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ABSTRACT

Video large language models (VideoLLMs) have demonstrated the capability to process
longer video inputs and enable complex reasoning and analysis. However, due to the thou-
sands of visual tokens from the video frames, the key-value (KV) cache can significantly
increase memory requirements, becoming a bottleneck for inference speed and memory us-
age. KV cache quantization is a widely used approach to address this problem. In this paper,
we find that 2-bit KV quantization of VideoLLMs can hardly hurt the model performance,
while the limit of KV cache quantization in even lower bits has not been investigated. To
bridge this gap, we introduce VidKV, a plug-and-play KV cache quantization method
to compress the KV cache to lower than 2 bits. Specifically, (1) for key, we propose a
mixed-precision quantization strategy in the channel dimension, where we perform 2-bit
quantization for anomalous channels and 1-bit quantization combined with FFT for normal
channels; (2) for value, we implement 1.58-bit quantization while selectively filtering
semantically salient visual tokens for targeted preservation, for a better trade-off between
precision and model performance. Importantly, our findings suggest that the value cache of
VideoLLMs should be quantized in a per-channel fashion instead of the per-token fashion
proposed by prior KV cache quantization works for LLMs. Empirically, extensive results
with LLaVA-OV-7B and Qwen2.5-VL-7B on six benchmarks show that VidKV effectively
compresses the KV cache to 1.5-bit and 1.58-bit precision with almost no performance
drop compared to the FP16 counterparts.

1 INTRODUCTION

Video large language models (VideoLLMs) have demonstrated strong performance in understanding diverse
video contexts (Li et al., 2024e; Lin et al., 2023; Zhang et al., 2023a; Li et al., 2024d; 2023b; Xu et al.,
2024; Li et al., 2024b; Wang et al., 2024a; Cheng et al., 2024; Bai et al., 2023; Wang et al., 2024b; Bai et al.,
2025). In long video inference scenarios, the key-value (KV) cache stores attention keys and values to avoid
redundant computations. However, as the number of video input frames and batch size grows, the substantial
memory consumption of the KV cache has emerged as a significant bottleneck in the inference of VideoLLMs,
incurring prohibitively large memory usage and slow speed. For instance, in the LLaVA-OV-7B (Li et al.,
2024b), with a batch size of 256 and 1,000 input frames, the KV cache required for visual tokens can reach
720 GB1 by estimation, significantly exceeding the model’s own size. Therefore, compressing the KV cache
in VideoLLMs is imperative.

In previous works on KV cache compression, most existing approaches focus on removing or merging
less critical tokens from the cache to optimize memory usage (Zhang et al., 2023b; Wan et al., 2024; Li
et al., 2024f; Ren & Zhu, 2024; Pei et al., 2024; Shen et al., 2024; Tao et al., 2025; Liu et al., 2024a).

1(4× 28× 128× 1000× 196× 256) bytes.
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Figure 1: Magnitude of KV cache for LLaVA-OV-7B and Qwen2.5-VL-7B. (1) In the key cache, certain
channels exhibit significantly large magnitudes, while others display abnormal variations across the channel
dimension, making them challenging to quantize. (2) In the value cache, channels exhibit variations in range.
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Figure 2: LLaVA-OV-7B model performance with KV cache
at FP16 vs. 2-bit quantization (Ours) vs. 1.5-bit & 1.58-bit
quantization (ours). We report the mean scores of two bench-
marks, VideoChat-GPT and VideoDC. Empirically, VidKV
maintains baseline performance with negligible degradation
while reducing the KV cache size by 80%.

However, such methods may compromise perfor-
mance as fewer tokens are used. A promising alter-
native has focused on the quantization of KV cache,
a technique that reduces memory usage by convert-
ing high-bit floating-point KV caches into lower-bit
forms (Liu et al., 2024c; Hooper et al., 2024; Du-
anmu et al., 2024; Su et al., 2025; Yue et al., 2024;
Ashkboos et al., 2024). This group of methods has
effectively reduced memory requirements while pre-
serving model performance. However, existing stud-
ies have mostly explored this in the context of LLMs.
Its applicability to VideoLLMs remains unexplored,
to our best knowledge.

On VideoLLMs, our preliminary results (as shown
in Tab. 1) indicate that, due to the high redundancy
of video tokens, the basic group-wise 2-bit KV cache
quantization has already achieved promising perfor-
mance, comparable to the original 16-bit KV cache.
This finding suggests the possibility of exploring even lower-bit quantization for KV cache in VideoLLMs.
To the best of our knowledge, no prior study has thoroughly analyzed the unique element distribution of KV
caches of VideoLLMs in the context of low-bit (1.x bits) quantization. To bridge this gap, we analyze the
distribution of KV caches in VideoLLMs. Our analyses suggest that:

• For the key cache, consistent with previous findings (Liu et al., 2024c; Xiao et al., 2023; Lin et al.,
2024), certain channels exhibit significantly large magnitudes and substantial variations. These
anomalous channels introduce considerable errors in low-bit quantization, leading to model collapse.

• For the value cache, our findings are distinct from prior methods for text LLMs (Liu et al., 2024c),
which report substantial per-channel magnitude variations, while we find the per-token magnitude
variations are more obvious (see Fig. 1). This new outlier pattern motivates us to reduce quantization
errors in VideoLLMs by adopting a per-channel quantization method for the value cache.

