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Abstract
The tension between persuasion and privacy preservation is com-

mon in real-world settings. Online platforms should protect the

privacy of web users whose data they collect, even as they seek to

disclose information about these data (e.g., to advertisers). Similarly,

hospitals may share patient data to attract research investments

with the obligation to preserve patients’ privacy. To address these

issues, we study Bayesian persuasion under differential privacy

constraints, where the sender must design an optimal signaling

scheme for persuasion while guaranteeing the privacy of each

agent’s private information in the database. To understand how

privacy constraints affect information disclosure, we explore two

perspectives within Bayesian persuasion: one views the mechanism

as releasing a posterior about the private data, while the other views

it as sending an action recommendation.

The posterior-based formulation leads to privacy-utility trade-

offs, quantifying how the tightness of privacy constraints impacts

the sender’s optimal utility. For any instance in a common utility

function family and a wide range of privacy levels, a significant

constant gap in the sender’s optimal utility can be found between

any two of the three conditions: 𝜖-differential privacy constraint,

relaxation (𝜖, 𝛿)-differential privacy constraint, and no privacy con-
straint. We further geometrically characterize optimal signaling

schemes under popular privacy constraints (𝜖-differential privacy,

(𝜖, 𝛿)-differential privacy and Rényi differential privacy), which

turns out to be equivalent to finding concave hulls in constrained

posterior regions. Finally, we develop polynomial-time algorithms

for computing optimal differentially private signaling schemes.
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• Theory of computation→ Algorithmic game theory.

Keywords
Bayesian persuasion, Differential privacy, Information design
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1 Introduction
Online advertising platforms frequently hold auctions for advertis-

ing space and provide advertisers with user data to inform bidding

decisions. However, as platforms prioritize their own profits over
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advertisers’, they must carefully design data publication mecha-

nisms that incentivize advertisers to purchase ad space regardless

of advertisers’ profits.

This is a typical real-world situation of Bayesian persuasion, a

model formalized by Kamenica and Gentzkow [31] where one party

called receiver relies on information owned by another party called

sender for decision-making. The informed sender can strategically

design and commit an information-releasing mechanism, which is

also called a signaling scheme, to persuade the receiver to act in the

sender’s interest.

Yet in releasing information to persuade advertisers, platforms

may disclose users’ private data, including age, gender, location,

and interests. Thus, platforms must balance two competing goals:

releasing helpful data to persuade purchase and preserving user

privacy. Similar persuasion-privacy tensions arise in other examples.

Hospitals may share patient data to attract research investments

while preserving patients’ privacy. Communities may publicize

aggregated health statistics to encourage healthy habits without

releasing details of specific residents.

In this paper, we provide a framework to study Bayesian persua-

sion under privacy constraints. To discuss data publication mech-

anism design, we model information owned by the sender, a.k.a.

state of nature, as a database of binary trait responses from sev-

eral agents. For privacy constraints, we adopt differential privacy,

which is a standard privacy notion for information release. In gen-

eral, it bounds changes in output distribution induced by small input

alterations, such as changing a single user’s data. Therefore, the sig-

naling scheme committed by the sender should provide differential

privacy guarantees for each agent’s data in the state.

Under our differentially private Bayesian persuasion framework,

we will illustrate what the optimal signaling scheme looks like un-

der different types of differential privacy constraints, discuss how

the tightness of privacy constraints influences the sender’s optimal

utility, and show how to efficiently compute the optimal scheme.

The problem can be modeled as two equivalent forms of program-

ming: one views it as the sender sending an action recommendation

to the receiver and another as the sender releasing a posterior belief

to transform the receiver’s prior belief about an unknown state.

By toggling between these two programs, we geometrically char-

acterize and efficiently compute the optimal differentially private

signaling scheme for persuasion.

1.1 Outline of Main Results
We primarily focus on the classic Bayesian persuasion setting pro-

posed by Kamenica and Gentzkow [31] featuring one sender and

one receiver, while we also provide some results for a more general

multi-receiver setting. For privacy constraints, we mainly consider

the constraints of pure differential privacy (or 𝜖-DP) and approx-

imate differential privacy (or (𝜖, 𝛿)-DP) [23, 24], but also extend

results to Rényi differential privacy [41]. We model the state in the

Bayesian persuasion model as the dataset of several agents, each

1
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with a sensitive binary type. Neighboring datasets differ by only

one agent’s type, with all other agents’ types remaining the same.

The signaling scheme designed by the sender should guarantee the

privacy of each agent by preserving differential privacy between

all neighboring datasets.

We begin by considering single-agent cases where both the state

and action spaces are binary. Using posterior-based programming,

the optimal signaling scheme is straightforward to compute by

restricting the region where the posterior satisfies the privacy con-

straints. However, feasible regions diverge significantly between

pure and approximate differential privacy.

Our first main result analyzes the inherent tradeoff between

privacy and utility, quantifying how increasingly stringent privacy

guarantees impact the optimal utility achievable by the sender. For

any instance in a class of utility functions with diverse application

scenarios such as the advertising example introduced above, we

show a significant constant utility gap for the sender between pure

and approximate differential privacy across a wide range of privacy

parameters (Theorem 3.4). Furthermore, a similar gap persists be-

tween differential privacy and no privacy constraint. Our results

suggest that even slight relaxations from pure to approximate differ-

ential privacy significantly widen the feasible region and achievable

payoffs. This sensitivity suggests the sender could pursue looser

privacy constraints to enable substantially more utility.

We then consider more general cases with multiple agents where

the state is an 𝑛-dimensional binary vector. Under 𝜖-DP, the sender

faces a standard Bayesian persuasion problem. The posterior-based

programming suggests that the sender should choose a distribution

over posterior beliefs that the expectation matches the prior belief,

to maximize the expectation of a special objective function parame-

terized by posteriors. Also, all posteriors in support of distribution

should satisfy a set of linear privacy constraints. The characteri-

zation from Schmutte and Yoder [45] extends naturally, which is

to find the concave hull of the objective function over the poste-

rior space, restricted to a certain region, in order to determine the

optimal signaling scheme.

However, when 𝛿 > 0, the situation becomes much more com-

plex. The main issue is that feasible regions now depend jointly

across posteriors rather than admitting fixed constraints. Our sec-

ond main result (Theorem 4.7) relates privacy constraints to ex ante

constraints introduced in [5]. By including the privacy constraint

dimensions and expanding the posterior space, we can character-

ize the optimal signaling scheme with the concave hull in certain

regions. Also, Rényi differential privacy permits analogous charac-

terization.

Our third main result turns to algorithmic aspects of Bayesian

persuasion, exploring the more general multi-receiver setting. One

potential concern with the geometric characterization is the expo-

nential growth of the state space with the number of agents, leading

to exponentially more variables in the programming and making

it hard to find an efficient algorithm. However, real-world persua-

sion usually depends only on population statistics, not specific data

points. Schmutte and Yoder [45] introduce a simplified oblivious

signaling family where payoffs rely solely on statistic values rather

than detailed data sources. Under natural assumptions, oblivious

schemes optimally persuade compared with all possible schemes,

collapsing the state space polynomially. We show this reduction

result also holds in our Bayesian persuasion model.

However, to establish our third main result (Theorem 5.2), an-

other concern is that the signal space has to be exponential in the

number of receivers, leading to intractably many variables in the

action-based programming. We find an efficient separation oracle

for its dual program under mild assumptions, and then oblivious sig-

naling provides a tractable approach to multi-receiver differential

privacy persuasion.

1.2 Related Work
First introduced by Kamenica and Gentzkow [31], the study of

Bayesian persuasion has been driven by many real-world applica-

tions including criminal justice [31], security [42, 48], rooting [9],

recommendation systems [39], auctions [10, 26], voting [1, 14] and

queuing [36]. Our work is motivated by online advertising auctions,

where the platform wants to persuade advertisers to buy advertis-

ing spaces. In these applications and others, more factors need to be

considered, leading to many variants of the original model, such as

limited communication capacity [28, 35], ordered state and action

spaces [40], non-linear preference [34], the need of purchasing and

selling information for sender [6, 7, 21], lack of knowledge about

receivers [4, 12, 22] and so on (see surveys [8, 17, 30]).

The sender’s problem of optimally releasing information about

the state to maximize her payoff can be formulated in three main

ways. The first models this as a choice of posterior distributions

that are convex combinations of the prior [5, 16, 21, 31]. The second

assumes the sender recommends an action as a function of the

underlying state, which the receiver should find in their interest to

follow [18, 19, 27, 33, 44, 46]. The third does not explicitly identify

the optimal signal structure but rather characterizes the sender’s

optimal expected payoff via a concave envelope [37, 38]. Our work

employs both the first formulation, to help characterize optimal

signaling schemes, as well as the second, to enable efficient compu-

tation of optimal schemes. Following Dughmi and Xu [19], there

are also many works considering algorithmic aspects of Bayesian

persuasion, studying in the algorithmic game theory and theory of

computation literature [2, 3, 12, 13, 15, 20, 28, 29, 47].

The most closely related work is Schmutte and Yoder [45], which

considers differential privacy for information design problems. The

key distinction from our setting is their focus on maximizing the

receiver’s utility. In other words, the sender’s and receiver’s utilities

align, so the sender chooses a privacy-preserving mechanism to

maximize value for end users. In contrast, our setting assumes

misaligned sender and receiver utilities, which combined with the

privacy constraints, leads to a more complex optimal mechanism.

We also discuss different types of differential privacy and their

influence on optimal signaling, while Schmutte and Yoder [45] only

considers the standard 𝜖-DP.

Another relevant thread studies differential privacy, initiated

by Dwork et al. [24]. Dwork et al. [23] proposed the widely-used

relaxation (𝜖, 𝛿)-DP, which provides comparable privacy protec-

tion as pure 𝜖-DP [32] but enables substantially more useful analy-

ses. Dwork and Rothblum [25] put forth concentrated differential

privacy, while Bun and Steinke [11] introduce zero-concentrated

2
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differential privacy using Rényi divergence to capture privacy re-

quirements [43]. Building on this, [41] proposes Rényi differential

privacy, closely related to zero-concentrated differential privacy

but focusing on single moments of the privacy variable.

2 Model and Preliminaries
2.1 Basic Setting
We consider a standard information disclosure setup as widely

studied in the differential privacy literature. A database contains 𝑛

agents, each with a sensitive binary type 𝜃𝑖 ∈ {0, 1} (e.g., the agent
is a targeted user of the advertiser or not). Let 𝜃 = (𝜃1, . . . , 𝜃𝑛)
denote the profile containing all agents’ types. We also refer to 𝜃

as the state of the database. Let Θ ⊆ {0, 1}𝑛 contain all possible

states and 𝜇 ∈ Δ(Θ) denote a common prior belief over the states.

Notably, 𝜇 may have a support that is exponential in 𝑛.

A sender looks to release information about the state 𝜃 by de-

signing a signaling scheme. One or multiple receivers will use the
released information for their own decision-making. Use 𝑡 to denote

the number of receivers. Formally, before observing the state, the

sender designs a signaling scheme (𝑆, 𝜋), sending separate signals

𝑠1, · · · , 𝑠𝑡 to each receiver, where 𝑆 is some countable set of signals
and 𝜋 : Θ → Δ(𝑆𝑡 ) is a signaling scheme which maps each state

to a distribution over signals in 𝑆 , with 𝜋 (𝑠 | 𝜃 ) representing the

probability of sending signal 𝑠 = (𝑠1, · · · , 𝑠𝑡 ) when the state is 𝜃 .

Similar to 𝜇, the information releasing mechanism 𝜋 is also assumed

to be publicly known.

After observing the signal 𝑠★, receiver 𝑖 updates its belief to the

posterior𝑞𝑠★ (𝜃★) =
∑
𝑠 :𝑠𝑖=𝑠

★ 𝜇 (𝜃★)𝜋 (𝑠 | 𝜃★)/∑𝜃 ∈Θ ∑
𝑠 :𝑠𝑖=𝑠

★ 𝜇 (𝜃 )𝜋 (𝑠 |
𝜃 ), which represents the probability that the true state is 𝜃★ condi-

tioned on observing signal 𝑠★. The utility of receiver 𝑖 can be repre-

sented as a function𝑢𝑖 : 𝐴×Θ → R, depending on his action and the
underlying state. Receiver 𝑖 then selects an action 𝑎𝑖 that maximizes

its expected utility from the finite set 𝐴 based on this posterior be-

lief. Mathematically, 𝑎𝑖 = argmax𝑎∈𝐴 E𝜃∼𝑞𝑠★ [𝑢𝑖 (𝑎, 𝜃 )]. The sender
has a different utility function 𝑣 : 𝐴𝑡 × Θ → R, depending on each

receiver’s action and the underlying state. This gives rise to the

sender’s strategic information releasing (also known as persuasion

[30]) due to misaligned incentives. We use 𝑢1 (𝑎1, 𝜃 ), · · · , 𝑢𝑡 (𝑎𝑡 , 𝜃 ),
𝑣 (𝑎1, 𝑎2, · · · , 𝑎𝑡 , 𝜃 ) to denote the receivers’ and sender’s utilities,

respectively.

