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Abstract

When can the distributional assumptions of theo-
rems and learning algorithms be trusted? Inspired
by this question, Rubinfeld & Vasilyan (2023)
initiated the study of testable learning. In this
schema we always learn one of the following two
things: either we have achieved the desired ac-
curacy regardless of whether the distributional
assumptions are satisfied, or the input distribution
does not satisfy the original distributional assump-
tions. Motivated by the challenge of relying on
strong distributional assumptions in many theo-
rems in mechanism design, we develop a testable
learning framework for mechanism design. Tradi-
tional models in mechanism design assume that
value distributions satisfy some notion of regu-
larity. Unfortunately, testing regularity is not
possible in the original testable learning frame-
work as we show. To bypass this impossibility,
we propose a regularized version of the testable
learning framework. Under this framework, we
always learn one of the following two things: ei-
ther we achieve high revenue compared to the
best possible revenue of any regular distribution
close to the input distribution, or the input distri-
bution does not satisfy regularity. We then use
this framework to provide: 1) a tester-learner pair
for revenue-optimal mechanisms, 2) a tester for
whether the fundamental Bulow-Klemperer The-
orem (Bulow & Klemperer, 1996) is applicable
to a given dataset, and 3) a tester to confirm the
existence of an anonymous reserve price that re-
sults in the anonymous price auction securing a
constant fraction of the optimal revenue.

1Department of Computer Science, Yale University,
Connecticut, USA. Correspondence to: Vikram Kher
<vikram.kher@yale.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Data science is a field with celebrated applications across
many scientific disciplines. Many important statements and
algorithms in data science require distributional assumptions
on the data that is being analyzed. In physical sciences, a
common distributional assumption is the Gaussianity of the
underlying data, whereas in social sciences and economics
more heavy-tailed distributions arise (Clementi & Galle-
gati, 2005). An instantiation of this phenomenon appears in
learning theory as well, where strong computational impos-
sibility results for agnostic learning prevent general learning
guarantees and to bypass these lower bounds it is common
to assume that the marginals are uniform or Gaussian (Kalai
et al., 2008; Diakonikolas et al., 2021). A natural question
to ask in all these settings is the following: How can we
infer which statements or algorithms can be applied in a
given dataset? A straightforward way to tackle this question
would be to design a testing algorithm that can help us dis-
tinguish which of the distributional assumptions are satisfied
by the given dataset. Unfortunately, directly verifying these
assumptions is often computationally intractable (Goldreich,
2017). This brings us back to a dilemma for a given dataset:
should we use methods that have stronger guarantees but
require stronger distributional assumptions? Or, should we
use methods that have weaker guarantees but are applicable
in settings with fewer assumptions?

Motivated by this dilemma, the recent breakthrough work
of Rubinfeld & Vasilyan (2023) introduced the framework
of testable learning wherein a learning algorithm is paired
with a tester which satisfies the following properties: (1) if
the tester accepts, then we can be confident that the learning
algorithm is applicable to our dataset, whereas (2) if the
tester rejects, then we know that the distributional assump-
tions are not satisfied. This allows us to bypass the lower
bounds of testing distributional assumptions because in the
case that the tester accepts we cannot make any conclusions
about the distributional assumptions; we only know that the
learning algorithm succeeds. Rubinfeld & Vasilyan (2023)
develops a computationally efficient tester-learner pair for
agnostically learning half-spaces over Gaussians and the
uniform hypercube. Many works have since followed that
successfully apply this testable learning framework to a va-
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riety of different settings (Diakonikolas et al., 2023; Klivans
et al., 2024; Gollakota et al., 2023a;b; 2024).

In the context of mechanism design, there are distributional
assumptions that underline the vast majority of results in
single-item revenue maximization. When the distribution
is explicitly known, Myerson (1981) effectively solved this
question through his characterization of virtual valuation
functions. For each bidder i ∈ [n], who draws their value
from a distribution with cdf Fi(v) and pdf fi(v), Myerson
(1981) defined their virtual value function to be

ϕi(v) = v − 1− Fi(v)

fi(v)
.

If ϕi(v) is non-decreasing, then the underlying distribution
is called regular. The use of regularity in mechanism design
dates back to the celebrated work of Myerson (1981), and
has remained a highly influential concept in auction theory
ever since. Given that regularity is crucial to many results
and methods in mechanism design, it is natural ask the
following question:

Question: When is it safe to apply methods that
are based on regularity in an auction setup?

Our Contribution. In this work, our goal is to answer
the question above by adapting the aforementioned frame-
work of testable learning in the field of mechanism design.
We first observe that a vanilla application of the testable
learning framework of Rubinfeld & Vasilyan (2023) is not
appropriate for mechanism design (see Section 3.1). Then,
we introduce a relaxation of this framework that we call
Regularized Testable Learning, which relaxes the learning
guarantee that we have when the tester algorithm accepts.
This new framework allows us to build a powerful tester
that distinguishes whether many theorems and methods in
revenue maximization are applicable to a given data source.
We believe our framework will have applications beyond
just the study of revenue-maximizing mechanisms.

1.1. Our Results

Our primary conceptual contribution is our Regularized
Testable Learning framework. In regularized testable learn-
ing, we are informally guided by the following principles.
Let L be a learner for the concept class C with respect to
a family of distributions D and a hypothesis classH. If T
is a tester for the distributional assumptions of L then the
following should hold:

▷ Soundness: If T accepts a distribution D, then w.h.p.
L should output a hypothesis which achieves good
objective performance on D relative to the optimum
concept of any close distribution to D in D.

▷ Completeness: If a distribution D is close to some
D′ ∈ D, then w.h.p. T should accept D on input.

This is a relaxation of the testable learning framework of
Rubinfeld & Vasilyan (2023), due to the highlighted bold
part in the soundness condition. The original definition of
soundness from Rubinfeld & Vasilyan (2023) requires the
learner to achieve good objective performance relative to
the optimum concept of the distribution itself. In our setting,
the family of distributions D is regular distributions and the
optimal concept of any distribution D ∈ D is its Myerson
optimal mechanism (Definition 6). Furthermore, in our
setting, two distributions are close to each other if they have
a small Kolmogorov-Smirnov distance (Definition 9).

We formally introduce the regularized testable learning
framework in Section 3. In Section 3 we also show a proof
that the original testable learning framework cannot give us
nontrivial results in the revenue maximization setting. We
instantiate our framework in the following settings:

(1) Learning Revenue-Optimal Mechanisms (Theo-
rem 6). Under this model, first proposed by Cole & Rough-
garden (2014), the goal is to characterize how many samples
are needed to achieve a (1 − ϵ) multiplicative approxima-
tion to the revenue of the optimal mechanism. In a unify-
ing result, Guo et al. (2019) effectively settled the sample
complexity of single item revenue maximizing auctions by
providing tight upper and lower bounds (up to poly-log fac-
tors). Drawing an interesting connection with the work of
Guo et al. (2021), we introduce a parameter α such that on
an input distribution D our learner should output a mecha-
nism M such that Rev(M,D) ≥ (1− g(α))OPT (D′) for
every regular distribution D′ that is α-close in Kolmogorov-
Smirnov (KS) distance (if the tester accepts). Importantly,
if there is no α-close regular distribution, then our learner
bears no guarantee. We present these results in Section 5.

