
How to Synthesize Text Data without Model Collapse?

Xuekai Zhu 1 2 Daixuan Cheng 2 Hengli Li 2 3 Kaiyan Zhang 4 Ermo Hua 4 Xingtai Lv 4 Ning Ding 4

Zhouhan Lin† 1 5 Zilong Zheng† 2 Bowen Zhou† 4 5

Abstract
Model collapse in synthetic data indicates that
iterative training on self-generated data leads to
a gradual decline in performance. With the pro-
liferation of AI models, synthetic data will funda-
mentally reshape the web data ecosystem. Future
GPT-{n} models will inevitably be trained on a
blend of synthetic and human-produced data. In
this paper, we focus on two questions: what is the
impact of synthetic data on language model train-
ing, and how to synthesize data without model col-
lapse? We first pre-train language models across
different proportions of synthetic data, revealing
a negative correlation between the proportion of
synthetic data and model performance. We fur-
ther conduct statistical analysis on synthetic data
to uncover distributional shift phenomenon and
over-concentration of n-gram features. Inspired
by the above findings, we propose token editing
on human-produced data to obtain semi-synthetic
data. As a proof of concept, we theoretically
demonstrate that token-level editing can prevent
model collapse, as the test error is constrained by
a finite upper bound. We conduct extensive ex-
periments on pre-training from scratch, continual
pre-training, and supervised fine-tuning. The re-
sults validate our theoretical proof that token-level
editing improves model performance.

1. Introduction
As generative artificial intelligence (AI) (Rombach et al.,
2021; Achiam et al., 2023) becomes increasingly preva-

1LUMIA Lab, Shanghai Jiao Tong University 2State Key
Laboratory of General Artificial Intelligence, BIGAI 3Institute
for Artificial Intelligence, Peking University 4Department of
Electronic Engineering, Tsinghua University 5Shanghai Artifi-
cial Intelligence Laboratory. Correspondence to: Zhouhan Lin
<lin.zhouhan@gmail.com>, Zilong Zheng <zlzheng@bigai.ai>,
Bowen Zhou <zhoubowen@tsinghua.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

lent in research and industry, synthetic data will proliferate
throughout the web data ecosystem. Consequently, future
training of GPT-{n} on a mixture of synthetic and human-
produced data will be inevitable. Thus, model collapse is
a critical concern that must be considered when training
models on synthetic data.

Model collapse refers to a degenerative process in which the
output data of learned generative models contaminates the
training sets of subsequent generations. As shown in Fig-
ure 1, iterative training coupled with data synthesis induces
a progressive accumulation of test errors (Shumailov et al.,
2024; Dohmatob et al., 2024a). Consequently, generative
models increasingly overfit to synthetic data distributions,
failing to capture the complexity in human-produced data.
Through successive iterations in Figure 1, these distortions
accumulate, finally undermining the model’s capacity.

Recent studies focus on two aspects. First, theoretical foun-
dations of model collapse. Shumailov et al. (2024) and
Dohmatob et al. (2024a) identify the model collapse phe-
nomenon and formalize a theoretical framework based on
linear regression. Gerstgrasser et al. (2024) demonstrate
that if synthetic data is accumulated while retaining the ini-
tial real data, the test error will be bounded, thus breaking
model collapse. Dohmatob et al. (2024c;b) indicate that
missing long tails of synthetic data lead to scaling law cut-
off. Second, practical implementations on synthetic datasets
by diverse prompting. Synthetic datasets (Trinh et al., 2024;
Zhang et al., 2024) have been proven to boost the capabil-
ities of language models. Cheng et al. (2024a;b); Maini
et al. (2024) rephrase text into more formal styles, thereby
improving the data quality. There are still two key questions
that require further investigation: (Q1) What is the impact
of synthetic data on language model training? (Q2) How
can data be synthesized without causing model collapse?

In this paper, we address the first question by training lan-
guage models on varying mixtures of synthetic and human-
produced data, demonstrating non-iterative model collapse.
Unlike the original model collapse setting which iteratively
trains on self-generated data, we directly mix synthetic and
human-produced data to create training datasets with differ-
ent mixing ratios. The results show a negative correlation
between performance and the proportion of synthetic data.

1

How to Synthesize Text Data without Model Collapse?

①Model Collapse Setting⇢ 𝑬𝒕𝒆𝒔𝒕 =
𝝈𝟐𝒅

𝑻'𝒅'𝟏
×	𝒏

② Token-Level Editing ⇢ 𝑬𝒕𝒆𝒔𝒕 ≤
𝝈𝟐𝒅

𝑻'𝒅'𝟏
×	𝟐 ⇢ Avoiding Model Collapse

𝐷𝑎𝑡𝑎!
Training

𝑓) Synthesizing
𝐷𝑎𝑡𝑎" …𝑓* 𝑓+Training

𝑓)

𝐷𝑎𝑡𝑎#

𝐷𝑎𝑡𝑎!
Training

𝑓+TrainingEditing 𝑀*𝐷𝑎𝑡𝑎*	 + (1 −𝑀*)𝐷𝑎𝑡𝑎) …

Source Real Data:	𝐷𝑎𝑡𝑎!

Test Error 𝐸"#$"

Editing Operation Matrix M%

Iterations	𝑖 ∈ {1, … , 𝑛}

Synthetic Data:	𝐷𝑎𝑡𝑎&!

Data Size T
Input Dimensions 𝑑

Trained Model 𝑓'

Label Noise Scalar 𝜎

Figure 1. Model collapse of synthetic data. ① The model continuously trains on its previously generated data, leading to a gradual decline
in model performance, i.e., model collapse. Starting from real data Data0, the test error Etest increases as f0 undergoes iterative
training on synthetic data Data>0. ② ToEdit (ours), we use a trained model for token-level editing rather than purely synthesizing data.
Leveraging f0 and an operation matrix Mi to edit the data, the test error is constrained within a fixed upper bound. Therefore, we can
preserve the distribution coverage to avoid model collapse.

Subsequent statistical analysis on distributions and features
indicates coverage narrowing—synthetic data covers only
a small portion of the human-produced data distribution—
and over-concentration of synthetic n-gram features. Based
on the above findings, we address the second question by
proposing token-level editing (ToEdit), resamples and re-
places data points with relatively high model confidence.
As illustrated in Figure 1, ToEdit preserves distribution cov-
erage and theoretically constrains test error within a fixed
upper bound. Extensive experiments across pre-training
from scratch, continual pre-training, and supervised fine-
tuning confirm its positive impact on model performance.1

Contributions. We summarize the key contributions of this
work as follows2:

• We demonstrate non-iterative model collapse by pre-
training language models on a mixture of synthetic and
human-produced data (§ 3.1): directly mixing pure syn-
thetic data, without iterative training, leads to performance
degradation. Furthermore, we perform a distributional
statistical analysis, revealing that synthetic data leads to
coverage narrowing and over-concentration of n-gram fea-
tures. Even subsequent data selection struggles to correct
the distribution (§ 3.2).

• We propose token-level editing with a theoretical proof to
prevent model collapse (§ 4) and validate its effectiveness
through experiments spanning pre-training from scratch,
continual pre-training, and supervised fine-tuning of lan-
guage models (§ 5).

2. Background
Shumailov et al. (2024); Dohmatob et al. (2024a;c) demon-
strate AI models trained recursively on data generated by

1Work done during internship at BIGAI.
2Code repository available at https://github.com/

Xuekai-Zhu/toedit.

earlier versions of themselves can result in performance
degradation, ultimately rendering the AI model completely
useless. This process can be formulated as follows:

Etest(ŵn+1) =
σ2d

T − d− 1
× n.

This indicates that the error will continuously increase with
the number of iterations n. The detailed theoretical nota-
tion is provided in § 4.2. Dohmatob et al. (2024c) further
point out that synthetic data also contribute to a truncation
of the scaling law. Gerstgrasser et al. (2024); Seddik et al.
(2024) further adjust the data iteration setting to data accu-
mulation or real data mixing. They demonstrate that data
accumulation can prevent model collapse. Inspired by the
above work, we further explore the impact of synthetic data
in pre-training and analyze its differences from real data.
Building on our findings, we propose token editing as a
method to prevent model collapse during data synthesis.
Further comparisons are in Appendix B and D.

3. Non-Iterative Model Collapse
Prior studies (Shumailov et al., 2024; Dohmatob et al.,
2024a) investigate the curse of recursion, where iterative
training on self-generated data leads to a degenerative pro-
cess known as iterative model collapse. However, we often
face direct data mixing of human-produced and synthetic
data, and pre-training from scratch. We attempt to ana-
lyze model collapse in this more general scenario, called
non-iterative model collapse. Specifically, we conduct pre-
training on synthetic data mixtures and explore the reasons
behind non-iterative model collapse through data distribu-
tion and characteristics. A more detailed comparison of
iterative and non-iterative settings is in Appendix G.1.

2

https://github.com/Xuekai-Zhu/toedit
https://github.com/Xuekai-Zhu/toedit

How to Synthesize Text Data without Model Collapse?

Table 1. Subdomain PPL evaluation results for GPT-2 Small (124M) pre-trained on data mixture. The PPL increases as the proportion of
synthetic data grows, providing further confirmation of Figure 2.

ArXiv Books2 Books3 Math Enron EuroParl FreeLaw GitHub PG-19 HackerNews NIH Avg

Human data 22.26 25.39 22.87 10.84 23.50 30.73 12.04 4.15 16.88 32.54 23.53 20.99
25% Synthetic Data 21.86 26.32 23.87 11.05 24.85 35.02 12.84 4.35 17.99 33.80 23.76 22.06
50% Synthetic Data 22.50 28.01 25.75 10.84 26.56 41.99 14.02 4.67 19.70 36.12 24.61 23.48
75% Synthetic Data 24.35 31.19 28.98 11.81 30.30 56.32 16.03 5.30 22.75 40.44 26.19 27.60
Synthetic Data 35.60 43.72 47.72 17.25 66.97 129.75 29.62 12.00 50.14 87.95 39.48 51.93

OpenSubts OWT2 Phil Pile-CC PubMed-A PubMed-C StackEx Ubuntu USPTO Wikipedia Youtube Avg

Human data 28.08 25.77 33.56 26.78 18.97 15.49 10.81 20.86 19.32 24.31 21.54 22.59
25% Synthetic Data 29.25 26.94 34.63 27.83 19.55 15.38 11.03 22.32 19.58 25.88 22.63 23.91
50% Synthetic Data 31.00 28.76 37.48 29.36 20.51 15.89 11.54 23.53 20.51 27.57 24.91 25.09
75% Synthetic Data 34.18 32.04 42.39 32.17 22.33 16.92 12.55 26.54 22.21 30.68 28.98 28.64
Synthetic Data 57.83 53.94 78.18 54.69 34.82 23.87 20.47 51.78 37.24 46.12 65.49 47.87

Wikitext-103 Falcon Redpajama c4-en

Figure 2. Non-iterative model collapse. Training language models from scratch on AI-synthesized data or a mixture of human and synthetic
data leads to performance degradation. This degradation is negatively correlated with the proportion of synthetic data used in training.
Setting: We pre-train GPT-2 Small (124M) on human data (Dolma (Soldaini et al., 2024)) and synthetic data (Cosmopedia (Ben Allal
et al., 2024)) and evaluate the PPL on the Paloma benchmark (Magnusson et al., 2023). Training loss in Figure 7. Further validations on
22 subdomains and general downstream tasks are presented in Table 1 and Table 9, respectively.

3.1. Pre-training on Data Mixture

In this section, we investigate the impact of synthetic data on
pre-training. Compared with studies on SFT and RLHF, we
examine synthetic data integration in a more fundamental
stage of the language model.