Based on the above analyses, we propose VidKV, a lower-bit KV cache quantization method that operates
without requiring fine-tuning for VideoLLMs. At its core, we design 1.x-bit mixed-precision quantization
schemes for the key and value caches, respectively. Specifically, (1) for the key cache, we employ a straight-
forward yet effective range-based channel evaluation method to perform 2-bit quantization on anomalous
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channels and 1-bit quantization on normal channels. Our findings indicate that transforming the key cache to
the frequency domain via the Fast Fourier Transform (FFT) not only stabilizes the distribution of elements
across channels but also mitigates the impact of outliers, thereby enhancing quantization accuracy and
reducing the complexity of the quantization process. Consequently, we convert the key cache from the time
domain to the frequency domain before performing 1-bit quantization and subsequently restore it to the time
domain using the inverse FFT (IFFT). (2) For the value cache, we implement 1.58-bit quantization, mapping
the values to the set {−1, 0, 1}, which can bring benefits with proper implementations (Ma et al., 2024; Yang
et al., 2024). The matrix multiplication between the value and attention weight can be reformulated as an
addition operation, thereby reducing computational energy consumption. In addition, as an option to better
trade off precision and model performance, we introduce a token protection mechanism to identify a small
set of critical tokens based on their semantic relevance; tokens in this subset are preserved at 2-bit precision
during value cache quantization. By doing so, the performance can be significantly preserved. Notably, KV
cache quantization in VideoLLMs is essential to mitigate memory and computational bottlenecks. As shown
in Fig. 2, VidKV maintains FP16 performance with negligible degradation while reducing the KV cache size
by 80%, and using per-channel quantization for value cache can be lossless at 2-bit precision.

Our contributions in this work are summarized as follows:

• We introduce a training-free plug-and-play 1.x-bit KV cache quantization framework tailored for
video LLMs, for the first time. Leveraging distribution characteristics, the method features mixed-
precision quantization schemes designed separately for key and value caches.

• For key cache, we propose a simple yet effective range-based way to split the channels into anomalous
and normal ones, and then quantize the anomalous channels to 2 bits, and normal channels to 1 bit
in the frequency domain.

• For value cache, we propose a 1.58-bit quantization scheme while selecting a few semantically
salient tokens for protection, offering an option to better trade off performance with precision.
Importantly, we find that in contrast to previous LLM studies, the value cache of VideoLLMs is
more suitable for per-channel quantization.

• Experimental results on several benchmarks show that VidKV effectively compresses the KV cache
to 1.5-bit and 1.58-bit precision, with almost no accuracy drop compared to the FP16 counterparts.

2 RELATED WORK

2.1 VIDEO LARGE LANGUAGE MODELS

With the rapid blooming of large language models (LLMs) and multimodal large language models (MLLMs),
many works have explored incorporating video encoders and LLMs (termed as VideoLLMs) for the video
understanding and reasoning tasks (Lin et al., 2023; Ataallah et al., 2024; Maaz et al., 2023; Jin et al., 2024b;
Luo et al., 2023; Wang et al., 2024a; Li et al., 2024c;c; Jin et al., 2024a). Regardless of good performance,
the efficiency of VideoLLMs is usually limited due to large amount of frames in the videos. Improving
efficiency has been a focus in recent VideoLLM works (Shao et al., 2025; Liu et al., 2025; Shen et al., 2025).
For example, VideoLLaMA (Zhang et al., 2023a) utilized a Q-Former module (Li et al., 2023a) to pool the
video tokens. Xgen-MM-Vid (Ryoo et al., 2024) learns a compact video representation with only 32 tokens.
MovieChat (Song et al., 2024) introduced a memory module to merge and store the video tokens. Although
the potential of VideoLLMs for video understanding and inference is increasingly recognized, the tens of
thousands of visual tags required for long videos significantly increase the KV cache size, thereby affecting
inference time and memory requirements. Consequently, different from previous works (Tao et al., 2025;
Huang et al., 2024), we explore the lower-bit quantization for VideoLLMs KV caches for the first time.

3
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Figure 3: Overview of our proposed method VidKV. We implement 1.x-bit mixed-precision quantization for the key
cache and 1.58-bit quantization for the value cache. In addition, as shown in the figure, to balance precision and model
performance, we protect important visual tokens in the value cache. It is noteworthy that we perform mixed-precision
quantization on the key cache along the channel dimension, whereas on the value cache, we apply mixed-precision
quantization along the token dimension. All key-value caches are quantized in a per-channel fashion, different from prior
KV cache quantization methods for LLMs such as KIVI (Liu et al., 2024c).

2.2 KV CACHE QUANTIZATION

KV cache quantization optimizes the storage of pre-computed keys and values, alleviating the memory
bottleneck by reducing memory consumption and accelerating generation (Liu et al., 2024c; Hooper et al.,
2024; Duanmu et al., 2024; Su et al., 2025; Yue et al., 2024; He et al., 2024; Zhang et al., 2024b). KVQuant
(Hooper et al., 2024) introduces sensitivity-based and dense-and-sparse quantization techniques for the KV
cache, aiming to minimize quantization errors. KIVI (Liu et al., 2024c) analyzes the distribution differences
between keys and values in the Multi-Head Attention module. Based on the observations, they quantize keys
per-channel and values per-token using group-wise quantization into INT2 while retaining the most recent
window in FP16. CQ (Zhang et al., 2024b) proposes to couple multiple key and value channels together for
quantization to exploit their dependency. Unlike existing works that primarily focus on LLMs, we aim to
analyze and explore the unique characteristics of the KV cache in VideoLLMs, which contain both temporal
and spatial features from the video modality.

