low 1.51e-2± 2.01e-2 7.29e-4± 2.98e-4 1.27e-3± 3.13e-4 1.76e-3± 3.19e-4 3.55e-4± 3.08e-4
sin-high 7.07e-1± 6.44e-8 7.07e-1± 1.15e-5 7.06e-1± 1.36e-3 5.70e-2± 5.99e-3 3.94e-2± 5.36e-3
multi-sqrt 2.06e-3± 1.16e-3 4.59e-4± 4.86e-4 3.61e-4± 8.67e-5 2.34e-3± 1.17e-3 2.14e-4± 2.49e-4
piece-wise 2.01e-2± 5.16e-3 3.76e-2± 1.83e-2 5.84e-2± 1.03e-2 7.28e-3± 9.59e-4 2.14e-3± 7.76e-4
spectral-bias 4.18e-3± 1.18e-3 1.59e-3± 2.39e-4 4.73e-2± 9.94e-3 5.60e-3± 2.56e-4 1.48e-3± 1.82e-4
multimodal2-2d 7.55e-3± 2.59e-3 2.43e-3± 1.15e-3 7.97e-3± 4.82e-3 6.12e-2± 2.02e-2 2.11e-3± 3.57e-4
fractal-2d 2.89e-2± 2.40e-2 2.60e-2± 7.26e-3 2.54e-1± 1.88e-2 6.14e-2± 5.07e-3 7.53e-3± 6.09e-4
lpmv 1.27e-3± 6.13e-5 3.79e-4± 1.58e-4 4.19e-4± 1.14e-4 8.42e-3± 1.29e-3 2.72e-4± 1.97e-5
ellipj 6.51e-4± 2.40e-5 7.75e-5± 9.74e-7 1.29e-4± 2.00e-5 4.80e-3± 4.03e-4 3.02e-5± 5.08e-6
exp-sin-4d 3.85e-2± 5.27e-4 1.53e-2± 1.33e-3 6.22e-3± 1.23e-3 4.96e-1± 1.91e-2 2.74e-3± 3.29e-4
exp-100d 3.99e-3± 1.88e-4 1.04e-1± 4.96e-4 9.42e-2± 3.02e-3 nan 2.91e-3± 1.03e-5

The results in Table 1 show that SincKAN achieves impressive performance on low-frequency func-
tions (sin-low), high-frequency functions (sin-high), continuous but non-differentiable functions
(multi-sqrt) and discontinuous functions (piece-wise). Furthermore, the last function (spectral-bias)
is designed to evaluate the ability to address the prevalent phenomenon of spectral bias by Rahaman
et al. (2019), and the corresponding result in Table 1 indicates that SincKAN maximally alleviates
the spectral bias. Additionally, we also evaluate every network on the finer grid to test their general-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

1.0

0.5

0.0

0.5

1.0

y

target
mlp
kan
sinckan

(a)

0.0 0.2 0.4 0.6 0.8 1.0
ite 1e5

10 2

10 1

100

re
la

tiv
e

er
ro

r

mlp
modifiedmlp
kan
chebykan
sinckan

(b)

0.46 0.48 0.50 0.52 0.54

1.0

0.5

0.0

0.5

1.0

target
mlp
kan
sinckan

(c)

1.46 1.48 1.50 1.52 1.54
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
target
mlp
kan
sinckan

(d)

Figure 2: Fig. 2(a) depicts the function of piece-wise in Table 1 and compares the performance
of SincKAN with MLP and KAN. Fig. 2(b) demonstrates the convergence of relative error for all
networks, note that although the ChebyKAN we used is the modified ChebyKAN, its training is still
unstable. Herein, the results of ChebyKAN in this paper are always the last valid error. Fig. 2(c)
and Fig. 2(d) demonstrate the singularities in detail and show that the SincKAN can approximate
the singularities well while MLP and KAN have obvious differences.

ization, we put the results on Appendix F. The comparison of cost is in Appendix H. Furthermore,
as an important aspect of understanding SincKANs, we plot some interior ϕ in Appendix E.

3.1.1 SELECTING H

Utilizing a set of {hi} instead of a single step size h is a novel approach that we developed specif-
ically for SincKANs. To evaluate the effectiveness of this approach, in this section, we design a
comprehensive experiment. Suppose hmin = min{hi}, hmax = max{hi}, based on the discussion
of Section 2.3, the ideal case is the optimal h∗ =

√
πd⋆/β⋆N ∈ (hmin, hmax). In the experiments,

we provide two types of the set with two hyperparameters: the base number h0 and the cardinality
of the set M :

1. inverse decay {hi}Mi=1: hi = 1/ih0,

2. exponential decay {hi}Mi=1: hi = 1/hi0.

We train SincKAN on sin-low and sin-high functions with M = 1, 6, 12, 24 for inverse decay and
M = 1, 2, 3 for exponential decay and h0 = 2.0, π, 6.0, 10.0. Besides, the number of discretized
pointsNpoints and the degreeNdegree (Ndegree = 2N+1, whereN is the notation in Eq. (14)) also
influence the performance of SincKAN for different {hi}Mi=1, we empirically set Ndegree = 100,
and Npoints = 5000 in this experiment.

The results are illustrated in Fig. 12 for inverse decay and Fig. 13 for exponential decay, and the
details including the corresponding error bars are shown in Appendix K. For sin-low function, the
best RMSE 1.49e-4 ± 8.74e-5 is observed with h0 = 10.0 and M = 1; for sin-high function, the
best RMSE 4.60e-3 ± 3.70e-4 is observed in inverse decay with h0 = 10.0 and M = 24. The
experiments use two divergent Fourier spectra (4π, and 400π), and get extremely different optimal
hyperparameters M . But the RMSE is accurate enough for both sin-low and sin-high in inverse
decay with M = 6 and h0 = 10.0.

We also discuss the relationship between degree and data size in Appendix I and the update of basis
in Appendix J.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

u_pred with = 1
u_target with = 1
u_pred with = 10
u_target with = 10
u_pred with = 100
u_target with = 100
u_pred with = 1000
u_target with = 1000

(a)

0 1 2 3 4 5
iteration 1e6

10 6

10 4

10 2

100

102

104

106

108

M
SE

 L
os

s

loss of = 1
loss of = 10
loss of = 100
loss of = 1000

(b)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

target
mlp
modifiedmlp
sinckan
chebykan
kan

(c)

Figure 3: Fig. 3(a) depicts the exact solution of Eq. (15) with different ϵ and the corresponding
predicted solution by SincKAN, states that SincKAN can solve Eq. (15) properly even with an
extremely narrow boundary layer. Fig. 3(b) depicts the convergence of the training loss function of
SincKAN with different ϵ. Fig. 3(c) demonstrates the poor performance of different networks when
solving Eq. (15) with ϵ = 1000 due to the large derivatives of the boundary layer.

3.2 LEARNING FOR PIKANS

Solving PDEs is the main part of scientific computing, and PINNs are the representative framework
for solving PDEs by neural networks. In this section, we solve a series of challenging PDEs to
showcase the performance of SincKAN. At first, we select several classical PDEs to verify the
robustness of SincKAN, the results are shown in Table 2, and the details of the PDEs can be found
in Appendix C.