Setup We pre-train GPT-2 (Radford et al., 2019) and
OLMo (Groeneveld et al., 2024) from scratch, using data
mixtures containing 50B tokens each. We define the
mixing ratio between human-produced and synthetic data
as α, where 0 ≤ α ≤ 1. The total amount of train-
ing data Dtotal is a combination of human-produced data
Dhuman and synthetic data Dsynthetic, represented by the
formula: Dtotal = αDhuman + (1 − α)Dsynthetic. We
use Dolma (Soldaini et al., 2024) as source human-
produced data. We use Cosmopedia (Ben Allal et al.,
2024) as the source synthetic data, which is distilled from
Mixtral-8x7B-Instruct-v0.1 (Jiang et al., 2024).
To ensure rigorous validation and prevent data leakage, we
construct a three-tier evaluation: (1) the Paloma bench-
mark (Magnusson et al., 2023), including carefully de-
contaminated test sets for Dolma; (2) comprehensive PPL
evaluation across 22 subdomains from the Pile (Gao et al.,
2020b); and (3) seven general downstream tasks as outlined
in (Maini et al., 2024).

Finding I: Incorporating synthetic data harms the lan-
guage models pre-training. PPL results of Paloma bench-
mark and 22 subdomains are presented in Figure 2 and

Table 1, respectively. These results demonstrate that PPL
on real-world validation sets increases as the proportion
of synthetic data grows, indicating degraded model perfor-
mance. When training from scratch, synthetic data does
not benefit the model and may even hinder its learning pro-
cess. However, incorporating human-produced data into
the training mixture mitigates model collapse to some ex-
tent. Further results on general downstream tasks in Table 9
and 11 also corroborate the above findings. The overall
trend shows a decline as the proportion of synthetic data
increases, with models trained on purely synthetic data per-
forming the worst. Compared to previous research on it-
erative model collapse (Shumailov et al., 2024; Dohmatob
et al., 2024a;c), the non-iterative damage caused by syn-
thetic data is more concerning and directly relevant to the
training of next-generation language models.

3.2. Why Does Synthetic Data Fail in Pre-training?

We conduct three statistical analyses: (1) sample-level
distribution, (2) feature-based overlap, and (3) distribution-
reference data selection. The experimental results reveal
that, compared to human-produced data, synthetic data lacks
the long-tail samples and suffers from coverage narrowing.
The limited diversity and concentrated features in synthetic
data make using human-produced data as a reference to
select synthetic data particularly challenging.

Setup We conduct statistical and feature-based analyses to
explore why synthetic data fails in pre-training. (1) We lever-

3

How to Synthesize Text Data without Model Collapse?

A. Human Data PPL ∈ [0, 100+] B. Synthetic Data PPL	∈ [0, 14]
Figure 3. PPL distribution of human and synthetic data estimated by Llama-3-8B. The synthetic data lacks the long tail of the human-
produced data and is also concentrated within the first 25% of the human-produced data distribution. A. Distribution of human-produced
data is sharp with a long tail, spanning a wide range from 0 to over 100. B. The values are concentrated within a much narrower range,
mostly between 0 and 14. The same trend estimated by StableLM-3B is demonstrated in Figure 10.

age a prior distribution to estimate the human-produced and
synthetic data. We use Llama-3-8B (AI@Meta, 2024) and
StableLM-Zephyr-3B (Bellagente et al., 2024). Different
priors consistently yield the same results. (2) We analyze
the n-gram features of human-produced and synthetic data
from a feature-based perspective, such as n-gram response
values. (3) Based on the features of human-produced data,
we apply importance sampling (Xie et al., 2023) to filter syn-
thetic data that closely aligns with human-produced features.
More details of importance sampling are in § G.5.

Finding II: Synthetic data distribution not only lacks
long tails but also exhibits significant coverage narrow-
ing. Figure 3 illustrate that the PPL of synthetic data is
confined to the lower 25% of the human-produced data,
failing to capture the full range and complexity of human-
produced data distributions. Specifically, as illustrated in
Figure 3A, human-produced data exhibit a wide distribution
in the range [1, 100+], characterized by a sharp peak and a
pronounced long tail. In contrast, as shown in Figure 3B,
the synthetic data is confined to a narrower range of [0, 14],
displaying a smoother distribution. Additional results of
StabLM are shown in Figure 10. While the absolute PPL
ranges estimated by different models may vary, the relative
shapes and proportional ranges of these two distributions
remain consistent. This phenomenon demonstrate that when
scaling up to larger synthetic datasets, there will be a no-
table absence of the long tail, leading to severe coverage
narrowing. This limited coverage reduces the generalization
ability and contribute to model collapse.

Finding III: Synthetic data over-concentrates N-gram
features. Based on the above distribution estimate, we
further analyze why synthetic data fails at the feature level.
Figure 12 and 13 demonstrate that synthetic data exhibits
higher frequencies of certain bi-grams compared to human-
produced data. To further examine feature-level differences,

we hash uni-gram and bi-gram features into 10,000 hash
buckets. As illustrated in Figure 11, human-produced data
displays a noticeably broader response range, while syn-
thetic data features are concentrated in a few specific buck-
ets. This indirectly supports our earlier observation of fea-
ture over-concentration. We then expanded the hash bucket
range to 1,000 × 20,000 buckets and used a locality-sensitive
hashing method to differentiate the features more precisely.
The results remain consistent. As shown in Figure 14, most
response values are near zero. Distinguishing features in
synthetic data remains challenging.

Finding IV: Distribution shifting cannot be mitigated
through data selection. Inspired by recent data selection
works (Xie et al., 2023; Albalak et al., 2024), we try to
leverage the human-produced data features as a reference
distribution for selecting synthetic samples. We apply im-
portance sampling from DSIR (Xie et al., 2023) to filter
synthetic data. As illustrated in Figure 4A, the training re-
sults of selected synthetic samples still fluctuates around the
original performance of the synthetic data, indicating that
even biased sampling cannot correct the distributional shift.
As shown in Figure 4B, the sampled data still fails to align
with human-produced data in the embedding space, even at
the boundary regions of the synthetic data.

3.3. Proposed Strategy

Following these lessons so far, due to the coverage and fea-
ture over-concentration properties of synthetic data, the best
approach is to rely entirely on human-produced data and
avoid including synthetic data. However, we are still won-
dering how synthetic data can be used to enhance human-
produced data. This leads to a general guideline for syn-
thetic data: relying solely on synthetic data leads to model
collapse, so preserving the primary human-produced data
distribution is essential. In that case, we propose token-level

4

How to Synthesize Text Data without Model Collapse?

B. Embedding Visualization using t-SNEA. PPL Results for OLMo-237M

Figure 4. A. Pre-training results for selected synthetic data and other data mixtures on OLMo-237M. B. Embedding visualization between
human-produced, synthetic, and DSIR-selected data using sentence-transformer.

Figure 5. U-shape token probability distribution of Dolma-sampled
V6 estimated by Qwen-0.5B-Instruct (qwe, 2024).

editing, which leverages a prior distribution to adjust the
data. Our method can maintain the source distribution while
improving the source data, called semi-synthetic data.

4. Token-Level Editing
We introduce token-level editing as a method for generating
semi-synthetic data. Furthermore, we present a theoretical
analysis and proof demonstrating that the test squared error
of our method has a finite upper bound, regardless of the
number of iterations. This ensures prevention of model
collapse while enhancing performance.

4.1. Method

We formulate data synthesis as follows: assuming P is
a prior distribution, given a sequence of tokens x =
(x1, . . . , xt), the full synthetic data is y = (y1, . . . , yn).
The synthesis process is derived as:

P (y1, . . . , yn | x) =
n∏

i=1

P (yi | . . . , y<i, x). (1)

This conditional probability formulation outlines the gen-
eration of synthetic data conditioned on the given token
sequence. Then the synthetic data is used to train models.

Inspired by previous studies of data selection (Mindermann
et al., 2022; Ankner et al., 2024; Lin et al., 2024), prior distri-
butions can serve as pointers indicating useless or learnable
samples. In this case, we use a pre-trained language model
to infer the pre-training corpus. As illustrated in Figure 5,
even a model pre-trained on trillions of tokens can not fit the
pre-training corpus perfectly. Specifically, 75% is under 0.6
probability. The tokens with both high and low probabilities
are the most concentrated, suggesting the potential for data
filtering. We leverage this U-shape distribution as a pointer
to resample tokens. Specifically, we use a language model
as prior distribution to compute each token’s conditional
probability P (·|x) if the probability exceeds a certain thresh-
old P (·|x) ≥ p, it indicates that the token is easy to learn,
and we proceed with resampling at that point. The filtering
potential of the U-shaped distribution is discussed in § G.2.

Token-level Editing doesn’t generate the entire sequence
but leverages conditional probability P (xi | x1, . . . , xi−1)
to revise the input sequence. In this way, we can avoid
using purely synthetic data while modifying the dataset to
preserve long-tail features of human-produced data, aiming
to obtain higher-quality semi-synthetic data. Token-level
Editing can be formulated as follows:

x′
i =

{
xi, if P (xi | x1, . . . , xi−1) < p

x̃i, if P (xi | x1, . . . , xi− 1) ≥ p
(2)

Where x′
i is the final token in the edited sequence. x̃i is a

token resampled from a prior distribution. We can adjust
the threshold p to balance retaining the structure of human-
produced data while avoiding overfitting to synthetic data.

5

How to Synthesize Text Data without Model Collapse?

4.2. Theoretical Analysis

To gain deeper mathematical insights, we utilize an analyt-
ical framework of the linear model and adopt notations in
prior research (Mobahi et al., 2020; Dohmatob et al., 2024a;
Gerstgrasser et al., 2024). This theoretical framework pri-
marily considers a linear model that iteratively trains on
its own generated data, similar to pipelines like self-play
and self-distillation, but without complex constraints. The
process involves training continuously on the data generated
by the previous generation of the model. (Dohmatob et al.,
2024a) point out that with iterative training, test errors accu-
mulate progressively, eventually leading to model collapse.
Building on this theoretical framework, we integrate our
proposed token editing method and analyze whether our
method can prevent model collapse.

Notation and Preliminaries For a given distribution
PΣ,w,σ2 , the data (x, y) ∼ PΣ,w,σ2 on Rd × R, where x is
drawn from a multivariate normal distribution x ∼ N (0,Σ),
ϵ is an independent noise term sampled from N (0, σ2), and
the label y is given by the linear model y = x · w∗ + ϵ.

Iterative Data Editing Process We utilize the model ob-
tained from the previous round of training to make a lim-
ited number of modifications. Specifically, we resam-
ple and replace data points with relatively high confi-
dence. The editing operations are defined by the matri-
ces {M1,M2, . . . ,Mn}. The iterative data synthesis and
model-fitting process is formalized as follows:

PΣ,w∗,σ2 → PΣ,ŵ1,σ2 → . . .→ PΣ,ŵn,σ2 ,

where n is the number of iterations. The detailed process of
data editing and iterations is described as follows:

For n = 1, we begin by initializing the covariates/features
as X̃1 = X . The target values are defined as Ỹ1 = Ŷ1 =
Xw∗ + E1, where E1 ∼ N (0, σ2IT). The linear model
is then fitted by solving for ŵ1 = X̃†

1 Ỹ1. To proceed to
the next iteration, we resample the data, obtaining Ŷ2 =
Xŵ1 + E2, with E2 ∼ N (0, σ2IT).

For n ≥ 2, the input covariates/features remain as X̃⊤
n = X ,

while the target values are updated using the edited targets,
following the equation Ỹ ⊤

n = Mn−1Ŷn+(1−Mn−1)Ỹn−1.
The linear model is then fitted by computing ŵn = X̃†

nỸn.
Finally, the data is resampled for the next iteration, yielding
Ŷn+1 = Xŵn + En+1, where En+1 ∼ N (0, σ2IT).

The matrix Mn is a diagonal matrix, where some diagonal
elements are 1, while others are 0. The multiplication by
M can be interpreted as an operation that selectively mod-
ifies certain data points (those corresponding to 1s) while
retaining others (those corresponding to 0s). Then, the data
editing process can be formulated as follows:

Ỹ ⊤
n = Mn−1Ŷn + (1−Mn−1)Ỹn−1 (3)

where Ỹn−1 is the data after editing in the n − 1 genera-
tion, and Ŷn is the synthetic data from the n-th generation.
This process can be described as: firstly, synthesizing la-
bels for all inputs; secondly, the M matrix determining
which data is edited and which is retained. For a matrix A
with full column rank, its Moore-Penrose pseudo-inverse
is A+ = (A⊤A)−1A⊤. The noise terms E1, E2, . . . , En

are independent of each other and the covariates/features.
Since X has full column rank, X̃n retains this property for
all n ≥ 1.