3 PRELIMINARIES

3.1 BACKGROUND ON VIDEO LLM INFERENCE

Video LLM inference typically comprises two stages: prefilling and decoding.

(1) Prefilling Stage. During the prefilling phase, the model processes the token sequence generated from
the prompt and produces the initial output token, while each attention layer computes and stores KV pairs.
Let Xs ∈ Rls×d, Xv ∈ Rlv×d, and Xt ∈ Rlt×d denote the system token, visual token, and text token,
respectively, where ls, lv, and lt represent their corresponding input token lengths, and D is the hidden
dimension of the model. In each layer, the KV cache is derived as follows:

K = X ·Wk, V = X ·Wv, Kcache ← K, Vcache ← V, (1)

where X = concat[Xs,Xv,Xt] and Wk,Wv ∈ Rd×d are the weight matrices.

(2) Decoding Stage. In the decoding phase, owing to the KV cache, the model takes a single token x ∈ R1×d

as input. Subsequently, the attention output A can be calculated as

Qx = x ·Wq, Kx = x ·Wk, Vx = x ·Wv, (2)

K ← [Kcache,KX ], V ← [Vcache, Vx], A = Softmax

(
Qx(K)⊤√

D

)
V. (3)

4
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Table 1: Results of simulated KV cache quantization under
various configurations. C denotes per-channel quantization,
while T represents per-token quantization. The quantization
range for 1.58-bit quantization is {−1, 0, 1}. Range, Vari-
ance, and Outlier are the metrics employed for channel se-
lection in the mixed-precision quantization of the key cache,
where Range is defined as max−min.

LLaVA-OV-7B Bit (K/V) VideoDC MovieChat
Baseline 16 3.01 47.87
K - C, V - C 2 / 2 3.03 47.68
K - C, V - T 2 / 2 3.00 43.63

K - C, V - C 1.5 / 1.58 2.79 47.08
K - C, V - T 1.5 / 1.58 2.21 13.76

Variance 1.5 / 2 2.71 45.11
Range 1.5 / 2 2.95 48.28
Outlier 1.5 / 2 2.51 32.87

X

New Value
Quantized 

V Cache (1.58)
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Value FP16 Quantized 1.58-Bit

+

V Attention Weight

Figure 4: Illustration of our 1.58-bit quantization for
the value cache during the decoding stage.

3.2 KV CACHE QUANTIZATION

The n-bit integer KV cache quantization and dequantization process is formulated as follows:

Q(X) = clamp

(⌊
X− zX

sX

⌉
, 0, 2n − 1

)
, X′ = Q (X) · sX + zX, (4)

where sX = max(X)−min(X)
2n−1 is the scaling factor, zX = min(X), and ⌊·⌉ indicates round operation.

Notably, for video LLMs, the basic 2-bit KV cache quantization is sufficient to preserve model performance
due to the high redundancy of video tokens. This observation motivated us to investigate the lower-bit KV
cache quantization video LLMs.

4 METHODOLOGY

In Sec. 4.1, we are about to analyze the distribution characteristics of KV caches in video LLMs, and our
observations indicate that 2-bit quantization can hardly hurt the model performance due to the significant
visual token redundancy, leading us to explore even lower-bit quantization. Based on these findings, we shall
present VidKV, our 1.x-bit KV cache quantization method for video LLMs, as detailed in Secs. 4.2 and 4.3.

4.1 KV CACHE DISTRIBUTION OF VIDEO LLMS

Previous studies have examined KV cache distributions in LLMs, but these findings have not been fully
validated for video LLMs. As shown in Fig. 1, the key cache often contains outlier channels with significantly
larger amplitudes, consistent with prior work Liu et al. (2024c); Hooper et al. (2024). Such abnormal
variations complicate quantization, motivating our mixed-precision approach: applying lower-bit quantization
to stable channels while reserving higher precision for anomalous ones. In contrast, the value cache is more
stable across channels but varies along the token dimension. This makes per-channel quantization more
effective than per-token quantization—contrary to prior LLM observations (Liu et al., 2024c). As confirmed
in Tab. 1, per-channel quantization achieves higher accuracy for value caches, even with 2-bit settings, while
remaining nearly lossless.

5



235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

4.2 MIXED-PRECISION QUANTIZATION FOR KEY CACHE

(1) Channel Selection. As analyzed, the key cache contains certain anomalous channels that pose challenges
for lower-bit quantization. To address this, we explore a mixed-precision quantization approach. Specifically,
we first assess the quantization difficulty of each channel. Channels that are easier to quantize (normal)
undergo 1-bit quantization, while more abnormal channels are assigned 2-bit quantization to minimize error.

Thus, properly splitting the channels into abnormal and normal groups is a critical problem here. It is known
that quantization becomes increasingly challenging to assess when magnitude distributions exhibit drastic
fluctuations and contain numerous outliers. Therefore, we explored several evaluation methods along the
channel dimension, including Variance σ2, Range R = max(K) − min(K), and the number of Outliers
Noutliers =

∑l
i=1 I(Ki > M · K̄), where C is the number of tokens, I(·) is an indicator function that returns

1 if the condition is met, otherwise 0 and M is a predefined threshold.

