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ABSTRACT

Accurate molecular property prediction is a cornerstone of drug discovery. While
graph-based models excel at capturing molecular topology, they operate on a sin-
gle atomic scale, overlooking crucial higher-order information from functional
groups and spatial geometry like bond angles. To address this, we propose ECHO,
a multi-scale graph learning framework that hierarchically integrates information
from atom-level topology, functional-group semantics, and bond-angle geome-
try. ECHO introduces a hierarchical cross-scale attention mechanism for bidi-
rectional information flow between fine-grained and coarse-grained graph rep-
resentations, enabling mutual refinement. To further synthesize these diverse
features, a novel hypergraph fusion module is designed to capture high-order
interactions. Extensive experiments show that ECHO consistently outperforms
state-of-the-art baselines, demonstrating the significant advantage of its multi-
scale approach and offering new insights into the interplay between different
structural scales in molecular representation learning. Code is now available at
https://anonymous.4open.science/r/ECHO-3C40.

1 INTRODUCTION

With the remarkable enhancement of hardware computing capabilities in recent years, computa-
tional methods for predicting molecular properties have witnessed rapid development. In contrast to
traditional experimental methods, computational approaches exhibit substantial advantages in terms
of high-throughput and efficiency. Machine learning models based on molecule feature engineer-
ing have achieved outstanding performance. These models utilize human-defined high-dimensional
molecular feature vectors, such as Morgan Fingerprint (MorganFP), as input features(Bonner et al.
(2022), Durán et al. (2018), Huang et al. (2020)).

In recent times, deep-learning-based methods, which employ multiple types of chemical or molec-
ular information as input, have started to attract attention due to their state-of-the-art performance
in molecular property prediction tasks. Deep-learning-based methods can be categorized into three
types. The first type uses sequence information like SMILES (Simplified Molecular-Input Line-
Entry System, Weininger (1988))(Zaremba et al. (2014), Goh et al. (2017)). The second category of
methods is the traditional style, which utilizes molecular fingerprints, such as Morgan Fingerprint,
or other handcrafted features. The third category, end-to-end methods, directly utilizes molecular
representations, such as molecular graphs or 3D coordinates, as input for property prediction.

Among them, graph neural network (GNN) methods are becoming more popular, due to their in-
herent ability to represent molecular structures as graphs. A graph G(V,E) consisting of a node
set V and an edge set E can inherently represent molecular structures, where nodes are associated
with atoms and edges represent chemical bonds. The graph neural network was initially proposed
in 2008(Scarselli et al. (2008)). It can be characterized as a message-passing network among nodes
and edges(Xu et al. (2018)), leveraging convolution, self-attention, and other specialized or spec-
tral mechanisms to aggregate information from local or global nodes. Recently, Graph Convolution
Network (GCN,Kipf (2016)), Graph Attention Network (GAT, Veličković et al. (2017)), and other
graph models have demonstrated significant advantages in modeling social networks, biological re-
lationship networks, and molecular structures. Typically, in end-to-end models, an atom graph is
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constructed from SMILES information. For example, (Cereto-Massagué et al. (2015)) takes advan-
tage of graph data.

Although methods that utilize molecular information to construct graphs are widely employed, the
limitations of building data solely based on molecular structures are rather evident. Geometric and
functional group information is of crucial importance in determining molecular properties. As de-
picted in Figure 1, an example illustrates how the geometric structure impacts molecular proper-
ties. Another instance, similar to the drug pair presented in the figure, is cis - platin and trans -
platin(Loehrer & EINHORN (1984)). These two compounds share the same topological structure;
however, cis - platin is a highly effective anti - cancer drug, whereas trans - platin is not. In cis -
platin, the chlorine atoms are arranged in a cis - configuration as leaving groups. They can simulta-
neously dissociate two adjacent key bases on the same strand of DNA, thereby forming stable cross
- linkages to bind with DNA and exert their effects. Conversely, trans - platin can only bind to a
single base on the same strand or to bases on different strands simultaneously. It is unable to form
stable bidentate coordination bonds, which makes it difficult for trans - platin to bind to DNA and
prevents it from disrupting the DNA of cancer cells.