Test Error Model collapse is ultimately reflected through
test error. Following previous work, we adopt the stan-
dard test error definition as presented in (Gerstgrasser et al.,
2024). For any linear estimator ŵ derived from the training
data, we evaluate the test error using the standard method:

Etest(w)
def
= E

[
(xT

testw − ytest)
2
]
− σ2 = E[∥w − w∗∥2Σ],

(4)

where the expectation is computed with respect to the train-
ing data, while the test pair (xtest, ytest) is sampled indepen-
dently from PΣ,w∗,σ2 of the training set.

4.3. Test Error Under Data Editing

Our goal is to derive an analytical expression for the test
error of the n-th model in the data editing setting. As indi-
cated by the test error in Eq. 4, this process involves two
main steps: (1) establishing the relationship between the
fitted linear parameters wn and the true parameters w∗, and
(2) simplifying the test error expression. We begin by for-
mulating the relationship between wn and w∗. Proofs are
detailed in Appendix A.
Theorem 1. In the data editing setting, ∀n ≥ 1, the fitted
linear parameters ŵn+1 can be derived as:

ŵn+1 = w∗ + (X⊤X)−1X⊤

(
E1 +

n∑
i=1

MiEi+1

)
(5)

where, w∗ is the true parameter, X is the original design
matrix, Ei is the extra noise added at the i’th iteration, and
Mi is an idempotent diagonal matrix, defining the editing
operation.

Theorem 2. Consider an n + 1 fold data editing process
with T ≥ d+ 2 samples per iteration and isotropic features

(Σ
def
= Id), the test error for the ridgeless linear model ŵn

learned on the edited data up to iteration n+ 1, is bounded
by:

Etest(ŵn+1) ≤
2σ2d

T − d− 1
(6)

Furthermore, assuming the editing operation satisfies
||Mi|| = ||Mi−1||η with η ∈ (0, 1), the test error can be

6

How to Synthesize Text Data without Model Collapse?

Table 2. General performance of the pre-trained base models. PT indicates we pre-train OLMo-1B from scratch.
PIQA BoolQ OBQA ARC-c ARC-e HellaSwag SIQA Winogrande Avg

OLMo-1B (PT) 53.97 38.26 12.20 17.23 28.36 26.02 34.80 51.14 32.75
∆ ToEdit 54.13 38.65 12.80 18.43 27.48 25.94 34.95 52.49 33.11

Table 3. Performance on domain-specific tasks for continual pre-training models. CPT indicates continual pre-training. ∆ denotes training
with our edited data. Our method demonstrates consistent improvements across three domains on both OLMo-1B and Llama-3-8B.

Biomedicine

Models MQP ChemProt PubMedQA RCT USMLE Avg

OLMo-1B 52.59 17.2 51.40 32.70 28.90 36.63
CPT 52.29 21.00 58.50 34.90 27.49 38.83
∆ ToEdit 54.59 22.40 65.00 34.50 27.96 40.89

Llama-3-8B 66.80 28.59 60.8 73.85 40.61 54.13
CPT 72.29 29.4 69.1 72.65 36.76 56.04
∆ ToEdit 76.39 30.2 65.3 73.30 37.23 56.48

Finance

Models HeadLine FPB FiQA-SA ConvFinQA NER Avg

OLMo-1B 69.00 47.03 48.05 4.83 62.19 46.22
CPT 70.31 49.78 40.36 18.72 60.44 47.92
∆ ToEdit 71.77 51.39 46.06 18.85 62.97 50.21

Llama-3-8B 81.28 63.58 81.60 52.88 72.53 70.37
CPT 85.68 54.22 81.88 67.78 67.43 71.40
∆ ToEdit 83.83 61.61 80.82 67.31 67.62 72.24

Math

Models ARC-c GPQA GSM8K MATH MMLU Avg

OLMo-1B 28.67 24.23 1.67 0.00 26.56 16.23
CPT 28.41 24.03 1.52 0.10 27.23 16.26
∆ ToEdit 28.92 28.12 2.20 0.10 23.63 16.59

further bounded by:

Etest(ŵn+1) ≤
σ2d

T − d− 1

+ σ2
√

E [tr ((X⊤X)−2)] ·
√

E [tr(M1)]

1− η
.

We provide supporting evidence for the assumption in § G.3.
Recalling model collapse (Dohmatob et al., 2024a): training
iteratively on synthetic data leads to an accumulation of
error over iterations, as shown in the following equation:

Ecollapse
test (ŵn) =

σ2d

T − d− 1
× n (7)

Comparing Eq. 6 with Eq. 7, the test error under data editing
is bounded by a fixed value, preventing continuous error ac-
cumulation and thus avoiding model collapse. Based on the
theoretical derivations and statistical analysis of synthetic
data (§ 3.1), the underlying reason is that our approach re-
tains the coverage of the initial distribution. We move away
from pure data synthesis toward token-level editing, which
allows us to obtain better data while avoiding model col-
lapse. Moreover, remarkable previous studies (Dohmatob
et al., 2024c; Gerstgrasser et al., 2024) pointed out similar

conclusions. They indicated mixing real data with synthetic
data will break model collapse and provide an upper bound
under data accumulation. Different from their work, our
data editing aims to yield better data, enabling synthetic
data to perform well both in theory and practice.

5. Experiments
We validate our method in three language model train-

ing stages: pre-training from scratch (PT), continual pre-
training (CPT), and supervised fine-tuning (SFT).

5.1. Implementation

We use the Llama-3-8B (AI@Meta, 2024) as a prior distri-
bution to estimate the token distribution in each text sample.
The modification probability is set to p = 0.99. This means
that we resample tokens in positions where the probabil-
ity exceeds p, and the resampling is based on the condi-
tional probability given the preceding context. The entire
process requires only a single forward pass, without auto-
regressive generation. We integrate the fast inference engine
vLLM (Kwon et al., 2023), allowing the entire data editing

7

How to Synthesize Text Data without Model Collapse?

Table 4. Performance of the SFT tasks. We fine-tune LLaMA-3-
8B using instruction tuning and code reasoning tasks, comparing
performance with the edited version produced by our method. HS
and WG are short for HellaSwag and Winogrande respectively.

Models PIQA BoolQ HS SIQA WG Avg

Instruction Tuning

Natural Llama-3 79.82 87.06 58.32 46.83 74.66 69.34
Ins. ∆ ToEdit 80.58 87.80 58.27 46.93 74.90 69.70

CoT
Llama-3 79.87 81.28 59.72 49.69 74.51 69.01
∆ ToEdit 80.25 81.16 59.74 50.56 74.59 69.26

FLANv2
Llama-3 80.79 84.04 59.98 51.43 74.66 70.18
∆ ToEdit 80.69 85.20 59.99 52.00 75.37 70.65

Open Llama-3 79.65 83.18 60.51 48.52 74.11 69.19
Assist. ∆ ToEdit 79.98 83.91 60.34 48.31 74.66 69.44

Models ARC-c GPQA GSM8K MMLU Avg

Code Reasoning

OSS- Llama-3 51.28 27.46 49.58 62.14 45.76
Inst. ∆ ToEdit 51.79 28.79 49.36 62.04 46.13

Evol- Llama-3 52.90 27.90 50.87 62.40 46.62
Ins. ∆ ToEdit 52.22 29.69 50.87 62.60 46.92

process to be completed on a single 4090 GPU. We use
top-k as the sampling strategy with k = 8. We also incorpo-
rate top-p sampling and rejection sampling in our ablation
studies.

5.2. Datasets and Models

We provide an overview of our experimental setup, more
details are in Appendix F. For pre-training, we pre-train
the 1B OLMo model (Groeneveld et al., 2024) from scratch
using Dolma-sampled V6 (6B tokens) and evaluate on 8 gen-
eral tasks. For continual pre-training, we follow (Cheng
et al., 2024a;b;c) to continual pre-train OLMo-1B (Groen-
eveld et al., 2024) and Llama-3-8B (AI@Meta, 2024) on
corpora of Biomedicine, Finance, and Math, evaluating on 5
downstream tasks per domain. For supervised fine-tuning,
we fine-tune Llama-3-8B on instruction tuning and code
reasoning tasks, evaluating on 9 downstream tasks.

5.3. Main Results

Table 2, 3, and 4 respectively demonstrate the effectiveness
of our method in pre-training from scratch, continual pre-
training and fine-tuning tasks. Across these three stages of
language model training, our method consistently enhances
the model performance on downstream tasks without in-
creasing the data size. This consistency is validated across
two models. This indicates that our method unlocks the
potential of existing data, demonstrating that semi-synthetic
data is a viable path to improving model performance. A
further numerical analysis is provided in § C.

Table 5. Ablations on resampled token condition (p) in
biomedicine domain.

PubMedQA MQP RCT USMLE ChemProt Avg

p ≥ 0.99 64.50 55.73 30.95 27.65 14.60 38.69
p ≥ 0.999 63.60 55.40 29.09 28.12 16.20 38.48
p ≤ 0.1 62.40 51.47 25.60 29.14 10.00 35.72
p ≤ 0.01 65.40 54.91 28.19 27.80 11.00 37.46

Table 6. Token distribution across different probability intervals in
the biomedicine domain dataset.

Interval Percent # Tokens Interval Percent # Tokens

[0.0, 0.1) 34.7% 389M [0.5, 0.6) 3.6% 40M
[0.1, 0.2) 8.1% 91M [0.6, 0.7) 3.7% 41M
[0.2, 0.3) 5.4% 60M [0.7, 0.8) 4.0% 44M
[0.3, 0.4) 4.4% 49M [0.8, 0.9) 5.2% 58M
[0.4, 0.5) 3.8% 43M [0.9, 1.0) 27.1% 303M

5.4. Ablation Studies

We conduct experiments on hyper-parameter p, including:
(1) ablation studies on different values, (2) token percentage
statistics, (3) comparisons of sampling strategies, and (4) an
ablation study on sampling size.

Table 5 shows the impact of different p values on the model
performance, with fluctuations observed across various set-
tings. Table 6 presents the distribution percentages across
different probability value ranges. As mentioned above, we
need to refine the data while preserving mainly source dis-
tribution. As shown in Figure 5, a larger p indicates fewer
tokens will be resampled, while a smaller p results in more
tokens being resampled. To balance model performance and
data distribution preservation, we set p = 0.99 as threshold
for our experiments. Table 7 presents the results of different
sampling strategies. Specifically, to control variables, we
set k = 8 for top-k sampling and p = 0.99 for top-p sam-
pling. We use rejection sampling implementation in (Liu
et al., 2023). The results of reject sampling, top-p, and top-k
are comparable. However, top-p involves a dynamic sam-
pling range, and reject sampling requires multiple rounds
of computation, leading to increased overhead. Consider-
ing computational efficiency, we choose top-k for sampling.
Table 8 shows the ablation study on sampling size of top-k.
The performance gain from increasing k is relatively small.
Therefore, we set k = 8 in our experiments. And a detailed
case for token editing is provided in Table 12.

6. Conclusion
With the growing prevalence of generative AI models, when
training next-generation AI models, it will be inevitable to
use a mixture of synthetic data and human-produced data.
Therefore, we focus on two key questions: (1) What is the
impact of synthetic data on language model pre-training,

8

How to Synthesize Text Data without Model Collapse?