For the main part, we also assume the sender’s utility can be

expressed as the sum of each receiver’s utility individually. Mathe-

matically, 𝑣 (𝑎1, 𝑎2, · · · , 𝑎𝑡 , 𝜃 ) =
∑
𝑖 𝑣𝑖 (𝑎𝑖 , 𝜃 ). Therefore, the problem

can be easily reduced to the single receiver setting by designing the

signaling scheme independently for each receiver. For the simplic-

ity of presentation, we consider the single receiver in the following

and come back to general cases in Section 5.

2.2 Privacy Constraints to Information
Disclosure

When releasing information to the receiver, the sender must guar-

antee the privacy of each agent hence cannot release too much

information about each agent’s type 𝜃𝑖 . To quantify the privacy

loss, we adopt standard privacy definitions from the literature of

differential privacy.

The definitions of differential privacy are based on the notion of

adjacent state pairs. Specifically, we say 𝜃, 𝜃 ′ adjacent if and only

if they have only one different bit, that is (𝜃, 𝜃 ′) ∈ 𝑋 ⇔ ∃𝑖, 𝜃𝑖 ≠
𝜃 ′
𝑖
, 𝜃−𝑖 = 𝜃 ′−𝑖 . 𝑋 is the set of all adjacent pairs here.

We also investigate scenarios where privacy protection is not

required for every bit, a setting referred to as partial privacy in this

paper
1
. We define a set 𝑀 ⊆ [𝑛] to represent all bits in the state

that require privacy protection and adjust the definition of adjacent

pairs to (𝜃, 𝜃 ′) ∈ 𝑋𝑀 ⇔ ∃𝑖 ∈ 𝑀,𝜃𝑖 ≠ 𝜃 ′𝑖 , 𝜃−𝑖 = 𝜃
′
−𝑖 . 𝑋𝑀 is the set

of all adjacent pairs here. For simplicity of presentation, we still

assume that the sender needs to protect privacy for all bits in the

rest of the paper, i.e. 𝑀 = [𝑛], and all of our results can be easily

extended to the partial privacy setting.

Our main focus will be (𝜖, 𝛿)-DP as well as an important special

case of it simply by setting 𝛿 = 0, i.e., the 𝜖-DP.

Definition 2.1 ((𝜖, 𝛿)-DP [23]). A signaling scheme (𝑆, 𝜋) preserves
(𝜖, 𝛿)-DP if for all subsets of signals𝑊 ⊂ 𝑆 and all (𝜃, 𝜃 ′) ∈ 𝑋 , we
have2 ∑︁

𝑠∈𝑊
𝜋 (𝑠 |𝜃 ) ≤ 𝑒𝜀

∑︁
𝑠∈𝑊

𝜋 (𝑠 |𝜃 ′) + 𝛿.

Specifically, when 𝛿 = 0, it leads to a special case 𝜖-DP that

𝜋 (𝑠 |𝜃 ) ≤ 𝑒𝜖𝜋 (𝑠 |𝜃 ′), for any 𝑠 ∈ 𝑆 and (𝜃, 𝜃 ′) ∈ 𝑋 .

For clarity, we always assume 𝛿 > 0 when using (𝜖, 𝛿)-DP and

the special case of 𝛿 = 0 is denoted as 𝜖-DP.

Besides the most common definition of (𝜖, 𝛿)-DP, we also ex-

tend our results to Rényi differential privacy, which proves useful

for theoretical analysis across a broad spectrum of problems. The

definitions and results are delayed to Appendix A.

2.3 Sender’s Objective
When choosing the signaling scheme under (𝜖, 𝛿)-DP, the sender
maximizes the expected value of his payoff. Formally, the sender

solves Program 1
3
.

Here the objective function is the expected utility of the sender

under the signaling scheme (𝑆, 𝜋). The first constraint line shows
that the expected utility of the receiver taking action 𝑎𝑠 , upon

observing signal 𝑠 , must be greater than all other alternative actions.

The third and fourth constraint guarantees the feasibility of the

signaling scheme.

Note that Program (1) is almost the standard LP formulation for

optimal Bayesian persuasion (see, e.g., [19]). The only new compo-

nent is the second constraint, which guarantees (𝜖, 𝛿)-DP. However,
this difference is non-trivial. Indeed, the number of inequalities ex-

pressed in the second constraint is exponential in the number of

signals since the DP constraint has to hold for every subset of

signals𝑊 .

1
The range of privacy guarantees varies in real-world examples. In advertising auctions,

for instance, some users may consent to data sharing, obviating platform privacy

obligations. Databases may also contain non-sensitive attributes like the size, location,

and stability of ad spaces, and only user traits require privacy protection.

2
For partial privacy, we only need to substitute 𝑋𝑀 for 𝑋 . This also holds for other

similar equations in the following.

3
For the special case 𝜖-DP, privacy constraints can be written as: 𝜋 (𝑠 |𝜃 ) ≤
𝑒𝜖𝜋 (𝑠 |𝜃 ′ ), for all 𝑠 ∈ 𝑆 and (𝜃, 𝜃 ′ ) ∈ 𝑋 .

3
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(𝑆,𝜋 )

∑︁
𝜃

∑︁
𝑠

𝜋 (𝑠 |𝜃 )𝜇 (𝜃 )𝑣 (𝑎𝑠 , 𝜃 )

s.t.

∑︁
𝜃

𝑢 (𝑎𝑠 , 𝜃 )𝜋 (𝑠 |𝜃 )𝜇 (𝜃 ) ≥
∑︁
𝜃

𝑢 (𝑎′, 𝜃 )𝜋 (𝑠 |𝜃 )𝜇 (𝜃 ),

for all 𝑠 ∈ 𝑆, 𝑎′ ∈ 𝐴∑︁
𝑠∈𝑊

𝜋 (𝑠 |𝜃 ) ≤ 𝑒𝜖
∑︁
𝑠∈𝑊

𝜋 (𝑠 |𝜃 ′) + 𝛿, for all𝑊 ⊂ 𝑆, (𝜃, 𝜃 ′) ∈ 𝑋∑︁
𝑠

𝜋 (𝑠 |𝜃 ) = 1, for all 𝜃 ∈ Θ

𝜋 (𝑠 |𝜃 ) ≥ 0, for all 𝜃 ∈ Θ, 𝑠 ∈ 𝑆 (1)

Alternative formulation in the posterior space. It turns out that
Program (1) can be reformulated in the form of posteriors. Let the

receiver’s posterior after seeing signal s be 𝑞𝑠 . The receiver will

choose action 𝑎★(𝑞𝑠 ) = argmax𝑎∈𝐴 E𝜃∼𝑞𝑠 [𝑢 (𝑎, 𝜃 )]. The sender’s
utility can be written as 𝑉 (𝑞𝑠 ) = E𝜃∼𝑞𝑠 [𝑣 (𝑎★(𝑞𝑠 ), 𝜃 )]. The prob-
lem can then be seen as the sender choosing a distribution 𝜏 over

posteriors that the expectation matches the prior, and maximizing

the expectation of 𝑉 [31], while also adhering to specified privacy

constraints. Mathematically, the reorganized program is
4

max

𝜏
E𝑞𝑠∼𝜏 [𝑉 (𝑞𝑠 )]

𝑠 .𝑡 . E𝑞𝑠∼𝜏 [𝑞𝑠 (𝜃 )] = 𝜇 (𝜃 ), for all 𝜃 ∈ Θ∑
𝑞𝑠 ∈𝑄

𝑞𝑠 (𝜃 )𝜏 (𝑞𝑠 )
𝜇 (𝜃 ) ≤ 𝑒𝜖 ∑

𝑞𝑠 ∈𝑄
𝑞𝑠 (𝜃 ′ )𝜏 (𝑞𝑠 )

𝜇 (𝜃 ) + 𝛿,
for all 𝑄 ⊂ 𝑠𝑢𝑝𝑝 (𝜏) and (𝜃, 𝜃 ′) ∈ 𝑋

. (2)

In the following, we will selectively use Program (1) and Program

(2) as needed based on the results.

3 Privacy-Utility Tradeoffs
Under the imposed privacy constraints, the sender’s expected util-

ity will be restricted as the information can no longer be dis-

closed freely. In this section, we investigate how different privacy

constraints, including 𝜖-DP, (𝜖, 𝛿)-DP, or no privacy, impact the

sender’s optimal signaling scheme and expected utility.

We start with a simple case where there is only one agent with

a binary type 𝜃 ∈ {0, 1} and the action space is binary. The prior

𝜇 represents the probability that the agent’s type is 1. For a large

family of utility functions satisfying modest natural assumptions

stated later, we show significant utility gaps exist between any

two of three types of constraints (Theorem 3.4, Proposition 3.6,

Proposition 3.7, Proposition 3.9). Such utility gaps are caused by

essential difference in the geometry of the feasible regions under

𝜖-DP versus (𝜖, 𝛿)-DP (Proposition 3.1).

All missing proofs in this section can be found in Appendix C.

3.1 Warm-up: Characterization for the Single
Agent Case

We first show that using two signals is enough to give an optimal

signaling scheme in the single-agent case. For the special case 𝜖-DP,

this means the two posteriors cannot be too far away from the

prior. However, under (𝜖, 𝛿)-DP, the feasible region of posteriors

4
Also, for the special case 𝜖-DP, privacy constraints can be written as

𝑞𝑠 (𝜃 )𝜇 (𝜃 ′ )
𝑞𝑠 (𝜃 ′ )𝜇 (𝜃 ) ≤

𝑒𝜖 , for all 𝑞𝑠 ∈ 𝑠𝑢𝑝𝑝 (𝜏 ) and (𝜃, 𝜃 ′ ) ∈ 𝑋 .

becomes more complex. Specifically, the feasible region for one pos-

terior probability depends on the realization of the other posterior

probability. To demonstrate this distinction, we depict the feasible

regions under 0.2-DP and (0.2, 0.01)-DP in Figure 1.

Proposition 3.1. Consider any signaling scheme for the single-agent
situation. Then we have

• There always exists an optimal signaling scheme that uses at
most two signals.

• The scheme preserves 𝜖-DP if and only if the posterior 𝑞𝑠
of any induced signal 𝑠 is in the interval [𝜇/(𝑒𝜖 − 𝑒𝜖𝜇 +
𝜇), 𝜇/(𝑒−𝜖 − 𝑒−𝜖𝜇 + 𝜇)].

• The scheme preserves (𝜖, 𝛿)-DP if and only if the two posteri-
ors 𝑞𝑠1 ≤ 𝑞𝑠2 satisfy the following inequalities:

0 ≤ 𝑞𝑠1 ≤ 𝜇 ≤ 𝑞𝑠2 ≤ 1, 𝑞𝑠1
(
𝐶1𝑞𝑠2 −𝐶2

)
≥ 𝐶3𝑞𝑠2 − 𝜇2,

𝑞𝑠1 (𝐶4𝑞𝑠2 −𝐶5) ≥ 𝐶6𝑞𝑠2 − 𝑒𝜖𝜇2,

where 𝐶1 = 𝑒𝜖 − 𝜇𝑒𝜖 + 𝜇, 𝐶2 = 𝜇 (𝑒𝜖 − 𝜇𝑒𝜖 + 𝜇) + 𝛿𝜇 (1 − 𝜇),
𝐶3 = 𝜇 − 𝛿𝜇 (1 − 𝜇),𝐶4 = 1 − 𝜇 + 𝑒𝜖𝜇,𝐶5 = 𝑒𝜖𝜇 + 𝛿𝜇 (1 − 𝜇),
𝐶6 = 𝜇 (1 − 𝜇 + 𝑒𝜖𝜇) − 𝛿𝜇 (1 − 𝜇).

Figure 1: Feasible regions of posteriors when 𝜇 = 0.5. The pink
region represents possible posteriors (𝑞𝑠1 , 𝑞𝑠2 ) under 0.2-DP.
The total area of pink and blue regions represents possible
posteriors under (0.2, 0.01)-DP.

Proposition 3.1 shows the feasible posterior region 𝐶 under dif-

ferent privacy constraints. We then present a proposition to show

how to compute the maximum utility and the optimal signaling

scheme for the sender given the feasible region. For Program (2),

all (𝑞𝑠1 , 𝑞𝑠2 ) ∈ 𝐶 satisfy privacy constraints. We then only need to

maximize E𝑞𝑠∼𝜏 [𝑉 (𝑞𝑠 )] with the constraint E𝑞𝑠∼𝜏 [𝑞𝑠 ] = 𝜇.

