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Abstract

Offline reinforcement learning has shown promise for solving tasks in safety-critical
settings, such as clinical decision support. Its application, however, has been lim-
ited by the need for interpretability and interactivity for clinicians. To address these
challenges, we propose medical decision transformer (MeDT), a novel and versatile
framework based on the goal-conditioned reinforcement learning (RL) paradigm
for sepsis treatment recommendation. MeDT is based on the decision transformer
architecture, and conditions the model on expected treatment outcomes, hindsight
patient acuity scores, past dosages and the patient’s current and past medical state
at every timestep. This allows it to consider the complete context of a patient’s med-
ical history, enabling more informed decision-making. By conditioning the policy’s
generation of actions on user-specified goals at every timestep, MeDT enables clin-
ician interactability while avoiding the problem of sparse rewards. Using data from
the MIMIC-III dataset, we show that MeDT produces interventions that outperform
or are competitive with existing methods while enabling a more interpretable,
personalized and clinician-directed approach. For future research, we release our
code at https://aamer98.github.io/medical_decision_transformer/.

1 Introduction

Healthcare tasks can be seen as a form of sequential decision-making process, where clinicians aim
to optimize a patient’s health by selecting appropriate medical interventions, considering the patient’s
historical health data and prior treatments. Clinical decision support systems [24] can help healthcare
professionals in making more informed decisions. Particularly in intensive care units (ICUs), where
clinicians face challenges in choosing optimal medication dosages due to the complex nature and
rapid progression of diseases. This is where RL comes in as a promising solution for developing
policies that recommend optimal treatment strategies [19, 10, 9, 21, 6]. Given the risks associated
with direct interaction with the environment in safety-critical applications [5], we use offline RL.
However, current approaches are limited by issues such as credit assignment from sparse reward
functions [14, 11], limited context lengths [18] and a lack of interpretable models [20].

Recent research in RL [17, 16, 7, 25] is shifting towards attention-based networks [15] like Trans-
formers [26, 1] which can effectively model long contexts and can be trained in a parallelizable
manner [1], countering most of the challenges of recurrent neural networks (RNNs) [27]. Chen et
al. [3] proposed the decision transformer (DT), a transformer based RL policy learning model that has
proven effective for offline RL [4, 28, 13]. DT addresses the problem of sparse or distracting rewards
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Figure 1: Architecture of the proposed MeDT framework.

by leveraging self-attention for credit assignment [3], which incorporates contextual information into
the learning process. Furthermore, the transformer’s ability to model long sequences enables it to
consider the patient’s history of states and medications to make predictions [26].

Building on this idea, we propose an offline RL framework where treatment dosage recommendation
is framed as a sequence modeling problem. The proposed framework called the medical decision
transformer (MeDT), shown in Fig. 1, is based on the DT architecture and recommends optimal treat-
ment dosages by autoregressively modeling a patient’s state while conditioning on hindsight return
information. To provide the policy with more informative and goal-directed input, we also condition
MeDT on hindsight patient acuity scores [12] at every time step. This enhances interpretability of the
conditioning, facilitating interaction of clinicians with the model.

Our contributions are threefold. 1) We propose MeDT, a transformer-based policy network that
autoregressively models the full context of a patient’s clinical history and recommends optimal
medication dosages. 2) To alleviate the burden of sparse rewards, we condition MeDT on hindsight
patient acuity scores as a goal at every timestep. We modify these scores to make them more
interactable for clinicians. 3) In addition to fitted Q-evaluation (FQE) to evaluate learnt policies, we
leverage a transformer network, the state predictor, to serve as an approximate model to capture the
evolution of a patient’s clinical state in response to treatment. This model enables autoregressive
inference of MeDT and also serves as an evaluation framework of models used for clinical dosage
recommendation.

2 Methodology

Our proposed MeDT architecture is inspired by the Upside-Down RL approach [23] for learning
policies, which maps rewards to corresponding actions. Specifically, our work builds on the idea
of modeling RL as a sequence modeling problem, as first proposed in [3], and further developed in
related works [13, 29, 7].