Table 7. Ablations on sampling strategy.
Strategy PubMedQA MedMCQA MedQA

Top-k 64.50 26.13 24.82
Top-p 63.80 27.11 25.61
Rejection Sampling 64.50 28.90 28.20

Table 8. Ablations on sampling size k for top-k.
Sampling Size (k) PubMedQA MedMCQA MedQA

k = 8 64.50 26.13 24.82
k = 64 63.80 28.14 27.34

and what are the underlying causes? (2) How can we pre-
vent model collapse and synthesize high-quality data? We
found that synthetic data can impair the effectiveness of
pre-training when mixed with human-produced data, lead-
ing to non-iterative model collapse. Statistical analysis re-
veals that synthetic data suffers from significant distribution
gaps and overly concentrated n-gram features. We propose
token-level editing instead of relying purely on synthetic
data. Specifically, we perform token resampling guided by a
trained prior. Theoretically, our method can prevent model
collapse. Our approach demonstrates improvements over
the source data across pre-training, continual pre-training,
and supervised fine-tuning.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgement
This work is sponsored by the National Key Research and
Development Program of China (No. 2023ZD0121402).
X.Z., H.L. and Z.Z. are supported by the National Natural
Science Foundation of China (62376031).

References
Qwen2 technical report. 2024.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

AI@Meta. Llama 3 model card. 2024. URL
https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Albalak, A., Elazar, Y., Xie, S. M., Longpre, S., Lambert,

N., Wang, X., Muennighoff, N., Hou, B., Pan, L., Jeong,
H., et al. A survey on data selection for language models.
arXiv preprint arXiv:2402.16827, 2024.

Alemohammad, S., Casco-Rodriguez, J., Luzi, L., Hu-
mayun, A. I., Babaei, H., LeJeune, D., Siahkoohi, A.,
and Baraniuk, R. G. Self-consuming generative models
go mad. arXiv preprint arXiv:2307.01850, 4:14, 2023.

Ankner, Z., Blakeney, C., Sreenivasan, K., Marion, M.,
Leavitt, M. L., and Paul, M. Perplexed by perplexity:
Perplexity-based data pruning with small reference mod-
els. arXiv preprint arXiv:2405.20541, 2024.

Bai, F., Zhang, H., Tao, T., Wu, Z., Wang, Y., and Xu,
B. Picor: Multi-task deep reinforcement learning with
policy correction. Proceedings of the AAAI Conference
on Artificial Intelligence, 37(6):6728–6736, Jun. 2023.

Bai, F., Wang, M., Zhang, Z., Chen, B., Xu, Y., Wen, Y., and
Yang, Y. Efficient model-agnostic alignment via bayesian
persuasion. arXiv preprint arXiv:2405.18718, 2024.

Bai, F., Liu, R., Du, Y., Wen, Y., and Yang, Y. Rat: Ad-
versarial attacks on deep reinforcement agents for tar-
geted behaviors. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pp. 15453–15461,
2025.

Bellagente, M., Tow, J., Mahan, D., Phung, D., Zhuravin-
skyi, M., Adithyan, R., Baicoianu, J., Brooks, B., Cooper,
N., Datta, A., et al. Stable lm 2 1.6 b technical report.
arXiv preprint arXiv:2402.17834, 2024.

Ben Allal, L., Lozhkov, A., Penedo, G., Wolf, T.,
and von Werra, L. Cosmopedia, 2024. URL
https://huggingface.co/datasets/
HuggingFaceTB/cosmopedia.

Bertrand, Q., Bose, A. J., Duplessis, A., Jiralerspong, M.,
and Gidel, G. On the stability of iterative retraining
of generative models on their own data. arXiv preprint
arXiv:2310.00429, 2023.

Briesch, M., Sobania, D., and Rothlauf, F. Large lan-
guage models suffer from their own output: An anal-
ysis of the self-consuming training loop. arXiv preprint
arXiv:2311.16822, 2023.

Cheng, D., Gu, Y., Huang, S., Bi, J., Huang, M., and
Wei, F. Instruction pre-training: Language models
are supervised multitask learners. In Conference on
Empirical Methods in Natural Language Processing,
2024a. URL https://api.semanticscholar.
org/CorpusID:270620509.

Cheng, D., Huang, S., and Wei, F. Adapting large lan-
guage models via reading comprehension. In The Twelfth

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://api.semanticscholar.org/CorpusID:270620509
https://api.semanticscholar.org/CorpusID:270620509

How to Synthesize Text Data without Model Collapse?

International Conference on Learning Representations,
2024b. URL https://openreview.net/forum?
id=y886UXPEZ0.

Cheng, D., Huang, S., Zhu, Z., Zhang, X., Zhao, W. X.,
Luan, Z., Dai, B., and Zhang, Z. On domain-specific post-
training for multimodal large language models. arXiv
preprint arXiv:2411.19930, 2024c.

Dohmatob, E., Feng, Y., and Kempe, J. Model collapse
demystified: The case of regression. arXiv preprint
arXiv:2402.07712, 2024a.

Dohmatob, E., Feng, Y., Subramonian, A., and Kempe, J.
Strong model collapse. arXiv preprint arXiv:2410.04840,
2024b.

Dohmatob, E., Feng, Y., Yang, P., Charton, F., and Kempe,
J. A tale of tails: Model collapse as a change of scaling
laws. arXiv preprint arXiv:2402.07043, 2024c.

Eldan, R. and Li, Y. Tinystories: How small can lan-
guage models be and still speak coherent english? arXiv
preprint arXiv:2305.07759, 2023.

Feng, Y., Dohmatob, E., Yang, P., Charton, F., Kempe, J.,
and Meta, F. Beyond model collapse: Scaling up with
syn-thesized data requires verification. arXiv preprint
arXiv:2406.07515, 2024.

Ferbach, D., Bertrand, Q., Bose, A. J., and Gidel, G.
Self-consuming generative models with curated data
provably optimize human preferences. arXiv preprint
arXiv:2407.09499, 2024.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
Presser, S., and Leahy, C. The pile: An 800gb
dataset of diverse text for language modeling.
ArXiv, abs/2101.00027, 2020a. URL https:
//api.semanticscholar.org/CorpusID:
230435736.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027,
2020b.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,
H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation,
07 2024. URL https://zenodo.org/records/
12608602.

Gerstgrasser, M., Schaeffer, R., Dey, A., Rafailov, R.,
Sleight, H., Hughes, J., Korbak, T., Agrawal, R., Pai, D.,
Gromov, A., et al. Is model collapse inevitable? breaking
the curse of recursion by accumulating real and synthetic
data. arXiv preprint arXiv:2404.01413, 2024.

Groeneveld, D., Beltagy, I., Walsh, P., Bhagia, A., Kin-
ney, R., Tafjord, O., Jha, A., Ivison, H., Magnusson, I.,
Wang, Y., Arora, S., Atkinson, D., Authur, R., Chandu,
K. R., Cohan, A., Dumas, J., Elazar, Y., Gu, Y., Hessel, J.,
Khot, T., Merrill, W., Morrison, J. D., Muennighoff, N.,
Naik, A., Nam, C., Peters, M. E., Pyatkin, V., Ravichan-
der, A., Schwenk, D., Shah, S., Smith, W., Strubell, E.,
Subramani, N., Wortsman, M., Dasigi, P., Lambert, N.,
Richardson, K., Zettlemoyer, L., Dodge, J., Lo, K., Sol-
daini, L., Smith, N. A., and Hajishirzi, H. Olmo: Acceler-
ating the science of language models. arXiv preprint,
2024. URL https://api.semanticscholar.
org/CorpusID:267365485.

Gulcehre, C., Paine, T. L., Srinivasan, S., Konyushkova,
K., Weerts, L., Sharma, A., Siddhant, A., Ahern, A.,
Wang, M., Gu, C., et al. Reinforced self-training (rest) for
language modeling. arXiv preprint arXiv:2308.08998,
2023.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T.,
Del Giorno, A., Gopi, S., Javaheripi, M., Kauffmann,
P., de Rosa, G., Saarikivi, O., et al. Textbooks are all you
need. arXiv preprint arXiv:2306.11644, 2023.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Jia, X., Yang, Z., Li, Q., Zhang, Z., and Yan, J.
Bench2drive: Towards multi-ability benchmarking of
closed-loop end-to-end autonomous driving. arXiv
preprint arXiv:2406.03877, 2024.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., Casas, D. d. l., Hanna,
E. B., Bressand, F., et al. Mixtral of experts. arXiv
preprint arXiv:2401.04088, 2024.

Kazdan, J., Schaeffer, R., Dey, A., Gerstgrasser, M.,
Rafailov, R., Donoho, D. L., and Koyejo, S. Col-
lapse or thrive? perils and promises of synthetic data
in a self-generating world, 2025. URL https://
openreview.net/forum?id=Xr5iINA3zU.

Kopf, A., Kilcher, Y., von Rutte, D., Anagnostidis, S., Tam,
Z. R., Stevens, K., Barhoum, A., Duc, N. M., Stanley,
O., Nagyfi, R., Shahul, E., Suri, S., Glushkov, D., Dantu-
luri, A., Maguire, A., Schuhmann, C., Nguyen, H., and
Mattick, A. Openassistant conversations - democratizing

10

https://openreview.net/forum?id=y886UXPEZ0
https://openreview.net/forum?id=y886UXPEZ0
https://api.semanticscholar.org/CorpusID:230435736
https://api.semanticscholar.org/CorpusID:230435736
https://api.semanticscholar.org/CorpusID:230435736
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://api.semanticscholar.org/CorpusID:267365485
https://api.semanticscholar.org/CorpusID:267365485
https://openreview.net/forum?id=Xr5iINA3zU
https://openreview.net/forum?id=Xr5iINA3zU

How to Synthesize Text Data without Model Collapse?

large language model alignment. ArXiv, abs/2304.07327,
2023. URL https://api.semanticscholar.
org/CorpusID:258179434.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Ef-
ficient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles, 2023.

Li, L., Lyu, J., Ma, G., Wang, Z., Yang, Z., Li, X., and Li,
Z. Normalization enhances generalization in visual re-
inforcement learning. arXiv preprint arXiv:2306.00656,
2023.

Li, Q., Jia, X., Wang, S., and Yan, J. Think2drive: Effi-
cient reinforcement learning by thinking in latent world
model for quasi-realistic autonomous driving (in carla-
v2). arXiv preprint arXiv:2402.16720, 2024.

Li, X., Yang, Z., and Wu, H. Face detection based on re-
ceptive field enhanced multi-task cascaded convolutional
neural networks. IEEE access, 8:174922–174930, 2020.

Lin, Z., Gou, Z., Gong, Y., Liu, X., Shen, Y., Xu, R., Lin, C.,
Yang, Y., Jiao, J., Duan, N., et al. Rho-1: Not all tokens
are what you need. arXiv preprint arXiv:2404.07965,
2024.

Liu, R., Wei, J., Liu, F., Si, C., Zhang, Y., Rao, J., Zheng,
S., Peng, D., Yang, D., Zhou, D., et al. Best practices and
lessons learned on synthetic data for language models.
arXiv preprint arXiv:2404.07503, 2024.

Liu, T., Zhao, Y., Joshi, R., Khalman, M., Saleh, M.,
Liu, P. J., and Liu, J. Statistical rejection sampling im-
proves preference optimization. ArXiv, abs/2309.06657,
2023. URL https://api.semanticscholar.
org/CorpusID:261705578.

Longpre, S., Hou, L., Vu, T., Webson, A., Chung, H. W.,
Tay, Y., Zhou, D., Le, Q. V., Zoph, B., Wei, J., et al. The
flan collection: Designing data and methods for effec-
tive instruction tuning. arXiv preprint arXiv:2301.13688,
2023.

Magnusson, I., Bhagia, A., Hofmann, V., Soldaini, L., Jha,
A., Tafjord, O., Schwenk, D., Walsh, P., Elazar, Y., Lo, K.,
Groeneveld, D., Beltagy, I., Hajishirzi, H., Smith, N. A.,
Richardson, K., and Dodge, J. Paloma: A benchmark for
evaluating language model fit. ArXiv, abs/2312.10523,
2023. URL https://api.semanticscholar.
org/CorpusID:266348815.

Maini, P., Seto, S., Bai, R. H., Grangier, D., Zhang, Y., and
Jaitly, N. Rephrasing the web: A recipe for compute and
data-efficient language modeling. In Annual Meeting

of the Association for Computational Linguistics,
2024. URL https://api.semanticscholar.
org/CorpusID:267312030.