Proposition 3.2. Given the feasible posterior region 𝐶 for (𝑞𝑠1 , 𝑞𝑠2 ),
the maximum utility for sender is

max

(𝑞𝑠
1
,𝑞𝑠

2
) ∈𝐶

(𝑞𝑠2 − 𝜇)𝑉 (𝑞𝑠1 ) + (𝜇 − 𝑞𝑠1 )𝑉 (𝑞𝑠2 )
𝑞𝑠2 − 𝑞𝑠1

and the optimal signaling scheme is inducing 𝑞𝑠1 , 𝑞𝑠2 which makes
the above equation achieve maximum value.

4
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3.2 Utility Gaps
From Proposition 3.1, we observe that though 𝜖-DP can be seen as

a special version of (𝜖, 𝛿)-DP when 𝛿 = 0, their feasible posterior

regions can be fundamentally different. When 𝛿 > 0, it is possible

to have one posterior at an extreme value like 0 or 1, although this

would make the other posterior very close to the prior, thus limiting

the weight of the extreme posterior. Therefore, a key question is

whether this difference in the shape of feasible areas can lead to

a large difference in the sender’s maximum utility. We consider

a large family of utility functions, exemplifying the nature of the

utility functions in the advertising auction example, while also well

applied to many other real-world scenarios. A significant gap in

the sender’s maximum utility under 𝜖-DP and (𝜖, 𝛿)-DP could be

found in this family of utility functions.

We first define the utility function family. Here we use 𝑣 to denote

the sender’s utility function and 𝑢 to denote the receiver’s function.

Definition 3.3. Utility functions (𝑣,𝑢) ∈ Γ if
• 𝑣 is state-independent, which means it is only decided by the

receiver’s action.
• 𝑣 equals 1 facing action 1 and 0 facing action 0.
• The receiver chooses action 0 when the posterior is smaller

than some value, otherwise, she chooses action 1. Let the
threshold be 𝑡 .

Note that the first requirement actually means transparent mo-

tives [38], which is natural in our advertising example and many

other real-world scenarios. The second one is trivial since we can

easily reduce other utilities to this easy case by scaling. The third

one is set to avoid that the receiver will always take one action

regardless of the posterior.

For simplicity of presentation, we define OPT𝑣,𝑢,𝜇 (𝜖, 𝛿) as the
sender’s optimal utility under (𝜖, 𝛿)-DP when the sender and re-

ceiver’s utility functions are (𝑣,𝑢) and the prior is 𝜇. Then OPT𝑣,𝑢,𝜇 (𝜖, 0)
denotes optimal utility under 𝜖-DP. Also, OPT𝑣,𝑢,𝜇 (∞,∞) indicates
the case without privacy constraints.

Utility gap between 𝜖-DP and (𝜖, 𝛿)-DP. An additive utility gap

can be found for any utility functions in Γ between 𝜖-DP and (𝜖, 𝛿)-
DP. Also, it holds between 𝜖1-DP and (𝜖2, 𝛿)-DP when 𝜖1 is slightly

larger than 𝜖2.

Theorem 3.4. For any (𝑣,𝑢) ∈ Γ, if 𝜖1 − 𝜖2 ≤ 𝐶𝛿 for some 𝐶 < 1,
then there exists a 𝜇 such that OPT𝑣,𝑢,𝜇 (𝜖2, 𝛿) − OPT𝑣,𝑢,𝜇 (𝜖1, 0) ≥
(𝑒𝜖2 − 1)/((1 + 𝛿)𝑒𝜖1+𝜖2 − 1).

To prove this theorem, we first strategically choose 𝜇 such that

the sender is unable to obtain positive utility under 𝜖1-DP. How-

ever, under (𝜖2, 𝛿)-DP, the sender can set one posterior equal to 𝑡

while ensuring the other posterior is sufficiently far from the prior,

resulting in the maximum attainable weight of positive utility.

In practice, 𝛿 typically needs to be sufficiently small since the

sender could otherwise directly release one bit of information with

probability 𝛿 [32]. Therefore, when 𝛿 is small but 𝜖1 and 𝜖2 are

moderately large, as is common, the above theorem demonstrates

a constant utility gap.

Corollary 3.5. For any (𝑣,𝑢) ∈ Γ, if 𝛿 ≤ 0.01, 0.01 ≤ 𝜖2 ≤ 𝜖1 ≤ 1

and 𝜖1 − 𝜖2 ≤ 𝐶𝛿 for some 𝐶 < 1, then there exists a 𝜇 such that
OPT𝑣,𝑢,𝜇 (𝜖2, 𝛿) − OPT𝑣,𝑢,𝜇 (𝜖1, 0) ≥ 0.25.

Since in the proof of Theorem 3.4, we actually select a 𝜇 that

makes the sender unable to get positive utility under 𝜖-DP. This

actually implies an arbitrarily large gap between any instances of

the two types of privacy constraints.

Proposition 3.6. For any (𝑢, 𝑣) ∈ Γ, 𝜖1, 𝜖2, 𝛿 > 0, there exists a 𝜇
satisfying that OPT𝑣,𝑢,𝜇 (𝜖2, 𝛿)/OPT𝑣,𝑢,𝜇 (𝜖1, 0) can be arbitrarily large.

Utility gap between 𝜖-DP and no privacy. Also, when there is no

privacy constraint, the sender can achieve better utility. There is

also a large additive gap between 𝜖-DP and no privacy.

Proposition 3.7. For any (𝑣,𝑢) ∈ Γ, there exists a 𝜇 such that
OPT𝑣,𝑢,𝜇 (∞,∞) − OPT𝑣,𝑢,𝜇 (𝜖, 0) ≥ 1/((1 − 𝑡)𝑒𝜖 + 𝑡).

The above proposition implies a constant gap for all 𝜖 < 1.

Corollary 3.8. For any (𝑣,𝑢) ∈ Γ, if 𝜖 ≤ 1, there exists a 𝜇 such
that OPT𝑣,𝑢,𝜇 (∞,∞) − OPT𝑣,𝑢,𝜇 (𝜖, 0) ≥ 0.37.

Utility gap between (𝜖, 𝛿)-DP and no privacy. Moreover, an addi-

tive gap occurs between (𝜖, 𝛿)-DP and no privacy.

Proposition 3.9. For any (𝑣,𝑢) ∈ Γ, there exists a 𝜇 such that

OPT𝑣,𝑢,𝜇 (∞,∞) − OPT𝑣,𝑢,𝜇 (𝜖, 𝛿) ≥
1

2

−min

{
(1 − 𝜇) (𝛿 + 𝑒𝜖 − 1)
(1 − 𝜇) (2𝑒𝜖 − 1) + 𝜇 ,

(1 − 𝜇)𝛿
max{2(1 − 𝜇)𝛿, (1 − 𝜇) (2 − 𝑒𝜖 ) + 𝑒𝜖𝜇}

}
.

The above proposition implies a constant gap when 𝛿 is small

and 𝜖 is not too big.

Corollary 3.10. For any (𝑣,𝑢) ∈ Γ, if 𝛿 ≤ 0.01, 𝜖 ≤ 0.5, there exists
a 𝜇 such that OPT𝑣,𝑢,𝜇 (∞,∞) − OPT𝑣,𝑢,𝜇 (𝜖, 𝛿) ≥ 0.47.

To better illustrate how the optimal signaling scheme and the

sender’s maximum utility differ under varying privacy constraints,

we show an example here.

Example 3.11. An auctioneer aims to sell advertising space that
will be displayed to a single web user, to a particular advertiser. The
auctioneer possesses binary data about whether this user is in the
advertiser’s target customer segment. The auctioneer’s sole objective is
that the advertiser purchases the ad space, that is 𝑣 (1, 𝜃 ) = 1, 𝑣 (0, 𝜃 ) =
0, for 𝜃 ∈ {0, 1}.

For the advertiser, if he chooses not to buy the space, his utility is
a constant 0. If he chooses to buy the space, his utility is 1 when the
web user is the targeted customer and −1 when the web user is not.

𝑢 (0, 𝜃 ) = 0, for 𝜃 ∈ {0, 1}, 𝑢 (1, 0) = −1, 𝑢 (1, 1) = 1.

Then the sender’s utility can be written as

𝑉 (𝑞) =
{
0, 𝑞 < 0.5,

1, 𝑞 ≥ 0.5.

There are several privacy considerations for the sender. One choice
is that the signaling scheme needs to satisfy 𝜖-DP. Another choice is
that it needs to satisfy (𝜖 − 𝛿/2, 𝛿)-DP. We also consider the condition
of no privacy constraint. Here we only consider 𝜖 and 𝛿 less than 1.

The common prior 𝜇 that the user is a targeted customer is (1 −
𝜁 )/(1 + 𝑒𝜖 ). Here 𝜁 is an arbitrarily small positive number.

Without privacy constraint, the optimal signaling scheme using
two signals 𝑠1, 𝑠2 which satisfies 𝑞𝑠1 = 0, 𝑞𝑠2 = 0.5 can give a utility
of 2(1 − 𝜁 )/(1 + 𝑒𝜖 ).
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𝜇 𝑡
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Posterior

Sender’s utility

𝑉 (𝑞)

(a) No privacy

1

1

𝑞𝑠2

𝑞𝑠1

𝜇 𝑡

𝑣𝑚𝑎𝑥

Posterior

Sender’s utility

𝑉 (𝑞)

(b) (0.095, 0.01)-DP

1

1

Feasible region

𝜇 𝑡

𝑣𝑚𝑎𝑥 Posterior

Sender’s utility

𝑉 (𝑞)

(c) 0.1-DP

Figure 2: Different privacy constraints in Example 3.11. 𝑡 = 0.5

and 𝜇 = 0.475. The optimal signaling schemes without privacy
constraints and under (0.095, 0.01)-DP are shown in (a) and (b).
Under 0.1-DP, no signaling scheme can guarantee a positive
utility, and the feasible posterior region is shown in (c).

Under (𝜖 − 𝛿/2, 𝛿)-DP, the optimal signaling scheme using two
signals 𝑠1, 𝑠2 which satisfies

𝑞𝑠1 =

𝑒𝜖−1−2𝜁
𝑒𝜖+𝜁 − 𝛿

( 1

𝑒𝜖+𝜁 + 𝑒𝜖

1−𝜁 ) (𝑒𝜖 − 1 − 2𝜁 ) − 2𝛿
, 𝑞𝑠2 = 0.5

can give a utility of

1 − (1 + 𝜖)𝑞𝑠1
(0.5 − 𝑞𝑠1 ) (1 + 𝑒𝜖 )

.

While under 𝜖-DP, the feasible area for the posterior is[
1 − 𝜁

𝑒2𝜖 + 1 + (𝑒𝜖 − 1)𝜁
,

𝑒𝜖 (1 − 𝜁 )
2𝑒𝜖 (1 − 𝜁 ) + (𝑒𝜖 + 1)𝜁 < 0.5

]
.

Therefore, no signaling scheme can be used to persuade the advertiser
to buy, and the maximum utility of the advertiser is 0.

For a large range of 𝜖 and small 𝛿 , a significant utility gap exists
between any two of the above constraints. To give a numerical example,
we set 𝜖 = 0.1 and 𝛿 = 0.01, then 𝜇 = 0.475(1 − 𝜁 ). Here we omit 𝜁
and use 𝜇 as 0.475.

Without privacy constraints, the sender can design the optimal
signaling scheme 𝑞𝑠1 = 0, 𝑞𝑠2 = 0.5 to get a utility of 0.95, which is
nearly the maximum utility. This is shown in Figure 2(a).

Adding (0.095, 0.01)-DP, the optimal signaling scheme𝑞𝑠1 = 0.445, 𝑞𝑠2 =

0.5 only guarantees a utility of 0.541, which is about half of the utility
under the condition without privacy constraints. This is shown in
Figure 2(b).

However, under 0.1-DP, even if 0.1 is slightly larger than 0.095,
there doesn’t exist a signaling scheme to help the sender get positive
utility. This is shown in Figure 2(c).

4 Characterization of Privacy-Constrained
Bayesian Persuasion

Now we turn to general cases where there are multiple agents and

𝜃 is an n-dimensional binary vector. By using techniques in previ-

ous information design literature ([5, 16, 45]), we obtain general

geometric characterization for different kinds of differential pri-

vacy constraints. For 𝜖-DP, the optimal signaling scheme is finding

the concave hull of the objective function 𝑉 in a feasible region

(Proposition 4.1). However, for (𝜖, 𝛿)-DP privacy, there doesn’t exist
a fixed feasible region to find a concave hull. Through enlarging

the posterior space and modifying objective function 𝑉 , we can

still relate the problem to a concave hull in a constrained region

(Theorem 4.7). These geometrical characterizations also provide

useful methods for determining whether the sender can benefit

from persuasion (Corollary 4.2, Corollary 4.8).

