
Under review as a conference paper at ICLR 2024

EFFICIENT OCR FOR BUILDING A DIVERSE DIGITAL HIS-
TORY

Anonymous authors
Paper under double-blind review

ABSTRACT

Abstract: Many users consult digital archives daily, but the information they can access
is unrepresentative of the diversity of documentary history. The sequence-to-sequence
architecture typically used for optical character recognition (OCR) – which jointly learns
a vision and language model - is poorly extensible to low-resource document collections,
as learning a language-vision model requires extensive labeled sequences and compute.
This study models OCR as a character level image retrieval problem, using a contrastively
trained vision encoder. Because the model only learns characters’ visual features, it is
more sample efficient and extensible than existing architectures, enabling accurate OCR
in settings where existing solutions fail. Crucially, it opens new avenues for community
engagement in making digital history more representative of documentary history.

Digital texts are central to the study, dissemination, and preservation of human knowledge. Tens of thousands
of users consult digital archives daily in Europe alone (Chiron et al., 2017), yet billions of documents remain
trapped in hard copy in libraries and archives around the world. These documents contain extremely diverse
character sets, languages, fonts or handwriting, printing technologies, and artifacts from scanning and aging.
Converting them into machine-readable data that can power indexing and search, computational textual
analyses, and statistical analyses - and be more easily consumed by the public - requires highly extensible,
accurate, efficient tools for optical character recognition (OCR).

Current OCR technology - developed largely for small-scale commercial applications in high resource lan-
guages - falls short of these requirements. OCR is typically modeled as a sequence-to-sequence (seq2seq)
problem, with learned embeddings from a neural vision model taken as inputs to a learned neural lan-
guage model. The seq2seq architecture is challenging to extend and customize to novel, lower resource
settings (Hedderich et al., 2021), because training a vision-language model requires a vast collection of
labeled image-text pairs and significant compute. This study shows that on printed Japanese documents
from the 1950s, the best performing existing OCR mis-predicts over half of characters. Poor performance
is widespread, spurring a large post-OCR error correction literature (Lyu et al., 2021; Nguyen et al., 2021;
van Strien. et al., 2020) and skewing digital history towards limited settings that are not representative of the
diversity of documentary history.

This study develops a novel, open source OCR architecture, EffOCR (EfficientOCR), designed for re-
searchers and archives seeking a sample-efficient, customizable, scalable OCR solution for diverse docu-
ments. EffOCR combines the simplicity of early OCR systems, such as Tauschek’s 1920s reading machine,
with deep learning, bringing OCR back to its roots: the optical recognition of characters. Deep learning-
based object detection methods are used to localize individual characters or words in the document image.
Character (word) recognition is modeled as an image retrieval problem, using a vision encoder contrastively
trained on character (word) crops.
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Figure 1: EffOCR and Seq2Seq Model Architectures. This figure represents the EffOCR architecture, as
compared to a typical sequence-to-sequence OCR architecture.

EffOCR performs very accurately, even when using lightweight models designed for mobile phones that
are cheap to train and deploy. Using documents that are fundamental to studying Japan’s remarkable 20th
century economic growth, the study shows EffOCR can provide a sample efficient, highly accurate OCR
architecture for contexts where all current solutions fail. EffOCR’s blend of accuracy and efficient runtime
also makes it attractive for digitizing massive-scale collections in high resource languages, which the study
illustrates with Library of Congress’s collection of historical U.S. newspapers (Library of Congress, 2022).
EffOCR has been used to cheaply and accurately digitize the over 20 million page scans in this collection
(Dell et al., forthcoming).

In principle, contextual understanding could be extremely valuable to OCR, but in practice state-of-the-art
transformer seq2seq models are extremely costly to train, expensive to deploy, and do not exist for lower
resource languages, with advances concentrated in a handful of languages. This study shows that taking
a step back from seq2seq models unlocks massive gains in sample efficiency. Researchers, with a modest
number of annotations and modest compute, can tune their own OCR for settings where all existing solutions
fail, using our user-friendly EffOCR open-source package. New characters specific to a setting can also be
added at inference time - since they don’t need to be seen in sequence during training - important for contexts
such as archaeology where new characters are regularly discovered. These features facilitate making digital
history more representative of documentary history.

METHODS

Modern OCR overwhelmingly uses deep neural networks - either a convolutional neural network (CNN) or
vision transformer (ViT) - to encode images. The representations created by passing an input image through
a neural encoder are then decoded to the associated text.

Figure 1 underscores two fundamental differences between EffOCR and seq2seq. First, sequence-to-
sequence architectures typically require line level inputs, and individual characters or words are not lo-
calized; rather, images or their representations are divided into fixed size patches. In contrast, EffOCR
localizes characters and words using modern object detection methods (Cai & Vasconcelos, 2018; Jocher,
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2020). Second, seq2seq sequentially decodes the learned image representations into text using a learned
language model that takes the image representations as inputs. In contrast, EffOCR recognizes text by us-
ing contrastive training (Khosla et al., 2020) to learn a meaningful metric space for character or word-level
OCR. The vision encoder projects crops of the same character (word) - regardless of style - nearby, whereas
crops of different characters (words) are projected further apart. Character (word) embeddings are decoded
to text in parallel by retrieving their nearest neighbor in an offline index of exemplar character (word) em-
beddings, created by rendering character (word) images with a digital font. Distances are computed using
cosine similarity with a Facebook Artificial Intelligence Similarly Search (FAISS) backend (Johnson et al.,
2019). The vision embeddings alone are sufficient to infer text since they represent characters - not text lines
like in seq2seq - and hence decoding them does not require a language model or learned parameters.

This study develops both character and word level OCR models, with the former being more suitable for
character-based languages and the latter more suitable for alphabet-based languages. When modeling OCR
as a word level problem, EffOCR defaults to character level recognition if the distance between a word crop
embedding and the nearest embedding in the offline dictionary of word embeddings is below a threshold
cosine similarity. This is important, as hyphenated words at the end of lines, acronyms, proper nouns, and
antiquated terms often make it infeasible to construct a comprehensive word dictionary.

EffOCR is trained on digital font renders, along with a modest number of labeled crops from the target
datasets. The EffOCR recognizer is trained using the Supervised Contrastive (“SupCon”) loss function
(Khosla et al., 2020), a generalization of the InfoNCE loss (Oord et al., 2018) that allows for multiple
positive and negative pairs for a given anchor. We use the “outside” SupCon loss formulation:
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as implemented in PyTorch Metric Learning (Musgrave et al., 2020), where τ is a temperature parameter, i
indexes a sample in a “multiviewed” batch (in this case multiple fonts/augmentations of characters with the
same identity), P (i) is the set of indices of all positives in the multiviewed batch that are distinct from i,
A(i) is the set of all indices excluding i, and z is an embedding of a sample in the batch.

To create training batches for the recognizer, EffOCR uses a custom m per class sampling algorithm without
replacement. This metric learning batch sampling algorithm also implements batching and training with
hard negatives, where the negative samples in a batch are selected to be semantically close to one another,
and thus contrasts made between anchors and hard negatives may be especially informative.

