
Extended Abstract Track
Under Review - Extended Abstract Track 1–15, 2025 Symmetry and Geometry in Neural Representations

The Geometry and Topology of Modular Addition
Representations

Gabriela Moisescu-Pareja∗ gabriela.moisescu-pareja@mail.mcgill.ca
McGill University, Mila

Gavin McCracken∗ gavin.mccracken@mail.mcgill.ca
McGill University, Mila

Harley Wiltzer
McGill University, Mila

Colin Daniels
Independent

Vincent Létourneau
Université de Montréal, Mila

Jonathan Love
Leiden University

Editors: List of editors’ names

Abstract

The Clock and Pizza interpretations, associated with neural architectures differing in either
uniform or learnable attention, were introduced to argue that different architectural designs
can yield distinct circuits for modular addition. Applying geometric and topological anal-
yses to learned representations, we show that this is not the case: Clock and Pizza circuits
are topologically and geometrically equivalent and are thus equivalent representations.

1. Introduction

Modular addition has become a standard testbed for toy models in interpretability Nanda
et al. (2023); Chughtai et al. (2023); Gromov (2023); Morwani et al. (2024); McCracken
et al. (2025); He et al. (2024); Tao et al. (2025); Doshi et al. (2023). The task is non-
linearly separable yet mathematically well understood, making it ideal for researching how
networks internally compute solutions. Two influential works examined modular addition
in transformers, finding different architectures give rise to different circuits. Nanda et al.
(2023) described a “Clock” interpretation, while Zhong et al. (2023) introduced the con-
trasting “Pizza” interpretation, each tied to architectural choices. We revisit these claims
using geometric and topological analyses and find that Clock and Pizza learn topologically
equivalent representations and thus the same circuit. In contrast, our new architecture,
MLP-Concat, produces a genuinely different representation and thus a different circuit.

∗ Equal contribution.

© 2025 G. Moisescu-Pareja, G. McCracken, H. Wiltzer, C. Daniels, V. Létourneau & J. Love.

Extended Abstract Track
Moisescu-Pareja McCracken Wiltzer Daniels Létourneau Love

2. Background and Setup

We consider various neural network architectures for the task of modular addition, which
means predicting the map (a, b) 7→ a+b mod n for a, b ∈ Zn. For the sake of this paper, we
fix n = 59. All architectures begin by embedding the inputs a, b to vectors Ea,Eb ∈ R128

using a shared (learnable) embedding matrix. The architectures differ in how the em-
beddings are then processed: MLP-Add immediately passes Ea + Eb through an MLP,
MLP-Concat immediately passes the concatenation Ea⊕Eb ∈ R256 through an MLP, and
Clock and Pizza, introduced by Zhong et al. (2023) pass Ea,Eb through a self-attention
layer before the MLP. Particularly, Pizza (Zhong et al., 2023) uses a fixed, constant atten-
tion matrix, while Clock (Nanda et al., 2023) uses the standard scaled softmax attention.
We refer to transformer-based architectures associated with the Clock as Attention 1.0
and those associated with Pizza as Attention 0.0, respectively.

It is well-known (Nanda et al., 2023; Zhong et al., 2023) that the above architectures
learn circuits with learned embeddings of the following form,

Ea = [cos(2πfa/n), sin(2πfa/n)], Eb = [cos(2πfb/n), sin(2πfb/n)]. (1)

What distinguishes them is how the embeddings are transformed post-attention. Treat-
ing the attention as a blackbox and looking at its output Eab, the two claims follow. Clock
computes the angle sum,

Eab = [cos(2πf(a+ b)/n), sin(2πf(a+ b)/n)] (2)

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
angle summation

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
vector addition

0 20 40
a + b (mod 59)

Figure 1: Clock and
Pizza’s analytical
forms. Points are Eab

(cf. (2), (3)), colored
by (a+ b) mod 59.

encoding the modular sum on the unit circle, which needs second-
order interactions (e.g., multiplying embedding components via sig-
moidal attention). In Pizza, Eab adds the embeddings directly as
Ea +Eb, giving:

Eab = [cos(2πfa/p) + cos(2πfb/p), sin(2πfa/n) + sin(2πfb/n)], (3)

producing a vector addition on the circle, which is entirely linear
in the embeddings. McCracken et al. (2025) showed that, across
Clock, Pizza, and MLP-Concat architectures, first layer neu-
rons then take the form of so-called simple-neurons, producing pre-
activations N(a, b) given by

N(a, b) = cos(2πfa/p+ ϕa) + cos(2πfb/p+ ϕb), (4)

where frequencies f and phases ϕa, ϕb are learned across training.