Tab. 1 (marked in light blue background) presents the results of an average 1.5-bit quantization (where
50% of the channels undergo 1-bit quantization) for the key cache using different evaluation methods. For
all configurations, we set the group size to 32, M = 3, and maintain the value cache at a fixed 2-bit
quantization. Specifically, we observe that evaluating anomalous channels using the Range achieves near-
lossless quantization accuracy, whereas the other two methods exhibit a certain degree of performance
degradation. As shown in Fig. 3, we select k% abnormal channels in the key for 2-bit quantization by
evaluating the range in each channel, while assigning the remaining normal channels to 1-bit quantization.
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Figure 5: Analysis of the normal channel of key cache
shows that FFT transformation smooths the frequency-
domain distribution, reducing quantization error.

(2) FFT-based 1-Bit Quantization. As analyzed
in Sec. 4.1, the key cache contains numerous abnor-
mal channels, and the distribution of each channel in
the time domain exhibits sharp fluctuations, which
not only complicates 1-bit quantization but also re-
sults in the uneven accumulation of quantization er-
rors across different channels. To address this, we
propose to apply Fast Fourier Transform (FFT) to
transform data from the time domain to the frequency
domain and mitigate large oscillations in the channel
dimension by leveraging frequency domain properties
(such as increased stability and energy concentration),
as shown in Fig. 5. FFT is widely used for outlier
smoothing (Tseng et al., 2024), and it does not add
significant computational overhead (less than 5%).
Due to the significant reduction in quantization error, 1-bit quantization not only substantially decreases stor-
age overhead but also mitigates the loss of effective information. The specific quantization and dequantization
process can be written as follows,

Q(Xfft) = sign
(
FFT(X)) + 1 ∈ {0, 1}, X′ = IFFT[Q (Xfft) · sfft + z

fft
], (5)

where the scale sfft = Mean(|FFT(X)|) and the zero offset z
fft

= 0.

4.3 1.X-BIT QUANTIZATION FOR VALUE CACHE

(1) 1.58-Bit Quantization. For the value cache, we propose to employ a promising lower-bit quantization
approach: 1.58-bit quantization as the base scheme. While 1.58-bit quantization has previously demonstrated
its effectiveness for LLM weight quantization (Ma et al., 2024), we explore its applicability to KV cache
quantization for the first time.

6
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The 1.58-bit means ternary quantization, i.e., mapping a value to {−1, 0, 1}. Concretely, in the prefilling
stage, we compute the average value as the threshold and subsequently constrain the values to -1, 0, or +1:

Q(V )1.58 = sgn(V ) · 1|V |>α (6)
where α = γ · mean|V |, and γ is a hyperparameter. Notably, a significant advantage of the 1.58-bit
quantization is its potential for faster and cheaper computing. As shown in Fig. 4, the matrix multiplication
between value and attention weights can be replaced with addition and subtraction, significantly reducing the
computational energy consumption. Although 1-bit quantization of the value cache still poses challenges, the
1.58-bit scheme retains its advantages, especially its computational efficiency.

(2) Semantic Token Protection (STP). Additionally, in video LLMs, certain visual tokens play a more crucial
role in the inference process due to their strong correlation with the input text, inspiring us to apply higher
protection to these critical visual tokens through 2-bit quantization, thereby minimizing quantization errors
for these essential tokens. Furthermore, this approach ensures that lower-bit quantization of other tokens does
not adversely impact the accuracy of critical tokens. As illustrated in Fig. 3, the selection mechanism relies
on cross-modal attention scores between each vision token and the text query:

I = Xv(i) ·Xt(j)
⊤. (7)

Selective application of 2-bit quantization to the top n visual tokens preserves the semantic integrity of the
most informative visual features, where n = p · lv and p is the percentage of tokens protection. Meanwhile,
the remaining tokens undergo 1.58-bit quantization, maintaining resource efficiency while preserving essential
semantic information.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENT SETTINGS

Models. We select two of the most widely used video large language model families to evaluate our VidKV:
LLaVA-OneVision (Li et al., 2024b) and Qwen2.5-VL (Bai et al., 2025). We utilize the Hugging Face
Transformers codebase and implement our VidKV algorithm on top of it. Specifically, we evaluate LLaVA-
OneVision-7B on 8 RTX 4090 GPUs, supporting up to 32 video input frames, and Qwen2.5-VL-7B on 8
A6000 GPUs, supporting up to 16 input frames.

Tasks. For the evaluation of VLLMs, we do not select common video question-answering (QA) tasks where
only a single word is generated. Instead, we adopt the VideoDC (LMMs-Lab, 2024), VideoChat-GPT (Maaz
et al., 2023), MovieChat (Song et al., 2024), TempCompass (Liu et al., 2024b), VATEX (Wang et al., 2019),
and WorldQA (Zhang et al., 2024c) benchmarks to evaluate long text generation performance.

Implementation Details. In group-wise quantization, we set a residual length inspired by KIVI (Liu et al.,
2024c) to store the parts that are not divisible. We set the quantized group size G to 32 and the residual
key-value cache length R to 128 in all experiments. The hyperparameter for threshold calculation in 1.58-bit
quantization γ is set to 0.7 for 1.58-bit quantization. The key cache is quantized at mixed precisions, ranging
from 1-bit to 2-bit. Owing to FFT computations, FFT-based 1-bit quantization is applied exclusively to
key-1.5-bit (k = 0.5) and key-1.75-bit (k = 0.75), while standard 1-bit quantization is used otherwise. All
benchmarks utilize the LMMs-Eval (Zhang et al., 2024a; Li et al., 2024a) framework for evaluation, and all
evaluated code remains consistent with the official implementation.

