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Abstract— Magnetic-based tactile sensors (MBTS) combine
the advantages of compact design and high-frequency oper-
ation but suffer from limited spatial resolution due to their
sparse taxel arrays. This paper proposes SuperMag, a tactile
shape reconstruction method that addresses this limitation by
leveraging high-resolution vision-based tactile sensor (VBTS)
data to supervise MBTS super-resolution. Co-designed, open-
source VBTS and MBTS with identical contact modules en-
able synchronized data collection of high-resolution shapes
and magnetic signals via a symmetric calibration setup. We
frame tactile shape reconstruction as a conditional generative
problem, employing a conditional variational auto-encoder to
infer high-resolution shapes from low-resolution MBTS inputs.
The MBTS achieves a sampling frequency of 125 Hz, whereas
the shape reconstruction sustains an inference time within
2.5 ms. This cross-modality synergy advances tactile perception
of the MBTS, potentially unlocking its new capabilities in high-
precision robotic tasks.

I. INTRODUCTION

Among current tactile sensing techniques, Magnetic-based
Tactile Sensors (MBTS) [1–7] offer advantages such as
compact and simple designs, high response frequencies (ą
100 Hz), multi-axis force detection, and cost-effectiveness. A
key limitation of MBTS, shared with other non-vision-based
method [8], is their taxel-array configuration, which restricts
spatial resolution due to the physical space occupied by each
sensing element. This limitation impedes their performance
in applications requiring fine-grained tactile perception.

Vision-based Tactile Sensors (VBTS) [9–21], offer a
promising solution to these limitations. Despite their bulky
form factor and lower frequencies (30-60 Hz), VBTS inher-
ently achieve high-resolution shape reconstruction through
direct visual feedback by leveraging learned pixel-level depth
mappings from minimal training data [22, 23]. The com-
plementary strengths and weaknesses of MBTS and VBTS
suggest a synergistic potential. We propose that the easily
acquired tactile data from VBTS—which encapsulate fine
geometric and textural details—could serve as supervisory
signals to guide MBTS in reconstructing high-resolution
shapes. By integrating cross-modal learning frameworks,
the high-resolution priors captured by VBTS could enable
MBTS to surpass their physical resolution limits, bridging
the gap between sparse tactile data acquisition and dense,
accurate shape estimation.
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Fig. 1: SuperMag: High-resolution Tactile Shape Reconstruction
for Magnetic-based Tactile Sensors (MBTS) with Vision-based
Tactile Sensors (VBTS) data. (a) Training: High-Resolution (HR)
VBTS [24] depth images serve as supervisory signals to guide Low-
Resolution (LR) MBTS [6] in reconstructing high-resolution tactile
shapes of the object. (b) Inference: Sparse MBTS data are used to
reconstruct the tactile shape of an unseen test object.

Fig. 2: Network architecture of SuperMag.

In this work, we propose SuperMag, a tactile shape
reconstruction method that leverages high-resolution tactile
data from VBTS [24] to guide the super-resolution of low-
resolution MBTS signals [6], enabling high-spatial-resolution
shape reconstruction at high operational frequencies. We
frame the reconstruction task as a conditional generative
problem, where high-resolution depth maps are inferred



Fig. 3: Shape reconstruction results for ground truth, baselines, and SuperMag on seen training object and unseen testing objects.
The ground truth is from the vision-based tactile sensor (VBTS). Baselines are Bilinear and Bicubic interpolation of z-axis magnetic-based
tactile sensor (MBTS) data. SuperMag (z-axis) is trained on R-shape z-axis MBTS data; SuperMag (AK) is trained on Allen key (AK)
MBTS data, noted that R-shape is an unseen object for SuperMag (AK); SuperMag is trained on both Allen key and R-shape MBTS data.

from sparse MBTS readings using a conditional variational
autoencoder (CVAE). The resulting dataset comprises 2025
pairs of tactile readings for the Allen key and 2025 pairs for
the letter “R”. Experiments show that SuperMag outperforms
baseline methods in both quantitative metrics and qualitative
evaluations, achieving high-resolution shape reconstruction
with an inference time of 2.5 ms per reading.

TABLE I: Comparison of SuperMag against baselines.

Method Name FIDÓ PSNR[dB]Ò SSIMÒ

Bilinear 402.63 8.03 ˘ 1.78 0.10 ˘ 0.04
Bicubic 309.10 6.75 ˘ 1.60 0.10 ˘ 0.04
SuperMag (z-axis) 234.16 20.86 ˘ 1.93 0.69 ˘ 0.08
SuperMag (AK) 213.43 22.36 ˘ 2.32 0.65 ˘ 0.07
SuperMag (Ours) 210.10 24.24 ˘ 2.88 0.78 ˘ 0.06

II. DISCUSSION & CONCLUSION

This work presents SuperMag, a tactile shape reconstruc-
tion method that enables super-resolution of Magnetic-based
Tactile Sensors (MBTS) using Vision-based Tactile Sensors
(VBTS) data. Leveraging co-designed sensors with identical
contact modules and a symmetric calibration setup, we train
a conditional variational autoencoder (CVAE) to infer high-
resolution tactile shapes from low-resolution MBTS inputs.
SuperMag reconstructs 200ˆ200 pixel shapes from 4ˆ4ˆ3
taxel arrays, outperforming baselines in Frechet Inception

Fig. 4: Example results of SuperMag shape reconstruction for
unseen objects with fine texture details.

Distance (FID), Peak-Signal-to-Noise Ratio (PSNR), and
Structural Similarity (SSIM), while operating at a 95 Hz.

However, several limitations remain. First, the proposed
method is currently constrained to MBTS sensors equipped
with contact modules that match the dimensions and silicone
material of the VBTS. Additionally, the use of MBTS may
be unsuitable for grasping magnetizable materials. Future
work will investigate the transferability of the approach
across a broader range of taxel-based sensors. Second, while
SuperMag excels at shape contour reconstruction, its abil-
ity to recover fine details remains inferior to VBTS (see
Fig. 4), requiring further refinement. Finally, the inherent
limitation of VBTS in detecting large planar surfaces impacts
MBTS performance, necessitating additional research. These
advancements aim to further bridge the gap between high-
frequency and high-resolution tactile sensing for robotics.
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