3. Methodology

In the simple neuron model the only degrees of freedom beyond
the frequency of a neuron are the learned phases. We analyze the
structure of learned representations using two empirical methods:
phase distributions and their induced topological structure. See
Appendix A for additional details.

2

Extended Abstract Track
The Geometry and Topology of Modular Addition Representations

50

40

30

20

10

0

20 40
0
0

50

40

30

20

10

0 20 40 0 20 40 0 20 40

0

4.4

8.8
log(count)

0

4.2

8.4
log(count)

0

4.2

8.4
log(count)

0

2.5

5.0
log(count)

0

4.4

8.7
log(count)

0

3.8

7.5
log(count)

0

3.7

7.5
log(count)

0

2.7

5.4
log(count)

Histogram distributions of: neuron max activation (top); neuron activation center of mass (bottom)

b b b b

a
a

 MLP-Add Attention 0.0 Attention 1.0 MLP-Concat

↕a
vg

 3.
42

↕a
vg

 3.
69

↕a
vg

 4.
63

↕a
vg

 1.
34

↕a
vg

 2.
18

↕a
vg

 4.
50

↕a
vg

 0.
00

↕a
vg

 0.
00

 MLP-Add Attention 0.0 Attention 1.0 MLP-Concat

Figure 2: Log-density heatmaps for the distribution of neuron maximum activations (top)
and activation center of mass (bottom) across 703 models. Attention 0.0 and 1.0 archi-
tectures show modest off-diagonal spread relative to MLP-Add, but remain constrained by
architectural bias toward diagonal alignment. MMD scores between Attention 0.0 and 1.0
are 0.0237 (row 1) and 0.0181 (row 2), indicating near identical distributions (see Table 3).

Phase Alignment Distributions. We propose the Phase Alignment Distribution (PAD).
To a given architecture, a PAD is a distribution over Zn ×Zn. Samples of this distribution
are drawn as follows:

1. Sample a random initialization and train the network, then sample a neuron uniformly.
2. Return pair (a, b) ∈ Zn × Zn achieving the largest activation in the resulting neuron.

A PAD illustrates, across independent training runs and neuron clusters, how often acti-
vations are maximized on the a = b diagonal—that is, it depicts how often learned phases
align i.e. ϕa = ϕb. Even beyond inspecting the proximity of samples to this diagonal,
we propose to compare the PADs of architectures according to metrics on the space of
distributions over Zn × Zn, giving an even more precise comparison. In the following sec-
tion, we will provide estimates of the PADs for the aforementioned architectures, as well
as distances between PADs under the maximum mean discrepancy (Gretton et al., 2012,
MMD)—a family of metrics with tractable unbiased sample estimators.

Betti numbers. Betti numbers distinguish the structure of different stages of circuits
across layers. The k-th Betti number βk of a topological manifold counts k-dimensional
holes: β0 counts connected components, β1 counts loops, β2 counts voids enclosed by sur-
faces. For reference, a disc has Betti numbers (β0, β1, β2) = (1, 0, 0), a circle has (1, 1, 0),
and a 2-torus has (1, 2, 1). We estimate the distribution over Betti number vectors corre-
sponding to the set of neurons in a given layer to distinguish the structure of the layers.

4. Discussion and Conclusion

This work set out to clarify whether the Clock and Pizza interpretations (corresponding
to Attention 1.0 and 0.0 architectures respectively) for modular addition implement distinct

3

Extended Abstract Track
Moisescu-Pareja McCracken Wiltzer Daniels Létourneau Love