(2) Competition vs Optimality (Theorem 8). Bulow-
Klemperer Theorem (Bulow & Klemperer, 1996) is a well-
known result in auction theory that states that when the
value distributions of the bidders are i.i.d. and regular, then
the revenue of a simple Vickrey auction with one additional
player is higher than the revenue of an optimal mechanism
for one less bidder, that is, competition in the i.i.d. setting
is more important than optimality. The proof of this result
heavily relies on the fact that the value distributions are
regular. In Section 6 we show that there is a regularity tester,
based on samples from the value distributions, that: (1)
when it accepts, then the conclusion of Bulow-Klemperer’s
Theorem holds, and (2) when it rejects, then the value distri-
butions are certainly irregular. This gives a nice per-instance
test of whether Bulow-Klemperer’s result is applicable or
not.

(3) Anonymous Price Auctions (Theorem 10). A well-
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known result by Hartline & Roughgarden (2009); Alaei
et al. (2019) states that when the value distributions are reg-
ular but not symmetric, the auction that sets an anonymous
reserve price, i.e., a reserve price that is the same for all
bidders, achieves a constant fraction of the optimal revenue
of Myerson’s auction. This result also relies heavily on
the regularity of the value distributions, and hence it makes
sense to ask if there is a way to test if this result is applicable
or not. Similar to the previous case of the Bulow-Klemperer
Theorem, we provide a tester that: (1) when it accepts, then
anonymous price auctions achieve a constant approximation
of the optimal revenue, whereas (2) when it rejects, then
the value distributions are certainly irregular. We provide
details on this in Section 7.

Finally, in Section 8 we show a single-bidder lower bound
for the sample complexity of regularized testable learning
for revenue maximization.

Novelty of Results. Under our framework, we obtain
the first nontrivial revenue guarantees for learning single-
item auctions when the bidders draw their values from un-
bounded, irregular distributions. In contrast, previous work
on learning irregular auctions (e.g., Guo et al. (2019) and
Roughgarden & Schrijvers (2016)) delivers sample com-
plexity results that scale with an upper bound on the support
of the distribution. By dropping this dependence, our frame-
work is applicable to many new settings, such as when the
underlying distribution is a mixture of Gaussians. Mixture
models, like the previous example, commonly arise in mar-
ket settings when sampling from a heterogeneous population
(Sivan & Syrgkanis, 2013).

1.2. Related Works

We briefly outline three lines of relevant research for design-
ing revenue-optimal mechanisms and testing the distribu-
tional assumptions of learning algorithms.

Sample complexity of learning optimal auctions. Cole
& Roughgarden (2014) first proposed studying the num-
ber of samples needed to achieve a (1 − ϵ) multiplicative
approximation to the optimal mechanism. Further work
followed in single parameter settings (Huang et al. (2015)
and Roughgarden & Schrijvers (2016), among others) cul-
minating in the result of Guo et al. (2021) that provided
tight bounds (up to poly-log factors) on the sample com-
plexity of learning single item auctions. A related line of
research has explored the robust learning of mechanisms
from noisy or corrupt samples in both single-parameter and
multi-parameter settings (Guo et al., 2021; Brustle et al.,
2020; Cai & Daskalakis, 2017).

Testable Learning. The testable learning framework was
first proposed by Rubinfeld & Vasilyan (2023) in the context
of agnostically learning half-spaces over Gaussians and the

uniform hypercube. Subsequent work by Gollakota et al.
(2023b) gave testable learners for any concept class which
admits low-degree sandwiching polynomials assuming the
marginal is strongly log-concave. More recently, Gollakota
et al. (2023a) showed testable learners for half-spaces for
any marginal distribution that satisfies a Poincaire inequality.
The testable learning framework has also been applied to
settings that involve distribution shift and adversarial label
noise (Diakonikolas et al., 2021; Klivans et al., 2024).

Simple versus optimal auctions. A fruitful line of research
has explored whether revenue-optimal mechanisms can be
well approximated by simpler mechanisms. Several impor-
tant results in this line of research include Bulow & Klem-
perer (1996); Hartline & Roughgarden (2009); Alaei et al.
(2019); Chawla et al. (2010); Haghpanah & Hartline (2015).
A key assumption underlying many of these results is that
the underlying distribution is regular. Lastly, Devanur et al.
(2016) developed a key revenue monotonicity result that
facilitates comparing the revenue of different mechanisms
through the notion of first-order stochastic dominance.

2. Preliminaries
2.1. Auction Model

We focus on the fundamental single-item, n-bidder mecha-
nism design setting. We assume each bidder i draws their
nonnegative valuation vi from an (unknown) distribution Di

with a cumulative distribution function (cdf) of Fi(x). For
a given cdf F (x), we define its (reverse) quantile function
as q(x) = 1 − F (x). In other words, q(x) is the proba-
bility of sale if a item is posted at a price of x. We let
v = (v1, v2, ..., vn) denote the vector of valuations which
follows the product distribution D = Πn

i=1Di. Henceforth,
we utilize bold font to denote product distributions, which
are typically (unless otherwise stated) over n bidders. We
assume the auctioneer only has sample access to D rather
than explicit knowledge of the distribution function.

A mechanism M consists of an allocation function x and
a payment function p. To run an auction, M takes as input
a vector of bids b = (b1, ..., bn) and allocates the item
according to x(b) ∈ [0, 1]n, where

∑n
i=1 xi(b) ≤ 1, and

charges bidders according to p(b) ∈ Rn. For a vector of
bids b, each bidder i receives the item with probability xi(b)
and pays pi(b). The utility of bidder i is ui(xi(b), pi(b)) =
vixi(b) − pi(b). The seller’s goal is to find a mechanism
that maximizes the expected value of the payments (i.e.,
maximizes E[

∑n
i=1 pi(b)]).

We restrict our attention to mechanisms which satisfy Domi-
nant Strategy Incentive Compatibility (DSIC) and Individual
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Rationality (IR):

(DSIC) : ui(vi, b−i) ≥ ui(bi, b−i)

for all i ∈ [n], vi, bi ∈ R≥0 and b−i ∈ Rn−1
≥0 ,

(IR) : ui(vi, b−i) ≥ 0

for all i ∈ [n], vi ∈ R≥0 and b−i ∈ Rn−1
≥0 ,

where b−i denotes the vector of bids from every agent except
bidder i. The DSIC constraint ensures that a bidder maxi-
mizes their expected utility by truthfully bidding their value
for an item, regardless of what other bidders do. The IR
constraint ensures that a bidder’s utility for participating in
the auction is always nonnegative when they bid truthfully.

2.2. Revenue-Optimal Auctions

In this section, we outline a variety of useful theorems and
definitions that we will refer to throughout the paper. A
natural starting point is to define the expected revenue of a
mechanism.

Definition 1 (Expected Revenue of Mechanism). The ex-
pected revenue of a mechanism M on a distribution D is
denoted by

Rev(M,D) = E
(v1,...,vn)∼D

[
n∑

i=1

pi(vi)

]
.