Different vision encoders can be used interchangeably for the EffOCR character localizer - which locates
the character/word crops - and recognizer - which learns a metric space for these crops. Three models are
considered for character level EffOCR: a vision transformer model (EffOCR-T Base) with XCiT (Small)
(Ali et al., 2021) for both the localizer and recognizer, a convolutional base model (EffOCR-C Base) with
ConvNeXt (Tiny) (Liu et al., 2022) for both the localizer and recognizer, and a convolutional small model
(EffOCR-C Small), which uses lightweight architectures designed for mobile phones - YOLOv5 (Small)
(Jocher, 2020) for the localizer and MobileNetV3 (Small) for the recognizer. For word level OCR, we
develop EffOCR-Word Small, which uses the same lightweight architectures as EffOCR-C Small. EffOCR-
Word Small defaults to EffOCR-C Small when the cosine similarity between a word crop embedding and
the nearest embedding in the offline word embedding dictionary is below 0.82, a hyperparameter tuned on
the validation set. The base models use a two-stage object detector for character localization, specifically a
Cascade R-CNN (Cai & Vasconcelos, 2019), whereas the small models use one-stage object detection for
faster speed (Jocher, 2020). The supplementary materials describe the EffOCR architecture and training
recipes with no detail spared and evaluate models using alternative vision transformer encoders.

EffOCR’s architecture draws inspiration from metric learning methods for efficient image retrieval (El-
Nouby et al., 2021), joining a recent literature on self-supervision through simple data augmentation for
image encoders (Grill et al., 2020; Chen et al., 2021; Chen & He, 2021). The closest frameworks to EffOCR
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in their overall design are the original OCR conceptualizations, such as Tauschek’s 1920s reading machine,
which used human engineered features to recognize localized characters. More recently, CharNet (Xing
et al., 2019), developed for scene text (not documents), uses separate convolutional networks for dense
classification and regression at a single scale, outputting a character class and bounding box at every spatial
location, and then aggregates this information with confidence scores to make final predictions. EffOCR
in contrast deploys widely used, highly optimized object detection methods to localize characters and then
feeds character crops to a contrastively trained recognizer.1

TRAINING AND EVALUATION DATASETS

Evaluating EffOCR requires benchmark datasets that are representative of the diversity of documentary
history. Traditional OCR benchmarks focus on commercial applications like receipts (Huang et al., 2019) -
and SOTA OCR systems evaluate on these data - which are not relevant to digital history.

Instead, the study draws on the literature on historical image datasets (Nikolaidou et al., 2022). First, it uses
documents from historical Japan that can elucidate fundamental questions that have been understudied due
to a lack of digital data, such as the drivers of Japan’s rapid transformation from a poor agrarian economy
to a wealthy industrialized nation. Horizontally and vertically written tabular data - providing rich informa-
tion on Japanese firms and their personnel - are drawn from two 1950s publications (Jinji Koshinjo, 1954;
Teikoku Koshinjo, 1957). A 1930s prose publication providing detailed biographies of tens of thousands of
individuals (Jinji Koshinjo, 1939) is also examined. These texts could use over 13,000 kanji characters.

The second context is Library of Congress’s Chronicling America (LoCCA) collection, which contains over
19 million historical newspaper page scans. This collection is highly diverse, as shown in Figure 2.

Figure 2: Diversity in the Chronicling America Dataset. This figure shows examples sampled from the
Chronicling America (LoCCA) dataset, along with EffOCR predicted transcriptions.

Library of Congress provides an OCR, but the quality is low (Smith et al., 2015). There is a large literature
studying historical newspapers at scale, which overwhelmingly uses keyword search and does not unlock
the power of large language models due to poor quality digitization (Hanlon & Beach, 2022). LoCCA
elucidates how EffOCR: 1) performs in the highest resource setting, English; 2) extensibility across Latin

1Others have also used contrastive learning for OCR, in particular (Aberdam et al., 2021) use a self-supervised,
sequence-to-sequence contrastive learning approach.
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and kanji characters, which differ significantly in their aspect ratios and complexity; 3) extensibility to the
many Unicode renderable languages that use the Latin script.

Layout datasets exist for Chronicling America and some of the Japanese publications (Shen et al., 2020; Lee
et al., 2020). Adding word/character bounding boxes and transcription annotations builds upon the existing
work of the historical image dataset literature (Nikolaidou et al., 2022). Because seq2seq requires lines as
inputs, to build the Japanese and Chronicling America datasets we draw lines at random from the Japanese
volumes and from 10 randomly selected newspapers in LoCCA. Lines correspond to cells in tables and
single lines within columns/rows in prose. The baseline training sets range from 291 lines for Chronicling
America to 1309 cells for horizontal Japanese, highly feasible for researchers to label in an afternoon, and
also includes val and test splits.

For the newspapers, we also provide an additional evaluation-only dataset that consists of a sample of 225
textlines, randomly drawn from all scans in the Chronicling America collection published on March 1st
of years ending in ”6,” from 1856-1926. This sample is balanced across these decades, with 25 textlines
sampled randomly from each of the days. A selection of textlines from this set is shown in Figure 2. The
day-per-decade set is designed to be challenging, by weighting older, much harder to read scans from the
mid-19th century equally despite their relative scarcity in the Chronicling America collection.

In addition to this gold quality training and evaluation data, we create silver quality training data for training
EffOCR-Word (Small) by applying the EffOCR-C (Small) model to a random sample of newspapers. We
limited the number of crops with model-generated labels to 20 - so each word can have 0-20 silver-quality
crops depending upon its frequency of occurrence in our random sample. This limit is binding for common
words, e.g., ”the”. We also use the gold word crops from the 291 line training set, which cover only a small
share of words that could appear. Using silver quality data leads to high performance, achieved essentially
for free. The study’s training datasets are publicly released.

Finally, we examine EffOCR on an existing Polytonic Greek benchmark (Gatos et al., 2015), selected be-
cause it contains both line-level and word transcriptions. Polytonic Greek uses five diacritics to notate older
Greek texts. It is challenging because the diacritics have a similar appearance. The supplemental materials
show example documents from all benchmarks.

MEASUREMENT AND COMPARISONS

OCR accuracy is measured using the character error rate (CER), the Levenshtein distance between the
OCR’ed string and the ground truth, normalized by the length of the ground truth. A CER of 0.5, for
instance, translates to mispredicting approximately half of characters.

The most widely used OCR engines are commercial products that do not support fine-tuning and have
proprietary architectures. The study compares EffOCR to Google Cloud Vision (GCV) and Baidu OCR
(popular for Asian languages). We also consider four open source architectures: EasyOCR’s convolutional
recurrent neural network (CRNN) framework (Shi et al., 2016), TrOCR’s sequence-to-sequence encoder-
decoder transformer (base and small) (Li et al., 2021), Tesseract’s bi-directional LSTM, and PaddleOCR’s
Single Vision Text Recognition (SVTR), which also abandons seq2seq, dividing text images into small (non-
character) patches, using mixing blocks to perceive inter- and intra-character patterns, and recognizing text
by linear prediction (Du et al., 2022). A large literature has examined a variety of custom-designed OCR
systems. We focus on those that either (1) make similar architectural choices (SVTR), (2) are considered
SOTA, regardless of architectural choices (TrOCR), or (3) are very popular (Tesseract and EasyOCR).