N

N

N

N

Unable to bind to 
adjacent bases of 

DNA

Unable to disrupt 
the DNA structure 
of tumor cells

Form chelates at the 
binding sites of 
adjacent base

180°

90°

Disrupt the 
DNA structure, 
preventing the 
replication of 
tumor cells

Figure 1: A conceptual example illustrating the critical role of geometric structure in determining
molecular properties. The upper row shows a molecule with a 180° bond angle, which is unable to
bind to DNA, while the lower row shows a molecule with a 90° bond angle, which can form chelates
and disrupt the DNA structure of tumor cells.

Functional group is a set of several atoms, having some special chemical features and usually de-
termining the crucial properties of a molecule. A typical example is the difference between ethanol
(CH3CH2OH) and ethane (CH3CH3). Ethanol contains a hydroxyl group, endowing it with polar-
ity. Meanwhile, it is soluble in water because of the hydrogen bond connecting hydroxyls in ethanol
and water. Ethanol can also undergo several reactions related to the hydroxyl group. By contrast,
ethane is hardly soluble in water and lacks polarity.

Since graphs are non-Euclidean data, in order to maintain the isomorphism of the graph, graph data
cannot be added or concatenated like vectors. This makes it difficult to expand graph data to in-
clude more chemical information. To some extent, this issue can be alleviated by encoding more
information in atomic nodes and chemical bond edges, and by introducing methods such as residual
connections. Though some attempts are made to address this issue, due to the over-smoothing char-
acteristic of Graph Neural Networks (GNNs), the advantages of these approaches are not significant.

To address this, we tried to build a heterogeneous graph to construct a more-expressive graph data.
A heterogeneous graph GH = (V1, . . . , Vn;E1, . . . , En) contains different kinds of nodes Vi and
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edges Ei, where i represents the type of an edge or node. In this work, we fuse geometric infor-
mation, functional group information, and atom topologic structure together into two heterogeneous
graphs GA−F , GA−B , while the A-F means atom-functional graph, and the A-B represents the
atom-geometric graph, and we build new connections between heterogeneous nodes if they have a
relationship, such as a functional group containing several atoms. Thus, the topology structure could
represent logical connections of multi-modalities nodes. We also design a novel attention module to
aggregate multi-type nodes. It needs to be mentioned that, without geometric and functional group
information, our framework will have no difference between using a GAT, so we do not do such
ablation experiments.

Another difficulty in fusing multi-modality graph information is designing a high-efficient read-
out method, because usually molecular property prediction tasks could be conducted as a graph
classification or regression procedure, and that needs representation as a vector fed into the fully-
connected network or other module. Traditional graph readout methods, including max pooling,
global mean pooling and attention pooling(Zhang et al. (2019), Lee et al. (2019)). These methods
usually perform well in homogeneous graph pooling, while heterogeneous graph contains multi-type
information, making simply calculating the average of node or edge feature lose variant information.
To address this, we proposed a cosine-distance based fusion method. It uses the distance between
different scale readout vectors to build a hypergraph, and conduct a convolution process to integrate
features.

Hypergraph is an advanced form of graph. It is composed of hyperedges and nodes, represented as
H = (V,E). Unlike a traditional graph where an edge connects exactly two nodes, a hypergraph
allows a hyperedge to connect any number of nodes. The rank, defined as r(e) = |e|,, specifies the
number of nodes a hyperedge contains. Instead of being defined by the adjacency matrix A like a
graph, a hypergraph is defined as an incidence matrix H . There exist:

AH = (aij) ∈ {0, 1}m×n,

and

aij =

{
1, (vi ∈ ej)

0, (vi /∈ ej)
,

where m refers to the number of nodes and n refers to the number of hyperedges.