The Myerson optimal mechanism for D, which we refer to as
MD, maximizes this expectation and has expected revenue
equal to OPT (D).

When important in context, we use the notation
Revn(M,D) to denote the revenue when a mechanism M
is run on n i.i.d. bidders from the distribution D. In My-
erson (1981), they introduce the fundamental notion of a
regular distribution.

Definition 2 (Regularity). A distribution D with cdf F and
density f is called a regular distribution if its corresponding
virtual value function ϕ(v) = v − 1−F (v)

f(v) is monotonically
non-decreasing for all v ≥ 0. A product distribution D is
regular if Di is regular for all i ∈ [n].

In Guo et al. (2021), they provide an equivalent characteriza-
tion of regularity through their definition of a distribution’s
link function.

Definition 3 (Link Function). Let D be a distribution with
cdf F (x). The link function of D is defined as

h(x;F ) =
1

1− F (x)
.

We correspondingly denote the inverse of the link function
as

h−1(x;h) = 1− 1

h(x)
.

Before introducing the corresponding lemma, we recall the
definition of first-order stochastic dominance.

Definition 4 (First-Order Stochastic Dominance). For two
distributions D and D′. We say that D (first-order) stochas-
tically dominates D′ (denoted by D ⪰ D′) if

FD(x) ≤ FD′(x)

for all x ≥ 0. A product distribution D stochastically
dominates another product distribution D′ if Di ⪰ D′

i for
all i ∈ [n].

Lemma 1 (Lemma 3.4 of Guo et al. (2021)). A distribution
D is regular iff its link function h(x;F ) is a convex function
of x. Moreover, for two distributions D and D′, if D first-
order stochastically dominates D′ then h(x;F ) ≤ h(x;F ′)
for all x ≥ 0.

Later on, it will be useful to take the convex envelope of
a non-convex link function in order to find a close regular
distribution.

Definition 5 (Convex Envelope). The convex envelope of
a function f denoted by Conv(f) is the maximum convex
lower bound of f , i.e.,

Conv(f) = sup{g(x)| g is convex

and g(x) ≤ f(x) for all x ∈ R≥0}.

For a distribution D, we abuse notation by writing Conv(D)
to denote the convex envelope of the distribution’s link func-
tion.

Myerson (1981) fully characterizes the optimal single-item,
multi-bidder mechanism, among all mechanisms that are
DISC and IR compliant.

Definition 6 (Myerson’s Optimal Mechanism). For a regu-
lar product distribution D, the Myerson optimal mechanism
MD awards the item to the bidder i with the highest non-
negative virtual valuation (if such a bidder exists). The
winner in turn pays ϕ−1

i (ϕ0), where ϕ0 is the maximum of
0 and the second highest virtual value.

Although Myerson’s mechanism is optimal, it requires
knowledge of the distribution function. Hence, simpler
mechanisms such as the Vickrey auction and the anony-
mous price auction are also of interest to auction designers.

Definition 7 (Vickrey Auction). The Vickrey auction, de-
noted by V A, awards the item to the highest bidder and
charges them a price equal to the second highest bid.

Definition 8 (Anonymous Price Auction). The anonymous
price auction with reserve p∗, denoted by APA(p∗), awards
the item to the highest bidder if their bid is at least p∗. The
auction then charges them a price equal to the maximum of
the second highest bid and p∗.
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2.3. Revenue Monotonicity

Often, we will need to compare the revenue of a mechanism
on competing distributions. The work of Devanur et al.
(2016) provides a convenient way to accomplish this through
first-order stochastic dominance.

Theorem 2 (Strong Revenue Monotonicity (Devanur et al.,
2016)). Given two product distributions D and D′ such
that D ⪰ D′, it holds that

Rev(MD′ ,D) ≥ Rev(MD′ ,D′) = OPT (D′).

2.4. Probability Metrics

To compare how close two distributions are, we will use
Kolmogorov-Smirnov distance.

Definition 9 (Kolmogorov-Smirnov Distance). For two dis-
tributions D and D′, the Kolmogorov-Smirnov (KS) distance
between D and D′ is denoted by

dKS(D,D′) = sup
x∈R
|FD(x)− FD′(x)|.

For a given distribution D, we denote the set of all distribu-
tions that are α-close to D in Kolmogorov-Smirnov distance
by BKS,α(D) = {D′ : dKS(D

′, D) ≤ α}. A product dis-
tribution D is α-close in Kolmogorov-Smirnov distance to
another product distribution D′ if dKS(D

′
i, Di) ≤ α for all

i ∈ [n].

For a Kolmogorov-Smirnov ball BKS,α(D), we define the
minimal regular distribution Dmin in this ball to have cdf
FDmin(x) = h−1(x; ĥ), where

ĥ(x) = max
D′∈BKS,α(D)

D′ regular

h(FD′(x)) for all x ∈ R+.

In addition to KS distance, we will also utilize Kullback-
Leibler Divergence to establish lower bounds on the min-
imum number of samples required to distinguish between
two close distributions.

Definition 10 (Kullback-Leibler Divergence). The Kullback-
Leibler (KL) divergence between two distributions D and
D′ with pdfs fD(v) and fD′(v) is

dKL(D
′||D) = Ev∼D′

[
ln

fD′(v)

fD(v)

]
.

For a given distribution D, we denote the set of all dis-
tributions which are α-close to D in KL divergence by
BKL,α(D) = {D′ : dKL(D

′||D) ≤ α}. A product dis-
tribution D′ is α-close in KL divergence to another product
distribution D if

∑n
i=1 dKL(D

′
i||Di) ≤ α.

Finally, for completeness, we also include a definition of
the Dvoretzky–Kiefer–Wolfowitz inequality, which is used

to bound the KS distance between an empirical distribution
and a true distribution.
Definition 11 (Dvoretzky–Kiefer–Wolfowitz (DKW) in-
equality (Dvoretzky et al., 1956; Massart, 1990)). Given n
samples (Xi)

n
i=1 from a distribution D, the empirical dis-

tribution Dn with cdf Fn(x) = n−1
∑n

i=1 1Xi≤x satisfies
the following inequality:

Pr(dKS(Dn, D) > ϵ) ≤ 2e−2nϵ2 .

3. Regularized Testable Learning
As we explained above in many applications of auction
theory, the regularity of the value distributions is assumed.
Yet, it is not clear if we can test whether a given set of
samples is drawn from a distribution that is regular. If such
a test existed, it would allow us to know when we may
apply certain results that require regularity to a particular
source of data. In fact, in this section we show that we
cannot efficiently test regularity directly, which motivates
our regularized testable learning framework.

We first show in Section 3.1 that no meaningful result can be
derived for revenue optimization using the original frame-
work of Rubinfeld & Vasilyan (2023). We then present
our new framework of regularized testable learning in Sec-
tion 3.2, which we subsequently use to prove revenue guar-
antees in Section 5.