Martı́nez, G., Watson, L., Reviriego, P., Hernández, J. A.,
Juarez, M., and Sarkar, R. Towards understanding the
interplay of generative artificial intelligence and the inter-
net. In International Workshop on Epistemic Uncertainty
in Artificial Intelligence, pp. 59–73. Springer, 2023.

Mindermann, S., Brauner, J. M., Razzak, M. T., Sharma, M.,
Kirsch, A., Xu, W., Höltgen, B., Gomez, A. N., Morisot,
A., Farquhar, S., et al. Prioritized training on points
that are learnable, worth learning, and not yet learnt.
In International Conference on Machine Learning, pp.
15630–15649. PMLR, 2022.

Mobahi, H., Farajtabar, M., and Bartlett, P. Self-distillation
amplifies regularization in hilbert space. Advances in
Neural Information Processing Systems, 33:3351–3361,
2020.

Niu, Y., Pu, Y., Yang, Z., Li, X., Zhou, T., Ren, J., Hu, S.,
Li, H., and Liu, Y. Lightzero: A unified benchmark for
monte carlo tree search in general sequential decision
scenarios. Advances in Neural Information Processing
Systems, 36, 2024.

Pu, Y., Niu, Y., Yang, Z., Ren, J., Li, H., and Liu, Y. Unizero:
Generalized and efficient planning with scalable latent
world models. arXiv preprint arXiv:2406.10667, 2024.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. 2019.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models, 2021.

Rudin, W. Principles of Mathematical Analysis. McGraw-
Hill, New York, 3rd edition, 1976.

Seddik, M. E. A., Chen, S.-W., Hayou, S., Youssef, P., and
Debbah, M. How bad is training on synthetic data? a
statistical analysis of language model collapse. arXiv
preprint arXiv:2404.05090, 2024.

Shumailov, I., Shumaylov, Z., Zhao, Y., Papernot, N., Ander-
son, R., and Gal, Y. Ai models collapse when trained on
recursively generated data. Nature, 631(8022):755–759,
2024.

Singh, A., Co-Reyes, J. D., Agarwal, R., Anand, A., Patil,
P., Garcia, X., Liu, P. J., Harrison, J., Lee, J., Xu, K.,
et al. Beyond human data: Scaling self-training for
problem-solving with language models. arXiv preprint
arXiv:2312.06585, 2023.

11

https://api.semanticscholar.org/CorpusID:258179434
https://api.semanticscholar.org/CorpusID:258179434
https://api.semanticscholar.org/CorpusID:261705578
https://api.semanticscholar.org/CorpusID:261705578
https://api.semanticscholar.org/CorpusID:266348815
https://api.semanticscholar.org/CorpusID:266348815
https://api.semanticscholar.org/CorpusID:267312030
https://api.semanticscholar.org/CorpusID:267312030

How to Synthesize Text Data without Model Collapse?

Soldaini, L., Kinney, R., Bhagia, A., Schwenk, D., Atkinson,
D., Authur, R., Bogin, B., Chandu, K., Dumas, J., Elazar,
Y., Hofmann, V., Jha, A. H., Kumar, S., Lucy, L., Lyu, X.,
Lambert, N., Magnusson, I., Morrison, J., Muennighoff,
N., Naik, A., Nam, C., Peters, M. E., Ravichander, A.,
Richardson, K., Shen, Z., Strubell, E., Subramani, N.,
Tafjord, O., Walsh, P., Zettlemoyer, L., Smith, N. A.,
Hajishirzi, H., Beltagy, I., Groeneveld, D., Dodge, J.,
and Lo, K. Dolma: An Open Corpus of Three Trillion
Tokens for Language Model Pretraining Research. arXiv
preprint, 2024. URL https://arxiv.org/abs/
2402.00159.

Tan, Z., Li, D., Wang, S., Beigi, A., Jiang, B., Bhat-
tacharjee, A., Karami, M., Li, J., Cheng, L., and
Liu, H. Large language models for data annotation
and synthesis: A survey. In Al-Onaizan, Y., Bansal,
M., and Chen, Y.-N. (eds.), Proceedings of the 2024
Conference on Empirical Methods in Natural Language
Processing, pp. 930–957, Miami, Florida, USA, Novem-
ber 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.emnlp-main.54. URL https://
aclanthology.org/2024.emnlp-main.54/.

Trinh, T., Wu, Y., Le, Q., He, H., and Luong, T. Solv-
ing olympiad geometry without human demonstrations.
Nature, 2024. doi: 10.1038/s41586-023-06747-5.

Ulmer, D., Mansimov, E., Lin, K., Sun, J., Gao, X., and
Zhang, Y. Bootstrapping llm-based task-oriented dialogue
agents via self-talk. arXiv preprint arXiv:2401.05033,
2024.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Aligning
language models with self-generated instructions. arXiv
preprint arXiv:2212.10560, 2022.

Wei, J., Wang, X., Schuurmans, D., Bosma, M.,
hsin Chi, E. H., Xia, F., Le, Q., and Zhou,
D. Chain of thought prompting elicits reasoning
in large language models. ArXiv, abs/2201.11903,
2022. URL https://api.semanticscholar.
org/CorpusID:246411621.

Xia, M., Malladi, S., Gururangan, S., Arora, S., and
Chen, D. Less: Selecting influential data for tar-
geted instruction tuning. ArXiv, abs/2402.04333,
2024. URL https://api.semanticscholar.
org/CorpusID:267522839.

Xie, S. M., Santurkar, S., Ma, T., and Liang, P. S. Data
selection for language models via importance resampling.
Advances in Neural Information Processing Systems, 36:
34201–34227, 2023.

Yang, Z., Jia, X., Li, H., and Yan, J. Llm4drive: A survey
of large language models for autonomous driving. arXiv
e-prints, pp. arXiv–2311, 2023.

Zhang, K., Zeng, S., Hua, E., Ding, N., Chen, Z.-R., Ma,
Z., Li, H., Cui, G., Qi, B., Zhu, X., et al. Ultramedical:
Building specialized generalists in biomedicine. arXiv
preprint arXiv:2406.03949, 2024.

Zhang, M., Zhang, S., Yang, Z., Chen, L., Zheng, J., Yang,
C., Li, C., Zhou, H., Niu, Y., and Liu, Y. Gobigger: A
scalable platform for cooperative-competitive multi-agent
interactive simulation. In The Eleventh International
Conference on Learning Representations, 2023.

Zheng, Y., Zhang, R., Zhang, J., Ye, Y., Luo, Z.,
Feng, Z., and Ma, Y. Llamafactory: Unified ef-
ficient fine-tuning of 100+ language models. In
Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. As-
sociation for Computational Linguistics. URL http:
//arxiv.org/abs/2403.13372.

Zhu, X., Guan, J., Huang, M., and Liu, J. Storytrans:
Non-parallel story author-style transfer with discourse
representations and content enhancing. arXiv preprint
arXiv:2208.13423, 2022.

Zhu, X., Fu, Y., Zhou, B., and Lin, Z. Critical data size
of language models from a grokking perspective. arXiv
preprint arXiv:2401.10463, 2024a.

Zhu, X., Qi, B., Zhang, K., Long, X., Lin, Z., and
Zhou, B. PaD: Program-aided distillation can teach
small models reasoning better than chain-of-thought
fine-tuning. In Duh, K., Gomez, H., and Bethard, S.
(eds.), Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 2571–2597, Mexico City, Mexico,
June 2024b. Association for Computational Linguistics.
doi: 10.18653/v1/2024.naacl-long.142. URL https://
aclanthology.org/2024.naacl-long.142.

12

https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2402.00159
https://aclanthology.org/2024.emnlp-main.54/
https://aclanthology.org/2024.emnlp-main.54/
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:267522839
https://api.semanticscholar.org/CorpusID:267522839
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://aclanthology.org/2024.naacl-long.142
https://aclanthology.org/2024.naacl-long.142

How to Synthesize Text Data without Model Collapse?

A. Proof
A.1. Proof of Theorem 1

For n = 1, we have:

ŵ1 = X̃†
1 Ỹ1 = (X⊤X)−1X⊤(Xw∗ + E1) = w∗ + (X⊤X)−1X⊤E1

For n ≥ 1, we have:

ŵn+1 = X̃†
n+1Ỹn+1

= (X̃⊤
n+1X̃n+1)

−1X̃⊤
n+1Ỹn+1

= (X⊤X)−1X⊤Ỹn+1

Recalling that:

Ỹi =

{
Xw∗ + E1, if i = 1

Mi−1(Xŵi−1 + Ei) + (1−Mi−1)Ỹi−1, if 2 ≤ i ≤ n+ 1

Substituting this Ỹi into the expression for ŵn+1:

We begin the data editing data process:

Ỹ2 = M1(Xŵ1 + E2) + (1−M1)Ỹ1 (8)

Then:

Ỹ3 = M2(Xŵ2 + E3) + (1−M2)Ỹ2 (9)

We have:

Ỹ3 = M2(Xŵ2 + E3) + (1−M2)
(
M1(Xŵ1 + E2) + (1−M1)Ỹ1

)
= M2(Xŵ2 + E3) + (1−M2)M1(Xŵ1 + E2) + (1−M2)(1−M1)Ỹ1

We can expand Ỹn+1 by recursively substituting the previous expressions:

Ỹn+1 = Mn(Xŵn + En+1) + (1−Mn)Ỹn (10)

= Mn(Xŵn + En+1) + (1−Mn)
[
Mn−1(Xŵn−1 + En) + (1−Mn−1)Ỹn−1

]
(11)

= Mn(Xŵn + En+1) + (1−Mn)Mn−1(Xŵn−1 + En) + (1−Mn)(1−Mn−1)Ỹn−1 (12)
... (13)

=

n∑
i=1

 n∏
j=i+1

(1−Mj)

Mi(Xŵi + Ei+1)

+

 n∏
j=1

(1−Mj)

 Ỹ1 (14)

Recalling properties of Mi:

Mi(1−Mi) = 0 and (1−Mi)Mi = 0 (15)
MiMj = 0 for i ̸= j (16)

(1−Mi)(1−Mj) = 1−Mi −Mj for i ̸= j (17)
(18)

13

How to Synthesize Text Data without Model Collapse?

Then we have:

Ỹn+1 =

n∑
i=1

Mi(Xŵi + Ei+1) +

(
1−

n∑
i=1

Mi

)
Ỹ1 (19)

=

n∑
i=1

Mi(Xŵi + Ei+1) +

(
1−

n∑
i=1

Mi

)
(Xw∗ + E1) (20)

= Xw∗ + E1 +

n∑
i=1

Mi (X(ŵi − w∗) + (Ei+1 − E1)) (21)

Substituting this back into the expression for ŵn+1:

ŵn+1 = (X⊤X)−1X⊤

[
Xw∗ + E1 +

n∑
i=1

Mi (X(ŵi − w∗) + (Ei+1 − E1))

]
(22)

= w∗ + (X⊤X)−1X⊤

[
E1 +

n∑
i=1

MiX(ŵi − w∗) +
n∑

i=1

Mi(Ei+1 − E1)

]
(23)

We can observe:

ŵ1 = (X⊤X)−1X⊤(Xw∗ + E1) = w∗ + (X⊤X)−1X⊤E1 (24)

ŵ2 = w∗ + (X⊤X)−1X⊤ (M1X(X⊤X)−1X⊤E1 +M1E2 + (1−M1)E1

)
(25)

= w∗ + (X⊤X)−1X⊤ (E1 +M1E2) (26)

We prove this Theorem 1 by induction.

Inductive Step: Assume the formula holds for n, we have:

ŵn+1 = w∗ + (X⊤X)−1X⊤ (E1 +M1E2 +M2E3 + · · ·+MnEn+1) (27)

= w∗ + (X⊤X)−1X⊤

(
E1 +

n∑
i=1

MiEi+1

)
(28)

Substitute ŵi into ŵn+1:

Then we can get:

ŵn+1 = w∗ + (X⊤X)−1X⊤

E1 +

n∑
i=1

MiP

E1 +

i−1∑
j=1

MjEj+1

+

n∑
i=1

Mi(Ei+1 − E1)

 (29)

= w∗ + (X⊤X)−1X⊤

E1 +

n∑
i=1

Mi

Ei+1 +

i−1∑
j=1

MjEj+1

 (30)

= w∗ + (X⊤X)−1X⊤

(
E1 +

n∑
i=1

MiEi+1

)
(31)

where P = X(X⊤X)−1X⊤, (32)

The above derivation aligns with Theorem 1, and the proof is complete.