94.5%

63
.7

%

34.9%

1.43%

96.6%

1.96%
1.4%

77.1%

22.3%

86.8%

11.8%
1.47%

97.3%

1.35%
1.35%

52
.1

%

46
.1

%

1.8%

69
%

30.1%

0.949% 80.1%

18.8%
1.19%

96%
75

.3%

23.6%

1.04%

0.741%
0.37%

86.9%

11.8%
1.31%

92.1%

6.5%
1.44%

96.7%

59
.3

%

39
%

1.63%

73
.8%

24.4%

1.81%
78.5%

19.6%

99.7%

0.137%
0.137%

72
.7%

25.6%

1.74%

99.1%

0.54%
0.36%

68
.8

%

30.5%

0.718% 76
.9%

0.647%

100%
96.5%

3.54%

92.2%

5.68%
2.13%

95.3%

3.62%
1.07%

97%

98.9%

1.41%

98.1%

1.23%
0.705%

90.8%

0.531%
8.67%

97%

100%

1.07%
1.92%

94.9%

3.5%
1.56%

75
%

11.3%

83.2%

1.95%
14.8%

91.3%

2.17%
6.52%

1 0 0 1 3 0 other 1 1 0 1 2 0 1 2 1

MLP-Add MLP-Concat

layer 2 layer 3 logits layer 2 layer 3 logits

1-
la

ye
r

2-
la

ye
r

3-
la

ye
r

1-
la

ye
r

2-
la

ye
r

3-
la

ye
r

2.92%
layer 1layer 1

1.09%2.73%

1.56%

1.12%
2.23%

22.4%

1.82%

0.627%

13.6%

Attention 1.0Attention 0.0

Figure 3: Betti number distributions across layers for 1-, 2-, and 3-layer models (100 seeds
for each model). In layer 1, MLP-Add, Attention 0.0, and Attention 1.0 mostly yield disc-
like representations, while MLP-Concat produces a torus. From the second layer onward,
MLP-Add and both Attention variants converge to either a disc or a circle: the circle
reflects the logits topology (correct answer), while the disc is a transient intermediate that
can persist in later layers. MLP-Concat instead transitions directly to the circle. Across
depth, Attention 0.0 and 1.0 are nearly identical with the latter having fewer transient discs.

or

Embeddings

M
LP

-C
on

ca
t

M
LP

-A
dd

 /
At

te
nt

io
n

Layer 1 Layers 2 to k Logits

Figure 4: PCA projections of embeddings, intermediate pre-activations, and logits (taken
from actual trained models) for MLP-Concat (top) and MLP-Add/Attention variants (bot-
tom). In layer 1, MLP-Add and Attention models form discs like vector addition (Fig. 1),
while MLP-Concat forms a torus (Fig. 3); in later layers and at logits representations in all
models approach circles (angle summation, Fig. 1), but MLP-Concat immediately reaches
a thin angle summation circle after layer 1.

4

Extended Abstract Track
The Geometry and Topology of Modular Addition Representations

circuits or merely reflect superficial differences. Using geometric and topological analyses,
we find that their internal representations are in fact highly similar. The PAD analysis
(Fig. 2) shows that both architectures produce distributions closely aligned with the a = b
diagonal, nearly indistinguishable under MMD (Appendix B for additional experiments
and statistical significance). Betti number analysis (Fig. 3) confirms that their topological
trajectories across layers converge in the same way, while MLP-Concat follows a different
path. Thus, the distinction between “Clock” and “Pizza” is largely illusory: both instantiate
the same underlying circuit, differing more from MLP-Concat than from each other and
MLP-Add.

More broadly, we show that architectures with trainable embeddings approximate the
torus-to-circle map, with differences arising in how this map factors through intermediate
representations. This perspective connects to the manifold hypothesis (Bengio et al., 2013),
which posits that networks discover low-dimensional manifolds underlying data. Our re-
sults demonstrate how high-level architectural choices can induce the learning of the entire
manifold or a projection of it, where the torus of MLP-Concat is the entire manifold and the
vector projection disc-like representation of MLP-Add, Attention 1.0 and 0.0 is a projection.

While our analysis is restricted to modular addition, it illustrates how architectural bias
shapes representational geometry, with broader implications for understanding representa-
tions and interpreting them. Future work should try to understand why these representa-
tions are learned, what aspects of architecture induce representational changes vs. those
that don’t, as well as whether there’s a guiding universal principal that unifies all these
representations–because the embeddings and logits are always the same and the vector
addition disc is a projection of the torus.

5

Extended Abstract Track
Moisescu-Pareja McCracken Wiltzer Daniels Létourneau Love

References

Ulrich Bauer. Ripser: efficient computation of Vietoris-Rips persistence barcodes. J. Appl.
Comput. Topol., 5(3):391–423, 2021. ISSN 2367-1726. doi: 10.1007/s41468-021-00071-5.
URL https://doi.org/10.1007/s41468-021-00071-5.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review
and new perspectives. IEEE transactions on pattern analysis and machine intelligence,
35(8):1798–1828, 2013.

Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy model of universality: Reverse en-
gineering how networks learn group operations. In International Conference on Machine
Learning, pages 6243–6267. PMLR, 2023.

Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Dualities in persistent
(co)homology. Inverse Problems, 27(12):124003, November 2011. ISSN 1361-6420. doi:
10.1088/0266-5611/27/12/124003. URL http://dx.doi.org/10.1088/0266-5611/27/

12/124003.

Darshil Doshi, Aritra Das, Tianyu He, and Andrey Gromov. To grok or not to grok:
Disentangling generalization and memorization on corrupted algorithmic datasets. arXiv
preprint arXiv:2310.13061, 2023.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–
773, 2012.

Andrey Gromov. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023.

Tianyu He, Darshil Doshi, Aritra Das, and Andrey Gromov. Learning to grok: Emergence
of in-context learning and skill composition in modular arithmetic tasks. arXiv preprint
arXiv:2406.02550, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Gavin McCracken, Gabriela Moisescu-Pareja, Vincent Letourneau, Doina Precup, and
Jonathan Love. Uncovering a universal abstract algorithm for modular addition in neural
networks, 2025. URL https://arxiv.org/abs/2505.18266.

Depen Morwani, Benjamin L. Edelman, Costin-Andrei Oncescu, Rosie Zhao, and Sham M.
Kakade. Feature emergence via margin maximization: case studies in algebraic tasks. In
The Twelfth International Conference on Learning Representations, 2024. URL https:

//openreview.net/forum?id=i9wDX850jR.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress
measures for grokking via mechanistic interpretability. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?

id=9XFSbDPmdW.

6

https://doi.org/10.1007/s41468-021-00071-5
http://dx.doi.org/10.1088/0266-5611/27/12/124003
http://dx.doi.org/10.1088/0266-5611/27/12/124003
https://arxiv.org/abs/2505.18266
https://openreview.net/forum?id=i9wDX850jR
https://openreview.net/forum?id=i9wDX850jR
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW

Extended Abstract Track
The Geometry and Topology of Modular Addition Representations

Tao Tao, Darshil Doshi, Dayal Singh Kalra, Tianyu He, and Maissam Barkeshli. (how) can
transformers predict pseudo-random numbers? In Forty-second International Conference
on Machine Learning, 2025. URL https://openreview.net/forum?id=asDx9sPAUN.

Christopher Tralie, Nathaniel Saul, and Rann Bar-On. Ripser.py: A lean persistent homol-
ogy library for python. The Journal of Open Source Software, 3(29):925, Sep 2018. doi:
10.21105/joss.00925. URL https://doi.org/10.21105/joss.00925.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two
stories in mechanistic explanation of neural networks. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?

id=S5wmbQc1We.

7

https://openreview.net/forum?id=asDx9sPAUN
https://doi.org/10.21105/joss.00925
https://openreview.net/forum?id=S5wmbQc1We
https://openreview.net/forum?id=S5wmbQc1We

Extended Abstract Track
Moisescu-Pareja McCracken Wiltzer Daniels Létourneau Love

Appendix A. Additional details

A.1. Training hyperparameters.

All models are trained with the Adam optimizer Kingma and Ba (2014). Number of neurons
per layer in all models is 1024. Batch size is 59. Train/test split: 90%/10%.

Attention 1.0

• Learning rate: 0.00075

• L2 weight decay penalty: 0.000025

Attention 0.0

• Learning rate: 0.00025

• L2 weight decay penalty: 0.000001

MLP-Add and MLP-Concat

• Learning rate: 0.0005

• L2 weight decay penalty: 0.0001

A.2. Constructing representations

In all networks, we cluster neurons together and study the entire cluster at once McCracken
et al. (2025). This is done by constructing an n × n matrix, with the value in entry (a, b)
corresponding to the preactivation value on datum (a, b). A 2D Discrete Fourier Transform
(DFT) of the matrix gives the key frequency f for the neuron. The cluster of preactivations
of all neurons with key frequency f is the n2 × |cluster f | matrix, made by flattening each
neurons preactivation matrix and stacking the resulting vector for every neuron with the
same key frequency.