3.1. Testing Regularity for Revenue is Hard

To motivate Definition 14, we will show that it is impossible
to design a tester-learner pair with nontrivial guarantees
for revenue-maximizing auctions under the conventional
learning and testing benchmarks defined below.
Definition 12 (Conventional Learner). A family of distri-
butions D has a f(ϵ, δ, n)-conventional learner L if given
access to f(ϵ, δ, n) i.i.d. samples from D ∈ D, L outputs
a mechanism M such that Rev(M,D) ≥ (1− ϵ)OPT (D)
with probability at least 1− δ.
Definition 13 (Conventional Tester). An algorithm T is a
h(ϵ, δ, n)-conventional tester for the class of regular distri-
butions with respect to a learner L if it satisfies two con-
straints.

• Soundness: Suppose T is presented with h(ϵ, δ, n) i.i.d.
samples from a distribution D and outputs "Yes" with
probability at least 1−δ. Then, the conventional learn-
ing guarantee of Definition 12 should be achieved.

• Completeness: Suppose T is presented with h(ϵ, δ, n)
i.i.d. samples from a distribution D that is regular, then
T should output "Yes" with probability at least 1− δ.

Under this definition, the learner must output a mechanism
which achieves good revenue on the distribution relative
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to its optimal mechanism. The crux of the issue with Def-
initions 12 and 13 is learning the optimal mechanism for
an irregular distribution is generally infeasible. We demon-
strate this in the following theorem by showing that we
cannot simultaneously satisfy the soundness and complete-
ness conditions present in Definition 13.

Theorem 3. Let L be a f(ϵ, δ, n)-conventional learner. For
any fixed number of samples m = h(α, δ, n), there does not
exist a m-conventional tester T for L.

Proof. Suppose for a contradiction that there exists a m-
conventional tester T . Without loss of generality, assume
that δ = 1/4. We begin by constructing a family of
counter-examples parameterized by γ. Let D1 be the stan-
dard uniform distribution over the interval [0, 1] and let D2

be a mixed distribution; with probability 1 − γ, it is uni-
form over [0, 1] and with probability γ it is uniform over
[21/γ , 21/γ + 1]. It is straightforward to verify that D1 is
regular and D2 is irregular by examining the convexity of
their respective link functions.

Without loss of generality, we will compare the distribu-
tions in terms of KL-divergence since dKS(D1, D2) =
γ ≤ − ln (1− γ) = dKL(D1||D2). It is well-known
(e.g., Huang et al. (2015)) that any algorithm which dis-
tinguishes between D1 and D2 with probability at least
3/4 requires at least dKL(D1||D2)

−1 = − ln (1− γ)
−1

many samples. Myerson (1981) dictates that MD1
sets

a reserve price of 1/2 and Rev(MD1
, D1) = 1/4. It is

simple to show that MD2
sets a reserve price of 21/γ and

Rev(MD2
, D2) = γ21/γ . Then,

lim
γ→0

Rev(MD2
, D2)

Rev(MD1 , D1)
= lim

γ→0
4γ21/γ =∞.

If T accepts D1 with probability at least 3/4, then T must
accept D2 with at least probability 3/4 since for some γ > 0
the two distributions are indistinguishable with only m sam-
ples. This violates soundness, as the revenue-maximizing
auction for D2 cannot be learned with m samples. In par-
ticular, if the mechanism could be learned, then we could
use the learner to distinguish between the two distributions.
Alternatively, if T rejects D1 with at least probability 1/4,
then completeness is violated, since D1 is a regular distribu-
tion.

3.2. Definition of the New Regularized Testable
Learning Framework

We now formally present our framework of regularized
testable learning for revenue-optimal auctions.

Definition 14 (Regularized Learner). The class of revenue-
optimal mechanisms over regular distributions has an
(f(α, δ, n), g(α, n))-regularized learner L if given access

to f(α, δ, n) i.i.d. samples from D, L outputs a mechanism
M such that with probability 1− δ

Rev(M,D) ≥ (1− g(α, n))OPT (D′)

for all regular distributions D′ that are α-close in KS dis-
tance to D.

Definition 15 (Regularized Tester). An algorithm T is a
h(α, δ, n)-regularized tester for the class of regular distri-
butions with respect to a learner L if it satisfies two con-
straints.

• Soundness: Suppose T is presented with h(α, δ, n)
i.i.d. samples from a distribution D and outputs "Yes"
with probability at least 1 − δ. Then, the regular-
ized learning guarantee of Definition 14 should be
achieved.

• Completeness: Suppose T is presented with h(α, δ, n)
i.i.d. samples from a distribution D that is α-close in
Kolmogorov-Smirnov distance to a regular distribution,
then T should output "Yes" with probability at least
1− δ.

Compared to the conventional learner, Definition 14 asks
the regularized learner to produce a mechanism that gener-
ates strong revenue compared to the optimal mechanism of
any nearby regular distribution. We correspondingly alter
the completeness guarantee of Definition 13 to ensure that
w.h.p. the regularized tester accepts any distribution that
is sufficiently close to a regular distribution. This alterna-
tion allows us to prove meaningful revenue guarantees for
unbounded, irregular distributions that are close to regular
distributions. Although the above formulation is specific
to the setting of learning revenue optimal auctions, in Ap-
pendix G we present a generic formulation of regularized
testable learning that is applicable to a broader range of
learning tasks.

4. A Regularized Tester for Revenue-Optimal
Mechanisms

In this section, we present our regularized tester for revenue-
optimal mechanisms and justify its function in relation to
the learning guarantee of Definition 14. More precisely, any
regularized learning algorithm should output a mechanism
that performs well on the input distribution compared to the
optimal revenue of any close regular distribution. Unfor-
tunately, in Section 4.2 we show that there exist irregular
distributions that may not be sufficiently close to any regular
distribution. Hence, the role of our tester is to verify if there
exists a close regular distribution to the input distribution.
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4.1. The Testing Algorithm

Our regularized tester algorithm is similar in spirit to the
main algorithms of Guo et al. (2019) and Guo et al. (2021)
with an additional crucial conditional check at the end. Its
goal is to determine if there exists a close regular distribution
to the (possibly irregular) input distribution. Specifically, as
input, the tester receives a distortion parameter α ∈ (0, 1)
and m samples from a product distribution D = Πn

i=1Di.
The algorithm then constructs a quantile-shifted version of
the empirical distribution Ẽ that is both regular and stochas-
tically dominated by true distribution D w.h.p.. The amount
of quantile shift is determined via an application of the
DKW inequality (Definition 11), along with a union bound
since D is a product distribution. Unlike previous works,
our tester then verifies w.h.p. if Ẽi is in an α-radius KS
ball around Di for every i ∈ [n]. If so, the tester accepts;
otherwise, it rejects.