To characterize the optimal signaling scheme and the maximum

utility of the sender, we now give a formal definition of concave hull.

We use𝑘 to denote the number of states, and𝑚 to denote the number

of pairs of adjacent states in 𝑋 which is also the number of privacy

constraints
5
. Note that in the most general setting, both 𝑘 and𝑚

can scale exponentially. However, under reasonable assumptions

stated later, we will show that both quantities can be restricted to

polynomial growth (see Lemma D.2). The concave hull at 𝑥 of the

function 𝑉 in a constrained region 𝐾 is defined as

𝑉 (𝑥 | 𝐾) := max

𝑄⊆𝐾

( ∑︁
𝑞∈𝑄

𝜏 (𝑞)𝑉 (𝑞) :
∑︁
𝑞∈𝑄

𝜏 (𝑞)𝑞 = 𝑥,
∑︁
𝑞∈𝑄

𝜏 (𝑞) = 1,

𝜏 (𝑞) ≥ 0 for all 𝑞 ∈ 𝑄
)
.

5
For partial privacy, we replace 𝑋 with 𝑋𝑀 .
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We also use a function 𝑆𝑉 to represent the set 𝑄 that make up the

concave hull of 𝑉 at 𝑥 :

𝑆𝑉 (𝑥 | 𝐾) := argmax

𝑄⊆𝐾

( ∑︁
𝑞∈𝑄

𝜏 (𝑞)𝑉 (𝑞) :
∑︁
𝑞∈𝑄

𝜏 (𝑞)𝑞 = 𝑥,
∑︁
𝑞∈𝑄

𝜏 (𝑞) = 1,

𝜏 (𝑞) ≥ 0 for all 𝑞 ∈ 𝑄
)
.

Characterization for 𝜖-DP. Schmutte and Yoder [45] discuss the

characterization of 𝜖-DP information design problem, where the

sender’s utility function is the same as the receiver’s. We can di-

rectly extend Theorem 1 in [45] to obtain that the optimal signaling

scheme for Bayesian persuasion under 𝜖-DP is related to the con-

cave hull of 𝑉 in a region of 𝜖-DP posteriors, which is a closed

convex polyhedron. Mathematically, the feasible region 𝐾 (𝜇, 𝜖) is
{𝑞 ∈ Δ(Θ) : 𝑞(𝜃 )𝜇 (𝜃 ′)/(𝑞(𝜃 ′)𝜇 (𝜃 )) ≤ 𝑒𝜖 for all (𝜃, 𝜃 ′) ∈ 𝑋 }. Also,
𝑘 signals suffice for an optimal signaling scheme under 𝜖-DP.

Proposition 4.1 (Schmutte and Yoder [45]). For 𝜖-DP, there exists
a valid optimal signaling scheme such that

• The scheme uses |𝑆𝑉 (𝜇 | 𝐾 (𝜇, 𝜖)) | signals, which is not larger
than 𝑘 .

• The scheme induces posteriors in set 𝑆𝑉 (𝜇 | 𝐾 (𝜇, 𝜖)).
• The optimal utility of the sender is 𝑉 (𝜇 | 𝐾 (𝜇, 𝜖)).

Corollary 4.2. Sender benefits from persuasion under 𝜖-DP if and
only if 𝑉 (𝜇 | 𝐾 (𝜇, 𝜖)) > 𝑉 (𝜇).

Characterization for (𝜖, 𝛿)-DP. However, for (𝜖, 𝛿)-DP, there doesn’t
exist such 𝐾 (𝜇, 𝜖) as 𝜖-DP since the feasible region of one posterior

depends on the specific value of other posteriors, which can be seen

in Proposition 3.1. We first review some important results from

previous work about constrained information design, which is a

more general model. Here is the formulation [5].

max

𝜏
E𝑞∼𝜏 [𝑓 (𝑞)]

𝑠 .𝑡 . E𝑞∼𝜏 [𝑞(𝜃 )] = 𝜇 (𝜃 ), for all 𝜃 ∈ Θ
E𝑞∼𝜏 [𝑔𝑖 (𝑞)] ≤ 𝑐𝑖 , for 𝑖 = 1, 2, · · · , 𝐼
ℎ 𝑗 (𝑞) ≤ 𝑑 𝑗 , for all 𝑞 ∈ 𝑠𝑢𝑝𝑝 (𝜏), 𝑗 = 1, 2, · · · , 𝐽

,

(3)

where the objective is still to pick a distribution over posteriors

that has expectation 𝜇 and satisfies 𝐼 + 𝐽 extra constraints.
Here Babichenko et al. [5] actually define two general families

of constraints: ex ante and ex post. A constraint of the latter type

restricts the admissible values of a certain function of posteriors

for every possible posterior, while a constraint of the former type

restricts only the expectation of such a function. Here we use the

posterior distribution 𝜏 to denote the signaling scheme.

Definition 4.3 (Ex ante Constraints [5]). An ex ante constraint on
a signaling scheme 𝜏 is a constraint of the form E𝑞∼𝜏 [𝑔(𝑞)] ≤ 𝑐 for
continuous 𝑔 : Δ(Θ) → R and a constant 𝑐 ∈ R.

Definition 4.4 (Ex post Constraints [5]). An ex post constraint on a
signaling scheme 𝜏 is a constraint of the form ∀𝑞 ∈ 𝑠𝑢𝑝𝑝 (𝜏), ℎ(𝑞) ≤ 𝑑
for continuous ℎ : Δ(Θ) → R and a constant 𝑑 ∈ R.

For upper semi-continuous objective function 𝑓 , Doval and Skreta

[16] prove that for every set of k states and m ex ante constraints,

there exists a valid optimal signaling scheme with a support size of

at most 𝑘 +𝑚.

Lemma 4.5 ([16]). Fix 𝑘 states, 𝑚 ex ante constraints, and no ex
post constraints. Then either there exists an optimal valid signaling
scheme with support size at most 𝑘 +𝑚 or the set of valid signaling
schemes is empty.

Note that 𝜖-DP constraints satisfy the requirement of ex post

constraints. Babichenko et al. [5] establish a stronger bound that

for 𝑘 states, no ex nate constraints and a set of ex post constraints,

𝑘 signals suffice for the optimal signaling scheme, which matches

with Proposition 4.1.

For Program (3) without ex post constraints(i.e., 𝑗 = 0), Babichenko

et al. [5] connects the value of the program to the concave hull of a

modified version of the objective function 𝑓 , which is introduced

next.

A modified objective function. Let 𝐶 =

{
(�̃�, 𝑐) ∈ Δ(Θ) × R𝐼 :

𝑔𝐼 (�̃�) ≤ 𝑐𝐼

}
. That is, 𝐶 is the subset of Δ(Θ) × R𝐼 which satisfies

a pointwise version of constraints in Program (3). Given 𝐶 , define

the function 𝑓 𝑔 : Δ(Θ) × R𝐼 ↦→ R ∪ {±∞} as follows,

𝑓 𝑔 (�̃�, 𝑐) = 𝑓 (�̃�) − 𝛿 (�̃�, 𝑐 | 𝐶),

where 𝛿 (�̃�, 𝑐 | 𝐶) is the indicator function of 𝐶 , taking value 0 if

(�̃�, 𝑐) ∈ 𝐶 and +∞ otherwise.

Lemma 4.6 ([5]). The value of Program (3) when 𝑗 = 0 coincides
with the value of concave hull of 𝑓 𝑔 at (𝜇, 𝑐).

We now turn to (𝜖, 𝛿)-DP. Under (𝜖, 𝛿)-DP, the program can be

written as

max

𝜏
E𝑞𝑠∼𝜏 [𝑉 (𝑞𝑠 )]

𝑠 .𝑡 . E𝑞𝑠∼𝜏 [𝑞𝑠 (𝜃 )] = 𝜇 (𝜃 ), for all 𝜃 ∈ Θ,∑
𝑞𝑠 ∈𝑄

𝑞𝑠 (𝜃 )𝜏 (𝑞𝑠 )
𝜇 (𝜃 ) ≤ 𝑒𝜖 ∑

𝑞𝑠 ∈𝑄
𝑞𝑠 (𝜃 ′ )𝜏 (𝑞𝑠 )

𝜇 (𝜃 ) + 𝛿,
for all 𝑄 ⊂ 𝑠𝑢𝑝𝑝 (𝜏) and (𝜃, 𝜃 ′) ∈ 𝑋

.

Here the form of privacy constraints poses difficulty to the char-

acterization since it has to traverse all possible subsets of posteriors.

An equivalent but much easier form is

E𝑞𝑠∼𝜏

[
max

{
0,

(
𝑞𝑠 (𝜃 )
𝜇 (𝜃 ) − 𝑒𝜖 𝑞𝑠 (𝜃

′)
𝜇 (𝜃 ′)

)}]
≤ 𝛿, for all (𝜃, 𝜃 ′) ∈ 𝑋 .

A nice observation here is that (𝜖, 𝛿)-DP exactly satisfies the

form of ex ante constraints.

Note that 𝑉 is upper semi-continuous in our discrete setting.

Also, releasing nothing but the prior implies the existence of a

valid signaling scheme, then Lemma 4.5 shows an optimal signaling

scheme under (𝜖, 𝛿)-DP needs not to use more than 𝑘 +𝑚 signals.

Also, Lemma 4.6 implies a geometrical characterization for (𝜖, 𝛿)-
DP, which connects the optimal signaling scheme to the concave

hull of a modified version of the objective function 𝑉 .

A modified objective function for (𝜖, 𝛿)-DP. We modify the func-

tion 𝑉 to take two parts as input rather than a single posterior.

The first part is the original posterior. The second part is an 𝑚-

dimensional input corresponding to each adjacent state pair in the

set 𝑋 . Mathematically, the modified function 𝐹 : Δ(Θ) × R𝑚 ↦→ R
7
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is 𝐹 (𝑞,𝛾) = 𝑉 (𝑞). As for 𝜖-DP, we also define a region for (𝜖, 𝛿)-DP,

𝐶 (𝜇, 𝜖) :=
{
(𝑞,𝛾) ∈ Δ(Θ) × R𝑚 : max

{
0,

(
𝑞(𝜃 )
𝜇 (𝜃 ) − 𝑒

𝜖 𝑞(𝜃 ′)
𝜇 (𝜃 ′)

)}
≤ 𝛾𝜃,𝜃 ′ ,

any (𝜃, 𝜃 ′) ∈ 𝑋
}
.

An example is shown in Figure 3.

Then we can characterize the optimal signaling scheme and

maximum utility with the concave hull of 𝐹 .

Figure 3: The feasible region 𝐶 (𝜇 = 0.5, 𝜖 = 0.2) for (0.2, 𝛿)-
DP under different posteriors while 𝜃 ∈ {0, 1}. Note that the
region is 𝛿-independent. 𝛾1 corresponds to the adjacent pair
(𝜃 = 1, 𝜃 ′ = 0) and 𝛾2 corresponds to the adjacent pair (𝜃 =

0, 𝜃 ′ = 1). 𝑞 represents the probability of state 1.

Theorem 4.7. For (𝜖, 𝛿)-DP, there exists a valid optimal signaling
scheme such that

• The scheme uses |𝑆𝐹 (𝜇, 𝜹 | 𝐶 (𝜇, 𝜖)) | signals, which is not
larger than 𝑘 +𝑚. Here 𝜹 is the𝑚-dimension vector with all
elements 𝛿 .

• The scheme induces posteriors in set 𝑆𝐹 (𝜇, 𝜹 | 𝐶 (𝜇, 𝜖)).
• The optimal utility of the sender is 𝐹 (𝜇, 𝜹 | 𝐶 (𝜇, 𝜖)).

Corollary 4.8. Sender benefits from persuasion under (𝜖, 𝛿)-DP if
and only if 𝐹 (𝜇, 𝜹 | 𝐶 (𝜇, 𝜖)) > 𝑉 (𝜇).

Note that Corollary 4.2 and Corollary 4.8 provide a natural anal-

ysis of the condition where the sender can benefit from the per-

suasion. We can also present some alternative, indirect analyses,

building on the approach of Kamenica and Gentzkow [31], see

Appendix B.