We proposed several problems and our solutions in previous content. With all these efforts, we
established ECHO. The A area of Fig. 2 shows the whole architecture of the ECHO, including
several critical modules, which we will introduce in the chapter below. In this chapter, we will
illustrate how our model is composed and how it works. For all datasets, we first use RDKit to
build RDKit.mol data, and build three scale graph data. We integrate these graphs into two differ-
ent heterogeneous graphs. Then we proposed an attention-based heterogeneous graph convolution
mechanism on them, aggregating information from multi-scale graph nodes. The B area of the Fig.
2 illustrates this mechanism. After this process, we designed a gated fusion module, adding the
multi-scale graph readout and morgan fingerprint of the molecule together, and then feed it into a
fully-connected layer to get the final result.

Through a series of extensive experiments on benchmark datasets, we demonstrate that ECHO con-
sistently outperforms state-of-the-art baselines, highlighting the significant advantages of our multi-
scale and heterogeneous graph learning framework.

2 METHODS

2.1 THE CONSTRUCTION OF MULTI-SCALE AND HETEROGENEOUS GRAPH DATA

We construct three distinct types of graph data from SMILES information. First, we use RDKit
(ref) to transform a SMILES string into a mol object and construct an atom graph, where a node Va

represents an atom and an edge Ea represents a chemical bond. We initialize the original features
of an atom node from its specific information, including atom symbol, degree, electronegativity,
implicit valence, and aromaticity, using one-hot encoding.

Next, we build a functional group graph from the RDKit mol object and the atom graph, where
a node Vf represents a functional group and an edge Ef represents the chemical bond connecting
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Figure 2: The overall architecture of the ECHO framework, including heterogeneous graph con-
struction, inter-graph attention, synergetic readout, and MLP layers.

functional groups. The featurization of a functional graph node is initialized using its MACCS
fingerprint. The MACCS fingerprint is a 166-dimensional vector computed using an asymmetric
algorithm. Similar to the Morgan Fingerprint, which is commonly used for molecular featurization,
it is uniquely determined by functional groups and contains relevant information about them.

molecule structure atom graph functional group graph bond angle-atom graph

phenyl

carboxylic
acid

ester

Figure 3: An example of the chemical structure, atom graph, and two heterogeneous graphs com-
posed of the atom graph, functional graph, and bond angle graph, respectively.

The third type of graph is constructed from chemical bond and bond angle information. A node Vb

represents a chemical bond and an edge Eb represents a bond angle. We used the MMFF-94 (ref) and
UFF force fields provided by RDKit to perform conformational optimization on the 3D structures
of molecules, obtaining detailed bond angle data used to encode bond-angle edge features. For
chemical bond nodes, we used one-hot encoding based on bond lengths and properties (e.g., single
bond, double bond, or others) as features. Additionally, for large molecules that are difficult to
optimize with force fields, we adopted a method based on atomic hybridization to estimate bond-
angle information and encode the corresponding edge features.
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After constructing the three multi-modal graphs, we established a mechanism to integrate the atom
graph with the functional graph and bond angle graph into two heterogeneous graphs, as illustrated
in Fig. 3. As shown, in the functional group-atom graph, a functional group node is connected
to the atom nodes that constitute the functional group. Similarly, a bond node is connected to the
atom nodes linked by the bond. We then apply a specialized graph attention mechanism designed to
aggregate information from different modalities.

2.2 THE MULTI-GRAPH INTERACTIVE ATTENTION

Consider the self-attention mechanism:

Attention = softmax(
QKT

√
dn

)V ,

where the query Q, key K, and value V are computed from the same input sequence or vector. In
this work, we design a heterogeneous graph attention module that calculates Q, K, and V from
different types of nodes. To illustrate, we define XA ∈ RdA×1 and XB ∈ RdB×1 as feature vectors
of different node types, and WQ,WK ,WV as linear transformation matrices. The attention can
then be expressed as:

Q = WQ ×XA,K = WK ×XB,V = WV ×XB.