A.3. Persistent homology

We compute these using persistent homology, applied to point clouds constructed from
intermediate representations at different stages of the circuit, as well as the final logits. This
yields a compact topological signature that captures how the geometry of these represen-
tations evolves across layers, helping us identify when the underlying structure resembles
a disc, torus, or circle. We use the Ripser library for these computations Bauer (2021);
de Silva et al. (2011); Tralie et al. (2018).

For our persistent homology computations, we set the k-nearest neighbour hyperparam-
eter to 250. Our point cloud consists of 592 = 3481 points.

A.4. Remapping procedure

Neuron remapping (McCracken et al., 2025). For a simple neuron of frequency f ,
we define a canonical coordinate system via the mapping:

(a, b) 7→ (a · d, b · d), where d :=

(
f

gcd(f, n)

)−1

mod
n

gcd(f, n)
. (5)

8

Extended Abstract Track
The Geometry and Topology of Modular Addition Representations

This inverse is the modular multiplicative inverse, i.e. for any Zk let x ∈ Zk. Its inverse
x−1 exists if gcd(x, k) = 1 and gives x · x−1 ≡ 1 mod k. This normalizes inputs relative to
the neuron’s periodicity and allows for qualitative and quantitative comparisons.

Appendix B. Statistical significance of our results

B.0.1. Figure 2

We trained 703 models of each architecture, being MLP vec add, Attention 0.0 and 1.0,
and MLP concat, and recorded the locations of the max activations of all neurons across all
(a, b) inputs to the network. We also computed the center of mass of each neuron as this
doesn’t always align with the max preactivation (though it tends to be close).

(a) b

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.0968 0.0000 Moderate difference; highly significant
MLP vec add vs Attention 1.0 0.1239 0.0000 Clear difference; highly significant
MLP vec add vs MLP concat 0.2889 0.0000 Very strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0338 0.0000 Subtle difference; highly significant
Attention 0.0 vs MLP concat 0.1987 0.0000 Strong difference; highly significant
Attention 1.0 vs MLP concat 0.1723 0.0000 Strong difference; highly significant

Table 1: Row 1: Max activation

(a) t

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.0583 0.0000 Small difference; highly significant
MLP vec add vs Attention 1.0 0.0689 0.0000 Moderate difference; highly significant
MLP vec add vs MLP concat 0.2614 0.0000 Very strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0210 0.0084 Subtle difference; highly significant
Attention 0.0 vs MLP concat 0.2126 0.0000 Strong difference; highly significant
Attention 1.0 vs MLP concat 0.1947 0.0000 Strong difference; highly significant

Table 2: Row 2: Center of mass

Table 3: Gaussian-kernel Maximum Mean Discrepancies (MMD) Gretton et al. (2012) and
permutation p-values between the empirical distributions shown in Figure 2. For each
architecture comparison, we sampled 20,000 points from each empirical distribution (de-
rived from histogram-based neuron statistics), then computed the unbiased Gaussian-kernel
MMD with a bandwidth chosen via the pooled median heuristic. Significance was assessed
using 50,000 permutation tests per comparison.

9

Extended Abstract Track
Moisescu-Pareja McCracken Wiltzer Daniels Létourneau Love

B.0.2. Figure 5: Torus distance from the max activation and center of mass
to the line a = b

5 10 15 20 25
0
0

100k

200k

300k

5 10 15 20 25
0
0

250k
200k
150k
100k

50k

5 10 15 20 25
0
0

200k
150k
100k

50k

5 10 15 20 25
0
0

25k
20k
15k
10k

5k

5 10 15 20 25
0
0

100k

200k

300k

5 10 15 20 25
0
0

200k

150k

100k

50k

5 10 15 20 25
0
0

50k

100k

150k

5 10 15 20 25
0
0

10k

20k

30k

Shortest torus‑distance from diagonal (a=b) to: max activation (row 1); center of mass (row 2)

distance distance distance distance

co
un

ts
co

un
ts

MLP-Add avg: 0.00 Attention 0.0 avg: 4.68 Attention 1.0 avg: 5.81 MLP-Concat avg: 14.69

MLP-Add avg: 0.00 Attention 0.0 avg: 2.77 Attention 1.0 avg: 3.60 MLP-Concat avg: 13.48

M
ax activation

C
enter of m

ass

distance distance distance distance

Figure 5: Histograms of torus-distance from each neuron’s phase to the diagonal a = b,
across 703 trained models. MLP-Add neurons align perfectly with the diagonal, Atten-
tion 0.0 and 1.0 show increasing off-diagonal spread, and MLP-Concat exhibits broadly
distributed activations on the torus.