5 Algorithmics of Privacy-constrained Bayesian
Persuasion

In this section, we turn to algorithmic aspects of the persuasion

problem, returning to the formulation in Program (1) with signal

distributions as variables. We consider a general setting with multi-

ple receivers, which means not assuming separate sender’s payoffs

from each receiver any more. Here one concern is the exponential

growth of the state space, thus exponentially more variables and

constraints with more agents. Another key concern is an exponen-

tial action space (namely signal space) in the number of receivers,

inducing exponentially many variables. We show a polynomial

time algorithm under homogeneity assumptions (Theorem 5.2). All

missing proofs can be found in Appendix D.

For the simplicity of presentation, we consider binary actions

here, and the technique can be extended to constant many actions

straightforwardly. Also, we use 𝑡 to denote the number of receivers.

We now present our main result, computing the optimal sig-

naling scheme in polynomial time based on several reasonable

assumptions.

When considering web users’ data in advertising cases, users

are often seen as homogeneous, both in terms of prior and utility

functions. This means the sender and receiver only care about the

aggregate statistics of the database rather than individual users’

data. Let 𝜙 : Θ → Ω be the projection that only considers the

number of 1s in a given state
6
. That is, 𝜙 (𝜃 ) := ∑

𝑖 𝜃𝑖 . We further

assume that the sender only cares about the number of 1 in the

action profile. We denote by 𝑇 ⊂ {1, . . . , 𝑡} the subset of receivers
adopting action 1.

Assumption 5.1. The prior 𝜇, sender’s utility function 𝑣 and re-
ceivers’ utility functions 𝑢1, . . . , 𝑢𝑡 satisfy

• If 𝜙 (𝜃 ) = 𝜙 (𝜃 ′), then 𝜇 (𝜃 ) = 𝜇 (𝜃 ′).
• If 𝜙 (𝜃 ) = 𝜙 (𝜃 ′), then 𝑢𝑖 (𝑇, 𝜃 ) = 𝑢𝑖 (𝑇, 𝜃 ′) and 𝑣 (𝑇, 𝜃 ) =

𝑣 (𝑇, 𝜃 ′) for any 𝑖 and 𝑇 .
• If |𝑇1 | = |𝑇2 |, then 𝑣 (𝑇1, 𝜃 ) = 𝑣 (𝑇2, 𝜃 ) for any 𝜃 .

Theorem 5.2. Under Assumption 5.1, there is a polynomial time
algorithm to compute the optimal signaling scheme.

Proof Sketch of Theorem 5.2. We prove the theorem in three steps.

Step 1. We first show that using the same number of signals

as the number of actions is enough to give an optimal signaling

scheme. Then 2
𝑡
signals suffice, corresponding to selecting a subset

of receivers to suggest action 1, with others suggested action 0.

Step 2. It is natural to consider the oblivious method [45], where

the signal distributions are identical for any states 𝜃 and 𝜃 ′ such
that 𝜙 (𝜃 ) = 𝜙 (𝜃 ′). That is, the signal distribution depends only on

the projection 𝜙 (𝜃 ). We then prove that there exists an oblivious

privacy-preserving signaling scheme that is optimal among all

privacy-preserving signaling schemes.

Step 3. For the program under the oblivious method, we consider

its dual program and find an efficient separation oracle. Given the

oracle, we can use the Ellipsoid method to obtain a vertex optimal

solution to both program and its dual program in polynomial time.

6 Conclusion
In this work, we study the Bayesian persuasion model under differ-

ential privacy constraints. Our research sheds light on the critical

questions of how to characterize and efficiently compute optimal

signaling schemes under various notions of differential privacy. We

also examine the inherent privacy-utility tradeoffs and extend our

findings to more general settings involving partial privacy guaran-

tees and multiple receivers. Promising directions for future work

include exploring additional varieties of privacy constraints and

incorporating increased complexities into the persuasion model,

such as adding mediators.

6
For partial privacy, the projection needs to consider the number of 1s among the sen-

sitive bits under privacy protection and non-sensitive bits separately. Mathematically,

𝜙𝑀 (𝜃 ) := (∑𝑖∈𝑀 𝜃𝑖 ,
∑

𝑖∉𝑀 𝜃𝑖 ) .
8
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A Generalization to Rényi Differential Privacy
We first give the definition of Rényi differential privacy.

Definition A.1 ((𝛼, 𝜖)-Rényi DP [41]). A data publication mechanism (𝑆, 𝜋) is (𝛼, 𝜖)-Rényi differentially private if for (𝜃, 𝜃 ′) ∈ 𝑋 , we have

D𝛼

(
𝜋 (·|𝜃 )∥𝜋 (·|𝜃 ′)

)
≤ 𝜖,

where D𝛼 (𝜋 (·|𝜃 )∥𝜋 (·|𝜃 ′)) is the 𝛼-Rényi divergence between the two distributions 𝜋 (·|𝜃 ) and 𝜋 (·|𝜃 ′).

The definition of Rényi divergence is as follows.

Definition A.2 (Rényi divergence [43]). Let 𝑃 and 𝑄 be probability distributions on Ω. For 𝛼 ∈ (1,∞), we define the Rényi divergence of order
𝛼 between 𝑃 and 𝑄 as

D𝛼 (𝑃 ∥𝑄) =
1

𝛼 − 1

log

(∫
Ω
𝑃 (𝑥)𝛼𝑄 (𝑥)1−𝛼d𝑥

)
=

1

𝛼 − 1

log

(
E
𝑥∼𝑄

[(
𝑃 (𝑥)
𝑄 (𝑥)

)𝛼 ] )
=

1

𝛼 − 1

log

(
E
𝑥∼𝑃

[(
𝑃 (𝑥)
𝑄 (𝑥)

)𝛼−1])
,

where 𝑃 (·) and 𝑄 (·) are the probability mass/density functions of 𝑃 and 𝑄 .

We then revise Program (1) and (2) in the form of Rényi differential privacy
7
.

max

(𝑆,𝜋 )

∑︁
𝜃

∑︁
𝑠

𝜋 (𝑠 |𝜃 )𝜇 (𝜃 )𝑣 (𝑎𝑠 , 𝜃 )

𝑠 .𝑡 .
∑
𝜃 𝑢 (𝑎𝑠 , 𝜃 )𝜋 (𝑠 |𝜃 )𝜇 (𝜃 ) ≥

∑
𝜃 𝑢 (𝑎′, 𝜃 )𝜋 (𝑠 |𝜃 )𝜇 (𝜃 ), for all 𝑠 ∈ 𝑆, 𝑎′ ∈ 𝐴∑

𝑠∈𝑆 𝜋 (𝑠 |𝜃 )
(
𝜋 (𝑠 |𝜃 )
𝜋 (𝑠 |𝜃 ′ )

)𝛼−1
≤ 𝑒 (𝛼−1)𝜖 , for all (𝜃, 𝜃 ′) ∈ 𝑋∑

𝑠 𝜋 (𝑠 |𝜃 ) = 1, for all 𝜃 ∈ Θ
𝜋 (𝑠 |𝜃 ) ≥ 0, for all 𝜃 ∈ Θ, 𝑠 ∈ 𝑆

. (4)

max

𝜏
E𝑞𝑠∼𝜏 [𝑉 (𝑞𝑠 )]

𝑠 .𝑡 . E𝑞𝑠∼𝜏 [𝑞𝑠 (𝜃 )] = 𝜇 (𝜃 ), for all 𝜃 ∈ Θ

E𝑞𝑠∼𝜏

[(
𝑞𝑠 (𝜃 )
𝜇 (𝜃 )

)𝛼 (
𝑞𝑠 (𝜃 ′ )
𝜇 (𝜃 ′ )

)
1−𝛼 ]

≤ 𝑒 (𝛼−1)𝜖 , for all (𝜃, 𝜃 ′) ∈ 𝑋 . (5)

We now present a similar binary characterization as Proposition 3.1. Note that Proposition 3.2 also holds for Rényi differential privacy.

Proposition A.3. We define 𝑡1 = 𝑞𝑠1 (1 − 𝜇)/((1 − 𝑞𝑠1 )𝜇), 𝑡2 = 𝑞𝑠2 (1 − 𝜇)/((1 − 𝑞𝑠2 )𝜇) and a distribution 𝜎 with binary support on {𝑡1, 𝑡2}.
Also, 𝜎 (𝑡1) =

1−𝑞𝑠
1

1−𝜇 𝜏 (𝑞𝑠1 ) and 𝜎 (𝑡2) =
1−𝑞𝑠

2

1−𝜇 𝜏 (𝑞𝑠2 ). The signaling scheme preserves (𝛼, 𝜖)-Rényi DP if and only distribution 𝜎 satisfy:
E𝜎 [𝑡] = 1

E𝜎 [𝑡𝛼 ] ≤ 𝑒 (𝛼−1)𝜖

E𝜎 [𝑡1−𝛼 ] ≤ 𝑒 (𝛼−1)𝜖 .

Proof. Recall the (𝛼, 𝜖)-Rényi DP constraint in the program using the form of posteriors:

E𝑞𝑠∼𝜏

[(
𝑞𝑠 (𝜃 )
𝜇 (𝜃 )

)𝛼 (
𝑞𝑠 (𝜃 ′)
𝜇 (𝜃 ′)

)
1−𝛼 ]

≤ 𝑒 (𝛼−1)𝜖 , for all (𝜃, 𝜃 ′) ∈ 𝑋 .

Then we obtain (
𝑞𝑠1

𝜇

)𝛼 (
1 − 𝜇
1 − 𝑞𝑠1

)𝛼−1
𝜏 (𝑞𝑠1 ) +

(
𝑞𝑠2

𝜇

)𝛼 (
1 − 𝜇
1 − 𝑞𝑠2

)𝛼−1
𝜏 (𝑞𝑠2 ) ≤ 𝑒 (𝛼−1)𝜖 ,(

1 − 𝑞𝑠1
1 − 𝜇

)𝛼 (
𝜇

𝑞𝑠1

)𝛼−1
𝜏 (𝑞𝑠1 ) +

(
1 − 𝑞𝑠2
1 − 𝜇

)𝛼 (
𝜇

𝑞𝑠2

)𝛼−1
𝜏 (𝑞𝑠2 ) ≤ 𝑒 (𝛼−1)𝜖 .

7
For partial privacy, we substitute 𝑋𝑀 for 𝑋 and the results can be simply extended.
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We then define 𝑡1, 𝑡2, 𝜎 (𝑡1), 𝜎 (𝑡2) as the theorem. Substituting them into the above equations, we have

𝑡𝛼
1
𝜎 (𝑡1) + 𝑡𝛼2 𝜎 (𝑡2) ≤ 𝑒

(𝛼−1)𝜖 ,

𝑡1−𝛼
1

𝜎 (𝑡1) + 𝑡1−𝛼2
𝜎 (𝑡2) ≤ 𝑒 (𝛼−1)𝜖 .

Also, 𝑡1𝜎 (𝑡1) + 𝑡2𝜎 (𝑡2) = (𝑞𝑠1𝜏 (𝑞𝑠1 ) + 𝑞𝑠2𝜏 (𝑞𝑠2 ))/𝜇 = 1. □

For general characterization in Section 4, note that Rényi differential privacy can also be written in the form of Ex ante constraints. Then

Lemma 4.5 implies only 𝑘 +𝑚 signals suffice. We then just modify the objective function 𝑉 similar to (𝜖, 𝛿)-DP.

A modified objective function for (𝛼, 𝜖)-Rényi DP. Similarly, for (𝛼, 𝜖)-Rényi DP, we use the modified function 𝐹 (𝑞,𝛾) = 𝑉 (𝑞) same as

(𝜖, 𝛿)-DP and define

𝐶′ (𝜇, 𝛼) :=
{
(𝑞,𝛾) ∈ Δ(Θ) × R𝑚 :

(
𝑞(𝜃 )
𝜇 (𝜃 )

)𝛼 (
𝑞(𝜃 ′)
𝜇 (𝜃 ′)

)
1−𝛼

≤ 𝛾𝜃,𝜃 ′ , any (𝜃, 𝜃 ′) ∈ 𝑋
}
.

We then characterize the problem with the concave hull of 𝐹 .

Proposition A.4. For (𝛼, 𝜖)-Rényi DP, there exists a valid optimal signaling scheme such that

• The scheme uses |𝑆𝐹 (𝜇, 𝒆 (𝜶−1)𝝐 | 𝐶′ (𝜇, 𝛼)) | signals, which is not larger than 𝑘 +𝑚. Here 𝒆 (𝜶−1)𝝐 is the𝑚-dimension vector with all
elements 𝑒 (𝛼−1)𝜖 .

• The scheme induces posteriors in 𝑆𝐹 (𝜇, 𝒆 (𝜶−1)𝝐 | 𝐶′ (𝜇, 𝛼)).
• The optimal utility of the sender is 𝐹 (𝜇, 𝒆 (𝜶−1)𝝐 | 𝐶′ (𝜇, 𝛼)).