Algorithm 1 Regularized Tester
Require: m i.i.d. samples from a distribution D and a

distortion parameter α
Ensure: YES or NO

1: Let E = Πn
i=1Ei be the empirical distribution over the

samples
2: for i← 1 to n do
3: Construct Êi as follows:
4: Let qEi(v) be the quantile function of Ei

5: Define

c =

√
2 qEi(v)

(
1− qEi(v)

)
ln
(
2mnδ−1

)
m

+
4 ln

(
2mnδ−1

)
m

+ α

6: qÊi(v) =

{
max

(
0, qEi(v)− c

)
if v > 0,

1 if v = 0

7: Ẽi = h−1
(
Conv

(
Êi(·)

))
8: for each value v in the support of Ei do
9: if

∣∣ qẼi(v) − qEi(v)
∣∣ > c then

10: return NO
11: end if
12: end for
13: end for
14: return YES

A priori, it may not be clear whether the transformation
associated with qÊi(v) in Algorithm 1 corresponds to a
valid distribution function. For completeness, we include
a proof of this fact in Appendix B. This algorithm can be
implemented in polynomial time (see Guo et al. (2021)). We
will utilize this tester both in conjunction with a regularized
learner (Section 5) and by itself (Sections 6 and 7).

4.2. Regular Distributions are not Dense

To motivate why we need to pair our regularized learner
with Algorithm 1, we show that there exist distributions that
are not suitably close to any regular distribution in terms
of KS distance. We defer the proof of Lemmas 4 and 5 to
Appendix A.

Lemma 4 (Regular Distributions are not Dense). There
exists an irregular distribution D and an α > 0 such that for
all regular distributions D′, it holds that dKS(D,D′) > α.

Lemma 5 (Irregular Distributions are Dense). For any dis-
tribution D and α > 0, there exists an irregular distribution
D′ such that D′ ∈ BKS,α(D).

5. Regularized Testable Learning for Optimal
Auctions

The first setting that we apply our regularized tester to is
learning revenue optimal auctions from i.i.d. samples, which
we explore in this section. We begin by outlining our learn-
ing algorithm (Algorithm 2). Similar to the tester described
in Section 3, the learner receives a distortion parameter
α ∈ (0, 1) and m samples from the product distribution
D = Πn

i=1Di. The learner then finds a regular distribution
E′ that is close to D, whilst also having the property that
D ⪰ E′ and D′ ⪰ E′ for all regular distributions D′ which
are also close to D. The learner then outputs the Myerson
optimal mechanism with respect to E′. As with Algorithm 1,
the learner can be implemented in polynomial time.

We present a proof of the main theorem in Appendix C.

Theorem 6. Let D = Πn
i=1Di be a product distribution, let

α ∈ (0, 1) be a distortion parameter, and let δ > 0. Addi-
tionally, fix m = Ω̃(log (1/δ)/α2). Suppose T is the tester
described in Algorithm 1 and L is the learner described in
Algorithm 2. Then, T is a m-sample regularized tester for
the (m,

√
nα)-regularized learner L.

6. A Tester for Bulow-Klemperer Theorem
In this section, we show that our regularized tester (Algo-
rithm 1) can be used to verify when an approximate version
of the Bulow-Klemperer theorem for irregular distributions
holds. With i.i.d. regular bidders, the celebrated Bulow-
Klemperer Theorem (Bulow & Klemperer, 1996) provides
a simple method for generating at least as much revenue as
the optimal mechanism; just recruit another bidder and run
the Vickrey auction.

Theorem 7 (Bulow-Klemperer). Let D be a regular distri-
bution and n a positive integer. Then,

Revn+1(V A,D) ≥ OPTn(D),

when the bidders are i.i.d. from D.

7
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Algorithm 2 Regularized Learner
Require: m i.i.d. samples from a distribution D and a

distortion parameter α
Ensure: Myerson’s optimal auction ME′ w.r.t. E′

1: Let E = Πn
i=1Ei be the empirical distribution over the

samples
2: for i← 1 to n do
3: Construct Êi as follows:
4: Let qEi(v) be the quantile function of Ei

5: Define

c =

√
2 qEi(v)

(
1− qEi(v)

)
ln
(
2mnδ−1

)
m

+
4 ln

(
2mnδ−1

)
m

+ α

6: qÊi(v) =

{
max

(
0, qEi(v)− c

)
if v > 0,

1 if v = 0

7: Ẽi = h−1
(
Conv

(
Êi(·)

))
8: Construct E′

i as follows:

9: qE
′
i(v) =

{
max(0, qẼi(v)− α) if v > 0

1 if v = 0

10: end for
11: Set E′ = Πn

i=1E
′
i

12: return Myerson’s optimal auction ME′ w.r.t. E′

In Theorem 8, we prove that if our tester approves an input
distribution, then the Vickrey auction with an additional
bidder achieves at least as much expected revenue on the
distribution—modulo a multiplicative factor—as the opti-
mal revenue of any close regular distribution. The proof is
presented in Appendix D.

Theorem 8. Let D be a distribution, α ∈ (0, 1) be a dis-
tortion parameter, and T be the tester described in Algo-
rithm 1. Fix m = Ω̃(log(1/δ)/α2). With probability at
least 1 − δ, if T outputs YES on input of m i.i.d. samples
from D = Πn

i=1D and α then

Revn+1(V A,D) ≥
(
1−O

(√
nα
))

OPTn(D
′)

for any regular distribution D′ such that D′ ∈ BKS,α(D).

7. A Tester for the Anonymous Price Auction
In multi-bidder settings where independence but not identi-
cal distributions is assumed, the optimal auction may imple-
ment different reserve prices for different bidders (Hartline
& Roughgarden, 2009). A natural question is whether there
exists a single anonymous reserve price for all bidders which
achieves a constant fraction of the optimal revenue. The
following theorem, originally shown by Hartline & Rough-
garden (2009) and later improved by Alaei et al. (2019),

resolves this question for regular, non-identical distributions.

Theorem 9. Let D = Πn
i=1Di be a product distribution,

where Di is regular for all i ∈ [n]. There exists an anony-
mous reserve price p∗ such that

Rev(APA(p∗),D) ≥ 1

e
OPT (D).

We extend these results to irregular, non-identical distribu-
tions using the testing framework with the following theo-
rem, whose proof is presented in Appendix E.

Theorem 10. Let D = Πn
i=1Di be a product distribution,

α ∈ (0, 1) be a distortion parameter, and T be the tester
described in Algorithm 1. Fix m = Ω̃(log(1/δ)/α2). With
probability at least 1 − δ, if T outputs YES on input of m
i.i.d. samples from D and α, then

Rev(APA(p∗),D) ≥ 1

e

(
1−O

(√
nα
))

OPT (D′)

for any regular product distribution D′ = Πn
i=1D

′
i such

that for all i ∈ [n] it holds that D′
i ∈ BKS,α(Di).

8. Information-Theoretic Lower Bound
In this section, we present an information-theoretic lower
bound for our regularized testable learning framework. The
single bidder lower bound involves finding two regular dis-
tributions which are α-close in KS distance but for which
no mechanism can simultaneously achieve more than a
(1−Ω(

√
α)) fraction of the optimal revenue for both distri-

butions. We formalize this result in the lemma below, whose
proof is found in Appendix F.

Lemma 11. Let M be some mechanism and let α < 0.1.
There exists an irregular distribution D such that

Rev(M,D) ≤ (1− Ω(
√
α))OPT (D′)

for some regular distribution D′ ∈ BKS,α(D).