We frame our problem as a Markov decision process (MDP), defined by the tuple (S,A,P,R,S ′),
where S represents the patient states, A is the set of possible dosage recommendations, P is the state
transition function, R is the reward function and S ′ is the next patient state. While this framework
is well-suited for addressing RL problems, direct interaction with the environment can be risky in
safety-critical applications like ours. To mitigate this risk, we use offline RL, a subcategory of RL
that learns an optimal policy using a fixed dataset.

MeDT is trained to model trajectories such that the transformer is conditioned on future desired
returns to generate treatment dosage recommendations (Fig. 1). Specifically, during training, we use
returns-to-go (RTG) rt =

∑T
t′=t Rt′ , which represents the observed treatment outcome (death or

survival), to condition the model, while it is fixed to +1 for survival during evaluation. In addition,
we propose to condition MeDT on future patient acuity scores (SAPS2), or acuity-to-go (ATG),
where the acuity score provides an indication of the severity of illness of the patient in the ICU,
based on the status of the patient’s physiological systems. This formulation allows clinicians to
input desired acuity scores for the next state upon monitoring the current physiological state of the
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Figure 2: (a) Dosage recommended by MeDT and clinician policy for different SAPS2 scores. (b)
Distribution of IV fluids and VPs given by the MeDT and clinician policies.

patient, providing additional context for the policy to generate optimal actions. This leads to more
information-dense conditioning, allowing clinicians to interact with the model and guide the policy’s
generation of treatment dosages.

To enable clinicians to provide more detailed inputs, we break down the SAPS2 score into constituent
scores that correspond to specific organ systems [12]. Following the definitions provided in [22],
we define split scores k = (kc, kr, kn, kl, kh, km, ko) to represent the status of the cardiovascular,
respiratory, neurological, renal, hepatic, haematologic and other systems, respectively. This enhances
the usability of the model for clinicians, enabling efficient interaction with the model for future
dosage recommendations, considering the current state of the patient’s organs. Using these scores,
the treatment progress over T time steps forms a trajectory

τ = ((r1, k1, s1, a1), (r2, k2, s2, a2), . . . , (rT , kT , sT , aT )) . (1)

We train our policy, a causal transformer network, to predict ground-truth dosages that were ad-
ministered by the clinician given the patient’s past and current state via teacher forcing, while
ignoring future information via masking (Fig. 1). MeDT aims to learn an optimal policy distribution
Pπ(at|s≤t, r≤t, k≤t, a<t), following the model architecture and hyperparameters used in [3]. We use
an encoder with a linear layer and a normalization layer for each type of input (i.e. RTG, ATG, state,
action) to project raw inputs into token embeddings. To capture temporal dynamics of the patient’s
state, we use learned position embeddings for each timestep which are added to the token embeddings.
Finally, the resulting embeddings are fed into a causal transformer, which autoregressively predicts
the next action tokens.

Evaluation

In this work, we train and evaluate the performance of MeDT on a cohort of septic patients. The
cohort data is obtained from the medical information mart for intensive care (MIMIC-III) dataset [8],
which includes 19,633 patients, with a mortality rate of 9%. To preprocess the data, we follow the
pipeline defined by Killian et al. [9]. We extract physiological measurements of patients recorded
over 4-hour intervals and impute missing values using K-nearest neighbour. Multiple observations
within each 4-hour window are averaged. The patient state consists of 5 static demographic and 38
time-varying continuous variables such as lab measurements. We focus on the administration of two
drugs: vasopressorss (VPs) and intravenous (IV) fluids. The administration of each drug for patients
is sampled at 4-hour intervals. We discretized the dosages for each drug into 5 bins, resulting in a
combinatorial action space of 25 possible treatment administrations.