We trained 703 models of each architecture with 512 neurons in its hidden layer (MLP
vec add, Attention 0.0 and 1.0, and MLP concat), and recorded the a, b value of where
the max activation of a neuron takes place across all (a, b) inputs to the network and all
neurons. We also computed the (a, b) values for the location of the center of mass of each
neuron as this doesn’t always align with the max preactivation (though it tends to be close).
Then we compute the shortest torus distance from the point of the max activation or the
center of mass, to the line a = b.

Appendix C. Previous interpretability metrics (Zhong et al., 2023)

C.1. Definitions

Gradient symmetricity measures, over some subset of input-output triples (a, b, c), the
average cosine similarity between the gradient of the output logit Q(a,b,c) with respect to
the input embeddings of a and b. For a network with embedding layer E and a set S ⊆ Z3

p

of input-output triples:

sg =
1

|S|
∑

(a,b,c)∈S

sim

(
∂Qabc

∂Ea
,
∂Qabc

∂Eb

)

where sim(u, v) = u·v
∥u∥∥v∥ is the cosine similarity. It is evident that sg ∈ [−1, 1].

Distance irrelevance quantifies how much the model’s outputs depend on the distance
between a and b. For each distance d, we compute the standard deviation of correct logits
over all (a, b) pairs where a − b = d and average over all distances. It’s normalized by the
standard deviation over all data.

10

Extended Abstract Track
The Geometry and Topology of Modular Addition Representations

Table 4: Gaussian-kernel Maximum Mean Discrepancies (MMD) Gretton et al. (2012) and
permutation p-values between the empirical distributions shown in Figure 5. For each archi-
tecture comparison, we sampled 2000 points from each empirical distribution (derived from
histogram-based neuron statistics), then computed the unbiased Gaussian-kernel MMD with
a bandwidth chosen via the pooled median heuristic. Significance was assessed using 5000
permutation tests per comparison.

(a) t

Table 5: Row 1: Max activation

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.3032 0.0000 Strong difference; highly significant
MLP vec add vs Attention 1.0 0.3888 0.0000 Very strong difference; highly significant
MLP vec add vs MLP concat 0.9508 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0705 0.0000 Moderate difference; highly significant
Attention 0.0 vs MLP concat 0.6323 0.0000 Very strong difference; highly significant
Attention 1.0 vs MLP concat 0.5695 0.0000 Very strong difference; highly significant

(a) t

Table 6: Row 2: Center of mass

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.7727 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.7517 0.0000 Extremely strong difference; highly significant
MLP vec add vs MLP concat 0.9148 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0520 0.0006 Moderate difference; highly significant
Attention 0.0 vs MLP concat 0.7022 0.0000 Very strong difference; highly significant
Attention 1.0 vs MLP concat 0.6391 0.0000 Very strong difference; highly significant

Formally, let Li,j = Qij,i+j be the correct logit matrix. The distance irrelevance q is
defined as:

q =

1
p

∑
d∈Zp

std({Li,i+d|i ∈ Zp})
std({Li,j |i, j ∈ Zp})

where q ∈ [0, 1], with higher values indicating greater irrelevance to input distance.

C.2. Results of evaluation

Figure 6 shows the mean and standard deviation of the gradient symmetricity and distance
irrelevance metrics from Zhong et al. (2023). Unlike Zhong et al. (2023), who report gradient
symmetricity results over a randomly selected subset of 100 input-output triples (a, b, c) ∈
Z3
p, we compute the metric exhaustively across all 593 = 205, 370 triples to add accuracy.