Table 2: Relative L2 error for chosen PDE problems
Experiments MLP modified MLP KAN ChebyKAN SincKAN (ours)

perturbed 2.89e-2± 3.09e-2 6.30e-1± 1.14e-1 4.48e-3± 4.20e-3 6.73e-1± 1.02e-1 1.88e-3± 8.55e-4
nonlinear 3.92e-1± 2.36e-5 1.56e-2± 2.10e-2 6.15e-4± 7.96e-4 7.78e-1± 2.67e-2 1.77e-3± 1.06e-3
bl-2d 2.38e-1± 6.22e-2 5.34e-2± 1.91e-2 1.19e-2± 4.22e-3 5.97e-2± 3.83e-2 2.31e-3± 7.10e-4
ns-tg-u 8.14e-5± 1.96e-6 2.14e-5± 2.67e-6 3.21e-4± 2.02e-5 6.43e-2± 2.70e-2 6.51e-4± 7.03e-5
ns-tg-v 8.30e-5± 2.47e-6 1.91e-5± 1.63e-6 4.04e-4± 1.25e-4 5.86e-2± 4.15e-2 1.34e-3± 4.38e-4

3.2.1 BOUNDARY LAYER PROBLEMS

To intuitively show the performance of SincKAN compared with other networks, we conducted
additional experiments on the boundary layer problem:

uxx/ϵ+ ux = 0, x ∈ [0, 1] (15)

with the exact solution u(x) = exp(−ϵx). As ϵ increases, the width of the boundary layer (left)
decreases, and the complexity of learning increases. The results shown in Table 3 and Fig. 4 reveal
that SincKANs can handle the boundary layer effectively, while other networks struggle when ϵ is
large.

Table 3: Relative L2 error for different ϵ in Eq. (15)
ϵ MLP Modified MLP KAN ChebyKAN SincKAN (ours)

1 6.60e-5± 1.91e-5 3.88e-6± 7.22e-7 5.97e-6± 5.24e-6 1.98e-6± 4.51e-7 7.78e-5± 1.14e-4
10 2.83e-4± 4.22e-5 1.69e-4± 6.85e-5 3.23e-5± 1.81e-5 4.45e-6± 4.01e-7 1.14e-4± 1.64e-4
102 1.29e-3± 3.24e-4 6.25e-4± 2.27e-4 1.25e-2± 2.62e-3 5.27e-4± 6.55e-4 1.68e-4± 6.16e-5
103 9.87± 8.70 1.53e-1± 5.59e-2 11.3± 8.79 10.9± 7.18 5.48e-3± 3.45e-3
104 8.41± 3.64 6.52± 4.35 9.73± 8.77 22.1± 4.49 5.27e-3± 1.29e-3

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

3.2.2 FRACTIONAL PDES

Fractional PDEs are a challenge problem which the traditional numerical methods still face chal-
lenges due to their non-locality and singularity until now. We consider the following fractional PDE
and demonstrate the results Fig. 4. The details are in Appendix D.3.

−∆su+ γu = f, x ∈ (−1, 1), (16)

with f = 1 + γu, and

u(x) =
2−2sΓ(d/2)

Γ(d/2 + s)Γ(1 + s)
(1− ∥x∥22)s, (17)

0 100000 200000 300000 400000 500000
epochs

10 2

10 1

100

101

102

103

104

105

lo
ss

MLP
SincKAN

(a)

0 100000 200000 300000 400000 500000
epochs

10 3

10 2

10 1

100

101

re
la

tiv
e

er
ro

r

MLP
SincKAN

(b)

0 100000 200000 300000 400000 500000
epochs

10 3

10 2

10 1

100

101

re
la

tiv
e

er
ro

r

MLP
SincKAN

(c)

Figure 4: Fig. 4(a) depicts the loss of MLP and SincKAN with s = 0.85. For comparing the error
between MLP and SincKAN, Fig. 4(b) depicts the results with s = 0.85, Fig. 4(c) depicts the results
with s = 0.95.

3.2.3 HIGH-DIMENSIONAL PROBLEMS

We consider the classical high-dimensional Poisson equations:

∆u = f, x ∈ [0, 1]d, (18)

If f = 2α(2α∥x∥22 − d)e−α∥x∥2
2 , the exact solution is u(x) = e−α∥x∥2

2 . In our experiments, we set
d = 100. The details can be found in Appendix D, and Fig. 5 shows the performance of MLP and
SincKAN.

0.0 0.2 0.4 0.6 0.8 1.0
d = 20

0.0

0.2

0.4

0.6

0.8

1.0

d
=

24

(a)

0.40 0.45 0.50 0.55 0.60
x 1/d

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

re
la

tiv
e

er
ro

r

(b)

0.40 0.45 0.50 0.55 0.60
x 1/d

0.00

0.05

0.10

0.15

0.20

0.25

0.30

re
la

tiv
e

er
ro

r

(c)

Figure 5: Fig. 5(a) shows the distribution of our testing points in the 20-th and 24-th dimension.
Fig. 5(b) and Fig. 5(c) show the relative error of every points in MLP and SincKAN.

3.2.4 ABLATION STUDY

Compared with Sinc numerical methods, SincKANs have a normalized transformation; compared
to KANs, SincKANs have a skip connection with linear functions. However, the Sinc numerical
methods also have some choices of coordinate transformations and KANs also have a skip connec-
tion with SiLU functions. Herein, we conduct an ablation study on SincKANs with non-normalized

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Relative L2 error for ablation study
ψ γ Linear SiLU T-nonlinear Burgers’ equation

✘ ✘ ✘ ✘ 9.20e-4± 4.31e-4 1.57e-2± 4.31e-3
✘ ✔ ✘ ✘ 5.80e-4± 1.89e-4 6.21e-4± 1.96e-4
✘ ✔ ✔ ✘ 2.44e-4± 6.08e-5 3.12e-3± 2.48e-3
✘ ✔ ✘ ✔ 1.60e-4± 3.17e-5 8.90e-3± 6.76e-3
✔ ✘ ✔ ✘ 1.11e-2± 1.17e-3 7.36e-2± 2.02e-2
✔ ✘ ✘ ✔ 1.30e-2± 4.00e-4 1.12e-1± 6.80e-3

transformation and the SiLU skip connection to verify the effect of the two proposed modules. This
experiment uses Burger’s equation Eq. (46) and time-dependent nonlinear equation Eq. (48).

Table 4 shows the results of the ablation study where ψ(x) = log(x−a
b−x), γ(x) = tanh(x),

Linear(x) = w1x+w2+ϕ(x), and SiLU(x) = wbsilu(x)+wsϕ(x). The non-normalized transfor-
mation performs poorly, even compared to the cases without transformations. Although the linear
skip connection is not the best for both equations, it is the most stable approach for SincKANs.

4 CONCLUSION

In this paper, we propose a novel network called Sinc Kolmogorov-Arnold Networks (SincKANs).
Inspired by KANs, SincKANs leverage the Sinc functions to interpolate the activation function and
successfully inherit the capability of handling singularities. To set the optimal h, we propose the
multi-h interpolation, and the corresponding experiments indicate that this novel approach is the
main reason for SincKANs’ superior ability in approximating complex smooth functions; to choose
a proper coordinate transformation for machine learning, we propose the normalized transformation
which prevents slow convergence.; to satisfy the decay condition, we introduce the skip-connection
with learnable linear functions. After tackling the aforementioned challenges, SincKANs become a
competitive network that can replace the current networks used for PINNs.

We begin with training on approximation problems to demonstrate the capability of SincKANs. The
results reveal that SincKANs excel in most experiments compared with other networks. However,
directly approximating the target function is an impractical objective for almost all machine learning
tasks. After verifying the capability, we turn to solving PDEs in the PINNs framework. Although
the SincKANs achieve impressive performance in approximation tasks for solving all chosen PDEs,
SincKANs merely have the best accuracy on boundary layer problems, due to the oscillations caused
by the inaccuracy of derivatives.