The pre-trained EasyOCR, PaddleOCR, and TrOCR models are fine-tuned on the same target data as Ef-
fOCR. Considerable resources have been devoted to pre-training these models. For example, TrOCR was
pre-trained on 684 million English synthetic text lines. Hence, these comparisons elucidate performance
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when these pre-trained models are further tuned on the target datasets. For a more apples-to-apples compar-
ison, the study examines the accuracy of these architectures when trained from scratch (using a pre-trained
checkpoint not trained for OCR, when supported by the architecture) on 8,000 synthetic text lines (like Ef-
fOCR) and the same target crops. EasyOCR and PaddleOCR do not support vertical Japanese, and TrOCR
does not support any Japanese. Tesseract offered little support for fine-tuning until recently and hence most
of its applications have been off-the-shelf, which is this study’s focus.

RESULTS

EffOCR provides a highly accurate OCR with minimal training data, in contexts where current solutions
fail. For vertical Japanese tables, the best EffOCR CER is 0.7% (Table 1). The next best alternative, Baidu
OCR, has a CER of 55.6%, making nearly 80 times more errors. The best EffOCR CER is modestly higher
for the Japanese prose (2.7%); these scans are low resolution and some characters are illegible, to provide a
context where OCR with language modeling could offer a clear advantage. Yet EffOCR makes 5 times fewer
errors than the next best alternative (GCV), whose CER of 13.5% will not support applications that require
high accuracy. For horizontal Japanese - a higher resource setting - the EffOCR CER is 0.6%, whereas the
next-best-alternative (Paddle OCR fine-tuned on target crops) makes more than five times more errors. The
different EffOCR models produce strikingly similar results, despite the significant differences in architecture
(convolutional versus transformer) and model size (9.3M to 112.5M parameters).

Character Error Rate Lines/second
Horiz. Vertical Vertical Chron. Amer. Anci. Horiz. Chron.

Model/Engine Seq2Seq? Transformer? Pretraining Parameters Jap. Jap. (tables) Jap. (prose) Eval Day/Decade Greek Jap. Amer.

EffOCR-C (Base) × × from scratch 112.5 M 0.006 0.007 0.030 0.023 0.062 0.049 0.79 0.49

EffOCR-C (Small) × × from scratch 9.3 M 0.010 0.009 0.036 0.028 0.080 0.052 19.46 13.40

EffOCR-T (Base) × ✓ from scratch 101.8 M 0.009 0.007 0.027 0.022 0.059 0.047 0.19 0.31

EffOCR-Word (Small) × × from scratch 10.6 M - - - 0.015 0.043 - - 21.36

Google Cloud Vision OCR ? ? off-the-shelf ? 0.173 0.695 0.135 0.005 0.019 0.065 ? ?

Baidu OCR ? ? off-the-shelf ? 0.060 0.556 0.177 - - - ? ?

Tesseract OCR (Best) ✓ × off-the-shelf 1.4 M 1.021 0.996 0.744 0.106 0.170 0.251 4.90 4.47

EasyOCR CRNN ✓ × off-the-shelf 3.8 M 0.191 - - 0.170 0.274 - 33.55 19.80
fine-tuned 0.082 - - 0.036 0.157

from scratch 0.132 - - 0.131 0.204

PaddleOCR SVTR × × off-the-shelf 11 M 0.085 - - 0.304 0.314 - 13.34 13.56
fine-tuned 0.032 - - 0.103 0.129

from scratch 0.097 - - 0.104 0.138

TrOCR (Base) ✓ ✓ off-the-shelf 334 M - - - 0.015 0.038 - - 0.43
fine-tuned - - - 0.013 0.027

from scratch - - - 0.809 0.831

TrOCR (Small) ✓ ✓ off-the-shelf 62 M - - - 0.039 0.121 - - 0.97
fine-tuned - - - 0.075 0.091

from scratch - - - 0.773 0.820

Table 1: Baseline Results and Comparisons. This table reports the performance of different OCR architec-
tures, off-the-shelf (without fine-tuning on target data), fine-tuned on the target publication training set from
a pre-trained OCR checkpoint, and trained from scratch on synthetic text lines and the target publication
training set. “?” indicates that the field is unknown due to the proprietary nature of the architecture.

The CER (uncased) for the LoCCA newspapers is 1.5%. GCV has the best performance (0.5%), followed
by fine-tuned TrOCR (Base) (1.3% CER). The advantage of EffOCR on English - the quintessential high
resource setting - is its open-source codebase and fast runtime. GCV makes significant layout errors when
fed full newspaper page scans, which have complex layouts (Shen et al., 2021), and hence the performance in
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Table 1 cannot be replicated when it is fed scans. GCV charges per image, and the supplementary materials
estimate a cost at current prices of $23 million USD to digitize LoCCA at the line image level, versus $60K
for EffOCR-Word (Small).

Table 1 examines CPU runtime for open source architectures, measured by lines processed per second on
identical dedicated hardware (GPUs are prohibitively costly for mass digitization). EffOCR-Word (Small)
is 50 times faster than TrOCR (Base), which is likely to be cost prohibitive for larger scale applications.
EffOCR supports inference parallelization across characters - promoting faster inference - whereas seq2seq
requires autoregressive decoding. On English, the most plausible scalable alternative is fine-tuned EasyOCR.
With a third of the parameters of EffOCR-Word (Small), inference is faster, but the CER is around 29%
higher. For horizontal Japanese, EffOCR-C (Small) is three times more accurate and faster than PaddleOCR
SVTR (fine-tuned), the next best alternative.

Figure 3: Error Analysis. Representative examples of EffOCR errors, showing the target crop, the EffOCR
localized crop, and the five nearest characters in the embedding index, with the correct character highlighted
in green.

Figure 3 provides representative examples of errors, showing the target crop, the localized crop, and its five
nearest neighbors, with the correct prediction highlighted in green. Errors tend to occur when the character is
illegible or homoglyphic to another character (e.g. O and 0). For example, a 0 in one font can occasionally be
indistinguishable from an O in another, an error that would be straightforward to correct in post-processing.
The supplementary materials report results from additional encoders, and examine how different ingredients
of EffOCR contribute to its performance.

EffOCR outperforms all other architectures that support Polytonic Greek, including Google Cloud Vision.
This illustrates the versatility of the architecture.

EffOCR’s parsimonious architecture allows it to learn efficiently. To quantify this, we train different OCR
models from scratch using varying amounts of annotated data. All architectures are pre-trained from scratch
on 8,000 synthetic text lines, starting from pre-trained checkpoints not customized for OCR when supported
by the framework. They are then fine-tuned on the study’s benchmark datasets, with varying train splits:
70%, 50%, 20%, 5%, and 0% (using only synthetic data). These exercises are performed for Chronicling
America and horizontal Japanese, as vertical Japanese is not supported by the comparison architectures.