11

Extended Abstract Track
Moisescu-Pareja McCracken Wiltzer Daniels Létourneau Love

MLP-Add and MLP-Concat cluster on opposite extremes, implying the metrics just
identify whether neurons have phases ϕa ̸= ϕb. MLP-Add models have high gradient sym-
metricity and low distance irrelevance and MLP-Concat models have low gradient sym-
metricity and high distance irrelevance. Attention 1.0 models span a wide range between
these extremes depending on two factors: 1) how well the frequencies they learned inter-
sect and 2) how well neurons are able to get their activation center of mass away from the
ϕa = ϕb line. Attention 0.0 is closer to MLP-Add than Attention 1.0 because it’s harder
for this architecture to learn ϕa ̸= ϕb. Notably, failure cases exist using both: neither
metric distinguishes between Attention 1.0 and 0.0 models. While their metrics
were intended to distinguish between Clock and Pizza, we show that they are not really
able to and this makes sense because Clock and Pizza are not actually different.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

MLP-Add

Attention 0.0

Attention 1.0

MLP-Concat

Per‑architecture gradient symmetricity & distance irrelevance

avg gradient symmetricity avg distance irrelevance

s
t
d
 g

r
a
d
ie

n
t
 s

y
m

m
e
t
r
ic

it
y

s
t
d
 d

is
t
a
n
c
e
 i
r
r
e
le

v
a
n
c
e

Figure 6: Evaluation of gradient symmetricity (left) and distance irrelevance (right). Each
point shows the average (avg) and standard deviation (std) of one trained network. MLP-
Add and MLP-Concat lie at nearly opposite extremes, while attention 0.0 and 1.0 overlap
substantially. Gradient symmetricity separates Attention 1.0 better, but neither metric
always distinguishes between Attention 1.0 and 0.0.

C.2.1. MMD analysis

MMD results for these two metrics are reported below, again showing that the distance
between attention 0.0 and attention 1.0 models is small. This is the case even those these
metrics were chosen to differentiate between the two architectures.

Using just the x-axis (since the y-axis on those plots is the std dev) MMD results are
presented next.

We can conclude that the attention transformers are far from vector addition, and very
close to each other under all metrics.

12

Extended Abstract Track
The Geometry and Topology of Modular Addition Representations

Table 7: Permutation–test MMDs on the empirical gradient symmetricity and distance
irrelevance distributions across all architectures. All p-values are ≤ 10−6 (reported as
0.0000).

(a) t

Table 8: Gradient symmetricity (2-D: avg and std)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 1.2725 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.9688 0.0000 Extremely strong difference; highly significant
MLP vec add vs MLP concat 1.3471 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.7750 0.0000 Very strong difference; highly significant
Attention 0.0 vs MLP concat 1.3503 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.2360 0.0000 Extremely strong difference; highly significant

(a) t

Table 9: Distance irrelevance (2-D: avg and std)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.7534 0.0000 Very strong difference; highly significant
MLP vec add vs Attention 1.0 0.7079 0.0000 Very strong difference; highly significant
MLP vec add vs MLP concat 1.2488 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.2078 0.0000 Moderate difference; highly significant
Attention 0.0 vs MLP concat 1.2255 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.0990 0.0000 Extremely strong difference; highly significant

13

Extended Abstract Track
Moisescu-Pareja McCracken Wiltzer Daniels Létourneau Love

Table 10: Permutation-test MMDs on scatter-plot averages only (1-D). All p–values are
≤ 10−6, so every difference is “highly significant.” Note that the distance between attention
0.0, attention 1.0, and MLP vec add is large, implying they are not performing vector
addition.

(a) t

Table 11: Row 3: Gradient symmetricity (avg only)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 1.2755 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.9842 0.0000 Extremely strong difference; highly significant
MLP vec add vs MLP concat 1.3833 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.7726 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs MLP concat 1.3802 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.2559 0.0000 Extremely strong difference; highly significant

(a) t

Table 12: Row 4: Distance irrelevance (avg only)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.7739 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.7268 0.0000 Very strong difference; highly significant
MLP vec add vs MLP concat 1.2501 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.2109 0.0000 Strong difference; highly significant
Attention 0.0 vs MLP concat 1.2443 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.1093 0.0000 Extremely strong difference; highly significant

14

Extended Abstract Track
The Geometry and Topology of Modular Addition Representations

15

	Introduction
	Background and Setup
	Methodology
	Discussion and Conclusion
	Additional details
	Training hyperparameters.
	Constructing representations
	Persistent homology
	Remapping procedure

	Statistical significance of our results
	Figure 2
	Figure 5: Torus distance from the max activation and center of mass to the line a=b

	Previous interpretability metrics zhong2023the
	Definitions
	Results of evaluation
	MMD analysis