Limitations: Approximating derivative by Sinc numerical methods is always inaccurate in the
neighborhood of the Sinc end-points. To address this problem, Stenger (2009) suggested using La-
grange polynomial to approximate the derivative instead of straightforwardly calculating the deriva-
tive of Sinc polynomials, Wu et al. (2006) used several discrete functions to replace the derivative
of Sinc polynomials, etc. Unfortunately, to the best of our knowledge, there isn’t an approach that
can be implemented in our SincKAN when we demand the derivatives of SincKAN in PIKANs.
Herein, to alleviate the inaccuracy, we choose small h0, smallM , and smallN so that SincKAN can
solve PDEs, otherwise, the solution will have oscillations (see Appendix L). Such kind of setting
limits the capability of SincKAN and we argue that this is the main reason that SincKAN can obtain
good results but not the best results for some cases. Furthermore, the inaccuracy limits SincKAN
in solving high-order problems such as Korteweg–De Vries equations, and Kuramoto–Sivashinsky
equations.

Futures: However, as the accuracy of approximating the derivative decreases with the order of
derivative increases if the PDE merely requires the first derivatives, then the SincKANs will release
the limitation to have larger enough h0, M , and N and improve the performance. In literature, to
avoid calculating the high-order derivatives, MIM Lyu et al. (2022); Li et al. (2024) is proposed
to use the mixed residual method which transforms a high-order PDE into a first-order PDE sys-
tem. SincKANs can implement this approach to calculate several first-order derivatives instead of
the high-order derivatives so that SincKANs can have accurate estimations for the residual loss.
Furthermore, replacing the automatic differentiation Cen & Zou (2024); Yu et al. (2024) by other
operators is also expected.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

K Abdella, X Yu, and I Kucuk. Application of the sinc method to a dynamic elasto-plastic problem.
Journal of Computational and Applied Mathematics, 223(2):626–645, 2009.

Kenzu Abdella. Solving differential equations using sinc-collocation methods with derivative in-
terpolations. Journal of Computational Methods in Sciences and Engineering, 15(3):305–315,
2015.

Alireza Afzal Aghaei. fkan: Fractional Kolmogorov-Arnold networks with trainable jacobi basis
functions. arXiv preprint arXiv:2406.07456, 2024a.

Alireza Afzal Aghaei. rkan: Rational Kolmogorov-Arnold networks. arXiv preprint
arXiv:2406.14495, 2024b.

Vladimir Igorevich Arnol’d. On the representation of continuous functions of three variables by
superpositions of continuous functions of two variables. Matematicheskii Sbornik, 90(1):3–74,
1959.

Zavareh Bozorgasl and Hao Chen. Wav-kan: Wavelet Kolmogorov-Arnold networks. arXiv e-prints,
pp. arXiv–2405, 2024.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Jianhuan Cen and Qingsong Zou. Deep finite volume method for partial differential equations.
Journal of Computational Physics, pp. 113307, 2024.

Tobin A Driscoll, Nicholas Hale, and Lloyd N Trefethen. Chebfun guide, 2014.

Vladimir Fanaskov, Tianchi Yu, Alexander Rudikov, and Ivan Oseledets. Astral: training physics-
informed neural networks with error majorants. arXiv preprint arXiv:2406.02645, 2024.

Zhiwei Fang and Justin Zhan. A physics-informed neural network framework for PDEs on 3D
surfaces: Time independent problems. IEEE Access, 8:26328–26335, 2019.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510,
2018.

Amanda A Howard, Bruno Jacob, Sarah H Murphy, Alexander Heinlein, and Panos Stinis. Finite ba-
sis Kolmogorov-Arnold networks: domain decomposition for data-driven and physics-informed
problems. arXiv preprint arXiv:2406.19662, 2024.

Boris Igelnik and Neel Parikh. Kolmogorov’s spline network. IEEE transactions on neural networks,
14(4):725–733, 2003.

Sergey Ioffe. Batch normalization: Accelerating deep network training by reducing internal covari-
ate shift. arXiv preprint arXiv:1502.03167, 2015.

Henry Jin, Marios Mattheakis, and Pavlos Protopapas. Physics-informed neural networks for quan-
tum eigenvalue problems. In 2022 International Joint Conference on Neural Networks (IJCNN),
pp. 1–8. IEEE, 2022.

Xiaowei Jin, Shengze Cai, Hui Li, and George Em Karniadakis. NSFnets (Navier-Stokes flow nets):
Physics-informed neural networks for the incompressible Navier-Stokes equations. Journal of
Computational Physics, 426:109951, 2021.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

11

http://github.com/google/jax
http://github.com/google/jax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ali Kashefi and Tapan Mukerji. Physics-informed pointnet: A deep learning solver for steady-
state incompressible flows and thermal fields on multiple sets of irregular geometries. Journal of
Computational Physics, 468:111510, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Andreı̆ Nikolaevich Kolmogorov. On the representation of continuous functions of several variables
by superpositions of continuous functions of a smaller number of variables. American Mathemat-
ical Society, 1961.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000,
1998.

Lingfeng Li, Xue-Cheng Tai, Jiang Yang, and Quanhui Zhu. A priori error estimate of deep mixed
residual method for elliptic pdes. Journal of Scientific Computing, 98(2):44, 2024.

A Lippke. Analytical solutions and sinc function approximations in thermal conduction with non-
linear heat generation. ASME J. Heat Transf, 113:5–11, 1991.

Anna Lischke, Guofei Pang, Mamikon Gulian, Fangying Song, Christian Glusa, Xiaoning Zheng,
Zhiping Mao, Wei Cai, Mark M. Meerschaert, Mark Ainsworth, and George Em Karniadakis.
What is the fractional laplacian? a comparative review with new results. Journal of Computational
Physics, 404:109009, 2020. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2019.109009.

Ziming Liu, Pingchuan Ma, Yixuan Wang, Wojciech Matusik, and Max Tegmark. Kan 2.0:
Kolmogorov-Arnold networks meet science. arXiv preprint arXiv:2408.10205, 2024a.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-Arnold networks. arXiv preprint
arXiv:2404.19756, 2024b.

Liyao Lyu, Zhen Zhang, Minxin Chen, and Jingrun Chen. Mim: A deep mixed residual method for
solving high-order partial differential equations. Journal of Computational Physics, 452:110930,
2022.

Adel AK Mohsen. Accurate function sinc interpolation and derivative estimations over finite inter-
vals. Journal of Computational and Applied Mathematics, 324:216–224, 2017.

Rahul Nellikkath and Spyros Chatzivasileiadis. Physics-informed neural networks for ac optimal
power flow. Electric Power Systems Research, 212:108412, 2022.

Guofei Pang, Lu Lu, and George Em Karniadakis. fpinns: Fractional physics-informed neural
networks. SIAM Journal on Scientific Computing, 41(4):A2603–A2626, 2019.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International conference
on machine learning, pp. 5301–5310. PMLR, 2019.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.

Mark Richardson and Lloyd N Trefethen. A sinc function analogue of chebfun. SIAM Journal on
Scientific Computing, 33(5):2519–2535, 2011.

Spyros Rigas, Michalis Papachristou, Theofilos Papadopoulos, Fotios Anagnostopoulos, and Geor-
gios Alexandridis. Adaptive training of grid-dependent physics-informed Kolmogorov-Arnold
networks. arXiv preprint arXiv:2407.17611, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Seyd Teymoor Seydi. Exploring the potential of polynomial basis functions in Kolmogorov-
Arnold networks: A comparative study of different groups of polynomials. arXiv preprint
arXiv:2406.02583, 2024a.

Seyd Teymoor Seydi. Unveiling the power of wavelets: A wavelet-based Kolmogorov-Arnold net-
work for hyperspectral image classification. arXiv preprint arXiv:2406.07869, 2024b.

Khemraj Shukla, Juan Diego Toscano, Zhicheng Wang, Zongren Zou, and George Em Karniadakis.
A comprehensive and fair comparison between mlp and kan representations for differential equa-
tions and operator networks. arXiv preprint arXiv:2406.02917, 2024.

Lukasz Sliwinski and Georgios Rigas. Mean flow reconstruction of unsteady flows using physics-
informed neural networks. Data-Centric Engineering, 4:e4, 2023.