Figure 4 plots the percentage of the benchmark dataset used in training on the x-axis and the CER on the
y-axis. On just 99 labeled table cells for Japanese and 21 labeled rows for LoCCA (the 5% train split),
EffOCR’s CER is around 4%, showing viable few shot performance. The other architectures remain unus-
able. EffOCR performs nearly as well using 20% of the training data as using 70%, where it continues to
outperform all other alternatives.

The focus of this study is on developing an architecture that is sample efficient to customize to highly di-
verse settings where existing solutions do not provide the desired accuracy, or do not do so within budget
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Figure 4: Sample Efficiency. This figure plots the percentage of the benchmark dataset used in training
against the character error rate, for different OCR model architectures.

constraints. We have not aimed to create a broadly applicable off-the-shelf solution, but nevertheless eval-
uate how EffOCR does fully out-of-distribution by comparing EffOCR-Word (Small) to other solutions on
a highly diverse dataset sampled randomly from 64 randomly selected document record groups in the U.S.
National Archives. This is a challenging dataset, with examples shown in the supplementary materials. The
supplementary materials show that EffOCR-Word (Small) performs similarly to other open-source OCR
engines (CER = 12.6), having only been exposed to highly out-of-distribution newspapers during training.
The sample efficiency of EffOCR suggests it could be trained to perform even better off-the-shelf on di-
verse archival documents by labeling a small number of samples across a wide range of common historical
document types. We plan to crowd source this effort in the future.

LIMITATIONS

This study does not focus on handwriting due to space constraints, but the approach would be analogous.
Synthetic handwriting generators, e.g. (Bhunia et al., 2021), could provide extensive data for pre-training,
analogous to this study’s use of digital fonts. There are some settings where EffOCR’s framework is not
suitable. If large portions of a document are illegible, context is necessary. Moreover, the heavy use of
ligatures and/or slanting in some character sets and handwriting could lead to more challenging character
localization. This problem is addressed with the word-level EffOCR model.

DISCUSSION

Indexing, analyzing, disseminating, and preserving diverse documentary history requires community en-
gagement of stakeholders with the requisite fine-grained knowledge of the relevant settings. EffOCR facili-
tates this engagement because it is highly extensible to low-resource settings, sample-efficient to customize,
and simple and cheap to train and deploy. In contrast, seq2seq is more aligned with the commercial objective
of designing a product that is difficult for competitors to imitate. For example, EffOCR can be trained in the
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cloud with free student compute credits, whereas TrOCR required training on a multi-million dollar cluster
with 32 32GB V100 cards. Lower resource languages may lack the pre-trained large language models re-
quired to initialize a transformer seq2seq model like TrOCR, and compute resources and data for training
are also likely unavailable. EffOCR encourages community engagement by combining the parsimonious
conceptualization of OCR from nearly a century ago with deep learning, integrating the follow features:

Character/word level: EffOCR creates semantically rich visual embeddings of individual characters
(words), a parsimonious problem. Annotators can select which of the most probable character (word) pre-
dictions from the pre-trained recognizer are correct, potentially using a simple mobile interface, or line level
labels can be mapped to the character (word) level once a localizer has been developed.

Language Extensibility: Language modeling advances have concentrated around less than two dozen mod-
ern languages, out of many thousands (Joshi et al., 2020). Omitting the language model makes EffOCR
extensible and easy-to-train. To extend EffOCR to a new language, all one needs are renders for the ap-
propriate character set. Additionally, characters do not need to be seen in sequence during training, so new
characters can be added at inference time, valuable for archaeological contexts where new characters are reg-
ularly discovered. Omitting the language model makes it easy to mix scripts, necessary for some languages.
The recognizer can also be exposed to characters in training using any desired sequencing. This is not true
of multilingual seq2seq training, which leads to many OCR errors with endangered languages (Rijhwani
et al., 2020). EffOCR can convert the Japanese publications examined in this study into a knowledge graph,
revealing rich economic insights about Japanese economic development that were previously unknown due
to the failure of all existing OCR solutions. The supplementary materials provide more details.

Decoupling localization and recognition: Theoretically, localization and recognition (akin to classifica-
tion) may rely on different features of the image, suggesting modularity (Song et al., 2020). Practically,
decoupling allows localization and recognition to use different training sets, economizing on annotation
costs since these tasks can require very different numbers of labels depending on the script. It also en-
courages community innovation and future-proofness, because it simplifies training recipes and makes it
straightforward to swap in new localizers or recognizers - including zero-shot models such as Kirillov et al.
(2023) - as the literature advances.

Scalable: The small EffOCR models achieve fast CPU inference that can scale cheaply to hundreds of
millions of documents. EffOCR-Word (Small) has been used to digitize the approximately 20 million scans
in the Chronicling America collection on a $60,000 budget for inference, whereas TrOCR would have cost
nearly 50 times as much and GCV would have been orders of magnitude more expensive.

Open-Source: We have also released EffOCR as a user-friendly, open-source python package. The EffOCR
package makes it straightforward to use existing EffOCR models off-the-shelf with just a few lines of code.
It also includes functionality to train custom models and guides users with detailed tutorials. By engaging
the community - including those who lack extensive experience with deep learning frameworks - we hope
to make digital history more representative of the diversity of human history.

REPRODUCIBILITY

We release all code and training data used to create EffOCR. Scripts in the public repository exactly re-
produce the figures cited above. All other material needed to reproduce these results is detailed in the
supplemental materials, including training hyperparmeters. The models in this paper can also be deployed
through the EffOCR python package.
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ETHICS

EffOCR presents no major ethical concerns. Its methods are entirely open source, and its training data are
entirely in the public domain. Its core functionality, accurately transcribing text in low-resource settings, is
ethically sound. Some applications of EffOCR could raise ethical flags. We discourage users from applying
EffOCR to copyrighted documents unless the application is protected by fair use. While EffOCR is a poten-
tially useful tool for studying bias and/or harmful content, harmful content transcribed by EffOCR should
not be shared without proper context.
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MATERIALS AND METHODS

ENCODERS

Different encoders can be used interchangeably for EffOCR’s character localization module (hereafter, “lo-
calizer”) and character recognizing module (hereafter “recognizer”). We use the following:

• EffOCR-C (Base): ConvNeXt (Tiny) (Liu et al., 2022) for both the localizer and recognizer. Both
models are initialized from the officially released checkpoint with specifications:
{size: "tiny"}

• EffOCR-T (Base): XCiT (Small) (Ali et al., 2021) for both the localizer and recognizer. Both
models are initialized from the officially released checkpoint with specifications:
{size: "small", depth: 12, patch size: 8, resoultion: 224}

• EffOCR-C (Small) and EffOCR-Word (Small): YOLOv5 (Small) (Jocher, 2020) for the localizer
and MobileNetV3 (Small) for the recognizer. YOLOv5 is initialized from the officially released
YOLOv5s checkpoint, and MobileNetV3 is initially from the PyTorch Image Models (“timm”)
(Wightman, 2019) produced checkpoint with specifications:
{size: "small", channel multiplier: 0.50}

For ablations, we also examine:

• Swin (Tiny) (Liu et al., 2021) for both the localizer and recognizer. Both models are initialized
from the officially released checkpoint with specifications:
{size: "tiny", patch size: 4, window: 7, resolution: 224}

• ViTDet (Base) (Li et al., 2022) for the localizer and a vanilla vision transformer, ViT (Base), for the
recognizer. Both models are initialized from the officially released checkpoint with specifications:
{size: "base", patch size: 16, resolution: 224}

These architectures were selected for the following reasons:

• EffOCR-C (Base): ConvNeXt is a new state-of-the-art CNN backbone, in contrast to the other
three vision transformer encoders.