5.2 MAIN RESULTS AND ANALYSES

This section presents the primary results of cache quantization for 1.x-bit KV representations. Notably, most
existing methods focus on 2-bit KV-cache quantization for text-only LLMs. We present, for the first time,

7
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Table 2: Results of different methods and quantization settings. For all values, higher is better. The best result
of each metric in each model is in bold, and the second best is underlined. 1.66-bit means 20% tokens for
2-bit and 80% tokens for 1.58-bit

Method Settings VideoDC TempCompass VideoChat-GPT Moviechat WorldQA
K-(Bit) V-(Bit) GPT Sco. Avg. CI DO CU TU CO Avg. GPT Score Acc. GPT Sco.

LLaVA-OV-7B

Baseline 16-Bit 3.01 49.05 3.47 2.97 3.71 2.74 3.49 3.27 3.09 47.87 0.328

KIVI 2-Bit (K-C V-T) 3.00 49.70 3.48 2.95 3.68 2.72 3.35 3.24 3.05 46.63 0.326
VidKV 2-Bit (K-C V-C) 3.03 50.69 3.48 2.95 3.69 2.72 3.55 3.27 3.08 47.68 0.327

VidKV
1.50 2.00 2.95 50.45 3.49 2.94 3.63 2.70 3.38 3.23 3.12 48.28 0.322
1.50 1.58 2.79 47.35 3.32 2.77 3.57 2.58 3.10 3.06 3.11 47.08 0.313
1.25 1.58 2.53 45.21 3.29 2.66 3.59 2.47 3.06 3.01 3.06 47.21 0.309

VidKV (p = 0.2) 1.50 1.66 2.89 47.55 3.35 2.79 3.60 2.66 3.11 3.10 3.11 47.25 0.319
VidKV (p = 0.2) 1.75 1.66 2.92 48.25 3.38 2.83 3.61 2.61 3.21 3.13 3.12 47.87 0.312

Qwen2.5-VL-7B

Baseline 16-Bit 2.93 56.53 3.20 2.91 3.36 2.71 3.31 3.10 2.95 44.23 0.334

KIVI 2-Bit (K-C V-T) 2.93 55.63 3.30 2.97 3.54 2.71 3.32 3.17 2.85 43.28 0.330
VidKV 2-Bit (K-C V-C) 2.94 55.39 3.31 2.91 3.57 2.74 3.38 3.18 2.92 45.01 0.332

VidKV

1.50 2.00 2.88 54.24 3.31 2.90 3.56 2.67 3.35 3.15 2.92 44.56 0.311
1.25 2.00 2.54 50.49 3.20 2.76 3.43 2.56 3.10 3.01 2.90 44.93 0.286
2.00 1.58 3.01 52.03 3.15 2.81 3.46 2.58 3.16 3.03 2.92 42.99 0.309
1.50 1.58 2.68 49.10 3.08 2.78 3.41 2.51 3.12 3.00 2.91 43.36 0.310

VidKV (p = 0.2) 1.50 1.66 2.87 49.20 3.15 2.85 3.49 2.63 3.38 3.10 2.92 44.17 0.321

an analysis of KV-cache quantization in video LLMs; consequently, most baseline methods do not support
sub-2-bit (1.x-bit) implementations. In the analyses, the key cache is tested within a quantization range of
1.25 to 2 bits, while the value cache is evaluated with 1.58-bit and 1.66-bit (20% tokens for 2-bit and 80%
tokens for 1.58-bit) quantization, both employing per-channel quantization.

We evaluate VidKV across multiple video-to-text benchmarks and the video caption benchmark (see Sec. B
in the appendix). Results in Tab. 2 show that the models after 2-bit KV cache quantization can achieve
comparable or slightly better performance vs. their FP16 counterparts. As aforementioned, this motivated us
to explore lower-bit quantization at the beginning. Additionally, VidKV is compared with KIVI (Liu et al.,
2024c) under 2-bit quantization. Notably, the key distinction between VidKV and KIVI lies in the application
of per-channel quantization in the value cache. Results indicate that VidKV outperforms KIVI across multiple
benchmarks, validating the necessity of our KV cache distribution analyses for video LLMs.

For 1.x-bit quantization, when the key cache is quantized to 1.5 bits, accuracy remains nearly unchanged,
demonstrating the effectiveness of our proposed mixed-precision quantization and the FFT-based 1-bit
quantization strategy for the key cache. For the LLaVA-OV model, reducing the KV cache precision from
16 bits to 1.5 bits (or even 1.25 bits) and 1.58 bits results in only a minimal accuracy degradation. The
Qwen2.5-VL model employs a highly compressed vision token representation relative to other video LLMs.
Consequently, a slight degradation in accuracy is observed in the Qwen2.5-VL model—particularly in the
TempCompass and VideoDC benchmarks—although the performance remains within an acceptable range.
Furthermore, enabling semantic token protection (STP) for the value cache increased the average quantized
bit from 1.58 to 1.66, resulting in improved accuracy across multiple benchmarks (marked in yellow), with
a notable improvement on VideoChat-GPT, as shown in Tab. 2. Spending less than 0.1 bit in both models
allows them to attain accuracy comparable to that of the FP16 configuration.

5.3 ABLATION STUDY

Lower-Bit Key Cache Quantization. As shown in Fig. 6 (a), this study further investigates the principles
and potential of lower-bit quantization for the key cache, building upon the findings of the previous section.
While the value cache maintains 2-bit and 1.58-bit quantization, the key cache can be quantized from 1.75-bit
to 1.2-bit with only a minor reduction in accuracy. However, a significant performance loss is observed
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Table 3: Results of the ablation study of our method in the LLaVA-OV model (see results of Qwen2.5-VL in
Sec. D.2). In each pair of comparison results, the superior result is shown in bold. STP employs the proposed
semantic-based token filtering protection strategy, while RTP protects randomly screened tokens. FFT is
exclusively applied alongside 1-bit quantization within mixed-precision quantization.