Sidharth SS. Chebyshev polynomial-based Kolmogorov-Arnold networks: An efficient architecture
for nonlinear function approximation. arXiv preprint arXiv:2405.07200, 2024.

Frank Stenger. Summary of sinc numerical methods. Journal of Computational and Applied Math-
ematics, 121(1-2):379–420, 2000.

Frank Stenger. Polynomial function and derivative approximation of sinc data. Journal of Complex-
ity, 25(3):292–302, 2009.

Frank Stenger. Numerical methods based on sinc and analytic functions, volume 20. Springer
Science & Business Media, 2012.

Frank Stenger. Handbook of Sinc numerical methods. CRC Press, 2016.

Masaaki Sugihara and Takayasu Matsuo. Recent developments of the sinc numerical methods.
Journal of computational and applied mathematics, 164:673–689, 2004.

Lloyd N Trefethen. Spectral methods in MATLAB. SIAM, 2000.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–
A3081, 2021.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why PINNs fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022.

Yizheng Wang, Jia Sun, Jinshuai Bai, Cosmin Anitescu, Mohammad Sadegh Eshaghi, Xiaoying
Zhuang, Timon Rabczuk, and Yinghua Liu. Kolmogorov Arnold informed neural network: A
physics-informed deep learning framework for solving pdes based on Kolmogorov Arnold net-
works. arXiv preprint arXiv:2406.11045, 2024.

Stephan Wojtowytsch and E Weinan. Can shallow neural networks beat the curse of dimensionality?
a mean field training perspective. IEEE Transactions on Artificial Intelligence, 1(2):121–129,
2020.

Xionghua Wu, Wenbin Kong, and Chen Li. Sinc collocation method with boundary treatment for
two-point boundary value problems. Journal of computational and applied mathematics, 196(1):
229–240, 2006.

Jinfeng Xu, Zheyu Chen, Jinze Li, Shuo Yang, Wei Wang, Xiping Hu, and Edith C-H Ngai.
Fourierkan-gcf: Fourier Kolmogorov-Arnold network–an effective and efficient feature transfor-
mation for graph collaborative filtering. arXiv preprint arXiv:2406.01034, 2024.

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019.

Jiachen Yao, Chang Su, Zhongkai Hao, Songming Liu, Hang Su, and Jun Zhu. Multiadam:
Parameter-wise scale-invariant optimizer for multiscale training of physics-informed neural net-
works. In International Conference on Machine Learning, pp. 39702–39721. PMLR, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural networks, 94:
103–114, 2017.

Alireza Yazdani, Lu Lu, Maziar Raissi, and George Em Karniadakis. Systems biology informed
deep learning for inferring parameters and hidden dynamics. PLoS computational biology, 16
(11):e1007575, 2020.

Tianchi Yu, Yiming Qi, Ivan Oseledets, and Shiyi Chen. Fourier spectral physics informed neural
network: An efficient and low-memory pinn. arXiv preprint arXiv:2408.16414, 2024.

A PROOF OF TRANSFORMATION

Theorem 3. For a linear transformation x = σξ + µ, if f(x), x ∈ R, satisfies the assumption of
Theorem 1 for some d, α, β > 0, that is,

(1) f belongs to H1 (Dd), where H1 is the Hardy space and Dd = {z ∈ C | |ℑz| < d};

(2) f decays exponentially on the real line, that is, |f(x)| ≤ α exp(−β|x|), ∀x ∈ R.

the transformed function f̃(ξ) = f(σξ + µ), ξ ∈ R satisfies assumptions 1 and 2 with some α̃, β̃
and d̃.

Proof. For assumption (1), as µ and σ are real number,

f(x) ∈ H1 (Dd) (19)

⇔
lim
ε→0

∫
∂Dd(ε)

|f(z)||dz| <∞ (20)

⇔ ∫ ∞

−∞
|f(x± id)|dx <∞ (21)

Then ∫ ∞

−∞
|f̃(x̃± id̃)|dx̃

=

∫ ∞

−∞
|f(σx̃+ µ± iσd̃)|dx

=

∫ ∞

−∞
|f(x′ ± id′)|dx′, where x′ = σx̃+ µ, d′ = σd̃

(22)

If d′ < d, i.e. d̃ < d
σ , then

∫∞
−∞ |f(x′ ± id′)|dx′ <∞ ⇒ f̃(ξ) ∈ H1

(
Dd̃

)
. As d

σ > 0, d̃ exists, (1)
is satisfied.

For assumption (2), as |f̃(ξ)| ≤ α exp(−β|σξ + µ|), ∀ξ ∈ R, if there exists α̃, β̃ > 0 such that
α exp(−β|σξ + µ|) ≤ α̃ exp(−β̃|ξ|), then (2) is satisfied:

α exp(−β|σξ + µ|) ≤ α̃ exp(−β̃|ξ|) (23)

⇒
logα− β|σξ + µ| ≤ log α̃− β̃|ξ| (24)

⇒

β̃ ≤
log α̃

α

|ξ|
+ β

∣∣∣∣σ +
µ

ξ

∣∣∣∣ , if ξ ̸= 0. (25)

Thus, if α̃ > α, there exists a β̃ > 0 that satisfies the above inequality; on the other hand if ξ = 0,
obviously α exp(−β|σξ + µ|) ≤ α < α̃. Herein, α̃, β̃ exists.

In total, there exists d̃, α̃, β̃ > 0 such that f̃ satisfies assumption (1) and (2)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B EXPLICIT EXPRESSION OF FUNCTIONS

The following functions are used in Table 1 and Table 5.

1. sin-low
f(x) = sin(4πx), x ∈ [−1, 1] (26)

2. sin-high
f(x) = sin(400πx), x ∈ [−1, 1] (27)

3. bl
f(x) = e−100x, x ∈ [0, 1] (28)

4. sqrt
f(x) =

√
x, x ∈ [0, 1] (29)

5. double-exponential

f(x) =
x(1− x)e−x

(1/2)2 + (x− 1/2)2
, x ∈ [0, 1] (30)

6. multi-sqrt
f(x) = x1/2(1− x)3/4, x ∈ [0, 1] (31)

7. piece-wise

f(x) =


sin(20πx) + x2, x ∈ [0, 0.5]

0.5xe−x + | sin(5πx)|, x ∈ [0.5, 1.5]

log(x− 1)/ log(2)− cos(2πx), x ∈ [1.5, 2]

(32)

8. spectral-bias

f(x) =


4∑

k=1

sin(kx) + 5, x ∈ [−1, 0]

cos(10x), x ∈ [0, 1]

(33)

9. multimodal1-2d

f(x) = − |sin (x1) · cos (x2)| · exp

(∣∣∣∣∣1−
√
x21 + x22
π

∣∣∣∣∣
)
, x ∈ [0, 1]2 (34)

10. multimodal2-2d

f(x) =− 20e
−0.2

√
(x2

1+x2
2) − ecos(2πx1)+cos(2πx2)

+ e+ 20, x ∈ [−1, 1]2
(35)

11. fractal-2d

f(x) =

[
sin (10πx1) cos (10πx2) + sin

(
π
(
x21 + x22

))
+ |x1 − x2|+

sin (5x1x2)

0.1 + |x1 + x2|

]
exp

(
−0.1

(
x21 + x22

))
, x ∈ [0, 1]2

(36)
12. lpmv

f(x) = scipy.special.lpmv(1, x1, x2), x ∈ [0, 1]2 (37)
13. ellipj

f(x) = scipy.special.ellipj(x1, x2), x ∈ [0, 1]2 (38)
14. sph-harm

f(x) = scipy.special.sph harm(1, 1, x1, x2), x ∈ [0, 1]2 (39)
15. exp-sin-4d

f(x, α) = exp

[
0.5 sin

(
π ·

2∑
i=1

x2i

)
+ 0.5 sin

(
π ·

4∑
i=3

x2i

)]
, x ∈ [−1, 1]4 (40)