• EffOCR-T (Base): XCiT was chosen because of its comparative advantage in modeling fine-
grained features via the ability to accommodate smaller patch sizes through a linear complexity
attention mechanism, which may be especially suitable for character images with small spatial
extents (as measured in pixels).

• EffOCR-C (Small) and EffOCR-Word (Small): MobileNetV3 (Small) and YOLOv5 (Small)
were collectively chosen to produce a speed optimized EffOCR, as both architectures are popular,
easily customizable, and speed-optimized by design.
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• The Swin transformer was selected because of its state-of-the-art performance on object detection
tasks.

• The original ViT embeddings perform well for image retrieval, and have become a new baseline for
image retrieval (El-Nouby et al., 2021).

The inference speed advantages offered by a smaller transformer encoder, such as MobileViT, are much more
modest than that offered by MobileNetV3, and hence an EffOCR-T (small) model is not developed, although
it would be straightforward to do so should users desire it. In tests, a MobileViTv2 (small) Recognizer model
was approximately 6.5 times slower than a comparable MobileNetv3 Recognizer.

As the deep learning literature advances and new models are developed, EffOCR’s modular framework and
simple training recipes make it straightforward to swap in new encoders, granting the model a degree of
future-proofness.

These models are all trained on a single A6000 GPU card, with hyperparameters selected using the 15%
validation split, save for the models with XCiT (Small) or ViT (Base) encoders, which were trained on two
A6000 GPU cards.

CHARACTER LOCALIZATION

All models use an MMDetection (Chen et al., 2019) backend for localization, except for the ViTDet ablation,
which uses Detectron2 (Wu et al., 2019) and YOLOv5 (Small) (Jocher, 2020) for EffOCR-C (Small), which
uses its own custom training scripts. Only one EffOCR configuration, EffOCR-C (Small), has a localizer
that uses a one-stage object detection framework: YOLOv5 (Small) (Jocher, 2020). All others use a two-
stage object detector, specifically a Cascade R-CNN (Cai & Vasconcelos, 2019). One stage object detection
is faster, and hence makes sense for the small model, where a central objective is fast inference speed.

The localizers built with ConvNeXt (EffOCR-C Base), XCiT (EffOCR-T Base), and Swin (ablation) are
trained on 8,000 textlines of synthetic data for 40 epochs at a constant learning rate of 1e− 4 and fine-tuned
on benchmark data for 100 epochs at a 2.5e − 5 constant learning rate, all with anchor generator scales
[2, 8, 32]. ViTDet is trained on 8,000 textlines of synthetic data for 40 epochs with a constant learning rate
of 1e− 4, and then fine-tuned for 100 epochs on benchmark data with a 1e− 5 constant learning rate. The
YOLO localizer is trained on 8,000 textlines of synthetic data for 30 epochs at a constant learning rate of
1e− 2 and fine-tuned on benchmark data for 30 additional epochs, still at a constant 1e− 2 learning rate.

The synthetic data used for pre-training the localizers and comparison models was created using a custom
synthetic data generator.

This generator was used to create six synthetic dataset variants, each consisting of 10,000 synthetic lines with
an 80%-10%-10% train-test-validation split. The six dataset variants are: horizontal English with character
sequences generated at random, horizontal Japanese with character sequences generated at random, vertical
Japanese with character sequences generated at random, horizontal English with text sequences generated
from Wikipedia, horizontal Japanese with text sequences generated from (Japanese) Wikipedia, and vertical
Japanese with text sequences generated from (Japanese) Wikipedia. Localizers for detecting Greek text were
pretrained on synthetic English data due to broad similarities between lines. Text sequence based synthetic
datasets were used to pre-train seq2seq models that rely on language context, e.g., TrOCR and CRNN;
character sequence based synthetic datasets were used to pre-train non-seq2seq models, e.g., EffOCR and
SVTR.
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CHARACTER RECOGNITION

The EffOCR recognizer is trained using the Supervised Contrastive (“SupCon”) loss function (Khosla et al.,
2020), a generalization of the InfoNCE loss (Oord et al., 2018) that allows for multiple positive and negative
pairs for a given anchor. In particular, we work with the “outside” SupCon loss formulation

Lsup
out =

∑
i∈I L

sup
out ,i =

∑
i∈I

−1
|P (i)|

∑
p∈P (i) log

exp(zi·zp/τ)∑
a∈A(i) exp(zi·za/τ)

as implemented in PyTorch Metric Learning (Musgrave et al., 2020), where τ is a temperature parameter,
i indexes a sample in a “multiviewed” batch (in this case multiple fonts/augmentations of characters with
the same identity), P (i) is the set of indices of all positives in the multiviewed batch that are distinct from
i, A(i) is the set of all indices excluding i, and z is an embedding of a sample in the batch (Khosla et al.,
2020).

To create training batches for the recognizer, EffOCR uses a custom m per class sampling algorithm without
replacement adapted from the PyTorch Metric Learning repository (Musgrave et al., 2020). This metric
learning batch sampling algorithm also implements batching and training with hard negatives, where the
negative samples in a batch are selected to be semantically close to one another, and thus contrasts made
between anchors and hard negatives may be especially informative for the model to update on. Indeed, one
of the main advantages of contrastive training is that it allows the learning process to exploit hard negative
mining.

More specifically, the custom batch sampling algorithm samples m character variants for each class (char-
acter) - drawn from both target documents and augmented digital fonts. We choose m = 4 and the batch
size is 128, meaning 4 styles/representations of each of 32 different characters appear in each batch. The
model learns to map character crops of the same identity to similar dense vectors in a semantically rich,
high-dimensional vector space, and vice versa. There is no natural definition of an epoch in the context of
batch-based sampling for contrastive learning with data augmentation in the way EffOCR formulates this
procedure. For EffOCR recognizer training, an epoch is defined as some number P passes through all unique
characters N in the character set under consideration, i.e., N = 13, 738 for Japanese, N = 91 for English,
and N = 186 for Polytonic Greek. Empirically, a good setting for Japanese is P = 1, so the total number
of classes in an epoch is 13,738, for English P = 10, so the total number of classes in an epoch is 910, and
for Greek P = 4, so the total number of classes in an epoch is 744. Sampling for each class occurs without
replacement, for better coverage of character variants. Because of this, the number of passes P matters, as
it determines the number of character variants used for contrastive training in each epoch.