In online RL, policies are assessed by having them interact with the environment. However, health-
care involves patients, where employing this evaluation method is unsafe. As a stand-in for the
simulator during inference, we propose to additionally learn an approximate model (state predictor)
of Pθ(st|a<t, s<t) with a similar architecture as the policy model. During inference, this model
allows autoregressive generation of a sequence of actions by predicting how the patient state evolves
as a result of those actions (Alg. 1). Figure 4 visualizes this rollout procedure.

Additionally, we utilize FQE to produce the estimated Q-value for a given policy (Fig. 5).
FQE takes as input a policy π and a set of transitions {st, at, st+1, rt+1}nt=1. At each step
k, the algorithm computes the target yt = rt + γQk−1 (st+1, π (st+1)), solving the equation
Qk = argminf∈F

∑n
i=1 (f (st, at)− yt)

2. This yields a neural network labeled as Qπ, which
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Table 1: Estimated final patient acuity scores (averaged over 2898 patients) for BCQ: batch con-
strained Q-learning, BC: behaviour cloning, DT: decision transformer and MeDT: medical decision
transformer.

Models Overall ↓ Low ↓ Mid ↓ High ↓
BCQ 42.10±0.03 41.78±0.07 42.38±0.03 41.59±0.15
BC 40.50±0.03 40.33±0.07 40.56±0.03 40.29±0.12
DT 40.38±0.03 40.16±0.06 40.49±0.03 40.06±0.12

MeDT 40.31±0.03 40.05±0.06 40.40±0.03 40.35±0.14

serves the purpose of estimating the value associated with any given state-action pair (s, a) within
the dataset D, as dictated by the policy π. To gauge a policy’s effectiveness, the average value of the
initial state is computed.

3 Results and Discussion

Quantitative Analysis. We evaluate MeDT using autoregressive inference (Fig. 4) with a state
predictor (Algorithm 1), in comparison to various baselines, including BCQ [9], transformer-based
BC, and DT (Table 1). To assess patient outcomes, we calculate SAPS2 scores with the state predictor
and conduct off-policy evaluation (OPE) using FQE. The policies are run in the loop with state
predictor for only ten timesteps, to avoid accumulation of errors resulting from the autoregressive
nature of evaluation. From Table 1, we observe that the proposed MeDT policy resulted in more
stable estimated patient states relative to the baselines. Similarly, Fig. 5 shows that MeDT marginally
outperforms BCQ, resulting in higher estimated Q-values. This suggests that the proposed goal
conditioning has the intended effect.

Figure 3: Visualization of 4 patient trajectories computed by the state predictor following treatment
recommendation from DT (red) and MeDT (blue).

Qualitative analysis. We qualitatively evaluate the policy of MeDT against the clinician’s policy.
To ensure accurate analysis, we use ground-truth trajectories as input sequences instead of relying
on autoregressive inference, which may lead to compounding errors. In Fig. 2a, we conduct a
comparative analysis of the mean dose of vasopressors and IV fluids recommended by the MeDT
policy and the clinician policy, for patient states with varying SAPS2 scores. Our results show that
the MeDT policy generally aligns with the clinician’s treatment strategy but recommends lower doses
of IV fluids on average. Both policies exhibit a similar trend of increasing medication doses with
worsening patient condition, for both vasopressors and IV fluids. It is important to note that the
MeDT policy differs from previous works in that it does not recommend minimal dosages for patients
with high SAPS2 scores [19]. Fig. 2b presents the dosage distribution of IV fluids and vasopressors
recommended by both the MeDT and clinician policies. Our analysis reveals that the MeDT policy
uses more zero dosage instances for both IV fluids and vasopressors, compared to the clinician policy.

In Fig. 3, we visualize the trajectories of multiple patients computed by the state predictor, following
treatment actions recommended by both the DT and MeDT policies. The impact of ATG conditioning
on patient health is evident, as MeDT leads to more stable trajectories, demonstrating the potential of
our framework to generate targeted and improved treatment recommendations by considering both
the hindsight returns and ATG at each timestep.