14

How to Synthesize Text Data without Model Collapse?

A.2. Proof of Theorem 4.3

We substitute the Eq. 28 into Test Error Eq. 4:

Etest(ŵn+1) = E

∥∥∥∥∥(X⊤X)−1X⊤

(
E1 +

n∑
i=1

MiEi+1

)∥∥∥∥∥
2

Σ

 (33)

= E

(E1 +

n∑
i=1

MiEi+1

)⊤

X(X⊤X)−2X⊤

(
E1 +

n∑
i=1

MiEi+1

) (34)

= σ2E
[
tr
(
(X⊤X)−1

)]
+ σ2

n∑
i=1

E
[
tr
(
Mi(X

⊤X)−1Mi

)]
(35)

= σ2E
[
tr
(
(X⊤X)−1

)]
+ σ2

n∑
i=1

E
[
tr
(
(X⊤X)−1Mi

)]
(36)

Further, by applying the Cauchy-Schwarz inequality (Rudin, 1976), we obtain:

Etest(ŵn+1) ≤ σ2E
[
tr
(
(X⊤X)−1

)]
+ σ2

√
E [tr ((X⊤X)−2)] ·

n∑
i=1

√
E [tr(Mi)] (37)

We refer to the following lemma (Dohmatob et al., 2024a), which is essential for proving Theorem 2:
Lemma 3. Let T and d be positive integers with T ≥ d+ 2, and let X ∈ RT×d be a random matrix with i.i.d. rows from
N (0,Σ) with Σ positive definite. Then, X has full rank a.s. Moreover, it holds that:

EX

[
(X⊤X)−1

]
=

1

T − d− 1
Σ−1. (38)

Using Lemma 3, we have:

Etest

[
tr
(
(X⊤X)−1

)
)
]
=

d

T − d− 1
(39)

Then, we have:

Etest(ŵn+1) = σ2E
[
tr
(
(X⊤X)−1

)]
+ σ2

n∑
i=1

E
[
tr
(
(X⊤X)−1Mi

)]
(40)

≤ σ2d

T − d− 1
+ σ2

√
E [tr ((X⊤X)−2)] ·

n∑
i=1

√
E [tr(Mi)] (41)

In our setting, the data is incrementally modified over iterations and modifications decreases progressively. This behavior
can be modeled by the sum of a geometric series, where the amount of modified data decreases by a fixed ratio η with each
iteration. Then, we assume the editing operation as ||Mi|| = ||Mi−1||η, for i = 1, 2, . . . , n. Therefore, the test error for
data editing can be bounded:

Etest(ŵn+1) ≤
σ2d

T − d− 1
+ σ2

√
E [tr ((X⊤X)−2)] ·

√
E [tr(M1)]

1− η
(42)

Additionally, since Mi is not full-rank, as seen from Eq. 36, we can apply a more relaxed and simplified bound, as follows:

Etest(ŵn+1) ≤
2σ2d

T − d− 1
(43)

Thus, the above derivation satisfies the Theorem 4.3.

15

How to Synthesize Text Data without Model Collapse?

Algorithm 1 Token-level Editing

1: Input: Sequence of tokens x = (x1, . . . , xt), prior distribution P , probability threshold p
2: Output: Edited sequence x’ = (x′

1, . . . , x
′
t)

3: for each token xi in sequence x do
4: Compute conditional probability P (xi | x1, . . . , xi−1)
5: if P (xi | x1, . . . , xi−1) ≥ p then
6: Resample token x̃i from prior distribution
7: Set x′

i ← x̃i

8: else
9: Set x′

i ← xi

10: end if
11: end for
12: Return: Edited sequence x’ = (x′

1, . . . , x
′
t)

Table 9. Comparison of human and synthetic data performance across downstream tasks in (Maini et al., 2024), based on training with
GPT-2.

TruthfulQA LogiQA Wino. PIQA ARC-E BoolQ OBQA Avg

Human Data 32.68 23.03 51.3 64.42 44.4 60.98 15 41.69
25% Synthetic Data 27.91 21.37 50.12 63.93 43.94 62.29 15.4 40.71
50% Synthetic Data 30.84 22.58 52.41 63.33 44.02 62.14 16 41.62
75% Synthetic Data 29.5 22.65 49.8 63.44 44.53 61.56 17.2 41.24
Synthetic Data 28.89 22.58 49.72 63 46.3 54.53 16.8 40.26

B. More Related Work
Phi-1/2 (Gunasekar et al., 2023) demonstrate that the synthetic data can boost training efficiency and performance compared
to raw data in language model pre-training. Furthermore, Feng et al. (2024) introduce a verifier to filter synthetic samples,
theoretically avoiding model collapse. Liu et al. (2024); Tan et al. (2024) highlight that synthetic data will play a crucial role
in the development of AI. For example, synthetic data can be used to construct highly specialized datasets, enhancing the
performance of downstream tasks. Trinh et al. (2024) utilize synthetic math data to train a 125M language model, which
successfully solved 25 out of 30 selected problems from the International Mathematical Olympiad (IMO) problem set.
Zhang et al. (2024) develop a biomedical instruction dataset that was used to train specialized bio-models, enabling them to
excel in answering questions related to medical exams and clinical scenarios. Eldan & Li (2023) introduce a novel synthetic
dataset and evaluation paradigm that enables small language models to generate coherent, diverse, and grammatically sound
stories. As outlined above, in the post-training stages of LLMs, synthetic data enhances downstream task performance and
aligns foundation models with humans. And Maini et al. (2024) propose rephrasing the pre-training data into a Wikipedia or
Q/A style to achieve better alignment with downstream tasks. Synthetic data is a powerful tool for training. Our approach is
also based on synthetic data methods. Instead of sampling data solely based on this prior, we modify the data using the prior
as a guide.

Bertrand et al. (2023) develop a rigorous framework to demonstrate the importance of real data in maintaining the stability
of iterative training. Ferbach et al. (2024) theoretically demonstrate that the impact of data curation can be formalized
as an implicit preference optimization mechanism. Kazdan et al. (2025) reveal the detailed training dynamics of model
collapse under three different training workflows. Of course, there are also some remarkable studies that successfully used
synthetic data. Wang et al. (2022) propose the Self-Instruct data generation framework, enhancing instruction-following
capabilities. Ulmer et al. (2024) employ the self-talk method to generate high-quality data. ReST (Gulcehre et al., 2023)
uses a policy model to generate datasets and then employs offline RL to fine-tune LLMs on generated datasets. Singh et al.
(2023) demonstrate that self-training with binary feedback filtering can reduce reliance on real data. Alemohammad et al.
(2023) demonstrate that without enough fresh real images, future generative models will gradually decline. Briesch et al.
(2023) illustrates that real data in the iterative training process can slow the decline of LLMs, but cannot fully prevent it.
Martı́nez et al. (2023) shows that the quality and diversity of generated images degrade over time.

16

How to Synthesize Text Data without Model Collapse?

Figure 6. Token distribution across different probability ranges in BioMed dataset.

C. More Discussion of Main Results
As shown in Table 3, our method shows consistent improvements over the source data across OLMo-1B and LLaMA-3-8B.
For instance, in the Biomedicine domain, the average score for OLMo-1B increased from 36.63 to 40.89 with ToEdit,
while LLaMA-3-8B saw an increase from 54.13 to 56.48. Table 2 further supports the effectiveness of our approach in
pre-training. The average performance of OLMo-1B increases from 32.75 to 33.11, reflecting improved generalization
capabilities. While the improvement is modest, the consistent trend across tasks like PIQA, BoolQ, and ARC-c highlights
the broader applicability of our method. As for SFT results in Table 4, using both the original and edited data, the results
indicate a small but consistent improvement. Specifically, ToEdit improves original FLAN v2, with average performance
increasing from 70.18 to 70.65. For Natural Instructions, the average performance of LLaMA-3-8B improves from 69.34 to
69.70, with gains in tasks like Winogrande and SIQA. These improvements demonstrate the adaptability of our method to
instruction-tuning tasks. For code-related tasks, the improvements demonstrate better reasoning and code comprehension.

D. Comparison with Pure Synthetic Data and Reformat Methods
Definition and Characteristics of Synthetic Data Synthetic data (Ds) can be categorized based on its relationship with
the distributions of a language model (PLM) and human-produced data (Pdata) during the generation process, quantified as
d = KL(·||Pdata):

Ds =

{
Dpure

s ∼ PLM, if KL(PLM||Pdata) > ϵ,

Dsemi
s ∼ Psemi, if KL(Psemi||Pdata) ≤ ϵ.

(44)

where Pure Synthetic Data Dpure
s : Generated entirely from the language model (Dpure

s ∼ PLM), with a KL divergence
KL(PLM∥Pdata) exceeding a threshold ϵ. This implies a significant deviation of the language model’s distribution from the
human-produced data distribution. Semi-Synthetic Data Dsemi

s : Derived from limited modifications to human-produced
data (Pdata), ensuring that the resulting distribution (Psemi) has a KL divergence KL(Psemi||Pdata) bounded by ϵ. This reflects
a closer alignment of semi-synthetic data with human-produced data.

From the generation process, pure synthetic data Dpure
s : This data is induced by a language model through prompts

and does not modify human-produced data, resulting in low overlap content with human-produced data. For example,
Cosmopedia (Ben Allal et al., 2024) expands human-produced data and generates data without human-produced data.
Semi-Synthetic Data Dsemi

s : This data is generated by directly modifying human-produced data, such as paraphrasing or
token-level editing. It derives from transformations of human-produced data. For example, WRAP (Maini et al., 2024)
generates paraphrases of human-produced data. ToEdit (ours) performs token editing on human-produced data.

17

How to Synthesize Text Data without Model Collapse?

Figure 7. Pre-training loss of GPT-2 Small (124M) on human (Dolma (Soldaini et al., 2024)) and synthetic (Cosmopedia (Ben Allal et al.,
2024)) data. As the proportion of synthetic data increases, the model’s loss decreases.

Specifically, both Rephrasing the Web (Maini et al., 2024) and our token-level editing aim to refine data while preserving the
original distribution, producing semi-synthetic data. In contrast, purely synthetic data in Cosmopedia lacks the long-tail
distribution and overly concentrates on n-gram features. Ultimately, semi-synthetic data enhances training performance,
whereas purely synthetic data results in model collapse. Moreover, replacing a whole real sample with synthetic data can
damage the performance.

The primary distinction between Cosmopedia, Rephrasing the Web (Maini et al., 2024), and our approach lies in how
much of the original human data distribution is preserved. We provide a detailed comparison of these synthetic methods in
Table 10.

Table 10. Comparison of different synthetic data methods.
Method Data Type Approach Result

Cosmopedia (Ben Allal et al., 2024) Pure synthetic Using a prompt to induce data from LLMs. Reveal non-iterative model collapse.
Rephrasing the Web (Maini et al., 2024) Semi-synthetic Using a prompt and source content to guide LLMs

to reformat source content.
Improve training performance.

ToEdit (Ours) Semi-synthetic Using the distribution of source content estimated
by LLMs (single forward pass) to replace tokens.

Improve training performance.

E. More Results of Human and Synthetic Data Mixture Training
We provide more training results for the human and synthetic data mixture. The main results and analysis can be found in
Sec 3.1. Except for GPT-2 pre-training, we also use the OLMo models (Groeneveld et al., 2024) for further experiments.

As shown in Figure 8, the training loss continues to decrease as the amount of synthetic data increases, which is consistent
with GPT-2 pre-training in Figure 2. More synthetic data can lead to better fitting. However, a lower loss does not necessarily
mean a better model. As illustrated in Figure 2B and 9, models that fits better perform worse in real world tasks.