Settings VideoDC MovieChat TempCompass VideoChat-GPT
Bit FFT STP RTP p GPT Sco. GPT Sco. Acc. Avgerage CI DO CU TU CO Avg.

16-Bit - - - - 3.01 3.09 47.87 49.05 3.47 2.97 3.71 2.74 3.49 3.27

K-1.5 / V - 2 ✗ ✗ ✗ 0.0 2.92 3.06 47.49 48.98 3.47 2.87 3.60 2.67 3.33 3.18
K-1.5 / V - 2 ✓ ✗ ✗ 0.0 2.95 3.12 48.28 50.45 3.49 2.94 3.63 2.70 3.38 3.23

K-1.5 / V - 1.66 ✓ ✗ ✓ 0.2 2.89 3.11 47.01 46.36 3.26 2.77 3.54 2.63 3.10 3.06
K-1.5 / V - 1.66 ✓ ✓ ✗ 0.2 2.89 3.11 47.25 47.55 3.35 2.79 3.65 2.66 3.11 3.12

when the key cache is quantized below 1.2 bits. These observations indicate that certain abnormal channels
in the key cache induce significant quantization errors when subject to 1-bit, implying that effective 1-bit
quantization for the key cache remains challenging.
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Figure 6: Key cache shows a sharp performance drop at 1.1-bit
quantization. For value cache, the average bit width rises from
1.58 to 2 as p increases from 0 to 1.

STP of Value Cache. Preserving a subset of to-
kens at higher precision consistently improves fi-
nal accuracy. Thus, STP is compared against the
random selection of an equivalent proportion of to-
kens, as demonstrated in Tab. 5, where STP outper-
forms random selection. Additionally, as shown
in Fig. 6 (b), we investigate the trade-off between
precision and model performance using the STP
method. Our results indicate that as p increases,
the average bit number of the value cache initially
improves, resulting in a gradual enhancement of
model performance. However, 1-bit quantization
of the value cache results in unacceptable perfor-
mance degradation.

FFT-based 1-Bit Quantization. Tab. 5 (marked in green) shows the performance differences between
using and not using the proposed FFT-based 1-bit quantization within the mixed-precision quantization
for the key cache. The results indicate that the application of FFT enhances model performance across all
benchmarks. Furthermore, as shown in Tab. 4 (marked in green), applying FFT to the video caption task leads
to a significant improvement in model quantization accuracy. Combined with FFT, a similar trend is also
observed in Fig. 6 (a). This proves that the quantization of the cache after transforming it into the frequency
domain by FFT is reasonable and effective.

6 CONCLUSION

This paper presents VidKV, the first KV cache quantization method for video LLMs. At its core, VidKV
employs a mixed-precision strategy to quantize key and value caches separately with specialized schemes: (1)
key cache is quantized to 2 bits and 1 bit, where a novel FFT-based quantization scheme is introduced for the
1-bit quantization, which effectively mitigates the performance drop; (2) value cache is quantized to 2-bits
and 1.58 bits (+1/-1/0), where we importantly find the value cache should also be quantized in a per-channel
fashion, instead of the per-token fashion as argued by prior counterpart methods for LLMs (KIVI), implying
KV cache quantization for video LLMs is different from that for LLMs. Extensive experiments on six standard
benchmarks show that we achieve 1.5-bit and 1.58-bit KV cache quantization without significant performance
loss. Notably, the method is training-free and plug-and-play.
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A DETAILED IMPLEMENTATIONS

A.1 ALGORITHM

In this section, we present the algorithm for VidKV as discussed in Sec. 4 (algorithms 1 to 3). algorithm 1
details the computation process of VidKV during both the prefilling and decoding phases, while algorithms 2
and 3 respectively present the custom functions employed.

Algorithm 1: Algorithm of VidKV
parameter: Group size G, residual length R, hyperparameters p, k
procedure Prefill:

Input: X ∈ Rl×d

XK = XWK ,XV = XWV

r = l%G
XVq

= XV [: l − r],XVr
= XV [l − r :]

XKq
= XK [: l − r],XKr

= XK [l − r :]
if p > 0 then

Q(XVq
)← STPQuant(XVq

)
end
else

Q(XVq )← 1.58Quant(XVq )
end
Q(XKg

)← MixQuant(XKq
, k)

KV cache← Q(XKq
),XKr

, Q(XVq
),XVr

return XK ,XV

end
procedure Decoding:

Input: KV cache, x ∈ R1×d

Qx = xWQ,Kx = xWK , Vx = xWV

Q(XKq
),XKr

, Q(XVq
),XVr

← KV cache
XKr

← Concat([XKr
,xK ], dim=token)

XVr
← Concat([XVr

,xV ], dim=token)
X

′

Kq
← DeQuant(Q(XKq

))

XK ← Concat([X
′

Kq
,XKr

], dim=token)
Aw ← Softmax(xQX

⊤
K), dim=token)

xO ← AwQ(XVq
) +AwXVr

if len(XVr
) = R then

Q(XVr )←1.58Quant(XVr )
Q(XVq )← Concat([Q(XVq ), Q(XVr )])
XVr

← empty tensor.
Q(XKq

)←MixQuant(XK)
XKr

← empty tensor.
end
KV cache← Q(XKq

),XKr
, Q(XVq

),XVr

return xO
end
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Algorithm 2: Function of 1.58-Bit Quantization
parameter: Group size G, residual length R, important token index mask E, hyperparameters p, k, γ
function 1.58Quant(XVq