16. exp-100d
f(x) = exp

(
−0.001∥x∥22

)
, x ∈ [0, 1]100 (41)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: RMSE of functions for approximation
Function name MLP modified MLP KAN ChebyKAN SincKAN (ours)

bl 7.59e-4± 1.13e-3 5.73e-4± 4.06e-4 2.54e-4± 7.99e-5 1.81e-3± 6.98e-4 4.76e-5± 4.25e-5
sqrt 3.06e-3± 9.34e-4 4.46e-5± 5.51e-5 4.79e-4± 1.23e-4 3.69e-3± 1.27e-3 3.24e-4± 1.31e-4
multimodal1-2d 2.69e-3± 1.28e-3 2.08e-4± 5.48e-5 1.23e-2± 5.71e-4 1.23e-2± 5.83e-4 2.36e-3± 2.22e-3
sph-harm 3.93e-4± 2.27e-5 4.90e-5± 2.83e-5 7.67e-5± 6.05e-6 5.13e-3± 1.41e-5 6.26e-5± 1.40e-5
double exponential 1.95e-3± 8.17e-4 7.77e-5± 4.03e-5 2.15e-4± 1.52e-4 3.11e-3± 2.16e-3 7.06e-5± 1.09e-5

C DETAILS OF PDES

C.1 1D PROBLEMS

C.2 PERTURBED BOUNDARY VALUE PROBLEM

We consider the singularly perturbed second-order boundary value problem (perturbed in Table 2):

ϵuxx − ux = f(x), x ∈ [−1, 1]. (42)

In specific cases, the problem has exact solutions, in this paper, we choose f(x) = −1, and the exact
solution is

u(x) = 1 + x+
e

x
ϵ − 1

e
1
ϵ − 1

, (43)

where ϵ = 0.01 in our experiments.

C.3 NONLINEAR PROBLEM

We consider the nonlinear boundary value problem (nonlinear in Table 2):

−uxx +
ux
x

+
u

x2
=

(
−41x2 + 34x− 1

)√
x

4
− 2x+

1

x2
, x ∈ [0, 1]

u(0)− 2ux(0) = 1,

3u(1) + ux(1) = 9,

(44)

with the exact solutions
u(x) = x5/2(1− x)2 + x3 + 1. (45)

C.4 BURGERS

We consider the Burgers’ equation (Burgers’ equation in Table 4):

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0, x ∈ [−1, 1], t ∈ [0, 0.1]. (46)

with Dirichlet boundary condition, and the exact solution is

u =
a

2
−
a tanh

(
a(x−at/2)

4ν

)
2

, (47)

where a = 0.5, ν = 0.01 in our experiments.

C.5 T-NONLINEAR PROBLEM

We consider the time-dependent nonlinear problem (T-nonlinear in Table 4):

ut =
x+ 2

t+ 1
ux, x ∈ [−1, 1], t ∈ [0, 0.1].

u(x, 0) = cos(x+ 2),

u(1, t) = cos(3(t+ 1)),

(48)

with the exact solution:
u(x, t) = cos((t+ 1)(x+ 2)). (49)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.6 CONVECTION-DIFFUSION

We consider the 1-D convection-diffusion equation with periodic boundary conditions (used in Ap-
pendix L):

ut + aux − ϵuxx = 0, x ∈ [−1, 1] , t ∈ [0, 0.1] ,

u(x, 0) =

5∑
k=0

sin (kπx) ,
(50)

with the analytic solution

u(x, t) =

5∑
k=0

sin (kπx− kaπt) e−ϵk2π2t, (51)

where ϵ = 0.01, and a = 0.1in our experiments.

C.7 2D PROBLEMS

C.7.1 BOUNDARY LAYER

We consider the 2-D boundary layer problem (bl-2d in Table 2):

uxx/α1 + ux + uyy/α2 + uy = 0, (52)

with the exact solution
u(x, y) = exp(−α1x) + exp(−α2y), (53)

where α1 = α2 = 100 in our experiments.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

(c)

Figure 6: Fig. 6(a) depicts the exact solution of Eq. (52), Fig. 6(b) shows the solution predicted by
SincKAN, Fig. 6(c) shows the absolute error between the predicted solution and the exact solution,
exhibits that the error mainly comes from the boundary layer.

C.7.2 NAVIER STOKES EQUATIONS

We consider the Taylor–Green vortex (ns-tg-u and ns-tg-v in Table 2):

∇ · u = 0, t ∈ [0, T], x ∈ Ω,

∂tu+ u · ∇u = −∇p+ ν△u, t ∈ [0, T], x ∈ Ω,
(54)

where u = (u, v),with the exact solution

u = − cos(x) sin(y) exp(−2νt)

v = sin(x) cos(y) exp(−2νt)

p = − (cos(2x) + sin(2y)) exp(−4νt)/4

(55)

with T = 1, ν = 1/400 in our experiments. After dimensionless, x ∈ [0, 1]2.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D EXPERIMENT DETAILS

Totally, in our experiments, the Adam Kingma & Ba (2014) optimizer is used with the exponential
decay learning rate. The MLP and modified MLP are equipped with the tanh activations and Xavier
initialization inherited from Raissi et al. (2019).

D.1 APPROXIMATION

The hyperparameters of used networks are shown in Table 7.

• For the 1-D problem, we generate the training dataset by uniformly discretizing the input
interval to 5000 points and train the network with 3000 points randomly sampled from the
training dataset for each iteration. In total, We train every network with 105 iterations. Ad-
ditionally, to evaluate the generalization, we generate the testing (fine) dataset by uniformly
discretizing the input interval to 10000 points.

D.2 PIKANS

The hyperparameters of used networks are shown in Table 8.

• For time-independent 1-D problems, we generate the training dataset by uniformly dis-
cretizing the input interval to 1000 points, then train the network with 500 points randomly
sampled from the training dataset for each iteration. In total, We train every network with
1.5× 106 iterations.

• For time-dependent 1-D problems, we generate the training dataset by uniformly discretiz-
ing the spatial dimension to 1000 points and the temporal dimension to 11 points, then
train the network with 5000 points randomly sampled from the training dataset for each
iteration. In total, We train every network with 1.5× 106 iterations.

• For time-independent 2-D problems, we generate the training dataset by uniformly dis-
cretizing every dimension to 100 points, then train the network with 5000 points randomly
sampled from the training dataset for each iteration. In total, We train every network with
1.5× 106 iterations.

• For time-dependent 2-D problems, we generate the training dataset by uniformly discretiz-
ing every spatial dimension to 100 points and the temporal dimension to 11 points, then
train the network with 50000 points randomly sampled from the training dataset for each
iteration. In total, We train every network with 1.5× 106 iterations.

• For 100-D Poisson equation, we sample 2000 points from the interior domain, and 10000
points from the boundary domain for each iteration. We train every network with 5 × 106

iterations. For the testing data, we sample 8000 points from the interior domain and 2000
points from the boundary domain.

D.3 FRACTIONAL PINNS

The framework is from fPINNs Pang et al. (2019), we utilize the second order Grünwald-Letnikov
(GL) formula Lischke et al. (2020):

(−∆)α/2u (xj) = (1− β)δα∆x,1u (xj) + βδα∆x,0u (xj) +O
(
(∆x)2

)
, (56)

where

δα∆x,pu (xj) := (∆x)−α

j∑
k=0

(−1)k
(
α

k

)
u (xj − (k − p)∆x)

+ (∆x)−α

N−j∑
k=0

(−1)k
(
α

k

)
u (xj + (k − p)∆x) .