9. Conclusion
In this work, we develop our Regularized Testable Learn-
ing framework for mechanism design, wherein we relax
the original testable learning benchmark proposed by Ru-
binfeld & Vasilyan (2023). This relaxation allows us to
develop a tester to verify when we can expect to achieve
a nontrivial fraction of the revenue of the optimal mecha-
nism without assuming the samples come from a regular
distribution. Unlike previous works, our tester-learner pair
can provide meaningful revenue guarantees for irregular,
unbounded distributions. We additionally show how our
tester can be used to verify when important theorems from
auction theory that rely on regularity can be safely applied.

8
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For future work, we note three fruitful directions. First, it
would be intriguing to see if one could develop a tester for
our assumption that the distribution is a product distribution.
Similarly, it would be interesting to understand if it is possi-
ble to develop a tester for the assumption that the bidders
are i.i.d.. Finally, it would be interesting to establish a tight
lower bound for the multi-bidder setting.
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Appendix: Missing Proofs

A. Proof of Lemmas 4 and 5
In this section, we prove two lemmas on the density of regular and irregular distributions. We begin by establishing a helpful
claim.

Claim 12. Let D and D′ be two distributions with cdfs of FD and FD′ , respectively. Let α > 0 and suppose D ⪰ D′. If
h(x;FD) > 1

1/h(x;FD′ )−α , then FD(x)− FD′(x) > α.

Proof.

FD(x)− FD′(x) = (1− FD′(x))− (1− FD(x))

=
h(x;FD)− h(x;FD′)

h(x;FD)h(x;FD′)

=
1

h(x;FD′)
− 1

h(x;FD)

> α

We can now prove that regular distributions are not dense.

Lemma 4 (Regular Distributions are not Dense). There exists an irregular distribution D and an α > 0 such that for all
regular distributions D′, it holds that dKS(D,D′) > α.

Proof. Let D be the mixed distribution that is uniform over [0, 1] with probability 1− ϵ and uniform over [21/ϵ, 21/ϵ + 1]
with probability ϵ for some ϵ < 0.1. Additionally, let α = ϵ/2. Define

D′ = h−1

(
1− 4α

(3α)(1− α)
x+

1

1− α

)
.

By Lemma 1, D′ is regular since h(x;FD′) is linear. Our goal will be to show that for x ≥ 1 the link function of D′

lower bounds the link function of every regular distribution that is α-close in Kolmogorov-Smirnov distance. Once this is
established, we will use Claim 12 on D′ and D to achieve a contradiction.

Let D̂ be a regular distribution such that dKS(D̂,D) ≤ α. It holds that h(0;FD̂) ≤ h(0;FD′) and h(1;FD̂) ≥ h(1;FD′)
since FD′(0)−FD(0) = α and FD(1)−FD′(1) = α. Since every link function is a convex, increasing function, it must be
that h′(x;FD̂) ≥ h′(x;FD′) for all x ≥ 1. Moreover, we may utilize that fact that h(1;FD̂) ≥ h(1;FD′) to conclude that

h(x;FD̂) ≥ h(x;FD′)

for all x ≥ 1. We will now lower bound h(x;FD′) and apply Claim 12. In particular, for 1 ≤ x ≤ 21/ϵ, FD(x) = 1− 2α
so h(x;FD) = 1

2α . Then,

h(x;FD′) =
1− 4α

(3α)(1− α)
x+

1

1− α
>

1

α
=

1

1/h(x;FD)− α

when 4 ≤ x ≤ 21/ϵ. By Claim 12, this implies dKS(D̂,D) > α, which is a contradiction.

In contrast, we show below that irregular distributions are dense.

Lemma 5 (Irregular Distributions are Dense). For any distribution D and α > 0, there exists an irregular distribution D′

such that D′ ∈ BKS,α(D).
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Proof. Without loss of generality, assume that D is a regular distribution and fix α > 0. Let v1 be the value such that
1−FD(v1) = α and let v2 be the value such that 1−FD(v2) = α/2. We will construct an irregular distribution by shifting
the α/2 probability in the region (v1, v2] to higher values. In particular, we may now define an irregular distribution D′ as
follows:

FD′(x) =


FD(x), 0 ≤ x ≤ v1,

FD(v1), v1 < x ≤ v2,

FD((x− v2) + v1)), v2 < x.

It is easy to verify that FD′(x) is a valid cdf. We can also see that D′ is irregular, since h(x;FD′) is not convex in the region
[0, v2]. We conclude the proof by observing that dKS(D

′, D) ≤ α since we only shift around α/2 amount of probability
between the two distributions.

B. Proof of Lemma 13
For completeness, we include below a proof that the quantile shift described in Algorithms 1 and 2 yields a valid cumulative
density function.

Lemma 13. Let D be a distribution with quantile function q(v) = 1− F (v) and let α ∈ (0, 1). Consider the distribution
defined by the quantile function

q̄(v) =

{
max(0, q(v)− c) if v > 0,

1 if v = 0,

where

c =

√
2q(v)(1− q(v)) ln (2mnδ−1)

m
+

4 ln (2mnδ−1)

m
+ α.

Then, it holds that F̄ (v) = 1− q̄(v) is a valid cumulative distribution function.

Proof. By construction, F̄ (v) has the following properties: F̄ (v) ∈ [0, 1], limv→−∞F̄ (v) = 0, and limv→∞F̄ (v) = 1.
We focus on proving that q̄(v) is monotonically decreasing by taking the derivative with respect to v. Without loss of
generality, we ignore additive constants and let t = 2 ln (2mnδ−1)

m be a positive constant, independent of v. Then,

q̄(v) = 1− F (v)−
√
t · (1− F (v))F (v)

and
d

dv
q̄(v) = −f(v) ·

(
1 +

√
t(1− 2F (v))

2
√
(1− F (v))F (v)

)
.

Since F (v) is non-decreasing, −f(v) is non-positive. Therefore, we seek to verify that
(
1 +

√
t(1−2F (v))

2
√

(1−F (v))F (v)

)
is nonnega-

tive from [0, a] and nonpositive from (a, vmax], where a is a constant to be specified below and vmax is the maximum value
in the empirical distribution. The first condition will ensure that F̄ (v) is non-decreasing for v ∈ [0, a]. The second condition
will allow us to show that F̄ (v) = 1 for v ∈ (a, vmax].

For the first condition, we rearrange the statement to prove instead that
√
t(1− 2F (v)) ≥ −2

√
(1− F (v))F (v). We can

now break it into two cases.

• If F (v) ≤ 1/2, then this inequality is clearly true, as the RHS is always negative.

• If F (v) ≥ 1/2, then we may square both sides and observe that we get the quadratic form F (v)2 − F (v) + t
4(t+1) .

This quadratic has two roots ( 12 ±
1

2
√
t+1

). The smaller root v1 is vacuous and introduced by squaring operation. It is
also covered under the first case since v1 < 1/2. Consequently, we can determine that the derivative is nonpositive for
v ≤ 1

2 + 1
2
√
t+1

.