Corollary A.5. Sender benefits from persuasion under (𝛼, 𝜖)-Rényi DP if and only if 𝐹 (𝜇, 𝒆 (𝜶−1)𝝐 | 𝐶′ (𝜇, 𝛼)) > 𝑉 (𝜇).

B More Analyses about Beneficial Persuasion Conditions
We first relate the beneficial persuasion condition to the concavity/convexity of the objective function over the feasible region.

Proposition B.1. Under 𝜖-DP, if 𝑉 is concave in 𝐾 (𝜇, 𝜖), the sender does not benefit from persuasion for any prior. If 𝑉 is convex and not
concave in 𝐾 (𝜇, 𝜖), the sender benefits from persuasion for any prior.

Proposition B.2. Under (𝜖, 𝛿)-DP, if 𝐹 is concave in 𝐶 (𝜇, 𝜖), the sender does not benefit from persuasion for any prior. If 𝐹 is convex and not
concave in 𝐶 (𝜇, 𝜖), the sender benefits from persuasion for any prior.

Proposition B.3. Under (𝛼, 𝜖)-Rényi DP, if 𝐹 is concave in𝐶′ (𝜇, 𝛼), the sender does not benefit from persuasion for any prior. If 𝐹 is convex and
not concave in 𝐶′ (𝜇, 𝛼), the sender benefits from persuasion for any prior.

When the objective function is neither concave nor convex, alternative techniques can determine whether the sender benefits from

persuasion. Intuitively, the sender can gain from persuasion if they can sometimes persuade the receiver to switch from their default action to

one the sender prefers instead. The receiver’s default action without knowing more information from the sender is 𝑎(𝜇). When the posterior

is 𝑞, the sender’s utility without persuasion can be seen as E𝜃∼𝑞 [𝑣 (𝑎(𝜇), 𝜃 )]. Also, if the sender shares the posterior with the receiver, the

utility is 𝑉 (𝑞). Therefore, we define the condition “the sender is willing to share information” for different privacy constraints here.

Say “the sender is willing to share information” under 𝜖-DP if there exists 𝑞 ∈ 𝐾 (𝜇, 𝜖) that
𝑉 (𝑞) > E𝜃∼𝑞 [𝑣 (𝑎 (𝜇) , 𝜃 )] .

Say “the sender is willing to share information” under (𝜖, 𝛿)-DP if there exists (𝑞,𝛾) ∈ 𝐶 (𝜇, 𝜖) that
𝐹 (𝑞,𝛾) = 𝑉 (𝑞) > E𝜃∼𝑞 [𝑣 (𝑎 (𝜇) , 𝜃 )] .

Say “the sender is willing to share information” under (𝛼, 𝜖)-Rényi DP if there exists (𝑞,𝛾) ∈ 𝐶′ (𝜇, 𝛼) that
𝐹 (𝑞,𝛾) = 𝑉 (𝑞) > E𝜃∼𝑞 [𝑣 (𝑎 (𝜇) , 𝜃 )] .

Proposition B.4. If “the sender is willing to share information” doesn’t hold, the sender cannot benefit from persuasion.

An additional assumption is helpful to definitively state the condition under which the sender benefits from persuasion. Beyond requiring

the existence of a posterior the sender is willing to share, it is also useful to assume the receiver’s optimal action does not change in a

neighborhood around the prior belief.

Formally, we say the receiver’s preference is discrete at 𝜇 if there exists 𝜖 > 0 such that for any 𝑎 ≠ 𝑎(𝜇), E𝜇 [𝑢 (𝑎(𝜇), 𝜃 )] > E𝜇 [𝑢 (𝑎, 𝜃 ) + 𝜖].
When the action space 𝐴 is finite, the receiver’s preference is non-discrete only if they are indifferent between two actions, which occurs at

finite 𝜇. Thus, this assumption is fairly mild for finite action spaces.

Assumption B.5. The receiver’s preference is discrete at the prior 𝜇.

Proposition B.6. Under Assumption B.5, if “the sender is willing to share information” holds, the sender benefits from the persuasion.
11
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C Missing Proofs in Section 3
C.1 Proof of Proposition 3.1
For the first point that two signals suffice, we delay the proof to Lemma D.1. Recall the 𝜖-DP constraint in the program using the form of

posteriors:

𝑞𝑠 (𝜃 )𝜇 (𝜃 ′)
𝑞𝑠 (𝜃 ′)𝜇 (𝜃 )

≤ 𝑒𝜖 , for all 𝑞𝑠 and (𝜃, 𝜃 ′) ∈ 𝑋 .

Therefore, for every signal 𝑠 in the signal scheme, its posterior 𝑞𝑠 satisfies

𝑞𝑠 − 𝑞𝑠𝜇 ≤ 𝑒𝜖𝜇 (1 − 𝑞𝑠 ),
𝜇 − 𝜇𝑞𝑠 ≤ 𝑒𝜖 (𝑞𝑠 − 𝑞𝑠𝜇) .

The results can be obtained by slightly organizing the above two equations.

Recall the (𝜖, 𝛿)-DP constraint in the program using the form of posteriors:∑︁
𝑞𝑠 ∈𝑄

𝑞𝑠 (𝜃 )𝜏 (𝑞𝑠 )
𝜇 (𝜃 ) ≤ 𝑒𝜖

∑︁
𝑞𝑠 ∈𝑄

𝑞𝑠 (𝜃 ′)𝜏 (𝑞𝑠 )
𝜇 (𝜃 ) + 𝛿, for all 𝑄 ⊂ 𝑠𝑢𝑝𝑝 (𝜏) and (𝜃, 𝜃 ′) ∈ 𝑋 .

Since 𝑞𝑠2 ≥ 𝑞𝑠1 and E[𝑞𝑠 ] = 𝜇, we have 𝑞𝑠2 ≥ 𝜇 ≥ 𝑞𝑠1 . Also, 𝜏 (𝑞𝑠1 ) = (𝑞𝑠2 − 𝜇)/(𝑞𝑠2 − 𝑞𝑠1 ) and 𝜏 (𝑞𝑠2 ) = (𝜇 − 𝑞𝑠1 )/(𝑞𝑠2 − 𝑞𝑠1 ). Therefore, we
can simplify the above inequations to (

1 − 𝑞𝑠1
1 − 𝜇 − 𝑒𝜖

𝑞𝑠1

𝜇

)
𝑞𝑠2 − 𝜇
𝑞𝑠2 − 𝑞𝑠1

≤ 𝛿,(
𝑞𝑠2

𝜇
− 𝑒𝜖

1 − 𝑞𝑠2
1 − 𝜇

)
𝜇 − 𝑞𝑠1
𝑞𝑠2 − 𝑞𝑠1

≤ 𝛿,

which implies the result by slight organization.

C.2 Proof of Theorem 3.4
We first choose 𝜇 < 𝑡 that satisfy

𝜇

𝑒−𝜖1 − 𝑒−𝜖1𝜇 + 𝜇 + (1 −𝐶)𝜇 (1 − 𝜇)
𝑒𝜇 + 1 − 𝜇 𝛿 = 𝑡 .

Since when 𝜇 = 0, the left side of the above equation is smaller than the right side, and when 𝜇 = 𝑡 , the right side is larger than the right side.

Also, the left side is continuous for 𝜇 between 0 and 𝑡 , and the right side is constant. Therefore, there exists a 𝜇 ∈ (0, 𝑡) that satisfies the
equation.

With this construction, under (𝜖1, 0)-differential privacy, the sender cannot get positive utility under any signal scheme.

Then we try to design a good signal scheme under (𝜖2, 𝛿)-differential privacy. Let one posterior 𝑞𝑠2 be 𝑡 and another posterior 𝑞𝑠1 will be

assigned later. Then for (𝜃 = 0, 𝜃 ′ = 1), the constraint is(
𝑞𝑠2

𝜇
− 𝑒𝜖2

1 − 𝑞𝑠2
1 − 𝜇

)
𝜇 − 𝑞𝑠1
𝑞𝑠2 − 𝑞𝑠1

≤
(

1 − 𝑒𝜖2−𝜖1
𝑒−𝜖1 (1 − 𝜇) + 𝜇 + (1 −𝐶)𝛿

)
𝜇 − 𝑞𝑠1
𝑞𝑠2 − 𝑞𝑠1

≤ 𝛿

and for (𝜃 = 1, 𝜃 ′ = 0), the constraint is (
1 − 𝑞𝑠1
1 − 𝜇 − 𝑒𝜖2

𝑞𝑠1

𝜇

)
𝑞𝑠2 − 𝜇
𝑞𝑠2 − 𝑞𝑠1

≤ 𝛿.

We now assign 𝑞𝑠1 as 𝜇/(𝑒𝜖2 (1 − 𝜇) + 𝜇), then the second inequality is naturally satisfied. For the first inequality,(
1 − 𝑒𝜖2−𝜖1

𝑒−𝜖1 (1 − 𝜇) + 𝜇 + (1 −𝐶)𝛿
)
𝜇 − 𝑞𝑠1
𝑞𝑠2 − 𝑞𝑠1

(a)
≤ 𝐶𝛿

𝑒−𝜖1 (1 − 𝜇) + 𝜇 ·
𝜇 − 𝑞𝑠1
𝑞𝑠2 − 𝑞𝑠1

+ (1 −𝐶)𝛿

(b)
≤ 𝐶𝛿

𝑒−𝜖1 (1 − 𝜇) + 𝜇 ·
1 − 1

𝑒𝜖1 (1−𝜇 )+𝜇
1

𝑒−𝜖1 (1−𝜇 )+𝜇 − 1

𝑒𝜖1 (1−𝜇 )+𝜇
+ (1 −𝐶)𝛿

=
𝐶𝛿 (𝑒𝜖1 − 1)
𝑒𝜖1 − 𝑒−𝜖1 + (1 −𝐶)𝛿

≤ 𝛿.

In the above set of derivations, (a) holds since 𝜖1 − 𝜖2 ≤ 𝐶𝛿 and 𝑒𝑥 ≥ 1 + 𝑥 for any 𝑥 . (b) holds because (𝜇 − 𝑞𝑠1 )/(𝑞𝑠2 − 𝑞𝑠1 ) increases
when 𝑞𝑠1 decreases and 𝑞𝑠2 increases.
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Therefore, 𝑞𝑠1 = 𝜇/(𝑒𝜖2 (1 − 𝜇) + 𝜇) and 𝑞𝑠2 = 𝑡 is a feasible signal scheme under (𝜖2, 𝛿)-differential privacy. Using this signal scheme, the

sender can at least get the utility of

𝜇 − 𝑞𝑠1
𝑞𝑠2 − 𝑞𝑠1

(a)
≥ (𝑒𝜖2 − 1) (𝑒−𝜖1 (1 − 𝜇) + 𝜇)

(𝑒𝜖2 − 𝑒−𝜖1 ) + 𝛿 (𝑒−𝜖1 (1 − 𝜇) + 𝜇) (𝑒𝜖2 (1 − 𝜇) + 𝜇)
(b)
≥ 𝑒𝜖2 − 1

(1 + 𝛿)𝑒𝜖1+𝜖2 − 1

.

(a) holds due to 0 < 1 −𝐶 ≤ 1. (b) is obtained from 𝑒−𝜖1 ≤ 𝑒−𝜖1 (1 − 𝜇) + 𝜇 ≤ 1 and 𝑒𝜖2 (1 − 𝜇) + 𝜇 ≤ 𝑒𝜖2 .

C.3 Proof of Proposition 3.6
We now choose

𝜇 =
𝑡𝑒−𝜖1

1 + 𝜔 − 𝑡 + 𝑡𝑒−𝜖1 ,

where 𝜔 is an arbitrarily small positive number. Then we obtain

(1 + 𝜔)𝜇
𝑒−𝜖1 − 𝑒−𝜖1𝜇 + 𝜇 = 𝑡 .

Using this construction, under (𝜖1, 0)-differential privacy, the sender cannot get positive utility under any signal scheme.

Then we try to design a good signal scheme under (𝜖2, 𝛿)-differential privacy. Let one posterior 𝑞𝑠2 be 1 and another posterior 𝑞𝑠1 will be

assigned later. Then for (𝜃 = 0, 𝜃 ′ = 1), the constraint is

𝑞𝑠1 ≥ 𝜇 (1 − 𝛿)
(1 − 𝛿𝜇) ,

and for (𝜃 = 1, 𝜃 ′ = 0), the constraint is

𝑞𝑠1 ≥ 𝜇 (1 − 𝛿)
(𝑒𝜖2 − 𝜇𝑒𝜖2 + 𝜇 − 𝛿𝜇) ,

which can both be satisfied when 𝑞𝑠1 = 𝜇 (1 − 𝛿)/(1 − 𝛿𝜇) < 𝜇.