We then apply the same softmax attention with a mask matrix M , constructed from the adjacency
matrix A of the heterogeneous graph, to transform global attention into local attention, enabling
the model to focus on neighboring nodes. To better understand this process, consider the intuitive
meaning of query, key, and value. This operation resembles a node of type A asking which nodes
of type B contribute most to it. The softmax-based attention uses matrix multiplication with K and
V to obtain attention weights of node B relative to node A, achieving a weighted fusion of B with
respect to A.

Thus, the multi-graph interactive attention can be expressed as:

LocalAtten = softmax[(
QKT

√
dn

)V +M ].

This process can also be described for the k-th update as:

h
(k)
atom = AGGREGATE(k)({hk−1

funct, h
k−1
angle, h

k−1
atom}),

h
(k)
funct = AGGREGATE(k)({hk−1

funct, h
k
atom}),

h
(k)
angle = AGGREGATE(k)({hk−1

angle, h
k
atom}),

where hi denotes the feature of node type i. Through this procedure, atom nodes can effectively
aggregate information from local atom, functional group, and bond angle nodes.

2.3 SYNERGETIC HETEROGENEOUS GRAPH READOUT

Typically, the readout process can be described as:

hG = READOUT (Ni, Ei|i ∈ G).

Traditional readout methods include node feature-based approaches, such as global mean pooling,
average pooling, or attention pooling; and topology-based approaches, such as motif-oriented meth-
ods that pool the graph into a set of crucial sub-structures called motifs. In our approach, we apply
a cosine-distance-based method to readout the heterogeneous graph. We first pool the heteroge-
neous graph—constructed from atom and functional group nodes VA, VF or atom and chemical
bond nodes VA, VB—into node sets NA

A−F ,N
F
A−F , or NA

A−B,NB
A−B . The subscript A − F

refers to the Atom-Functional group graph, and A−B refers to the Atom-Bond graph.
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We compute the cosine-distance matrix among the four different types of graph readout vectors.
Then, we traverse the matrix to identify vector sets with a similarity higher than a manually set
threshold λ. If such similarity exists, we define a hyperedge EH connecting the nodes representing
these vectors. Through this process, we obtain the incidence matrix H , which uniquely defines a
hypergraph HG, analogous to how an adjacency matrix defines a graph. Finally, we apply matrix
multiplication to the matrix formed by concatenating the four vectors and the hypergraph adjacency
matrix AH :

Nfused = A×N.

This process can also be viewed as a special graph convolution operation since, in the hypergraph
HG, the vectors represent node features. After multiplication, all features are weighted and fused
with their neighbors, with the weight matrix determined by the local structure. We will provide a
detailed explanation of this mechanism in the Appendix.

3 RESULTS

3.1 PERFORMANCE ANALYSIS

We evaluate our model on Tox21, BACE, BBBP, HIV, MUV classification datasets and ESOL, Free-
Solv, Lipo regression datasets, choosing evaluation metrics (ROC AUC, RMSE) which are officially
recommended by MoleculeNet (Wu et al. (2018)), and the performance of our model and baselines
is shown in tables 1 and 2. The ROC AUC means the area under the Receiver Operating Charac-
teristic, and the RMSE means the Root Mean Square Error. The sample and task numbers are also
shown in tables. Further introduction about datasets can be found at A appendix chapter.

We choose different kinds of baselines. We first choose GAT, Specformer(Bo et al. (2023)),
Graphomer(Ying et al. (2021)), which are relatively classical and modern basic graph neural net-
work models. For the professional molecular representation models, we choose the GeoGNN(Fang
et al. (2022)) and Uni-Mol(Zhou et al. (2023)). They are all widely known pre-trained, graph neural
network and geometrical information enhanced models.