(57)

The interval is (0, 1) discretized by ∆x = 1/N , where N = 101. The learning rate is 10−2 for
SincKAN and 10−3 for MLP. The iteration number is 5× 105. The shape of SincKAN is 8× 8× 1.
The performance is shown in Fig. 7.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

y

target
SincKAN

(a) s = 0.85

0 200 400 600 800 1000
x

0.0

0.1

0.2

0.3

0.4

0.5

y

target
SincKAN

(b) s = 0.95

Figure 7: Fig. 7(a) and Fig. 7(b) show the target solution and the predicted solution by SincKAN.

E INTERIOR APPROXIMATION OF SINCKAN

The results are demonstrated in Fig. 8.

(a) Eq. (52) for approximation

(b) Eq. (52) for PIKANs

Figure 8: Fig. 8(a) used high M so the interpolated phi has oscillations while Fig. 8(b) uses low M
so the phi is more smooth

F APPROXIMATION ON FINE GRIDS

As we discussed in Appendix D, we additionally evaluate every network on fine grids. And due to the
oscillations discussed in Appendix L, Table 6 reveals the weak generalization of SincKANs demands
further research, although the applications of approximating a function don’t strongly require this
capability.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 6: RMSE evaluated on fine grids
Function name MLP modified MLP KAN ChebyKAN SincKAN (ours)

sin-low 1.51e-2± 2.01e-2 7.29e-4± 2.97e-4 1.27e-3± 3.04e-4 1.76e-3± 3.19e-4 4.46e-4± 2.79e-4
sin-high 7.07e-1± 4.21e-8 7.07e-1± 1.31e-5 7.06e-1± 1.29e-3 5.70e-2± 5.99e-3 4.15e-2± 4.53e-3
bl 7.63e-4± 1.13e-3 5.72e-4± 4.01e-4 2.62e-4± 7.89e-5 1.81e-3± 6.98e-4 2.28e-4± 1.16e-4
double exponential 1.95e-3± 8.17e-4 7.76e-5± 4.07e-5 2.18e-4± 1.51e-4 3.11e-3± 2.16e-3 7.06e-5± 1.09e-5
sqrt 3.06e-3± 9.34e-4 4.46e-5± 5.51e-5 4.79e-4± 1.23e-4 3.69e-3± 1.27e-3 3.24e-4± 1.31e-4
multi-sqrt 2.06e-3± 1.16e-3 4.59e-4± 4.86e-4 3.61e-4± 8.67e-5 2.34e-3± 1.17e-3 2.14e-4± 2.49e-4
piece-wise 2.06e-2± 5.57e-3 3.75e-2± 1.81e-2 5.84e-2± 1.03e-2 7.28e-3± 9.59e-4 9.41e-3± 2.14e-4
spectral-bias 2.48e-2± 9.77e-3 1.88e-2± 9.55e-4 4.79e-2± 9.44e-3 2.18e-2± 2.97e-4 2.21e-2± 9.98e-5

G DETAILS OF OTHER NETWORKS

G.1 MLP

Multilayer Perceptron (MLP) is the neural network consisting of fully connected neurons with a
nonlinear activation function, and can be represented simply by:

MLP(x) =
(
WL−1 ◦ σ ◦WL−2 ◦ σ ◦ · · · ◦W 1 ◦ σ ◦W 0

)
x (58)

where W i(x) = Wix + bi, Wi ∈ Rmi×ni is a learnable matrix, bi ∈ Rmi is a learnable bias, σ is
the chosen nonlinear activation function, and L is the depth of MLP.

G.2 MODIFIED MLP

Modified MLP is an upgraded network of MLP inspired by the transformer networks. It introduces
two extra features and has a skip connection with them:

U = σ(WL+1x), , V = σ(WL+2x), H1 = σ(W 0x),

Hi+1 = (1− σ(W iHi)) ∗ U + σ(W iHi) ∗ V, i = 1, · · · , L,
ModifiedMLP(x) =WL+3HL+1,

(59)

where ∗ is the element-wise multiplication.

G.3 KAN

G.3.1 KOLMOGOROV-ARNOLD REPRESENTATION THEOREM

The Kolmogorov-Arnold representation theorem states that any multivariate continuous function on
a bounded domain can be represented as a finite composition of univariate continuous functions and
addition. Specifically for a continuous f : [0, 1]n → R, there exists continuous 1D functions ϕq,p,
Φq such that

f(x) = f (x1, · · · , xn) =
2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p (xp)

)
. (60)

G.3.2 KOLMOGOROV-ARNOLD NETWORK

Inspired by Kolmogorov-Arnold representation theorem, Kolmogorov-Arnold Network (KAN) is
a novel network that aims to be more accurate and interpretable than MLP. The main difference is
KAN’s activation functions are learnable: suppose Φ = {ϕp,q} is the matrix of univariable functions
where p = 1, 2, . . . nin, q = 1, 2, . . . nout and θ represents the trainable parameters. The KAN can
be defined by:

KAN(x) = (ΦL−1 ◦ΦL−2 ◦ · · · ◦Φ1 ◦Φ0)x, x ∈ Rd, (61)
where

Φl(x
(l)) =


n
(l)
in∑

i=1

ϕj,i

(
x
(l)
i

)
n
(l)
out

j=1

, ∀l = 0, 1, · · · , L− 1 (62)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

where xl ∈ Rn
(l)
in ,Φl(x

(l)) ∈ Rn
(l)
out . If a size of KAN is represented by an integer array

[n0, n1, · · · , nL], then n(l)in = nl, n
(l)
out = nl+1. To approximate every single activation function

ϕ, KAN utilizes the summation of basis function and spline interpolation:

ϕ (x) = wbsilu (x) + ws

(
N∑
i

ciBi(x)

)
, (63)

where ci, ws, wb are learnable, Bi is the k-th order B-splines, N = G + k − 1, and G is the grid
size.

G.4 CHEBYKAN

ChebyKAN utilizes the Chebyshev polynomials to construct the learnable activation function ϕ in
KAN. And the modified ChebyKAN embeds the tanh activation function between every layer. Thus
the ChebyKAN used in our experiments can be defined by:

ChebyKAN(x) = (ΦL−1 ◦ tanh ◦ΦL−2 ◦ · · · ◦Φ1 ◦ tanh ◦Φ0 ◦ tanh ◦)x, x ∈ Rd, (64)

where Φ has the same definition of Eq. (62) with different univariable function

ϕ =
∑
i

ciTi(x), (65)

where Ti is the ith Chebyshev polynomial.

H COMPUTATIONAL COST

H.1 TRAINING

In Eq. (14), SincKAN has an additional summation on several h, so the trainable coefficients c
are M times larger than KAN and ChebyKAN. However, the training time is not only dependent
on the number of total parameters, thus, we demonstrate the cost of training for approximation in
Table 7, and demonstrate the cost of training for PDEs in Table 8. In Table 7 and Table 8, we use
’depth × width’ to represent the size for MLP and modified MLP; ’width × degree’ to represent the
size for KAN and ChebyKAN; and ’width × degree ×M ’ to represent the size for SincKAN. Note
that we train the network in two environments distinguished by two superscripts:

†: training on single NVIDIA A100-SXM4-80GB with CUDA version: 12.4.

‡: training on single NVIDIA A40-48GB with CUDA version: 12.4.