Therefore, under (𝜖2, 𝛿)-differential privacy, there exists a signal scheme to help the sender get positive utility, which implies the result.

C.4 Proof of Proposition 3.7
Similar as the proof of Proposition 3.6, we set 𝜇 = 𝑡𝑒−𝜖/(1 + 𝜔 − 𝑡 + 𝑡𝑒−𝜖 ), the sender then can not get positive utility under 𝜖-DP.

However, without the privacy constraint, the sender can let one posterior be 0 and another be 𝑡 , which gives the utility of

𝜇

𝑡
=

1

(1 + 𝜔 − 𝑡)𝑒𝜖 + 𝑡
. Since 𝜔 can be arbitrarily small, we then prove the result.

C.5 Proof of Proposition 3.9
We now choose 𝜇 = 𝑡/2.

Under (𝜖, 𝛿)-differential privacy, the best choice of 𝑞𝑠2 should lie in a region with utility 1 and at the same time have the largest weight in

the expected utility, which is 𝑡 = 2𝜇.

Then for (𝜃 = 0, 𝜃 ′ = 1), the constraint is(
𝑞𝑠2

𝜇
− 𝑒𝜖

1 − 𝑞𝑠2
1 − 𝜇

)
𝜇 − 𝑞𝑠1
𝑞𝑠2 − 𝑞𝑠1

=

(
2 − 𝑒𝜖 1 − 2𝜇

1 − 𝜇

)
𝜇 − 𝑞𝑠1
2𝜇 − 𝑞𝑠1

≤ 𝛿

and for (𝜃 = 1, 𝜃 ′ = 0), the constraint is (
1 − 𝑞𝑠1
1 − 𝜇 − 𝑒𝜖

𝑞𝑠1

𝜇

)
𝜇

2𝜇 − 𝑞𝑠1
≤ 𝛿.

By reorganizing the above two inequalities, we obtain that the distance d between another posterior and the prior should satisfy:

𝑑 ≤ 𝜇 (1 − 𝜇)𝛿
max{(1 − 𝜇)𝛿, (2 − 𝑒𝜖 − 𝛿) (1 − 𝜇) + 𝑒𝜖𝜇}

and

𝑑 ≤ (1 − 𝜇)𝜇 (𝛿 + 𝑒𝜖 − 1)
𝜇 + (𝑒𝜖 − 𝛿) (1 − 𝜇) .

So the utility of the sender should be less than
𝑑
𝜇+𝑑 .

However, without the privacy constraint, the sender can let one posterior be 0 and another be 2𝜇, which gives a utility of 1/2 and implies

the proposition.
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D Missing Proofs in Section 5
We first show that using the same number of signals as the number of actions is enough to give an optimal signaling scheme.

Lemma D.1. There always exists an optimal signaling scheme that uses at most signals as the number of receiver actions.

Proof. If signal 𝑠 and 𝑠′ result in the same optimal action profile 𝑎, Sender can instead send a new signal 𝑠𝑎 = (𝑠, 𝑠′) in both cases. Therefore,
we have 𝜋 (𝑠𝑎 |𝜃 ) = 𝜋 (𝑠 |𝜃 ) + 𝜋 (𝑠′ |𝜃 ) for any 𝜃 . Merging signals doesn’t affect the value of objective function

∑
𝜃

∑
𝑠 𝜋 (𝑠 |𝜃 )𝜇 (𝜃 )𝑣 (𝑎𝑠 , 𝜃 ). We

then show that merging signals also does not break the constraints that already hold.

Bringing this equation back into the above programming, privacy constraints for (𝜖, 𝛿)-DP will not be violated since max{0, 𝜋 (𝑠 |𝜃 ) −
𝑒𝜖𝜋 (𝑠 |𝜃 ′)} +max{0, 𝜋 (𝑠′ |𝜃 ) − 𝑒𝜖𝜋 (𝑠′ |𝜃 ′)} ≥ max{0, 𝜋 (𝑠𝑎 |𝜃 ) − 𝑒𝜖𝜋 (𝑠𝑠 |𝜃 ′)} holds for all (𝜃, 𝜃 ′) ∈ 𝑋 . □

Then 2
𝑡
signals suffice, corresponding to selecting a subset of receivers to suggest action 1, with others suggested action 0. We slightly

overload notation, also using 𝑇 ⊆ {1, . . . , 𝑡} to denote the signal targeting subset 𝑇 for action 1.

We can write similar linear programming for this setting
8
.

max

𝜋

∑︁
𝜃

∑︁
𝑇

𝜇 (𝜃 )𝑣 (𝑇, 𝜃 )𝜋 (𝑇 |𝜃 )

𝑠 .𝑡 .
∑
𝜃 (𝜇 (𝜃 ) (𝑢𝑖 (1, 𝜃 ) − 𝑢𝑖 (0, 𝜃 ))

∑
𝑇 :𝑖∈𝑇 𝜋 (𝑇 |𝜃 )) ≥ 0, for all 𝑖 ∈ {1, · · · , 𝑡}∑

𝜃

(
𝜇 (𝜃 ) (𝑢𝑖 (0, 𝜃 ) − 𝑢𝑖 (1, 𝜃 ))

∑
𝑇 :𝑖∉𝑇 𝜋 (𝑇 |𝜃 )

)
≥ 0, for all 𝑖 ∈ {1, · · · , 𝑡}∑

𝑇 :𝑖∈𝑇 𝜋 (𝑇 |𝜃 ) ≤ 𝑒𝜖
∑
𝑇 :𝑖∈𝑇 𝜋 (𝑇 |𝜃 ′) + 𝛿, for all 𝑖 and (𝜃, 𝜃 ′) ∈ 𝑋∑

𝑇 :𝑖∉𝑇 𝜋 (𝑇 |𝜃 ) ≤ 𝑒𝜖
∑
𝑇 :𝑖∉𝑇 𝜋 (𝑇 |𝜃 ′) + 𝛿, for all 𝑖 and (𝜃, 𝜃 ′) ∈ 𝑋∑

𝑇 𝜋 (𝑇 |𝜃 ) = 1, for all 𝜃

𝜋 (𝑇 |𝜃 ) ≥ 0, for all 𝜃,𝑇

. (6)

For the oblivious method, the signal distribution depends only on the projection 𝜔 = 𝜙 (𝜃 ). We can then redefine adjacency under this

oblivious scheme. Say 𝜔,𝜔 ′
adjacent if and only if |𝜔 −𝜔 ′ | = 1. Let 𝑋𝑂 denote the set of all adjacent pairs (𝜔,𝜔 ′) here9. Under the oblivious

method, Program (6) can be modified into:

max

𝜋

∑︁
𝜔

∑︁
𝑇

𝜇 (𝜔)𝑣 (𝑇,𝜔)𝜋 (𝑇 |𝜔)

𝑠 .𝑡 .
∑
𝜔 (𝜇 (𝜔) (𝑢𝑖 (1, 𝜔) − 𝑢𝑖 (0, 𝜔))

∑
𝑇 :𝑖∈𝑇 𝜋 (𝑇 |𝜔)) ≥ 0, for all 𝑖 ∈ {1, · · · , 𝑡}∑

𝜔

(
𝜇 (𝜔) (𝑢𝑖 (0, 𝜔) − 𝑢𝑖 (1, 𝜔))

∑
𝑇 :𝑖∉𝑇 𝜋 (𝑇 |𝜔)

)
≥ 0, for all 𝑖 ∈ {1, · · · , 𝑡}∑

𝑇 :𝑖∈𝑇 𝜋 (𝑇 |𝜔) ≤ 𝑒𝜖
∑
𝑇 :𝑖∈𝑇 𝜋 (𝑇 |𝜔 ′) + 𝛿, for all 𝑖 and (𝜔,𝜔 ′) ∈ 𝑋𝑂∑

𝑇 :𝑖∉𝑇 𝜋 (𝑇 |𝜔) ≤ 𝑒𝜖
∑
𝑇 :𝑖∉𝑇 𝜋 (𝑇 |𝜔 ′) + 𝛿, for all 𝑖 and (𝜔,𝜔 ′) ∈ 𝑋𝑂∑

𝑇 𝜋 (𝑇 |𝜔) = 1, for all 𝜔

𝜋 (𝑇 |𝜔) ≥ 0, for all 𝜔,𝑇

. (7)

We also prove that the simplified version is equivalent to the original one, which means the oblivious method is without loss.

Lemma D.2. Under Assumption 5.1, Program (6) and Program (7) are equivalent. Therefore, there exists an oblivious privacy-preserving signaling
scheme that is optimal among all privacy-preserving signaling schemes.

For the simplicity of presentation, we delay the proof of Lemma D.2 to Appendix D.1.

Consider the following dual program with variables 𝛼1
𝑖
, 𝛼0
𝑖
, 𝛽𝑖,(𝜔,𝜔 ′ ) , 𝛾𝑖,(𝜔,𝜔 ′ ) , 𝑦𝜔 .

min

∑︁
𝜔

𝑦𝜔 + 𝛿
∑︁
𝑖,𝜔

(𝛽𝑖,(𝜔,𝜔 ′ ) + 𝛾𝑖,(𝜔,𝜔 ′ ) )

𝑠 .𝑡 . −∑
𝑖:𝑖∈𝑇 𝜇 (𝜔) (𝑢𝑖 (1, 𝜔) − 𝑢𝑖 (0, 𝜔))𝛼1𝑖 −

∑
𝑖:𝑖∉𝑇 𝜇 (𝜔) (𝑢𝑖 (0, 𝜔) − 𝑢𝑖 (1, 𝜔))𝛼0𝑖

+∑
𝑖:𝑖∈𝑇

∑
𝜔 ′

:(𝜔,𝜔 ′ ) ∈𝑋𝑂 (𝛽𝑖,(𝜔,𝜔 ′ ) − 𝑒𝜖𝛽𝑖,(𝜔 ′,𝜔 ) )
+∑

𝑖:𝑖∉𝑇

∑
𝜔 ′

:(𝜔,𝜔 ′ ) ∈𝑋𝑂 (𝛾𝑖,(𝜔,𝜔 ′ ) − 𝑒𝜖𝛾𝑖,(𝜔 ′,𝜔 ) ) + 𝑦𝜔 ≥ 𝜇 (𝜔)𝑣 (𝑇,𝜔), for all 𝜔,𝑇
𝛼1
𝑖
, 𝛼0
𝑖
, 𝛽𝑖,(𝜔,𝜔 ′ ) , 𝛾𝑖,(𝜔,𝜔 ′ ) ≥ 0, for all 𝑖 and (𝜔,𝜔 ′) ∈ 𝑋𝑂

. (8)

We can obtain a separation oracle for the program given an algorithm discussed later. Given any variables 𝛼1
𝑖
, 𝛼0
𝑖
, 𝛽𝑖,(𝜔,𝜔 ′ ) , 𝛾𝑖,(𝜔,𝜔 ′ ) , 𝑦𝜔 ,

separation over the first set of constraints reduces to maximizing the set function

𝑔𝜔 (𝑇 ) =𝑣 (𝑇,𝜔) +
1

𝜇 (𝜔)

( ∑︁
𝑖:𝑖∈𝑇

𝜇 (𝜔) (𝑢𝑖 (1, 𝜔) − 𝑢𝑖 (0, 𝜔))𝛼1𝑖 +
∑︁
𝑖:𝑖∉𝑇

𝜇 (𝜔) (𝑢𝑖 (0, 𝜔) − 𝑢𝑖 (1, 𝜔))𝛼0𝑖

−
∑︁
𝑖:𝑖∈𝑇

∑︁
𝜔 ′

:(𝜔,𝜔 ′ ) ∈𝑋𝑂

(𝛽𝑖,(𝜔,𝜔 ′ ) − 𝑒𝜖𝛽𝑖,(𝜔 ′,𝜔 ) ) −
∑︁
𝑖:𝑖∉𝑇

∑︁
𝜔 ′

:(𝜔,𝜔 ′ ) ∈𝑋𝑂

(𝛾𝑖,(𝜔,𝜔 ′ ) − 𝑒𝜖𝛾𝑖,(𝜔 ′,𝜔 ) )
)

8
For partial privacy, we replace 𝑋 with 𝑋𝑀 .

9
For partial privacy, say 𝜔 = (𝑎,𝑏 ), 𝜔 ′ = (𝑎′, 𝑏′ ) adjacent if |𝑎 − 𝑎′ | = 1 and 𝑏 = 𝑏′ . Let 𝑋𝑂

𝑀
denote the set of all adjacent pairs. We substitute 𝑋𝑂

𝑀
for 𝑋𝑂

.
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for each 𝜔 . The other constraints can be checked directly in linear time. Given the resulting separation oracle, we can use the Ellipsoid

method to obtain a vertex optimal solution to both Program (7) and its dual Program (8) in polynomial time.