Furthermore we follow (Maini et al., 2024) to conduct more experiments including PPL results on 22 validation sets of
Pile (Gao et al., 2020a) and general understanding tasks. The additional results in Table 9, 11 and 1 are consistent with
our findings. Specifically, the PPL increases as the proportion of purely synthetic data grows, while the performance on
downstream tasks similarly exhibits a gradual decline with the increase in synthetic data.

18

How to Synthesize Text Data without Model Collapse?

Table 11. Comparison of human and synthetic data performance across downstream tasks in (Maini et al., 2024), based on training with
OLMo-237M. ± indicates the standard error.

TruthfulQA LogiQA Wino. PIQA ARC-E OBQA Avg

Human Data 26.81 ± 1.550 21.06 ± 1.028 52.01 ± 1.404 56.69 ± 1.156 31.73 ± 0.9550 13.80 ± 1.543 33.68
25% Synthetic Data 26.44 ± 1.543 21.25 ± 1.032 52.64 ± 1.403 57.02 ± 1.155 31.78 ± 0.9552 12.40 ± 1.475 33.59
50% Synthetic Data 25.95 ± 1.534 20.04 ± 1.099 52.25 ± 1.408 56.64 ± 1.126 31.82 ± 0.9557 12.80 ± 1.495 33.25
75% Synthetic Data 25.34 ± 1.522 20.87 ± 1.025 50.43 ± 1.405 55.60 ± 1.159 32.74 ± 0.9629 12.00 ± 1.454 32.83
Synthetic Data 23.01 ± 1.473 20.29 ± 1.014 49.33 ± 1.405 55.93 ± 1.158 33.33 ± 0.9673 14.20 ± 1.562 32.68

Figure 8. OLMo-237M pretraining with mixed human and syn-
thetic data proportions. We pretrain the OLMo-237M model using
a mixture of human data (Dolma (Soldaini et al., 2024)) and syn-
thetic data (Cosmopedia (Ben Allal et al., 2024)).

Figure 9. GPT-2 perplexity (PPL) on validation sets, trained from
scratch.

F. Experiment Settings
In this section, we describe our experiments settings in detail.

F.1. Training

Pre-training We utilized both GPT-2 and OLMo models. The pre-training datasets included Dolma, representing real
data, and Cosmopedia, representing synthetic data. For GPT-2, we employed the official FSDP (Fully Sharded Data Parallel)
framework provided by Torch for training. For OLMo3, we used the official open-source computational code, which also
incorporates the FSDP framework alongside Flash Attention for acceleration.

Continual Pre-training We follow (Cheng et al., 2024b) to conduct continual pre-training on biomedicine, finance, and
math domains. Specifically, PubMed Abstracts from the Pile are utilized as the pre-training corpora for the biomedicine
domain. For the finance domain, financial news data covering over 7,000 stocks from May 2022 to May 2023 is collected
using the FinGPT framework. We continue pre-training OLMo-1B and LLaMA-3-8B on each domain. For implementation,
we utilized the official training framework for OLMo-1B, leveraging Fully Sharded Data Parallel (FSDP) for continual
pre-training. For LLaMA, we adopted the LLaMA-Factory framework to carry out the continual pre-training process. Our
experiments was primarily conducted on OLMo-1B and Llama-3-8B models, with Llama-3-8B utilizing LoRA (Low-Rank
Adaptation) for parameter-efficient fine-tuning. The data and evaluation are given in this repo4. We conducted the continual
pre-training on a total of 1B tokens.

Supervised Fine-tuning We used the Llama-Factory (Zheng et al., 2024) framework to fine-tune Llama-3-8B. As for
general instruction tuning tasks, we adopt instruction tuning datasets from (Xia et al., 2024) 5, including CoT (Wei et al.,
2022) , FLAN v2 (Longpre et al., 2023), and Open Assistant 1 (Kopf et al., 2023). As for code-related reasoning tasks,

3https://github.com/allenai/OLMo
4https://github.com/microsoft/LMOps/tree/main/adaptllm
5https://huggingface.co/datasets/princeton-nlp/less_data

19

https://github.com/allenai/OLMo
https://github.com/microsoft/LMOps/tree/main/adaptllm
https://huggingface.co/datasets/princeton-nlp/less_data

How to Synthesize Text Data without Model Collapse?

Table 12. Case Study.

Before (source) After (edited) Changes

Construct a function using PHP lan-
guage that applies lexical analysis on
a provided text string to analyze the
individual, non-repeated words ele-
ments present.

Construct a function using PHP lan-
guage that applies lexical analysis
on a provided text string to quantify
unique words.

“analyze”→ “quantify”

Test with provided string, $str
= ’Greetings, Planet
Earth!’.

Test with provided string, $str
= ’Greetings, Planet
Earth!’.

No changes.

Implements wordCount to remove
punctuation, convert text to lower-
case, split into words, and count
unique words.

Implements wordCount to remove
punctuation, convert text to lower-
case, split into words, and calculate
unique words.

“count”→ “calculate”

Returns {’greetings’: 1,
’planet’: 1, ’earth’:
1}.

Returns {’greetings’: 1,
’planet’: 1, ’earth’:
1}.

No changes.

we utilize OSS-Instruct-75K 6 and Evol-Instruct-110K 7. These datasets provide sufficient diversity for verification on
fine-tuning. We apply LoRA (Hu et al., 2021) to Llama-3-8B experiments.

F.2. Evaluation

Pre-training We use PPL and downstream tasks to conduct analysis and performance test. As for PPL, it stands for
perplexity, a commonly used metric in NLP to evaluate the quality of language models. It measures how well a probabilistic
model predicts a given dataset, with lower values indicating better performance. Formally, the perplexity of a language
model is calculated as:

PPL = 2−
1
N

∑N
i=1 log2 P (xi)

Alternatively, it can also be expressed as:

PPL = exp

(
− 1

N

N∑
i=1

logP (xi)

)

Where N is the number of tokens in the dataset, and P (xi) is the predicted probability of the i-th token. Perplexity essentially
represents the exponential of the average negative log-likelihood of the predicted tokens, indicating how “perplexed” the
model is when making predictions.

As for downstream tasks, we use general understanding tasks in (Maini et al., 2024) to analyze model collapse in Table 9
and general test tasks in (Cheng et al., 2024a) to test our methods in Table 2. All downstream tasks we used can be found
in (Gao et al., 2024)8.

Continual Pre-training We use the test data and code in (Cheng et al., 2024b)9 to test domain specific task performance
after CPT.

Supervised Fine-tuning We utilize the general downstream tasks from (Cheng et al., 2024a) to evaluate instruction-tuning
performance and reasoning tasks to assess reasoning capabilities. All downstream tasks we used can be found in (Gao et al.,

6https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
7https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
8https://github.com/EleutherAI/lm-evaluation-harness
9https://github.com/microsoft/LMOps/tree/main/adaptllm

20

https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/microsoft/LMOps/tree/main/adaptllm

How to Synthesize Text Data without Model Collapse?

A. Human Data PPL Distribution
Estimated by StableLM-3B on Dolma-sampled v6(6B Tokens)

B. Synthetic Data PPL Distribution
Estimated by StableLM-3B on Cosmopedia-sampled (6B Tokens)

Figure 10. PPL distribution of human and synthetic data estimated by StabLM-Zephyr-3B. This indicates that different prior distributions
yielded the same result, which is consistent with Figure 3. The synthetic data lacks a long tail and is concentrated within a narrow portion
of the distribution.

2024)10.

Table 13. PPL results of GPT-2 124M pre-training on mixture of human and synthetic data.
Synthetic Data Ratio 25% 50% 75%

Tokens Size 8.4B 16.8B 25.2B 33.6B 42B 8.4B 16.8B 25.2B 33.6B 42B 8.4B 16.8B 25.2B 33.6B 42B

Epochs 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Wikitext-103 45.97 39.87 37.65 36.91 36.32 50.29 43.15 40.46 39.43 38.65 58.66 48.75 45.20 43.42 42.95
RedPajama 42.28 37.62 35.72 34.66 34.24 46.89 41.42 39.37 38.21 37.72 55.72 49.26 46.27 44.81 44.30
Falcon-RefinedWeb 56.40 50.62 48.26 47.13 46.66 61.06 54.34 51.72 50.39 49.87 69.32 61.50 58.28 56.77 56.19
c4-en 48.15 43.14 40.98 39.91 39.41 51.79 46.06 43.90 42.73 42.23 58.60 52.22 49.26 47.87 47.27
mc4-en 62.46 56.80 54.35 53.06 52.71 70.43 62.48 59.61 57.66 57.07 80.37 71.77 67.90 65.31 64.82

Table 14. PPL results of OLMo-237M pretraining on mixture of human and synthetic data.
Synthetic Data Ratio 0% 25% 50% 75% 100% DSIR (1M) DSIR (10M) Edu Classifier (1M) Edu Classifier (10M) PPL Filter (1M) PPL Filter (10M) Density Sampling (1M) Density Sampling (10M)

Unique Tokens 8.4B 8.4B 8.4B 8.4B 8.4B 0.6B 8.4B 0.75B 7.4B 0.97B 9B 0.6B 7.1B
Training Tokens 8.4B 8.4B 8.4B 8.4B 8.4B 8.4B 8.4B 10.5B 7.4B 13.68B 9B 8.9B 7.1B
Epochs 1 1 1 1 1 14 1 14 1 14 1 14 1

Wikitext-103 187.36 185.5 260.08 367.46 1605.73 1309.53 1757.03 1111.29 1612.95 738.36 1193.25 1188.40 1753.89
RedPajama 175.38 183.93 236.33 301.09 907.91 649.36 916.51 811.14 1104.75 376.36 645.82 789.67 896.18
Falcon-RefinedWeb 165.17 166.69 199.68 245.15 523.93 573.61 510.96 522.97 612.72 344.82 449.86 501.99 560.92
c4-en 123.88 127.68 147.69 174.48 410.19 457.96 404.63 415.88 487.97 286.95 367.44 414.55 457.71
mc4-en 208.91 208.94 263.35 324.91 800.40 861.01 823.12 769.86 955.70 476.81 662.00 740.75 844.53
M2D2-Wiki 88.24 87.34 107.77 114.19 189.06 234.45 183.17 161.58 206.45 130.43 162.08 167.20 205.50
M2D2-S2ORC 86.15 81.53 97.61 100.64 204.22 170.78 496.40 145.27 201.52 117.44 163.38 131.22 192.97

G. Discussion
G.1. Non-Iterative vs Iterative Model Collapse.

We define non-iterative model collapse as the performance degradation caused by directly mixing general synthetic data
with human-produced data, without iterative training. Theoretically, without additional regularization constraints to guide
data generation, the variance of the model-generated data gradually decreases during this process. The diversity of the
generated data diminishes over time, ultimately leading to the collapse of the model itself.

The difference between the two lies in their scope. Non-iterative model collapse is not confined to training on self-generated
data, allowing it to uncover broader properties of synthetic data. For instance, in our experiments, we train GPT-2 on the
Cosmopedia dataset in a single generation, which was generated by Mixtral-8x7B-Instruct-v0.1. In contrast,

10https://github.com/EleutherAI/lm-evaluation-harness

21

https://github.com/EleutherAI/lm-evaluation-harness

How to Synthesize Text Data without Model Collapse?

iterative model collapse focuses on training the model over multiple generations using self-generated data.

Furthermore, the non-iterative model collapse emphasizes the gap between human data and general purely synthetic data,
particularly regarding distributional properties and n-gram features. In contrast, the iterative model collapse illustrates
the iterative evolution of the model, resembling a self-play process. This process illustrates the gradual evolution of
self-generated data. It does not involve an analysis of the differences in nature between self-generated and human-produced
data. They both ultimately lead to model collapse, driven by the same underlying cause—synthetic data, though they
investigate different aspects of synthetic data. We often face that training a model on a mixture of human and synthetic data,
where the synthetic data is not generated by the model itself, and its exact origin may be unknown.

G.2. Why Does the Observed Probability Distribution Exhibit Filtering Potential?