Every character crop that appears in the training set is embedded using a model first trained without hard
negative mining/sampling, and for each we find its 8 nearest neighbors. The EffOCR recognizer is then
trained again from scratch, with batches being sampled with an m per class sampler (without replacement)
that is further modified to randomly intersperse hard negative sets (8 nearest neighbor characters, m = 4
variants of each) throughout batches.

EffOCR is trained on digital font renders from readily available fonts (13 for Japanese, 14 for English, and
8 for Greek), along with a modest number of labeled crops from the target datasets.1 The digital fonts

1Fonts for Japanese included: Dela Gothic One Regular; Hachi Maru Pop Regular; Hina Mincho Regular; Komorebi
Gothic; Kosugi Regular; New Tegomin Regular; Noto Serif CJK JP Regular; Reggae One Regular; Shippori Mincho B1
Regular; Stick Regular; taisyokatujippoi7T5; Tanugo Regular; and Yomogi Regular. Fonts for English included: Anton
Regular; Cutive Mono Regular; EB Garamond Regular; Fredoka Regular; IM Fell DW Pica Regular; NewYorker-
jLv; Noto Serif Regular; Oldnewspapertypes-449D; Orbitron Regular; Special Elite Regular; Ultra Regular; VT323
Regular; ZaiConsulPolishTypewriter-MVAxw; and ZaiCourierPolski1941-Yza4q. Fonts for Polytonic Greek included
EB Garamond Regular; Noto Serif Regular; SBL Greek; Gentium Book Plus Regular; Gentium Plus Regular; Gentium
Plus Italic; Orbiton Regular; Ultra Regular; and
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are augmented by randomly applying affine transformations (translation and scaling); background coloring,
color jittering, color inversion, and grayscaling; and Gaussian blurring. The model trains on digital fonts
and labeled crops together, since the objective is to learn general purpose embeddings that would map target
crops nearby to digital renders. All recognizer models except MobileNetV3 use an AdamW optimizer with
weight decay of 5e − 4, a SupCon loss with temperature of 0.1, a learning rate of 2e − 5, and a batch size
of 128. MobileNetv3 uses the same parameters except a learning rate of 2e − 3. The Japanese datasets are
trained for 60 epochs and the English and Greek datasets for 30.

After recognizer training is completed, the recognizer is used as an encoder to create an offline index of
exemplar character embeddings to be searched at inference time for the purposes of character recognition.
Specifically, the exemplar character embedding index is created by embedding image renders for all the
unicode characters supported by the Google Noto Serif font series, i.e., Noto Serif CJK JP Regular for
models trained for Japanese OCR and Noto Serif Regular for models trained for English and Greek OCR.
The Google Noto series is chosen as an exemplar font due to both its extremely wide coverage of glyphs
and the simplicity of its style, though, by virtue of EffOCR’s training, other fonts could be used as well.
At inference time, FAISS (Johnson et al., 2019) is used to perform an inner product similarity search that
compares character embeddings in the sample being inferenced to exemplar character embeddings in this
offline index; identities are assigned to inferenced characters using the identity of that character’s nearest
neighbor in the offline exemplar index, i.e., k-NN classification with k = 1.

For case sensitive applications, EffOCR character recognition for English text can also be lightly post-
processed to help better differentiate uppercase and lowercase letters from one another: one can force a
character to be uppercased or lowercased through simple rules based statistics about the dimensions of
bounding boxes (in the sample undergoing inference). This procedure is irrelevant for results reported in
this text, however, for which CER is measured uncased.

Greek text is also case-sensitive and CER from Greek data is also presented uncased, although upper- and
lowercase Greek characters bear less resemblance than in English. Two additional rules were also applied
when evaluating Greek text: apostrophes (’) and accents (‘) were considered equivalent, and the stigma
ligature was considered equivalent to the terminal sigma (ς) character.

Checkpoints/weights for all recognizers are supported by implementations from timm (Wightman, 2019).

WORD RECOGNITION

We train word recognition as a nearest neighbor image retrieval problem. The training dataset for the model
consists of digital renders of words created using 43 fonts, silver quality data from the target dataset created
by applying the EffOCR-C (Small) model to a random sample of days, and a small number of randomly
selected hand labeled word crops. We limited the number of crops with model-generated labels to 20 - so
each word can have 0-20 silver-quality crops depending upon its frequency of occurrence in our random
sample. This limit is binding for common words, e.g., ”the”.

The recognizer is trained using the Supervised Contrastive (“SupCon”) loss function (Khosla et al., 2020),
as above. To create training batches for the recognizer, we use a custom m per class sampling algorithm
without replacement, adapted from the PyTorch Metric Learning repository (Musgrave et al., 2020). The
m word variants for each class (word) are drawn from both target documents and augmented digital fonts.
We select m = 4 and the batch size is 1024, meaning 4 styles of each of 256 different words appear in
each batch. For training without hard negatives, we define an epoch as letting the model see each word
(case-sensitive) exactly m = 4 times. Sampling for each class occurs without replacement until all variants
are exhausted.

In order to converge faster with limited compute, we also implement offline-hard negative mining, batching
similar negatives and their corresponding positive anchors together - thus making the contrasts between the
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positive and negative pairs within a batch especially informative. To create hard negative sets, we render
each word using a reference font (Noto-Serif Regular) and embed it to create a reference index. We find
k = 8 nearest neighbors for each word using this index and the model trained without hard negatives, which
yields sets of 8 words that have a similar appearance when rendered with the reference font. We use only
the reference font to create these sets because using crops corresponding to all 43 fonts for each word is
computationally costly and creates more hard negative sets than we can use in training. We also use each
word crop from the target dataset (both silver quality annotations generated with model predictions and gold
quality human-annotated predictions) to create hard negative sets. Hence, the total number of hard-negative
sets equals the number of words in our dictionary (generated with the reference font) plus the number of
word crops from the newspaper data in the training set.

Each hard negative set contains 8 words, with m = 4 views per word, which means we can fit 32 randomly
sampled hard negative sets within each batch. An epoch is defined as seeing each hard negative set once.
Since the number of synthetic views of an image is much larger than the number of target newspaper crops,
whenever newspaper crops are available we force the m views of a word to contain an equal number of
synthetic and target crops.

We use a MobileNetV3 (Small) encoder pre-trained on ImageNet1k sourced from the timm (Wightman,
2019) library, more specifically, the model mobilenetv3 small 050. We use 0.1 as the temperature for Sup-
Con loss and AdamW as the optimizer with Pytorch defaults for all parameters other than weight decay
(5e-4) and learning rate. We used Cosine Annealing with Warm Restarts as the learning rate scheduler with
a maximum learning rate of 2e− 3, a minimum learning rate of 0, time to first restart (T0) as the number of
batches in an epoch, and restart factor, Tmult of 2 using the implementation provided in Pytorch.

While fonts and newspaper crops for each word act as an augmentation on the skeleton of the word, we
also add more image-level transformations to improve generalization. These include Affine transformation
(only slight translation and scaling allowed), Random Color Jitter, Random Autocontrast, Random Gaussian
Blurring, Random Grayscale, Random Solarize, Random Sharpness, Random Invert, Random Equalize,
Random Posterize and Randomly erasing a small number of pixels of the image. Additionally, we pad the
word to make the image square while preserving the aspect ratio of the word render. We do not use common
augmentations like Random Cropping or Center Cropping, to avoid destroying too much information.