The ECHO model demonstrates significant advantages in molecular property prediction tasks, es-
pecially excelling in classification tasks. On the Tox21 and BACE datasets, its ROC AUC reaches
0.7994 and 0.9202 respectively, both being the highest among all models. In particular, its per-
formance on the BACE task far outpaces that of the second-ranked model, reflecting its strong
adaptability to scenarios with moderate sample sizes, focusing on specific targets (such as BACE -
1 enzyme inhibition), or multi - task joint prediction. On the HIV dataset, ECHO ranks first with
an ROC AUC of 0.8109, indicating that it can maintain excellent performance in single - task clas-
sification with large - scale samples. In regression tasks, ECHO performs best on FreeSolv and
ESOL. On the Lipo dataset, it also approaches the optimal with an RMSE of 0.6060, demonstrating
good predictive ability for molecular physicochemical properties such as solvation free energy and
lipophilicity. It is worth noting that on most of the datasets where it is not the optimal model, the
performance of ECHO is only slightly lower than that of large - scale pre - trained models, demon-
strating its performance advantages under conditions of low data volume and insufficient computing
power.

Table 1: Performance on classification tasks (ROC AUC)
Sample Task GAT Specformer Graphomer GeoGNN Uni-Mol ECHO

Tox21 7831 12 0.5870 0.7816 0.7615 0.7810 0.7960 0.7994
BACE 1513 1 0.7075 0.8096 0.7842 0.8561 0.8572 0.9202
BBBP 2039 1 0.7998 0.7103 0.7919 0.7244 0.7294 0.7313
HIV 41127 1 0.7198 0.8094 0.7642 0.8069 0.5000 0.8109
MUV 93087 17 0.6176 0.7970 0.7664 0.8175 0.5000 0.8000

3.2 ABLATION ANALYSIS

After removing the molecular fingerprint, the performance of all tasks declined to a certain extent.
In classification tasks, the ROC AUC of Tox21, BACE, and BBBP decreased. In regression tasks,
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Table 2: Performance on regression tasks (RMSE)
Sample GAT Specformer Graphomer GeoGNN Uni-Mol ECHO

ESOL 1128 1.5441 1.1106 0.8773 0.7983 0.7929 0.8601
FreeSolv 642 3.7864 2.7642 2.0732 1.8779 1.4804 1.3802
Lipo 4200 1.2070 0.7393 0.7210 0.6608 0.6033 0.6060

Table 3: Results of ablation experiments (ROC AUC and RMSE)
Models Tox21 BACE BBBP ESOL FreeSolv
ECHO w/o MorganFP 0.7719 0.7347 0.7110 1.5803 1.8121
ECHO w/o Synergetic graph readout 0.7875 0.7206 0.7240 0.9995 1.4043

the RMSE of ESOL and FreeSolv increased, indicating that the molecular structure - related features
provided by MorganFP are important.

Regarding the graph read - out part, after removing this module (ECHO w/o Synergetic graph read-
out), the performance was also impaired and the differences among tasks became more prominent.
In classification tasks, the ROC AUC of BACE decreased most significantly. In regression tasks, the
increase in the RMSE of ESOL was greater than that of FreeSolv. This shows that the synergistic
graph read - out module plays a more crucial role in integrating features and improving prediction
accuracy in classification tasks focusing on specific targets (such as BACE) and water - solubility
prediction (ESOL), while its impact on multi - task classification (Tox21) and solvation free energy
prediction (FreeSolv) is relatively limited.

Overall, the absence of either of the two modules will weaken the performance of the ECHO model.
Their synergistic effect is an important guarantee for the ECHO model to efficiently complete molec-
ular property prediction tasks.

REPRODUCIBILITY STATEMENT

We have published all the source code of ECHO on an anonymous GitHub repository. Our model
was trained and tested using public datasets. This allows reviewers and readers to reproduce our
work, evaluate the performance of ECHO, or apply our approach to their own datasets to further
their research.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

David Weininger. Smiles, a chemical language and information system. 1. introduction to method-
ology and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513–530, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329, 2014.

Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhi Yu, and Can Wang.
Hierarchical graph pooling with structure learning. arXiv preprint arXiv:1911.05954, 2019.

Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng
Zhang, and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework.
2023.

A APPENDIX

THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, a large language model (LLM) was used solely for the purpose
of language polishing and refinement, including grammatical corrections and improved phrasing.
All scientific content, data, analysis, and conclusions remain the sole responsibility of the authors.
This use aligns with ICLR 2026 policies on LLM disclosure.
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A.1 INTRODUCTION OF DATASETS

Tox21.The full name of the Tox21 dataset is Toxicology in the 21st Century, which was released in
2014. In the version provided by MoleculeNet, this dataset includes 7831 molecules and 12 toxicity
indicators. It is mainly used to evaluate the toxicity of chemical substances on 12 different biological
endpoints, such as apoptosis, DNA damage, and hormone disruption. The purpose is to develop and
validate computational models for predicting compound toxicity, thereby providing data support for
new drug development, environmental monitoring, and the formulation of public health policies.

BACE.BACE dataset was published in 2013, including 1513 substances. It provides quantitative
(IC50) and qualitative (binary label) binding results for a set of inhibitors of human β-secretase
1(BACE-1).

BBBP.The full name of the BBBP dataset is the Binary labels of blood-brain barrier penetra-
tion(permeability). It was published in 2017, providing information on whether 2039 molecules
can cross the blood-brain barrier.

HIV.A subset of PubChem BioAssay by applying a refined nearest neighbor analysis, designed for
validation of virtual screening techniques, provides information about whether 41,127 molecules
can have biomedical activity against HIV.

MUV.A subset of PubChem BioAssay by applying a refined nearest neighbor analysis, designed
for validation of virtual screening techniques, providing information about the activities of 93,087
molecules with multi-type biomedical receptors or targets.

Information about regression dataset is listed. ESOL.The ESOL is published in 2004, contains
1128 molecule sampls. It provides Water solubility data(log solubility in mols per litre) for common
organic small molecules.

FreeSolv.It contains 642 molecules, providing experimental and calculated hydration free energies
of small molecules in water.

Lipophilicity.It contains 4,200 molecules, providing experimental results of octanol/water distribu-
tion coefficient(logD at pH 7.4).

A.2 HYPERPARAMETER SETTINGS

In the experiment, the hyperparameters of ECHO were set as follows: a single - layer attention layer,
two hidden layers of MLP, and eight attention heads. The batch size was set to 32, the number of
training epochs was 50, and an early - stopping mechanism was implemented. For other models
equipped with the multi - head attention mechanism, the number of attention heads was set to 8.
Models with a pre - training component were all trained on their original pre - training datasets. The
number of fine - tuning epochs was 20, and an early - stopping mechanism was adopted.

A.3 THE SYNERGETIC HETEROGENEOUS READOUT

Given input vectors v1, v2, . . . , vn ∈ Rd, we first construct the feature matrix X =
[v1; v2; · · · ; vn] ∈ Rn×d.

The key innovation lies in interpreting the cosine distance matrix as a hypergraph incidence matrix:

Hij = 1− vi · vj
∥vi∥∥vj∥

where H ∈ Rn×n defines the hypergraph structure, with vectors as nodes and vector pairs as hyper-
edges.

The adjacency matrix is constructed via matrix multiplication:

A = HHT =

n∑
k=1

H:kH
T
:k

with element-wise formulation:

Aij =

n∑
k=1

(1− sim(vi, vk))(1− sim(vj , vk))
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The fusion process Z = AX is equivalent to hypergraph convolution, enabling semantic-aware
information propagation. The final output is obtained through global pooling:

y =

n∑
i=1

Zi = 1TAX

where 1 ∈ Rn is the all-ones vector.

The method is fully differentiable, with gradients computed as:

∂Z

∂vi
=

∂A

∂H

∂H

∂vi
X +A

∂X

∂vi

supporting end-to-end training. The weight matrix A automatically achieves semantic awareness:
reducing weights between similar vectors while enhancing unique ones, thus optimizing fusion per-
formance.
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