):
s← Mean(|XVq |, dim=channel)
α← γs

Q(XVq ) =


1, xv > α,

−1, xv < −α,
0, otherwise

return Q(XVq
)

end
function STPQuant(XVq ):

XV 1
q
←XVq

[E]

XV 2
q
←XVq

[∼ E]

Q(XV 1
q
)← GQuant(XV 1

q
, d=channel, bit=2)

Q(XV 2
q
)← 1.58Quant(XV 2

q
)

return [Q(XV 1
q
), Q(XV 2

q
)]

end

Algorithm 3: Function of Key Mix-Quantization
parameter: Group size G, residual length R
function MixQuant(XKq , k):

xk ← flatten(XKq
)

range← Max(xk)−Min(xk)
D-mask← TopK(range, k)
N-mask←∼ D-mask
Xnom ←XKq [N-mask]
Q(XK1

q
)← 1BitQuant(Xnom, k)

Xabn ←XKq
[D-mask]

Q(XK2
q
)← GQuant(Xabn, d=channel, bit=2)

return [Q(XK1
q
), Q(XK2

q
)]

end
function 1BitQuant(X , k):

if k in [0.5, 0.75] then
Xfft ← FFT(X)
X ← Reshape(Xfft, [l, d× 2])

end
Q(Xq)← GQuant(X, d=channel, bit=1)
return Q(Xq)

end

A.2 TASKS

VideoDC is a benchmark for single-video description. VideoChat-GPT comprises five subtasks: CI stands for
correctness of information, DO stands for detail orientation, CU stands for contextual understanding, TU
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stands for temporal understanding, and CO stands for consistency. These metrics are assessed using an LLM-
generated prediction score ranging from 0 to 5 (GPT Score). MovieChat assesses a model’s comprehension
ability to long videos, evaluated through a combination of GPT Score and accuracy. TempCompass evaluates
five key aspects: action, speed, direction, attribute change, and event order. For KV cache evaluation, we use
the caption branch task on TempCompass and only test the text generation task on WorldQA. Finally, VATEX
is a specialized video caption generation benchmark, and its accuracy is assessed using four metrics: BLEU
Papineni et al. (2002), METEOR (Denkowski & Lavie, 2014), ROUGE-L (Lin, 2004), and CIDEr (Vedantam
et al., 2015).

B RESULTS ON VIDEO CAPTION BENCHMARK

Table 4: Comparison of different quantization settings on VATEX bench-
marks.

Method Settings VATEX

K-(Bit) V-(Bit) FFT BLEU-4 Meteor Rouge-L CIDEr

LLaVA-OV-7B

Baseline 16-Bit - 14.88 19.85 39.25 27.42

KIVI 2-Bit (K-C V-T) - 14.33 19.55 38.67 26.27
VidKV 2-Bit (K-C V-C) ✗ 15.24 19.79 39.45 27.57

VidKV
1.5-Bit 2-Bit ✗ 14.06 18.91 38.11 23.38
1.5-Bit 2-Bit ✓ 14.96 19.47 39.01 25.91
1.5-Bit 1.58-Bit ✓ 14.06 16.43 35.28 20.09

VidKV (p = 0.2) 1.5-Bit 1.66-Bit ✓ 15.31 17.99 37.24 23.06

Qwen2.5-VL-7B

Baseline 16-Bit - 19.17 20.43 40.99 41.87

KIVI 2-Bit (K-C V-T) - 19.20 21.26 41.66 41.98
VidKV 2-Bit (K-C V-C) ✗ 19.97 21.26 42.06 43.15

VidKV
1.5-Bit 2-Bit ✓ 19.46 21.02 42.04 41.86
2-Bit 1.58-Bit ✗ 13.61 17.62 36.90 28.86

1.5-Bit 1.58-Bit ✓ 13.09 17.44 35.88 29.76

VidKV (p = 0.2) 1.5-Bit 1.66-Bit ✓ 14.63 17.99 37.75 31.72

For the video captioning task, VATEX
is used for evaluation. As shown in
Tab. 4, once again, no accuracy loss is
observed for the quantization of the 2-
bit KV cache, and we can get better re-
sults when using per-channel quantiza-
tion for the value cache. However, for
1.x-bit quantization (K-1.5, V-1.58), a de-
cline is observed across the four evalu-
ation metrics, though some accuracy re-
covery is achieved through STP. Consid-
ering the distinction between VATEX and
other datasets that utilize GPT-based scor-
ing, the four evaluation metrics used by
VATEX are hard indicators, which are
more sensitive to variations in the gen-
erated text and exhibit lower flexibility.
Under this strict evaluation environment,
our proposed VidKV continues to demon-
strate acceptable performance.