The model trained without hard negatives was trained for 50 epochs and with hard negatives, it was trained
for 40 epochs. For selecting the best checkpoint, we use 1-CER (OCR Character Error Rate) as the validation
metric on the validation set. We chose the model that performed best in terms of CER when detecting only
words on the validation set. This means that if a word is outside of our dictionary, it is forcefully matched to
the nearest neighbor in the dictionary. The best model achieved a CER of 4.9% with word-only recognition.

At inference time, words are recognized by retrieving their nearest neighbor from the offline embedding
index created with the reference font, using a Facebook Artificial Intelligence Similarity Search backend
(Johnson et al., 2019). The code to train the model and generate training data, as well as the model check-
points, are made publicly available.

COMPARISONS

To examine sample efficiency, we train alternative architectures from scratch, on the same number of syn-
thetic text lines used to train EffOCR. Specifically, the comparison architectures are, as applicable, initialized
with “default” pre-trained checkpoints that have not yet been exposed to an OCR task, e.g., masked language
model pre-trained weights for text transformers or ImageNet pre-trained weights for CNNs and vision trans-
formers. These comparison architectures are then trained on 8,000 synthetic text lines per the applicable
synthetic dataset variant (see: Methods - Synthetic Data) as a form of standardized OCR-task-specific pre-
training. They are then fine-tuned on the same benchmark datasets used to assess EffOCR, but with varying
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train-test-validation splits: 70%-15%-15%, 50%-25%-25%, 20%-40%-40%, 5%-47.5%-47.5%, and 0%-
50%-50% (i.e., zero-shot).

The hyperparameters used for initializing and training comparison models are as follows:

• The EasyOCR implemented CRNN (Shi et al., 2016) comparison is trained from a random initial-
ization (as is the default in EasyOCR) for 100,000 iterations on the horizontal English text sequence
and horizontal Japanese text sequence synthetic datasets, respectively. The learning rate is fixed at
1.0 with an Adadelta optimizer and the batch size is 128, per the EasyOCR configuration defaults.
The architecture uses VGG for feature extraction, a BiLSTM for seq2seq/language modeling, and
a CTC loss, as also is the EasyOCR default. A new prediction head is used to match the character
set associated with EffOCR for Japanese. The resulting model is then fine-tuned for 30,000 itera-
tions with a batch size of 64, and all other hyperparameters the same, on the benchmark datasets of
varying splits.

• The SVTR (Du et al., 2022) comparison is first trained from a random initialization for 500 epochs
with an Adam optimizer with cosine-scheduled learning rate of 0.001 and batch size of 32 on hor-
izontal English character sequence and horizontal Japanese character sequence synthetic datasets,
respectively. All these hyperparameters are PaddleOCR defaults, which are also used for fine-
tuning on the benchmark dataset splits.

• The TrOCR (Li et al., 2021a) comparison models are initialized from the appropriate vision trans-
former and language transformer pre-trained encoder and decoder checkpoints: for TrOCR (Base)
this is the officially released BEiT (Base) checkpoint and the officially released RoBERTa (Large)
checkpoint used by the TrOCR authors for model initialization; for TrOCR (Small) these are simi-
larly the officially released checkpoints for DeiT (Small) and MiniLM used by the TrOCR authors
for their model initialization. These checkpoints are exported directly from the TrOCR GitHub
repository (Li et al., 2021b) using a modified script originally authored by Hugging Face (Wolf
et al., 2020), such that training is possible in native PyTorch with Huggingface model implemen-
tations. TrOCR (Base) is trained on the horizontal English synthetic text sequence dataset for 60
epochs at a fixed learning rate of 5e − 7 with a batch size of 16; TrOCR (Small) is trained for
40 epochs, with all other hyperparameters the same. (The learning rate was selected based on
experiments with the validation set.) The resulting models are then fine-tuned with the same hyper-
parameters on the various benchmark dataset splits.

To evaluate how existing solutions perform when fine-tuned on the EffOCR benchmark datasets, existing
pre-trained checkpoints from the EasyOCR CRNN, PaddleOCR SVTR, and TrOCR (Base) and TrOCR
(Small) models are fine-tuned on the baseline 70%-15%-15% split of the benchmark datasets. Specifically,
the 15% validation set is used for hyperparameter tuning and the 15% test set is used to construct the results
reported in the study.

For all comparison models, training hyperparamters are the same as used during the sample efficiency as-
sessments with standardized synthetic pre-training, save that prediction heads for relevant models are left
as they are by default. Model initialization differs, accordingly: TrOCR (Base) and TrOCR (Small) use
microsoft/trocr-base-stage1 and
microsoft/trocr-small-stage1 checkpoints, respectively; EasyOCR CRNN uses the most re-
cently released japanese g2.pth and english g2.pth checkpoints; and PaddleOCR SVTR uses
the most recently released japan PP-OCRv3 rec train and
en PP-OCRv3 rec train best accuracy checkpoints.
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INFERENCE SPEED COMPARISONS

For digitizing large-scale collections, fast inference on a CPU is necessary, due to the high costs of GPU
compute. All comparisons are made on four 2200 MHz CPU cores, selected to represent a plausible and
relatively affordable research compute setup. To standardize measurements of speed, each model generated
predictions on the same 15% test set. All EffOCR models are implemented with ONNX Runtime for cross-
compatibility and speed.

Inference speed is inherently dependent on implementation and it is plausible that the other open-source
architectures may be updated in the future to achieve faster inference speeds. A strong correlation between
model size and inference speed is apparent and intuitive, highlighting the utility of the EffOCR-C (Small)
model for digitizing knowledge - like the Chronicling America collection - at scale.

A random sample of 10 LoCCA scans shows an average of 1944 column x lines per scan (historical news-
papers used small fonts and contained few images), which implies the cost at current prices to digitize the
LoCCA collection at the line level using GCV would be over 23 million US dollars.

Using FS4 VM instances in Microsoft Azure to process all content in the LoCCA collection for one randomly
selected day per decade, on average it took 17.21 seconds to process 1,000 lines with EffOCR-C (small).
At current prices, this translates to a cost of $0.000908 per one thousand lines, as compared to GCV’s
current prices of $1.50 (first 5 million units) and $0.60 (above 5 million units) per thousand lines to process
Chronicling America at the line level.

BENCHMARK DATASET CREATION

Figure S-1 illustrates the documents used to create this study’s benchmarks. The OCR systems evaluated in
this study take lines (cells in tables or individual lines from columns in prose) as inputs. These segments
were created using a Mask R-CNN (He et al., 2017) model custom-trained with Layout Parser (Shen et al.,
2021), an open-source package that provides a unified, deep learning powered toolkit for recognizing docu-
ment layouts. Mask R-CNN was applied to the three Japanese publications considered and to ten different
newspapers randomly selected from Chronicling America. Segments were selected at random for inclusion
in this study’s benchmark datasets. Table S-1 provides dataset statistics.