From the perspective of information theory, we can analyze the filtering potential of the U-shape distribution as follows:
We utilize the U-shape distribution in Figure 5 to re-sample tokens in the high-probability region, to adjust the U-shaped
distribution toward a uniform distribution. By doing so, we can maximize the information entropy. According to information
theory, maximizing information entropy is achieved when the distribution is uniform.

Lemma 1: Let X be a discrete random variable with n possible outcomes. If the probability of each outcome is uniform,
i.e., P (xi) =

1
n for all i ∈ {1, 2, . . . , n}, the Shannon entropy is maximized, given by:

H(X) = −
n∑

i=1

1

n
log

1

n
= log n. (45)

This represents the maximum uncertainty achievable, implying that the dataset carries the maximum possible information
content. Thus, the uniform distribution, which assigns equal probability to all outcomes, possesses the maximum information
entropy. To leverage this property, we utilize the U-shape distribution to re-sample tokens in the high-probability region,
adjusting the U-shaped distribution toward a uniform distribution. By doing so, we can maximize the information entropy.

From the perspective of language model learning, our method emphasizes the importance of poorly learned data.
Specifically, we resample easy tokens and encourage the model to focus on learning more challenging ones. Our method can
enhance the learning of underrepresented data by resampling high-probability tokens.

G.3. Gradual Decline in Editing

Table 15. Percentage of tokens requiring edits in the Natural-Instructions dataset. The total number of tokens is 4,671,834.

Gen 1 (source) Gen 2 Gen 3

Tokens (p > 0.99) 584,103 549,519 517,433
Percentage 12.5% 11.76% 11.08%

We present the percentage statistics of edited tokens in Table 15 and performance in an iterative process in Table 16,
demonstrating that the edited tokens indeed exhibit a progressive decrease. Specifically, We observe that the percentage of
edited tokens (above the threshold p > 0.99) decreases as the generation number increases. Theoretically, this is a process
of distribution shifting. When tokens (p > 0.99) are resampled, randomness is introduced. The sampling process can select
tokens with lower probabilities. Then, tokens (p > 0.99) is replaced, leading to a reduction of edited tokens in subsequent
generations. The Table 15 provides empirical evidence for this pattern of decay.

Table 16. Performance in an iterative process on Instruction tuning data.

PIQA BoolQ HS SIQA WG Avg

Gen 0 79.87 81.28 59.72 49.69 74.51 69.01
Gen 1 80.25 81.16 59.74 50.56 74.59 69.26
Gen 2 80.14 82.69 59.82 50.51 73.80 69.39

22

How to Synthesize Text Data without Model Collapse?

G.4. What is Coverage Narrowing?

‘coverage narrowing’ refers to a phenomenon in which the distribution of synthetic data covers a significantly narrower
range of values compared to human data, even when the data sizes are identical. For instance, as shown in Figure 3, the
PPL range of synthetic data is limited to [0, 14], whereas the PPL range of human data extends from [0, 100+]. Despite this
disparity, the overall coverage, represented by the area under the distribution curves, remains the same. This significant
distribution gap is what we define as ‘coverage narrowing.’

G.5. How Does the DSIR Work?

DSIR (Xie et al., 2023) works by estimating importance weights for each data sample to measure its relevance to the target
distribution. This involves three main steps: first, we leverage n-gram models to estimate two distributions of human and
synthetic data, qfeat and pfeat, which represent the target and raw distributions, respectively. We use them to compute the
likelihood ratio for each sample. Next, we calculate the importance weight for each sample zi as wi =

p̂feat(zi)
q̂feat(zi)

. The weight
wi quantifies how well the sample aligns with the target distribution. Finally, we perform importance-weighted sampling
without replacement to select examples, ensuring that the selected data is more representative of the target distribution.

We use DSIR in our data analysis as it allows for principled and computationally efficient selection of synthetic data points
that align with the target distribution. Moreover, the importance weight also reflects the alignment between the n-gram
features of synthetic data and human data. Using DSIR, we can analyze the differences between synthetic and human data
across n-gram feature distributions and data matching. As shown in Figure 11, it is challenging to select synthetic data that
matches human data characteristics under the significant distribution difference. To obtain high-quality synthetic data, it is
essential to focus on improving the data synthesis methods.

G.6. Non-autoregressive Token Replacement May Compromise Text Coherence.

When designing data synthesis algorithms, we must balance synthesis efficiency and effectiveness, considering both
autoregressive and non-autoregressive approaches. Autoregressive methods leverage the inherent capabilities of language
models to generate coherent text sequentially. In contrast, non-autoregressive methods resample individual tokens based on
their probability distributions. Since data synthesis is a prerequisite for model training, we aim to ensure that the cost of data
synthesis does not exceed the cost of training itself.

Specifically, our ToEdit modifies data using the probability distribution in a single forward pass. For instance, if the
generated sequence length is 1024, the computational cost of autoregressive methods would be 1024 times higher than ours.
This efficiency advantage is why our method can run effectively on GPUs like the 3090 or 4090 series.

However, this efficiency may come at the cost of coherence, as resampled tokens may not fit seamlessly into a given sentence.
To address this issue, we introduce a hyperparameter, resampling probability p, to control the resampling threshold. We
perform sampling in high-probability regions, focusing on tokens that are relatively easier to predict. We manually verify
and tune on a small validation set before applying it across all experiments. In our experiments, we set p = 0.99.

Additionally, we supplement more experiments and discussion about hyper-parameter p. As Table 5 shows, different values
of p influence BioMed performance, leading to fluctuations in data quality. Table 6 presents the distribution percentages
of the token probabilities across different value ranges. We need to refine the data while primarily preserving the source
distribution. A larger p indicates fewer tokens will be resampled, while a smaller p results in more tokens being resampled.
Balancing performance and the preservation of data distribution, we set p = 0.99 as the threshold for our experiments.

G.7. Must We Assume the Data is 100% Human-authored?

We do not need to assume that the data is 100% human authored; In experimental settings, some datasets used in our
experiments include partially synthetic data:

• Datasets used in continual pretraining (e.g., Biomed, Finance) include partially synthetic data, which has been
reformatted into a reading comprehension structure (Cheng et al., 2024b).

• OSS-Instruct-75K and Evol-Instruct-110K also contain samples synthesized by ChatGPT.

In the theoretical framework, synthetic data is generated iteratively through an n-generation process. (1) If the starting point
is a real distribution, our method preserves most of the initial distribution to generate higher-quality data. (2) If the starting

23

How to Synthesize Text Data without Model Collapse?

Table 17. PPL results of GPT-2 124M pretraining on pure Human or Synthetic data.
Data Type Human Data (Dolma) Synthetic Data (Cosmopedia)

Tokens Size 8.4B 16.8B 25.2B 33.6B 42B 8.4B 16.8B 25.2B 33.6B 42B

Epochs 1 2 3 4 5 1 2 3 4 5

Wikitext-103 43.62 38.57 36.11 34.89 34.55 169.38 147.73 135.23 131.78 128.05
RedPajama 40.18 35.84 33.97 32.74 32.34 116.37 103.25 99.27 96.81 96.03
Falcon-RefinedWeb 54.85 49.10 46.93 45.43 44.90 146.97 132.60 127.68 124.32 122.69
c4-en 45.87 41.00 39.10 37.95 37.56 128.25 114.41 109.73 107.53 106.55
mc4-en 61.00 54.44 52.11 50.38 49.74 171.44 153.70 150.28 145.44 144.99

point is a mixture of synthetic and real data, the modifications are minimal, ensuring the original distribution remains largely
unaffected. Therefore, applying our method in any generation i, we can further avoid issues, such as reduced variance and
diminished diversity, which are key factors contributing to model collapse.

In other words, whether the current data is fully real or a mix of real and synthetic, using it as anchor data to synthesize data,
our method builds upon the current data distribution to achieve improvements, rather than causing model collapse.

In summary, we aim to improve the data synthesis method, specifically focusing on how to obtain higher-quality data from
the existing datasets. We do not need to assume that the data at hand is 100% human-generated. Our algorithm is designed
to minimize excessive distribution truncation of the original data.

G.8. Can ToEdit Help with Already Strongly Collapsed Data or is a Minimum Quality of the Data Necessary?

The ToEdit algorithm was initially designed to preserve the long-tail distribution during the data generation process, thereby
avoiding model collapse. For already collapsed data, the variance is typically very small, and enhancing diversity is crucial.
We can also adjust the threshold to introduce more randomness in data. Through this operation, we can inject randomness
into the collapsed data. However, this is a theoretical scenario, and as we know, data situations are highly complex. In
practice, there will be many more challenges to address.

G.9. Could We Generate Tons of Data Using LLMs and Select Only the Long-Tail Ones?

For now, generating long-tail samples is currently difficult for language models. The reason lies in the sampling strategy
of LLMs. Current LLMs adopt top-p, top-k or other sampling strategy for better performance. However, these sampling
strategy will lead to cut-off distribution. When the data synthesizing scale up, this drawback will finally scaling law cut-off
on synthetic data. However, human corpus data follows a Zipf distribution. The truncated output distribution causes the
LLMs to nearly fail to sample long-tail samples. In other words, it is currently difficult to induce long-tail samples from
LLMs that are as diverse as human data.

On the other hand, if we force the language model to generate long-tail samples, these may contain both noisy and high-
information samples, which are like two sides of a coin, both distributed in the long tail of the data. This necessitates further
filtering of the high-information samples. Unfortunately, such samples are challenging to automatically identify in practice
and may require extensive human annotation.

H. Potential Applications and Future Work
Based on the above discussion, our approach can be applied to optimize the current data, even if it is a mixture of real and
synthetic data. From the findings and proposed method in our paper, we can influence future research in the following
aspects:

Potential applications of our work: (1) Data optimizations. We can quickly modify and optimize the current data, using
a trained language model with a single forward pass. (2) Regularization in the data synthesizing process. When synthetic
data becomes excessive, we can introduce real data as an anchor to balance the issues of excessive homogeneity and tail
distribution cut-off in synthetic data, thereby preventing mode collapse.

24

How to Synthesize Text Data without Model Collapse?

Figure 11. Uni/Bi-gram feature distribution across 10,000 hash buckets.

Lessons from our work: The key to improving the quality of synthetic data lies in balancing long-tail distribution
preservation and optimizing synthetic data approaches. In other words, we should focus on two questions: how to generate
more informative synthetic data and how to integrate it with real data effectively. Building on this foundation, future
improvements can focus on two aspects: first, obtaining more information gain by designing more efficient generation
mechanisms to inject valuable information into the synthetic data; and second, optimizing methods to reduce noise during
the synthesis process. This approach ensures that synthetic data retains its authenticity while enhancing its utility in practical
tasks.

Extended related applications A broader range of recent works across domains also explore synthetic data generation
and usage for diverse applications (Bai et al., 2025; 2024; 2023; Jia et al., 2024; Yang et al., 2023; Li et al., 2020; Niu et al.,
2024; Zhang et al., 2023; Li et al., 2024; Pu et al., 2024; Li et al., 2023; Zhu et al., 2024a;b; 2022).

Figure 12. The top 40 bi-grams from separately sampled 1M subsets of Dolma, Cosmopedia, and DSIR-selected datasets.

25

How to Synthesize Text Data without Model Collapse?

Figure 13. The top 64 bi-grams from separately sampled 1M subsets of Dolma, Cosmopedia, and DSIR-selected datasets.

Table 18. Dolma dataset statistics (v1.6), quoted from source (Soldaini et al., 2024).
Source Doc Type UTF-8 bytes (GB) Documents (millions) Unicode words (billions) Llama tokens (billions)

Common Crawl web pages 9,022 3,370 1,775 2,281
The Stack code 1,043 210 260 411
C4 web pages 790 364 153 198
Reddit social media 339 377 72 89
PeS2o STEM papers 268 38.8 50 70
Project Gutenberg books 20.4 0.056 4.0 6.0
Wikipedia, Wikibooks encyclopedic 16.2 6.2 3.7 4.3

Total 11,519 4,367 2,318 3,059

Figure 14. Density sampling response values. This result further confirms the issue of feature collapse in synthetic data.

26