C MORE OBSERVATIONS AND FUTURE WORK

In Sec. 1 and Sec. 4.1, we analyzed the distribution characteristics of the KV cache in VideoLLMs. However,
the distinct temporal characteristics of video data warrant further analysis. As illustrated in Fig. 1, the distri-
bution of the KV cache across each channel in VideoLLMs exhibits regularity and periodicity—particularly
within the value cache—which contrasts with findings from previous studies on models such as Llama (Liu
et al., 2024c; Hooper et al., 2024). We attribute this phenomenon to the reliance of most current VideoLLMs
on the sequential concatenation of video tokens. Within tokens corresponding to a video frame, tokens
occupying identical positions frequently convey similar information and exhibit uniform distribution patterns,
resulting in distinctive regularity that may inform strategies such as token screening or reordering. This
observation will represent a major direction for our future research. Additionally, we recognize the high
redundancy inherent in visual tokens, and we will focus on strategies such as token pruning and merging in
future work.
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Figure 7: Ablation study of γ. CI stands for correctness of information, DO stands for detail orientation, CU stands for
contextual understanding, TU stands for temporal understanding, and CO stands for consistency.

D MORE ABLATION STUDY

D.1 ABLATION STUDY ABOUT THE WEIGHT γ

Fig. 7 presents a visual comparison of the impact of different γ settings on 1.58-bit quantization accuracy.
The results indicate that, contrary to conventional assumptions, the optimal performance is not attained when
γ = 1. Instead, the highest benchmark test performance is observed when γ = 0.7. A significantly lower
γ value adversely impacts model performance, suggesting that the chosen 1.58-bit quantization threshold
hyperparameter is both reasonable and effective.

D.2 FFT-BASED 1-BIT QUANTIZATION FOR QWEN2.5-VL.

Table 5: Results of the ablation study for Qwen2.5-VL. In each pair of comparison results, the superior result
is shown in bold. FFT is exclusively applied alongside 1-bit quantization within mixed-precision quantization.

Settings VideoDC MovieChat TempCompass VideoChat-GPT
Bit FFT STP RTP p GPT Sco. GPT Sco. Acc. Avgerage CI DO CU TU CO Avg.

Qwen2.5-VL-7B

16-Bit - - - - 2.93 2.95 44.23 56.53 3.20 2.91 3.36 2.71 3.31 3.10

K-1.5 / V - 2 ✗ ✗ ✗ 0.0 2.81 2.92 44.27 52.32 3.30 2.86 3.55 2.72 3.29 3.14
K-1.5 / V - 2 ✓ ✗ ✗ 0.0 2.88 2.94 44.89 54.24 3.34 2.95 3.58 2.87 3.31 3.21

E STATEMENT OF LLMS

This work used large language models (LLMs) solely to polish language and improve manuscript readabil-
ity. No LLMs were used for data generation, analysis, or interpretation of results. All scientific details,
methodologies, and findings reported here are the authors’ original contributions.
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F FURTHER DISCUSSION ON 1-BIT QUANTIZATION

Settings VideoDC MovieChat TempCompass WorldQA

Method Bit GPT Sco. GPT Sco. Acc. Avg. GPT Sco.

Baseline 16-Bit 3.01 3.09 47.87 49.05 0.33
KIVI 1-Bit 0.99 0.53 0.910 2.45 -
Ours 1-Bit 1.25 2.51 31.15 12.8 0.15

Task VideoChat-GPT

Method Bit CI DO CU TU CO

Baseline 16-Bit 3.47 2.97 3.71 2.74 3.49
KIVI 1-Bit 0.66 1.07 0.94 0.95 1.22
Ours 1-Bit 1.08 1.40 1.53 1.22 1.33

Table 6: Results of 1-Bit Quantization for KV Cache. The
“-" symbol indicates complete model failure.

This study provides an initial investigation into low-
bit KV cache quantization (1.x-bit) for video LLMs.
Empirical results across multiple benchmark pro-
grams indicate that maintaining 1.5-bit quantization
for the key cache and 1.58-bit quantization for the
value cache results in negligible accuracy degrada-
tion. Nonetheless, extreme 1-bit quantization remains
highly challenging and frequently results in model
collapse. Tab. 6 presents a comparative evaluation of
the proposed VidKV and KIVI (Liu et al., 2024c) un-
der 1-bit quantization. Although VidKV experiences
substantial performance degradation under 1-bit quantization, it still outperforms KIVI significantly. Future
research will focus on advancing low-bit KV cache quantization to minimize bit-width while approaching the
theoretical lower limit.

G DISCUSSION

Unlike previous studies, we introduce two distinct quantization strategies for key and value cache, respectively.
Our findings indicate that the distribution characteristics of the two caches differ, making it challenging to
directly apply the key cache’s mixed-precision quantization strategy to the value cache. Thus, a more efficient
and suitable approach, 1.58-bit quantization, is selected for the value cache. This approach retains almost all
the advantages of 1-bit quantization and yields strong results. An attempt was also made to apply 1.58-bit
quantization to the key cache, but it proved ineffective due to significant variations in the channel dimension.
Accordingly, the proposed two different strategies for KV caching are based on their unique distribution
characteristics, with extensive experiments confirming their effectiveness.

18


	Introduction
	Related Work
	Video Large Language Models
	KV Cache Quantization

	Preliminaries
	Background on Video LLM Inference
	KV Cache Quantization

	Methodology
	KV Cache Distribution of video LLMs
	Mixed-Precision Quantization for Key Cache
	1.x-Bit Quantization for Value Cache

	Experimental Results
	Experiment Settings
	Main Results and Analyses
	Ablation Study

	Conclusion
	Detailed Implementations
	Algorithm
	Tasks

	Results on Video Caption Benchmark
	More Observations and Future Work
	More Ablation Study
	Ablation Study about the weight 
	FFT-based 1-Bit Quantization for Qwen2.5-VL.

	Statement of LLMs
	Further Discussion on 1-bit Quantization
	Discussion