To create the character region and text annotations, three highly skilled annotators - undergraduate and grad-
uate students - annotated each segment. All discrepancies were then hand checked and resolved by the study
authors. Each of the datasets has a 70%-15%-15% train-validate-test split used for baseline evaluations. The
validation set was used for model development, whereas the test set was used only once, to create the results
reported in this study.

SUPPLEMENTARY RESULTS

ABLATIONS

To elucidate which components of EffOCR are essential for its performance, several ablations are examined
in Table S-2: using a simple feedforward neural network classifier head for recognition instead of performing
k-nearest neighbors classification2, training with and without hard negatives, disabling training on synthetic
data for the recognizer and localizer, and the use of alternative vision encoders. All ablations use a fixed set of
hyperparameters that are associated with a specific localizer-recognizer configuration; these hyperparameters
are outlined in the sections on Character Localization and Character Recognition.

2Implicitly, retrieving the nearest neighbor character from an index of offline exemplar character embeddings, as the
EffOCR recognizer does by default, is k-NN classification with k = 1.
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Modeling character-level classification as an image retrieval problem weakly dominates the classification
performance when using a standard multilayer perceptron with softmax procedure for classification. OCR
as retrieval is chosen as the baseline not only due to its performance, but because it also allows for adding
new characters at inference time (just embed a new exemplar character and add it to the offline index) -
common in historical and archaeological settings - and because efficient similarity search technologies like
FAISS (Johnson et al., 2019) provide fast inference.

Removing hard negatives increases the character error rate substantially, particularly for Japanese, which has
many characters with highly similar visual appearances, e.g., some multi-stroke kanji are nearly identical
to one another and differ only in the slants of some strokes. Using hard negatives in constrastive training
effectively incentivizes the model to distinguish between these very visually similar characters.

Training on only labels from the target documents leads to a large deterioration in performance for Japanese.
This is as expected, given that only a fraction of kanji characters appear in the small training datasets. The
deterioration in performance is modest for English, where there are far fewer characters. The opposite is true
for character localization. Localization for English is a harder problem than for Japanese because character
silhouettes and aspect ratios are more variable.

Two additional vision transformer encoders are explored: Swin (Tiny) (Liu et al., 2021) for both the localizer
and recognizer and ViTDet (Base) (Li et al., 2022) for the localizer and a vanilla vision transformer, ViT
(Base), for the recognizer. The performance is similar to the base EffOCR-C and EffOCR-T models.

OUT-OF-DISTRIBUTION PERFORMANCE

To evaluate how EffOCR does out-of-distribution, we compare EffOCR-Word (Small) to other solutions
on a highly diverse, out-of-distribution dataset sampled randomly from 64 randomly selected (out of 638)
document record groups in the U.S. National Archives. This is a challenging dataset, with examples shown
in Figure S-2.

EffOCR performs similarly to other open-source OCR engines (CER = 12.6), having only been exposed to
highly out-of-distribution newspapers during training (Table S-3. GCV performs significantly better than
any open-source solution, but with 14 billion documents in the National Archives, the cost of digitizing any
appreciable share of them would be astronomical.

USING EFFOCR TO LIBERATE DATA AT SCALE

EffOCR can convert the publications examined in this study (Jinji Koshinjo, 1954; Teikoku Koshinjo, 1957;
Jinji Koshinjo, 1939) into a knowledge graph showing relationships through shareholding patterns, fam-
ily ownership, financing, boards, occupational histories, family connections, spatial locations, and supply
chains.

Figure S-3 provides an illustrative example of one component of this graph, showing supply chain networks
in 1956 that were constructed by using EffOCR to digitize the customers and suppliers of Japan’s 7,000
largest firms. Fine-grained control through EffOCR allowed detecting an atypical character separating firms
in the customer-supplier lists - required for accurate digitization - that other OCR solutions did not system-
atically recognize, as well as accurate digitization of firm names. Each node in the graph is a firm, whose
size is proportional to its degree centrality in the supply chain network. Shading denotes the big-three firms
in pre-war Japan (Mitsui, Mitsubishi, and Sumitomo), as well as other firms - comprising Japan’s largest
conglomerates - targeted by the Holding Company Liquidation Commission in the late 1940s. The graph
underscores that the largest pre-war firms remained the most central in Japanese supply chain networks in
the 1950s, despite various policies in the late 1940s designed to curb their influence (of Staff, 1945; Com-
mission), 1973; Hadley, 2015; Cohen, 1987).
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SUPPLEMENTARY TABLES

Horiz. Jap. Tables Vert. Japanese Tables Vert. Jap. Prose Chronicling America

Train Lines 1309 898 459 291
Val Lines 280 192 98 62
Test Lines 281 193 100 64
Total 1870 1283 657 417

Train Chars 3089 3296 5832 7438
Val Chars 673 677 1063 1708
Test Chars 682 701 1111 1727
Total 4444 4674 8006 10873

Table S-1: This table reports the number of annotated lines and characters in the training, validation, and
test sets of this study’s four benchmarks.

Feed Forward Hard Neg. No Synthetic Data Encoder
EffOCR-C (Base) Neural Net Off Recognizer Localizer Swin (Tiny) ViT (Base)

Horizontal Japanese 0.006 0.006 0.041 0.594 0.009 0.009 0.010
Vertical Japanese (tables) 0.007 0.010 0.087 0.700 0.016 0.016 0.010
Vertical Japanese (prose) 0.030 0.038 0.076 0.788 0.032 0.036 0.027
Chronicling America 0.023 0.037 0.045 0.027 0.068 0.025 0.037

Table S-2: This table provides the character error rate. Feed Forward Neural Net models the recognizer as
a classification problem with a feed forward neural network, Hard Neg. Off does not include hard negatives
in recognizer training, No Synthetic Data turns off synthetic data training in the recognizer and localizer,
respectively, and Swin (Tiny) and ViT (Base) are alternative vision encoders.

OCR Model Character Error Rate

EffOCR-Word (Small) 0.126
Tesseract OCR (Best) 0.118
EasyOCR CRNN 0.129
PaddleOCR SVTR 0.160
Google Cloud Vision OCR 0.018
TrOCR (Base) 0.103
TrOCR (Small) 0.537

Table S-3: Zero Shot Performance on National Archives Dataset. This table reports off-the-shelf perfor-
mance of different OCR architectures on a diverse dataset of US National Archives documents.
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SUPPLEMENTARY FIGURES

Figure S-1: Dataset Description. Representative samples of the publications examined in this study.
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Figure S-2: Diversity in the National Archives Dataset. This figure shows examples sampled from the
National Archives Zero-Shot evaluation dataset, along with EffOCR predicted transcriptions.
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Figure S-3: Supply Chain Networks (Japan, 1956). Each node in the graph is a firm, whose size is
proportional to its degree centrality in the supply chain network. Shading denotes three of the largest firms
in pre-war Japan - Mitsui, Mitsubishi, and Sumitomo - as well as other firms - comprising Japan’s largest
conglomerates - targeted by the Holding Company Liquidation Commission (HCLC) in the late 1940s.
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