We reorganize the set function 𝑔 as

𝑔𝜔 (𝑇 ) =𝑣 (𝑇,𝜔) +
1

𝜇 (𝜔)
∑︁
𝑖:𝑖∈𝑇

(
𝜇 (𝜔) (𝑢𝑖 (1, 𝜔) − 𝑢𝑖 (0, 𝜔))𝛼1𝑖 − 𝜇 (𝜔) (𝑢𝑖 (0, 𝜔) − 𝑢𝑖 (1, 𝜔))𝛼

0

𝑖 −
∑︁

𝜔 ′
:(𝜔,𝜔 ′ ) ∈𝑋𝑂

(𝛽𝑖,(𝜔,𝜔 ′ ) − 𝑒𝜖𝛽𝑖,(𝜔 ′,𝜔 ) )+∑︁
𝜔 ′

:(𝜔,𝜔 ′ ) ∈𝑋𝑂

(𝛾𝑖,(𝜔,𝜔 ′ ) − 𝑒𝜖𝛾𝑖,(𝜔 ′,𝜔 ) )
)
+ 1

𝜇 (𝜔)
∑︁
𝑖

(
𝜇 (𝜔) (𝑢𝑖 (0, 𝜔) − 𝑢𝑖 (1, 𝜔))𝛼0𝑖 −

∑︁
𝜔 ′

:(𝜔,𝜔 ′ ) ∈𝑋𝑂

(𝛾𝑖,(𝜔,𝜔 ′ ) − 𝑒𝜖𝛾𝑖,(𝜔 ′,𝜔 ) )
)
.

Therefore, for any 𝜔 , there is a polynomial time algorithm to find 𝑇 that maximizes 𝑔𝜔 (𝑇 ). For every |𝑇 | ∈ {0, 1, · · · , 𝑡}, the optimal set is

to pick the |𝑇 | biggest elements in𝑤𝑖 , 𝑖 ∈ {1, · · · , 𝑡}, where𝑤𝑖 is

𝜇 (𝜔) (𝑢𝑖 (1, 𝜔) − 𝑢𝑖 (0, 𝜔))𝛼1𝑖 − 𝜇 (𝜔) (𝑢𝑖 (0, 𝜔) − 𝑢𝑖 (1, 𝜔))𝛼
0

𝑖 −
∑︁

𝜔 ′
:(𝜔,𝜔 ′ ) ∈𝑋𝑂

(𝛽𝑖,(𝜔,𝜔 ′ ) − 𝑒𝜖𝛽𝑖,(𝜔 ′,𝜔 ) ) +
∑︁

𝜔 ′
:(𝜔,𝜔 ′ ) ∈𝑋𝑂

(𝛾𝑖,(𝜔,𝜔 ′ ) − 𝑒𝜖𝛾𝑖,(𝜔 ′,𝜔 ) )

Each𝑤𝑖 can be computed in polynomial time. Enumerating all |𝑇 | yields the optimal set 𝑇 . Therefore, we obtain Theorem 5.2.

D.1 Proof of Lemma D.2
For generalization of the proof, we present it with the form of partial privacy, including𝑀 to denote the set of bits whose privacy should be

considered. For the original case, we only need to consider𝑀 = {1, 2, · · · , 𝑛} and replace 𝑋𝑀 with 𝑋 , 𝜙𝑀 with 𝜙 and 𝑋𝑂
𝑀

with 𝑋𝑂 .

We first notice that any feasible oblivious solution for Program (7) is also a feasible solution for Program (6).

Lemma D.3. Under Assumption 5.1, for all kinds of privacy constraints, if an oblivious signaling scheme satisfies Program (7), we can construct
the following signaling scheme:

𝜋 ′ (𝑇 |𝜃 ) = 𝜋 (𝑇 |𝜙𝑀 (𝜃 ))
which satisfies the original program.

Proof. We first show that the new signaling scheme satisfies all basic constraints in the program. For all 𝜃 , from assumptions, we have∑︁
𝜃

(
𝜇 (𝜃 ) (𝑢𝑖 (1, 𝜃 ) − 𝑢𝑖 (0, 𝜃 ))

∑︁
𝑇 :𝑖∈𝑇

𝜋 ′ (𝑇 |𝜃 )
)
=

∑︁
𝜔

©­«
∑︁

𝜃 :𝜙𝑀 (𝜃 )=𝜔
𝜇 (𝜃 ) (𝑢𝑖 (1, 𝜔) − 𝑢𝑖 (0, 𝜔))

∑︁
𝑇 :𝑖∈𝑇

𝜋 (𝑇 |𝜔)ª®¬
=

∑︁
𝜔

(
𝜇 (𝜔) (𝑢𝑖 (1, 𝜔) − 𝑢𝑖 (0, 𝜔))

∑︁
𝑇 :𝑖∈𝑇

𝜋 (𝑇 |𝜔)
)

≥ 0, for all 𝑖 ∈ {1, · · · , 𝑡}.

The other side is similar.

∑
𝑇 𝜋

′ (𝑇 |𝜃 ) = 1 and 𝜋 ′ (𝑇 |𝜃 ) ≥ 0 holds naturally.

Also, for (𝜃, 𝜃 ′) ∈ 𝑋𝑀 , (𝜙𝑀 (𝜃 ), 𝜙𝑀 (𝜃 ′)) ∈ 𝑋𝑂
𝑀
. Therefore, 𝜋 ′ (𝑇 |𝜃 ) satisfies the privacy constraints in the original program, which implies

the lemma. □

Let 𝐹0 be the set of feasible signaling schemes for Program (6). An oblivious scheme can be constructed by projecting any signaling

scheme in 𝐹0. For signaling scheme in 𝐹0, we can build an oblivious signaling scheme through projection:

𝜋 ′ (𝑇 |𝜔) = 1

𝜇 (𝜔)
∑︁

𝜃 :𝜙𝑀 (𝜃 )=𝜔
𝜋 (𝑇 |𝜃 )𝜇 (𝜃 ) .

Let 𝑃𝐹0 be the set of projections of feasible signaling schemes to oblivious schemes.

Also, let 𝐹1 be the set of feasible oblivious signaling schemes for Program (7). Note that in Lemma D.3, the feasible oblivious signaling

scheme can be seen as the projection of the constructed signaling scheme, then it shows that 𝐹1 ⊆ 𝑃𝐹0. We then show that 𝑃𝐹0 ⊆ 𝐹1 as well.

Lemma D.4. Under Assumption 5.1, any projection of a feasible signaling scheme is also a feasible oblivious signaling scheme.

Proof. Consider any signaling scheme in 𝐹0, the projection is 𝜋 ′ (𝑇 |𝜔) = 1

𝜇 (𝜔 )
∑
𝜃 :𝜙𝑀 (𝜃 )=𝜔 𝜋 (𝑇 |𝜃 )𝜇 (𝜃 ).

We now show that 𝜋 ′ (𝑇 |𝜔) is a feasible oblivious signaling scheme. First,

∑
𝑇 𝜋

′ (𝑇 |𝜔) = 1 holds for all 𝜔 . 𝜋 ′ (𝑇 |𝜔) ≥ 0 holds for all 𝜔 and

𝑇 . Also, ∑︁
𝜔

(
𝜇 (𝜔) (𝑢𝑖 (1, 𝜔) − 𝑢𝑖 (0, 𝜔))

∑︁
𝑇 :𝑖∈𝑇

𝜋 ′ (𝑇 |𝜔)
)
=

∑︁
𝜃

(
𝜇 (𝜃 ) (𝑢𝑖 (1, 𝜃 ) − 𝑢𝑖 (0, 𝜃 ))

∑︁
𝑇 :𝑖∈𝑇

𝜋 (𝑇 |𝜃 )
)
≥ 0, for all 𝑖 ∈ {1, · · · , 𝑡}.
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The other side is similar. We then show that it still holds the privacy constraint. Use𝑚 to denote the size of𝑀 , 𝜔1 to denote the first number

in 𝜔 and 𝜔2 to denote the second number. Notice that for any 𝜔 = (𝜔1, 𝜔2) that 𝜔1 ∈ {0, 1, · · · ,𝑚 − 1}, considering its adjacent state

𝜔 ′ = (𝜔1 + 1, 𝜔2),
𝜋 ′ (𝑇 |𝜔) = 1(𝑚

𝜔1

) (𝑛−𝑚
𝜔2

)
(𝑚 − 𝜔1)

∑︁
𝜃 :𝜙𝑀 (𝜃 )=𝜔

∑︁
𝑖:𝜃𝑖=0,𝑖∈𝑀

𝜋 (𝑇 |𝜃 ) (9)

and

𝜋 ′ (𝑇 |𝜔 ′) = 1( 𝑚
𝜔1+1

) (𝑛−𝑚
𝜔2

)
(𝜔1 + 1)

∑︁
𝜃 :𝜙𝑀 (𝜃 )=𝜔

∑︁
𝑖:𝜃𝑖=0,𝑖∈𝑀

𝜋 (𝑇 | (1, 𝜃−𝑖 )) =
1(𝑚

𝜔1

) (𝑛−𝑚
𝜔2

)
(𝑚 − 𝜔1)

∑︁
𝜃 :𝜙𝑀 (𝜃 )=𝜔

∑︁
𝑖:𝜃𝑖=0,𝑖∈𝑀

𝜋 (𝑇 | (1, 𝜃−𝑖 )) . (10)

For (𝜖, 𝛿)-DP, since for any 𝜔 = (𝜔1, 𝜔2) that 𝜔1 ∈ {0, 1, · · · ,𝑚 − 1}, considering its adjacent state 𝜔 ′ = (𝜔1 + 1, 𝜔2), for all 𝜃 that

𝜙𝑀 (𝜃 ) = 𝜔 and all 𝑖 that 𝜃𝑖 = 0, ∑︁
𝑇 :𝑖∈𝑇

(
𝜋 (𝑇 |𝜃 ) − 𝑒𝜖𝜋 (𝑇 | (1, 𝜃−𝑖 ))

)
≤ 𝛿,

we then have ∑︁
𝑇 :𝑖∈𝑇

(
𝜋 ′ (𝑇 |𝜔) − 𝑒𝜖𝜋 (𝑇 |𝜔 ′)

)
=

∑︁
𝑇 :𝑖∈𝑇

(
1(𝑚

𝜔1

) (𝑛−𝑚
𝜔2

)
(𝑚 − 𝜔1)

∑︁
𝜃 :𝜙𝑀 (𝜃 )=𝜔

∑︁
𝑖:𝜃𝑖=0,𝑖∈𝑀

(𝜋 (𝑇 |𝜃 ) − 𝑒𝜖𝜋 (𝑇 | (1, 𝜃−𝑖 )))
)

≤ 1(𝑚
𝜔1

) (𝑛−𝑚
𝜔2

)
(𝑚 − 𝜔1)

∑︁
𝜃 :𝜙𝑀 (𝜃 )=𝜔

∑︁
𝑖:𝜃𝑖=0,𝑖∈𝑀

∑︁
𝑇 :𝑖∈𝑇

(
𝜋 (𝑇 |𝜃 ) − 𝑒𝜖𝜋 (𝑇 | (1, 𝜃−𝑖 ))

)
≤ 𝛿.

Similarly, the other side holds.

□

Lemma D.5. Under Assumption 5.1, there exists an optimal signaling scheme in 𝑃𝐹0 for Program (6).

Proof. Considering the optimal signaling scheme in Program (6), we now project it and obtain the scheme that

𝜋 ′ (𝑇 |𝜃 ) = 1∑
𝜃 ′ :𝜙𝑀 (𝜃 ′ )=𝜙𝑀 (𝜃 ) 𝜇 (𝜃 ′)

∑︁
𝜃 ′ :𝜙𝑀 (𝜃 ′ )=𝜙𝑀 (𝜃 )

𝜋 (𝑇 |𝜃 ′)𝜇 (𝜃 ′) .

We then obtain ∑︁
𝜃 ∈Θ

∑︁
𝑇

𝜋 ′ (𝑇 |𝜃 )𝜇 (𝜃 )𝑣 (𝑇, 𝜃 ) =
∑︁
𝜃 ∈Θ

∑︁
𝑇

𝜋 (𝑇 |𝜃 )𝜇 (𝜃 )𝑣 (𝑇, 𝜃 ),

which means the signaling scheme achieves the same sender’s utility as the original optimal one. □

From all the lemmas above, we prove that Program (6) and Program (7) are equivalent.
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