Table 7: Computational cost for approximation†

Network Size Training rate (iter/sec) Referencing time (ms) Parameters

MLP 10× 100 9.89× 102 1.62× 101 81101
modified MLP 10× 100 9.13× 102 2.92× 101 81501
KAN 8× 8 1.15× 103 1.01× 102 160
ChebyKAN 40× 40 1.29× 103 3.11× 101 3280
SincKAN 8× 100× 6 1.29× 103 2.06× 101 9696

H.2 REFERENCING

As the referencing cost doesn’t depend on the task i.e. the loss function, the results are evaluated on
the model trained by approximation task and the results can be found in Table 7. The results reveal
that although SincKAN has much more parameters than KAN and ChebyKAN, SincKAN is faster
when referencing. Note that the referencing is slower than training because we compile the training
procedure by JAX Bradbury et al. (2018).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 8: Computational cost for train PIKANs

Function name Network Size Training rate (iter/sec) Parameters

boundary layer‡

MLP 10× 100 6.47× 102 81101
modified MLP 10× 100 3.55× 102 81501
KAN 8× 8 1.33× 103 160
ChebyKAN 40× 40 1.89× 103 3280
SincKAN 8× 8× 1 1.27× 103 194

perturbed‡

MLP 10× 100 6.85× 102 81101
modified MLP 10× 100 3.59× 102 81501
KAN 8× 8 1.27× 103 160
ChebyKAN 40× 40 1.07× 103 3280
SincKAN 8× 8× 1 1.25× 103 194

nonlinear‡

MLP 10× 100 4.62× 102 81101
modified MLP 10× 100 3.07× 102 81501
KAN 8× 8 1.56× 103 160
ChebyKAN 40× 40 1.53× 103 3280
SincKAN 8× 4× 1 1.54× 103 130

bl-2d‡

MLP 10× 100 2.39× 102 81201
modified MLP 10× 100 1.96× 102 81801
KAN 8× 8 3.46× 102 240
ChebyKAN 40× 40 4.95× 102 4920
SincKAN 8× 20× 1 2.97× 102 570

ns-tg†

MLP 10× 100 1.71× 102 81503
modified MLP 10× 100 1.51× 102 82303
KAN 8× 8 2.55× 102 480
ChebyKAN 40× 40 3.83× 103 9840
SincKAN 8× 8× 1 2.77× 102 550

I RELATIONSHIP BETWEEN DEGREE AND SIZE OF DATA

In Sinc numerical methods, the number of the sampled points is equal to the degree because each
degree requires a corresponding value f(jh) at the point jh i.e. Ndegree = Npoints. However,
in SincKAN, Ndegree = Npoints is impractical, and also not necessary because Sinc numerical
methods can be regarded as a single-layer representation while our SincKAN is a multi-layer repre-
sentation where the multi-layer representation has an exponentially increasing capability with depth
Yarotsky (2017). To explore the relationship between degree and size of data, we train our SincKAN
with differentNdegree andNpoints. In this experiment, we train our SincKAN on spectral-bias func-
tion on N = 8, 16, 32, 64, 100, 300 and Npoints = 100, 500, 1000, 5000, 10000 with the inverse
decay {hi}Mi=1 in M = 6 and h0 = 7.0. Moreover, we set the batch size Nbatch = Npoints/4 to
adapt to the changing ofNpoints. The results are shown in Table 9 and Fig. 9. Additionally, Fig. 9(a)
shows that our neural scaling law is RMSE ∝ G−4 compared to the best scaling law RMSE ∝ G−3

claimed in KAN Liu et al. (2024b).

J UPDATE OF GRIDS

The interpolation of every ϕ is an important composition of KANs. However, the degree of the
interpolation methods is always determined empirically. Table 9 shows that larger degree doesn’t
mean better accuracy. One may argue that large model may cause over-parametrization. Herein, we

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 9: RMSE for different degree and Npoints

degree \ Npoints 100 500 1,000 5,000 10,000

8 2.60e-1± 2.76e-5 1.16e-1± 6.34e-6 8.23e-2± 4.54e-6 6.70e-2± 3.91e-3 6.81e-2± 4.51e-3
16 1.01e-2± 1.47e-2 1.30e-3± 9.42e-4 1.04e-3± 3.74e-4 1.62e-3± 2.48e-4 9.57e-4± 4.35e-4
32 3.63e-5± 5.79e-5 2.69e-4± 2.27e-4 4.72e-4± 2.75e-4 2.15e-3± 1.57e-3 3.08e-3± 7.14e-4
64 1.29e-3± 2.21e-3 5.60e-4± 6.42e-4 2.74e-3± 4.01e-3 1.83e-3± 8.49e-4 2.13e-3± 9.05e-4
100 7.66e-5± 1.16e-4 3.79e-4± 6.27e-4 4.24e-4± 7.42e-5 2.19e-3± 1.62e-3 2.64e-3± 1.76e-3
300 3.73e-4± 5.62e-4 7.30e-5± 4.25e-5 7.54e-4± 8.73e-4 2.21e-3± 1.04e-3 2.18e-3± 1.12e-3

101 102

Degree

10 4

10 3

10 2

10 1

RM
SE

Avg RMSE

(a) Npoints = 100

101 102

Degree

10 4

10 3

10 2

10 1

RM
SE

Avg RMSE

(b) Npoints = 500

101 102

Degree

10 3

10 2

10 1

RM
SE

Avg RMSE

(c) Npoints = 1000

101 102

Degree

10 2

RM
SE

Avg RMSE

(d) Npoints = 5000

101 102

Degree

10 3

10 2

RM
SE

Avg RMSE

(e) Npoints = 10000

Figure 9: Figures of different Nponits with increasing degree.

propose the algorithm Algorithm 1) of grid extension so that SincKAN can start from small degree
and end at large degree.

Algorithm 1 Update grids
Input: M > N > 0, {ci}Ni=−N ,

Output: {c′i}Mi=−M
1: for all i = −M,−N + 1, · · · ,M do
2: if i ∈ [−N,N] then
3: c′i = ci;
4: else
5: ci = 0
6: end if
7: end for

We test this method in the same hyperparameter in Appendix I on spectral-basis and bl functions.
For the first experiment, we set the constant degree Ndegree = 100 . For variable degree, we begin
with Ndegree = 8 and update it by [8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4] for 13 times to Ndegree = 100.
We train the constant degree for 1.4× 106 iterations. For variable degree, we train each degree 105

iterations, so the total number of training iterations is also 1.4× 106, the results of update grids are
shown in Fig. 10. We realized that there may have over-fitting problem in Ndegree = 100, thus for
the second experiment, we set the constant degree Ndegree = 96 . For variable degree, we begin

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

with Ndegree = 8 and update it by [8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4] for 13 times to Ndegree = 96. We
train the constant degree for 1.3 × 106 iterations. For variable degree, we train each degree 105

iterations, so the total number of training iterations is also 1.3× 106, the results of update grids are
shown in Fig. 11.

Note that, because of the cost of changing the basis, using variable degree is slightly faster than
using constant degree. The cost is shown in Table 10.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
epochs 1e6

10 6

10 5

10 4

10 3

RM
SE

(a) bl

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
epochs 1e6

10 6

10 5

10 4

10 3

RM
SE

update grids

(b) bl

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
epochs 1e6

10 4

10 3

RM
SE

(c) spectral-basis

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
epochs 1e6

10 5

10 4

10 3

10 2

10 1

RM
SE

update grids

(d) spectral-basis

Figure 10: For bl and spectral-basis, Fig. 10(a) and Fig. 10(c) correspondingly shows the RMSE for
the constant degree Ndegree = 96; Fig. 10(b) and Fig. 10(d) correspondingly shows the RMSE for
the variable degree

Table 10: Computational cost for update of grids

constant degree spectral-bias 7.82× 102

variable degree spectral-bias 7.82× 102

constant degree bl 7.67× 102

variable degree bl 7.73× 102

K RESULTS OF SELECTED H

Table 11 and Table 12 show the results of selected {hi} in details. However, there are so many
hyperparameters that may be adjusted when hi is larger. For example, for the large h on fine grids,
we argue that Ndegree = 100 may not exploit the capability fully. Thus, we conducted an extra
experiment with 5000 grid points, {hi} = {1/10, 1/100, 1/1000}, andNdegree = 500. For sin-low,
the RMSE is 7.92e-4± 4.21e-4, and for the sin-high, the RMSE is 2.32e-3± 2.74e-4. It shows that
for sin-high, the SincKAN can obtain a more accurate result if we further tune the hyperparameters.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0 1.2
epochs 1e6