Finally, for the region v ∈ ( 12 + 1
2
√
t+1

, vmax], we can show that q(v) − c < 0 using the fact that q(vmax) − c < 0 and
d
dv q̄(v) ≥ 0 in this region. Thus, q̄(v) = 0 for v ∈ ( 12 + 1

2
√
t+1

, vmax] as desired.

12
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C. Proof of Upper Bound for Testable Learning
In this section, we will prove the main theorem for the testable learning of revenue-maximizing auctions. Before proving
Theorem 6, we show a useful lemma.

Lemma 14. Let D be a regular distribution with cdf of FD(x) and α ∈ (0, 1). Define the distribution D′ with the following
cdf:

FD′(x) =

{
FD(x) + α, 0 ≤ x < F−1

D (1− α)

1 x ≥ F−1
D (1− α).

Then, D′ is also a regular distribution.

Proof. By Lemma 1, D′ is regular if and only if its link function h(x;FD′) is convex. We will take the derivative of
h(x;FD′) and show that it is an increasing function. In particular,

∂h(x;FD′)

∂x
=

∂

∂x

(
1

1− F ′
D(x)

)
=

∂

∂x

(
1

1− (FD(x) + α)

)
=

fD(x)

(1− FD(x)− α)2
.

By the regularity of D, fD(x)
(1−FD(x))2 is increasing, so fD(x)

(1−FD(x)−α)2 is also increasing.

We are now ready to present the proof of the main theorem.

Theorem 6. Let D = Πn
i=1Di be a product distribution, let α ∈ (0, 1) be a distortion parameter, and let δ > 0. Additionally,

fix m = Ω̃(log (1/δ)/α2). Suppose T is the tester described in Algorithm 1 and L is the learner described in Algorithm 2.
Then, T is a m-sample regularized tester for the (m,

√
nα)-regularized learner L.

Proof. We begin by showing that the tester’s completeness guarantee holds with probability at least 1− δ. Choose m large
enough so that √

2qDi(v)(1− qDi(v)) ln (2mnδ−1)

m
+

4 ln (2mnδ−1)

m
≤ α

for every i ∈ [n]. Suppose that there exists a regular product distribution D′ such that D′
i ∈ BKS,α(Di) for all i ∈ [n]. By

Lemma 5 of Guo et al. (2019), with probability 1− δ for every value v and every i ∈ [n], it holds that

|qEi(v)− qDi(v)| ≤
√

2qDi(v)(1− qDi(v)) ln (2mnδ−1)

m
+

4 ln (2mnδ−1)

m
≤ α.

Fix an index i ∈ [n]. To show the correctness of the tester, we will prove that |qẼi−qEi | ≤ 2α. Observe that by construction
D′

i ⪰ Ẽi ⪰ Êi. Hence, by a sandwiching argument, we only need to upper bound the quantile distance between D′
i and Ei

and between Êi and Ei, respectively. Specifically,

|qD
′
i(v)− qEi(v)| ≤ |qD

′
i(v)− qDi(v)|+ |qDi(v)− qEi(v)| ≤ 2α

and
|qÊi(v)− qEi(v)| ≤ 2α.

Thus, the tester outputs YES with probability at least 1− δ.

We now prove the tester’s soundness guarantee. Suppose that T (D, α,m) outputs Y ES and let M be the mechanism
outputted by L(D, α,m) (that is, Rev(M,E′) = OPT (E′)). As before, we begin by noting that D′

i ⪰ Ẽi ⪰ E′
i and that

13
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Di ⪰ E′
i by construction. Furthermore, by Lemma 14, E′ is regular. We now need to bound the distance between E′

i and
any regular distribution D′

i ∈ BKS,α(Di) for all i ∈ [n]. We accomplish this through the triangle inequality,

|qE
′
i(v)− qD

′
i(v)| ≤ |qE

′
i(v)− qẼi(v)|+ |qẼi(v)− qEi(v)|+ |qEi(v)− qDi(v)|+ |qDi(v)− qD

′
i(v)|

≤ α+ 2α+ α+ α

≤ 5α.

With this bound established, using Theorem 4.3 of Guo et al. (2021), with probability at least 1− δ it holds that

OPT (E′) ≥
(
1−O

(√
nα
))

OPT (D′),

for any regular product distribution D′ = Πn
i=1D

′
i such that for all i ∈ [n] it holds that D′

i ∈ BKS,α(Di). To complete the
proof, we utilize the fact that D ⪰ E′ and apply Theorem 2 to conclude that

Rev(M,D) ≥ OPT (E′) ≥
(
1−O

(√
nα
))

OPT (D′).

D. Proof of Tester for Bulow-Klemperer
In this section, we prove that our tester can be used to verify when we may apply the Bulow-Klemperer Theorem to a data
source. We begin by establishing a helpful revenue monotonicity claim.
Claim 15. Let D,D′ be two distributions such that D′ ⪰ D and the bidders for each distribution are i.i.d., respectively.
Then, it holds that

Revn+1(V A,D′) ≥ Revn+1(V A,D).

Proof. Recall that the Vickrey auction charges the winning bidder the value of the second highest bid. Hence,
Revn+1(V A,D) is equivalent to the expected value of the nth order statistic for the distribution D. A well-known
fact is that the cdf of the nth order statistic is

G(FD(x)) = (n+ 1)FD(x)n(1− FD(x)) + FD(x)n+1.

A cumulative density function by definition is monotonically non-decreasing. Thus, since FD(x) ≥ FD′(x), this implies
that G(FD(x)) ≥ G(FD′(x)). Stochastic dominance further implies that the expected value of nth order statistic for the
distribution D′ is at least as large as the expected value of the nth order statistic of the distribution D.

In the following, we establish the main theorem of this section.
Theorem 8. Let D be a distribution, α ∈ (0, 1) be a distortion parameter, and T be the tester described in Algorithm 1.
Fix m = Ω̃(log(1/δ)/α2). With probability at least 1− δ, if T outputs YES on input of m i.i.d. samples from D = Πn

i=1D
and α then

Revn+1(V A,D) ≥
(
1−O

(√
nα
))

OPTn(D
′)

for any regular distribution D′ such that D′ ∈ BKS,α(D).

Proof. Suppose T (D, α,m) outputs YES. Then with probability at least 1− δ, there exists a regular distribution D′ such
that D′ ∈ BKS,α(D). Let Dmin be the minimal regular distribution in BKS,β(D) and define D̃ to have the cdf:

FD̃(x) =

{
FDmin(x) + α, 0 ≤ x ≤ F−1

Dmin(1− α)

1 x ≥ F−1
Dmin(1− α).

(*)

Notice, D ⪰ D̃ and dKS(D̃,D) ≤ 2α. Additionally, by Lemma 14, D̃ is regular and D′ ⪰ D̃ for all regular distributions
D′ ∈ BKS,β(D). We complete the proof through the following chain of inequalities:(

1−O
(√

nα
))

OPTn(D
′) ≤ OPTn(D̃) Theorem 4.3 (Guo et al., 2021)
≤ Revn+1(V A,D′

m) Theorem 7
≤ Revn+1(V A,D) Claim 15

for all regular distributions D′ ∈ BKS,α(D).

