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Abstract

For the real robot challenge, we combine a fast zero-order optimization method (iCEM) with
model learning.Our iCEM method generates strong expert trajectories using a learned forward
dynamics model, which is iteratively trained on newly collected data. We use parallel forward
model ensembles and use their uncertainty as a cost penalty in the optimization. Through the
tight coupling between all components, our algorithm runs in real-time, rendering it suitable for
real robotic applications.
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1 Introduction

In the simulation phase, we had access to the ground truth simulation which we were using for our
fast zero-order trajectory optimization (iCEM).
On the real system, we can not afford to use the ground truth simulator for planning or to use a lot of
samples in the optimization loop because of the strict real-time requirement; therefore, we add model
learning for fast planning.

2 Methods

2.1 Zero-order trajectory optimization

One key component of our solution is our strong and fast zero-order optimization algorithm iCEM [6]
that is based on the Cross-Entropy Method (CEM) [8]. We propose an improved version of the CEM
algorithm for fast planning, with novel additions including temporally-correlated actions and memory,
requiring 2.7-22× less samples and yielding a performance increase of 1.2-10× in high-dimensional
control problems compared to a naive implementation of CEM. For further details, please see Pin-
neri et al. [6].

2.2 Simulations and Model learning

There are several ways to use the simulations in order to get a well performing system on the real
hardware.

A common approach is to optimize/learn a policy or model in simulations and then transfer them to
the real environment. To make this successful, Domain Randomization [5] in simulations have shown
to be a powerful concept. Since the simulator contains the causal model, we can intervene on various
variables from this model in order to generate different environments, or different data distributions
for model fitting, reducing the distribution shift when going to the real system.

Another option is to use the simulations as internal models directly and use them for planning.
However, very high-performance physics simulations would be required to make that work, which are
not available for the complexity of environments used here.

A third option is to use the simulations only as initialization / structural bias in model learning.
The real data and the simulated data will have a very similar structure, but details are different. So
fitting a model to simulated data (potentially with domain-randomization) should serve as a good
starting point. A fine-tuned model is expected to have improved generalization capabilities. In our
approach we follow this path.

A related idea is to make fast adjustments to the model using real observations in real-time similar
to the universal successor features framework in RL [4].

2.3 Model architecture

The learned models need to have two main properties: they need to predict the dynamics well and
they have to be fast enough to be used for planning.

We are considering ensembles of feed-forward neural networks to start with. To improve the quality
of prediction we want to incorporate sequence models with the attention mechanism. More concretely,
the Transformer architecture [9] has shown to perform well on prediction tasks of long sequences. The
attention mechanism of the architecture can help better model dynamics discontinuities such as points
of contact between the fingers and the cube.
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We also consider to use the fact that the position of the fingers are independent from the position
of the cube except in the case of interaction. This might allow us to separate the dynamics prediction
of the fingers and the cube.

2.4 Policy extraction

To decrease the planning time, we are considering to learn a policy next to the forward model that can
be used for warm-starting and guiding [2,3] the optimization loop. There exists a number of methods
for extracting policies from an offline or off-policy collected dataset including pure behavioral cloning
(BC) and DAgger [7]. Recently, offline RL methods, e.g. conservative Q learning [1], showed some
promising results in that domain which let us belief that those methods are promising candidates for
learning strong policies in our setting.

3 Current Approach

We have collected trajectories from the real system with random policies. These trajectories have been
used to fit an ensemble of MLPs(Multi-Layer Perceptrons) as a forward-model for use in conjunction
with the iCEM. The ensemble of MLPs are used to model a multi-variate normal distribution over the
next step prediction, more concretely, an ensemble of K MLPs, with Θ = {θi|i ∈ [0,K − 1]} denoting
the set of their parameters, we construct the normal distribution by taking the mean and standard
deviation over all of their predictions:

fΘ(~ot, ~at) = N (~µΘ(~ot, ~at),ΣΘ(~ot, ~at)) (1)

The one-step forward model is used in a recurrent fashion at evaluation time to generate candidate
trajectories in the iCEM. We use the mean prediction of the ensemble models as the next observation
estimate.

Further, we assume independence between the output dimensions, therefore the covariance matrix
Σ is a diagonal matrix. We use an uncertainty penalty in the form if the variance of the forward model
predictions to augment the cost of the iCEM. The cost can be written as follows (~b ~g denoting the
vector of the current and goal box position and orientation, respectively):

c(~ot,~bt+1, ~g, fΘ) = ||~bt+1 − ~g||2 + α
√

Tr(ΣΘ(ot, at)) (2)

where Tr is the trace (here sum of individual variances). The uncertainty penalty term ensures that
the iCEM is going to prefer candidate trajectories where the models are more likely to make a good
prediction and is controlled by the hyperparameter α.

We opted for position control as a means of controlling the system.

3.1 Performance

We efficiently parallelized the computation of the ensemble in the form of stacked matrix operations in
order to achieve low prediction latency. With a model architecture of 6 ensembles with 3 hidden layers
of size 256 and iCEM controller of horizon 15 and 128 sampled trajectories in 2 rounds we achieve 10
Hz control frequency on the real system. Using a GPU and better optimized code (currently Python)
would allow a much higher control frequency.

Due to technical problems we were not able to submit our code early enough to be fully evaluated
in the different tasks. Also we did not iterate the learning of the forward model yet, due to time
constraints. We expect a strong increase in performance, once we do that.
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Figure 1: Reward returned by the platform (blue) vs expected cost along planning horizon H (orange).
On the x-axis control steps are plotted. The real systems runs asynchronously with 1kHz while here
we show the rewards and costs at 10Hz, our control frequency.

Fig. 1 shows for two particular runs the reward that comes from the platform and the expected cost
along the planning horizon H predicted by our model. Both are very well aligned, indicating that the
learned forward model has a clear understanding of the dynamics of the environment. On the other
hand, the plot on the right-hand side is also indicative for the fact that the learned models and their
integration with iCEM need further attention.

4 Next Steps

We have several aspects we want to address next:

• Iterate the training of the forward model from newly collected data

• Implement different forward model architectures

• Check the influence of the uncertainty penalty term

• Leveraging independence between box and finger manipulators for generating counterfactual data
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