Our experimental results demonstrate the potential of MeDT to bolster clinical decision support
systems by providing clinicians with an interpretable and interactive intervention support system.
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Appendix

3.1 Training

The transformer policy is trained on mini-batches of fixed context length, which are randomly sampled
from a dataset of offline patient trajectories. In our case, we choose a context length of 20, which
is the longest patient trajectory in the dataset following preprocessing. For trajectories shorter than
this length, we use zero padding to adjust them. During training, we use teacher-forcing, where the
ground-truth sequence is provided as input to the model. At each timestep, the ATG (kt) is set to the
actual acuity scores of the state at the next time step in the sequence. The prediction head of the policy
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model, associated with the input token st is trained to predict the corresponding discrete treatment
action at using cross-entropy loss. The losses over each timestep are then averaged. Additionally, the
state estimator is trained to predict the patient’s state following the treatment actions. The prediction
head of the state predictor model, corresponding to the input token at is trained to estimate the
continuous state st+1 using mean square error loss. The models are each trained on a single NVIDIA
V100 GPU. The results of the experiments are averaged over 5 seeds.

Figure 4: Autoregressive evaluation pipeline: At each timestep t, the pretrained state predictor attends
to past recommended doses and predicted patient states, and outputs state prediction ŝt+1. Both
dosage recommendations ât+1 and predicted states are fed back to MeDT to simulate treatment
trajectories.

Algorithm 1 Evaluation Loop
1: Input: Initial patient state s0
2: Output: Acuity score g1, . . . , gT
3: Set target return rT = 1
4: Initialize state s1 = s0, target return r1:T = rT and action sequence a0:t−1 = {}
5: for t = 1, 2, . . . , T do
6: Select desired Acuity To Go kt
7: Select action at = MeDT(r1:t, k1:t, s1:t, a0:t−1)
8: Append at to the sequence of actions: a1:t = a0:t−1 + [at]
9: Estimate new state: st+1 = state_estimator(s1:t, a1:t)

10: Evaluate acuity score gt+1 for state st+1

11: Append st to the sequence of states: s1:t = s1:t−1 + [st]
12: end for
13: return acuity score g1, . . . , gT

Results and analysis

Interpretability. To enhance the interpretability and reliability of our MeDT model for external
users, we analyse attention maps of different layers (second, fourth and sixth), as early, middle and
last, respectively (Fig. 6). During inference, the input sequence is passed through the pretrained
model and attention scores are obtained for each layer by averaging across multiple heads. As causal
transformers attend only to current and past timesteps, the upper right part of the attention map is
masked.

In the early layers of DT, attention is primarily focused on the patient’s state. However in MeDT,
with the addition of ATG, this attention is distributed across different features, with more emphasis
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on the ATG constituents. In the middle and last layers, we observe that DT prioritizes the initial
returns, while MeDT emphasizes the initial returns and the ATG scores, with greater emphasis on the
cardiovascular acuity score. Such attention visualizations enable clinicians to understand the model’s
reasoning behind dosage prediction, making transformer-based models more interpretable.

Figure 5: Mean initial Q-values for BCQ and MeDT. The maximum expected return is represented
by the dotted line.

Figure 6: Visualization of attention maps of DT and MeDT at inference.

Limitations and future work. The MIMIC-III dataset has some limitations, as it only represents a
specific geographic area, which could result in an over-representation of certain patient populations
and an under-representation of others. Consequently, using the state predictor for evaluation may
introduce biases inherent in the dataset on which it was trained. To mitigate these potential biases,
we will investigate causal representation learning and pretraining techniques for that enhance model
robustness. Moreover, further work can be carried out to enhance interpretability following the
work of Chefer et al. [2], which proposes a more robust method of propagating relevancy through
transformer layers. Despite these limitations, MeDT provides a general framework to harness the vast
amount of data found in large-scale electronic health records (EHRs) from different modalities. As a
result, researchers can explore the scalability of the transformer architecture to develop treatment
recommendations for various medical conditions in the future.
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