14
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E. Proof of Tester for Anonymous Price Auction
Below, we show that our tester can be used to verify when the anonymous price auction achieves a non-trivial fraction of the
optimal revenue of any close regular distribution.
Theorem 10. Let D = Πn

i=1Di be a product distribution, α ∈ (0, 1) be a distortion parameter, and T be the tester
described in Algorithm 1. Fix m = Ω̃(log(1/δ)/α2). With probability at least 1− δ, if T outputs YES on input of m i.i.d.
samples from D and α, then

Rev(APA(p∗),D) ≥ 1

e

(
1−O

(√
nα
))

OPT (D′)

for any regular product distribution D′ = Πn
i=1D

′
i such that for all i ∈ [n] it holds that D′

i ∈ BKS,α(Di).

Proof. Let D′ = Πn
i=1D

′
i be a regular product distribution such that for all i ∈ [n] it holds that D′

i ∈ BKS,α(Di). Further,
let D̃ be the regular distribution defined in Appendix D by (∗). Then,

1

e

(
1−O

(√
nα
))

OPT (D′) ≤ 1

e
OPT (D̃) Theorem 4.3 (Guo et al., 2021)

≤ Rev(APA(p∗), D̃). Theorem 9

For the remainder of the proof, we will focus on showing that

Rev(APA(p∗), D̃) ≤ Rev(APA(p∗),D)

utilizing the property that D ⪰ D̃. Let X(i) denote the random variable of the ith order statistic from an n-sample. By the
definition of APA(p∗),

Rev(APA(p∗), D̃) = PrD(X(n−1) > p∗) · ED[X(n−1)|X(n−1) > p∗]

+ PrD(X(n) ≥ p∗ ∩X(n−1) ≤ p∗) · p∗ + PrD(X(n) < p∗) · 0.

It is straightforward to establish that

xD
1 := PrD(X(n) < p∗) = Πn

i=1Fi(p
∗),

xD
2 := PrD(X(n) ≥ p∗ ∩X(n−1) ≤ p∗) =

n∑
i=1

(1− Fi(p
∗)) ·Πj ̸=iFj(p

∗),

xD
3 := PrD(X(n−1) > p∗) = 1−

n∑
i=1

((1− Fi(p
∗)) ·Πj ̸=iFj(p

∗))−Πn
i=1Fi(p

∗).

First, xD̃
1 ≤ xD

1 because F D̃
i (p∗) ≥ FD

i (p∗) for all i ∈ [n]. Then, using the fact that xD
1 +xD

2 +xD
3 = xD̃

1 +xD̃
2 +xD̃

3 = 1,
it holds that

p∗(xD̃
2 + xD̃

3 ) ≤ p∗(xD
2 + xD

3 ).

To complete the proof, we need to establish that ED[X(n−1)|X(n−1) > p∗] ≥ ED̃[X(n−1)|X(n−1) > p∗]. We will establish
this by showing that xD

3 ≥ xD̃
3 , which implies that the cdf of the X(n−1) under D stochastically dominates the cdf of the

X(n−1) under D̃; consequently, the dominating distribution has a larger conditional expected value.

To accomplish this, we will show that the derivative of xD
3 with respect to Fk for every k ∈ [n] is non-positive. In particular,

∂

∂Fk

(
1−

n∑
i=1

((1− Fi(x)) ·Πj ̸=i(Fj(x))−Πn
i=1Fi(x)

)

=
∂

∂Fk

(
1−

n∑
i=1

(
Πj ̸=iFj(x)−Πn

j=1Fj(x)
)
−Πn

i=1Fi(x)

)

= −fk ·

(n− 1)Πi ̸=kFi(x)−
∑
i ̸=k

Πj ̸=iFj(x)


≤ 0
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since (n− 1)Πi ̸=kFi(x) ≥
∑

i ̸=k Πj ̸=iFj(x) and fk ≥ 0. To finish the proof, we note that

Rev(APA(p∗), D̃) = p∗ · xD̃
2 + ED̃[X(n−1)|X(n−1) > p∗] · xD̃

3

≤ p∗ · xD
2 + ED[X(n−1)|X(n−1) > p∗] · xD

3

= Rev(APA(p∗),D).

F. Proof of Lower Bound for Testable Learning
In this section, we present a lower bound proof for the testable learning of revenue-maximizing auctions in the single-bidder
setting.

Lemma 11. Let M be some mechanism and let α < 0.1. There exists an irregular distribution D such that

Rev(M,D) ≤ (1− Ω(
√
α))OPT (D′)

for some regular distribution D′ ∈ BKS,α(D).

Proof. Let β > 0 be a value to be defined later. We utilize the same two regular distributions D1, D2 which appear in
Huang et al. (2015) and have the following cdfs:

F1(x) = 1− 1

x+ 1
,

F2(x) =

{
1− 1

x+1 , 0 ≤ x ≤ 1−β
β

1− β2

x−(1−β) x > 1−β
β ,

respectively. By Lemma 4.10 and Lemma 4.11 of Huang et al. (2015), there cannot exist a mechanism M that simultaneously
achieves a 1−β/2 fraction of the optimal revenue for both D1 and D2. Wlog, suppose Rev(M,D1) ≤ (1−β/2)OPT (D1).
By Lemma 5, there must exist an irregular distribution D such that D1 ⪰ D and D1, D2 ∈ BKS,β2(D). We may then apply
strong revenue monotonicity to find

Rev(M,D) ≤ (1− β/2)OPT (D1).

To complete the proof, we bound the Kolmogorov distance between D1 and D2. By solving for the derivative’s zero, it can
be shown that

max |F2(x)− F1(x)| =
β2

2− β
≤ β2.

We achieve the desired bound by setting β =
√
α.

G. Generic Regularized Learning Definition
Below we present a generic version of our regularized testable learning framework, which we believe will be applicable to a
variety of settings outside revenue-maximizing auctions.

Definition 16 (Generic Regularized Learner). An algorithm L is a (f(α, δ, n), g(α, n))-sample regularized learner for
the concept class C with respect to a family of distributions D and a hypothesis classH if given access to f(α, δ, n) i.i.d.
samples from a n-dimensional distribution D, L(D, α,m) outputs a hypothesis h ∈ H such that with probability at least
1− δ

h(D) ≥ (1− g(α, n))c∗(D′)

for all α-close distributions D′ ∈ D to D, where c∗ ∈ C is the optimal concept with respect to D′.

Definition 17 (Generic Regularized Tester). An algorithm T is a f(α, δ, n)-sample tester for a class of distributions D with
respect to a learner L if it satisfies two constraints.
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• Soundness: Suppose T is presented with f(α, δ, n) i.i.d. samples from a distribution D and outputs "Yes" with
probability at least 1− δ. Then, the regularized learning guarantee of Definition 16 should be achieved.

• Completeness: Suppose the T is presented with f(α, δ, n) i.i.d. samples samples from a distribution D that is α-close
to some distribution D′ ∈ D, then T should output "Yes" with probability at least 1− δ.

In the case of learning revenue-optimal mechanisms, C is the set of revenue-optimal DISC and IR compatible mechanisms,
H is the set of all DISC and IR compatible mechanisms, and D is the family of regular distributions.
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