10 6

10 5

10 4

10 3

10 2

RM
SE

(a) bl

0.0 0.2 0.4 0.6 0.8 1.0 1.2
epochs 1e6

10 6

10 5

10 4

10 3

RM
SE

update grids

(b) bl

0.0 0.2 0.4 0.6 0.8 1.0 1.2
epochs 1e6

10 6

10 5

10 4

10 3

10 2

RM
SE

(c) spectral-basis

0.0 0.2 0.4 0.6 0.8 1.0 1.2
epochs 1e6

10 5

10 4

10 3

10 2

10 1

RM
SE

update grids

(d) spectral-basis

Figure 11: For bl and spectral-basis, Fig. 11(a) and Fig. 11(c) correspondingly shows the RMSE for
the constant degree Ndegree = 96; Fig. 11(b) and Fig. 11(d) correspondingly shows the RMSE for
the variable degree

1 6 12 24
M

2.0

6.0

10.0

h 0

7.80e-04 2.43e-04 1.18e-03 4.30e-03

1.60e-04 8.96e-04 2.27e-03 3.81e-03

2.91e-04 4.70e-04 3.23e-03 7.42e-03

1.49e-04 4.24e-03 1.73e-03 2.07e-03

(a)

1 6 12 24
M

2.0

6.0

10.0

h 0

7.07e-01 5.91e-01 4.00e-02 2.23e-02

7.07e-01 2.18e-01 3.06e-02 1.75e-02

6.98e-01 1.44e-02 1.50e-02 7.03e-03

6.58e-01 7.55e-03 1.12e-02 4.60e-03

(b)

Figure 12: Fig. 12(a) shows the inverse decay approach on sin-low function; Fig. 12(b) shows the
inverse decay approach on sin-high function.

L OSCILLATIONS OF SINCKAN

We conducted the experiments on convection-diffusion equations (Eq. (50)) with h0 = 2.0, 10.0,
N = 8, 100, and M = 1, 6. Except h0 = 2.0 and N = 8, the inaccuracy of derivatives makes
SincKAN unstable with the loss diverging. We choose some figures plotted in Fig. 14 to show the
oscillations that limit the improvement of SincKANs.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

1 2 3
M

2.0

6.0

10.0

h 0

7.80e-04 7.06e-04 6.33e-04

1.60e-04 5.40e-04 8.02e-04

2.91e-04 1.03e-03 3.47e-03

1.49e-04 1.29e-03 3.30e-03

(a)

1 2 3
M

2.0

6.0

10.0

h 0

7.07e-01 7.07e-01 7.02e-01

7.07e-01 6.89e-01 2.29e-02

6.98e-01 1.20e-02 2.17e-02

6.58e-01 7.22e-02 3.48e-02

(b)

Figure 13: Fig. 13(a) shows the exponential decay approach on sin-low function; Fig. 13(b) shows
the exponential decay approach on sin-high function.

Table 11: RMSE for different {hi} with inverse decay

Function name h0 \ M 1 6 12 24

sin-low

2.0 7.80e-4± 7.96e-4 2.43e-4± 1.55e-4 1.18e-3± 2.38e-4 4.30e-3± 1.74e-3
π 1.60e-4± 6.66e-5 8.96e-4± 5.91e-4 2.27e-3± 8.53e-4 3.81e-3± 2.47e-3
6.0 2.91e-4± 1.22e-4 4.70e-4± 1.88e-4 3.23e-3± 8.47e-4 7.42e-3± 7.40e-3
10.0 1.49e-4± 8.74e-5 4.24e-3± 3.18e-3 1.73e-3± 1.08e-3 2.07e-3± 8.84e-4

sin-high

2.0 7.07e-1± 6.70e-6 5.91e-1± 6.32e-3 4.00e-2± 1.24e-3 2.23e-2± 1.38e-3
π 7.07e-1± 7.94e-6 2.18e-1± 1.88e-2 3.06e-2± 2.80e-3 1.75e-2± 2.44e-3
6.0 6.98e-1± 4.88e-3 1.44e-2± 1.34e-3 1.50e-2± 8.68e-4 7.03e-3± 1.95e-3
10.0 6.58e-1± 3.32e-3 7.55e-3± 1.73e-3 1.12e-2± 2.75e-3 4.60e-3± 3.70e-4

M METRICS

In this paper, we use two metrics. For interpolation, we inherit the RMSE metric from KAN Liu
et al. (2024b), the formula is :

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2; (66)

for PIKANs, we utilize the relative L2 error which is the most common metric used in PINNs:

RelativeL2 =
∥y − ŷ∥2
∥y∥2

, (67)

where y is the target value, and ŷ is the predicted value

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 12: RMSE for different {hi} with exponential decay

Function name h0 \ M 1 2 3

sin-low

2.0 7.80e-4± 7.96e-4 7.06e-4± 2.54e-4 6.33e-4± 1.38e-4
π 1.60e-4± 6.66e-5 5.40e-4± 2.05e-4 8.02e-4± 6.58e-5
6.0 2.91e-4± 1.22e-4 1.03e-3± 3.78e-4 3.47e-3± 3.31e-4
10.0 1.49e-4± 8.74e-5 1.29e-3± 1.74e-4 3.30e-3± 2.80e-4

sin-high

2.0 7.07e-1± 6.70e-6 7.07e-1± 1.42e-5 7.02e-1± 2.84e-3
π 7.07e-1± 7.94e-6 6.89e-1± 4.82e-3 2.29e-2± 1.76e-3
6.0 6.98e-1± 4.88e-3 1.20e-2± 1.35e-3 2.17e-2± 6.67e-4
10.0 6.58e-1± 3.32e-3 7.22e-2± 8.12e-3 3.48e-2± 2.38e-3

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

4

3

2

1

0

1

2

3

4 target
sinckan

(a) h0 = 2.0, N = 8,M = 1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

4

2

0

2

4 target
sinckan

(b) h0 = 2.0, N = 8,M = 6

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

4

2

0

2

4 target
sinckan

(c) h0 = 10.0, N = 8,M = 1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

4

3

2

1

0

1

2

3

4 target
sinckan

(d) h0 = 2.0, N = 100,M = 6

Figure 14: Fig. 14(a) solve Eq. (50) accurately. However, SincKANs have oscillations after either
increasing M (Fig. 14(b)) or increasing h0. Fig. 14(d) shows that with the same hyperparameters
used in approximation, SincKAN becomes extremely inaccurate due to the violent oscillations.

27

	Introduction
	Methods
	Physics-informed neural networks (PINNs)
	Sinc numerical methods
	Sinc Kolmogorov-Arnold Network (SincKAN)

	Experiments
	Learning for approximation
	Selecting h

	Learning for PIKANs
	Boundary layer problems
	Fractional PDEs
	High-dimensional problems
	Ablation study

	Conclusion
	Proof of transformation
	Explicit expression of functions
	Details of PDEs
	1D problems
	Perturbed boundary value problem
	Nonlinear problem
	Burgers
	T-nonlinear problem
	Convection-diffusion
	2D problems
	Boundary layer
	Navier stokes equations

	Experiment details
	Approximation
	PIKANs
	Fractional PINNs

	Interior approximation of SincKAN
	Approximation on fine grids
	Details of other networks
	MLP
	Modified MLP
	KAN
	Kolmogorov-Arnold representation theorem
	Kolmogorov-Arnold Network

	ChebyKAN

	Computational Cost
	Training
	Referencing

	Relationship between degree and size of data
	Update of grids
	Results of selected h
	Oscillations of SincKAN
	Metrics

