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ABSTRACT

Continuous-time dynamic graphs (CTDGs) provide a richer framework to cap-
ture fine-grained temporal patterns in evolving relational data. Long-range in-
formation propagation is a key challenge in learning representations for CTDGs,
wherein it is important to retain and update information over long temporal hori-
zons. Existing approaches restrict models to capture one-hop or local temporal
neighborhoods and fail to capture multi-hop or global structural patterns. To mit-
igate limitations of the current approaches, we derive the state-space modelling
framework for continuous-time dynamic graphs (CTDG-SSM) from first prin-
ciples. We first introduce continuous-time Topology-Aware higher order poly-
nomial projection operator (CTT-HiPPO), a novel memory-based reformulation
of HiPPO to jointly encode temporal dynamics and graph structure, where solu-
tion for memory representations from CTT-HiPPO are obtained by projecting the
classical HiPPO solution through a polynomial of the Laplacian matrix, yielding
topology-aware memory updates that admit an equivalent state-space formulation
for CTDGs (CTDG-SSM). This is then discretized (e.g., using the zero-order hold
method) for practical implementation. We further provide theoretical guarantees
demonstrating the robustness of memory representations under graph structure
perturbations. Across benchmarks on dynamic link prediction, dynamic node
classification, and sequence classification, CTDG-SSM achieves state-of-the-art
performance. Notably, it achieves large performance gains on dynamic link pre-
diction and sequence classification tasks, specifically on datasets that require long
range temporal (LRT) and spatial reasoning.1

1 INTRODUCTION

Continuous-time dynamic graphs (CTDGs) provide a principle framework for modeling evolving
relational data as a continuous stream of timestamped events, with each event capturing interac-
tions between entities at a specific time instance (Rossi et al., 2020). Unlike discrete-time dynamic
graphs (DTDGs), which rely on coarser snapshot intervals (Kazemi et al., 2020), CTDGs preserve
fine-grained temporal information, making them especially well-suited for tasks such as dynamic
link prediction and dynamic node classification (Ding et al., 2024; Rossi et al., 2020). These capa-
bilities have made CTDGs increasingly important in domains including finance, e-commerce, and
social network analysis, to name a few. Despite initial efforts in representation learning for CT-
DGs, existing approaches still face two primary challenges: (1) long-range temporal dependencies
(LRT): the ability to preserve and use node states and interactions over extended time horizons; and
(2) long-range spatial dependencies (LRS): the ability to capture multi-hop structural interactions
beyond immediate neighborhoods in dynamic graphs.

Based on these challenges, existing models for CTDGs can be broadly categorized into two types:
event-driven models and sequence-based models. Event-driven models update node states at the
arrival of each interaction and capture structural context through mechanisms such as tempo-
ral random walks and graph neural networks-based message passing (Wang et al., 2021b; Rossi

1Code to reproduce the results is available at: https://anonymous.4open.science/r/CTDG-SSM-7D78
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et al., 2020; Xu et al., 2020). While computationally efficient, such models mainly capture
short-term temporal patterns and are weak at preserving LRT (Yu et al., 2023). The second
category includes sequence-based models, which explicitly target LRT using sequence models
such as Transformer or Mamba. These methods construct temporal sequences of node features
and their 1-hop temporal neighbors, patch them, and process them with either Transformer or
Mamba layers (Yu et al., 2023; Ding et al., 2024). Although effective for LRT, these models
inherently restrict structural context to the local neighborhood, limiting their capacity to capture
LRS (Gravina et al., 2024) and global spatial patterns in dynamic graphs. Modeling LRS is par-
ticularly important in domains such as financial fraud detection, where money laundering typi-
cally spans long transaction chains rather than isolated local interactions (Altman et al., 2023).
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Figure 1: Efficiency of CTDG-SSM in
terms of performance and number of learn-
able parameters

To overcome the limitations of existing methods while
ensuring both LRS and LRT, we introduce a continuous-
time dynamic graph state-space model (CTDG-SSM)-a
unified spatiotemporal state-space framework that inte-
grates temporal memory compression through a tem-
poral polynomial basis and graph structure through
graph filters that are polynomials of the graph Lapla-
cian. To begin with, we derive a continuous-time,
topology-aware higher-order polynomial projection oper-
ator (CTT-HiPPO), in which time-varying node signals
are expressed jointly through temporal and spatial poly-
nomial bases. The resulting coefficients of CTT-HiPPO
are computed by minimizing the discrepancy between
the observed node features and their graph-filtered poly-
nomial approximations, thereby extending GHiPPO (Li
et al., 2024b) to the continuous-time dynamic graph set-
ting. As a result, CTT-HiPPO captures both temporal
evolution and graph-induced structural patterns, providing a principled way to construct a structure-
aware state matrix for the SSM.

To implement CTDG-SSM efficiently, we discretize the continuous-time formulation using zero-
order hold (ZOH), yielding the discrete counterpart of the model. The resulting CTDG-SSM remains
lightweight, with only a small set of learnable parameters-primarily the coefficients of the graph
polynomial filter and the system matrices governing state evolution. On the LRT task with the
MOOC dataset, Fig. 1 shows that the model captures temporal patterns effectively despite its small
parameter count. Using AUC-ROC and number of parameters as metrics, CTDG-SSM achieves top
performance while using roughly one-tenth the parameters of competing methods.

Contributions and main results. We summarize the main contributions of the paper as follows:

• We first develop CTT-HiPPO, a HiPPO-based memory mechanism for CTDGs that effi-
ciently compresses historical information from all events while maintaining LRT and LRS.
Further, leveraging the relation between the classical HiPPO coefficients and the coeffi-
cients of CTT-HiPPO, we derive an equivalent SSM, CTDG-SSM, that governs the evolu-
tion of CTT-HiPPO.

• We derive a discrete form of CTDG-SSM using ZOH discretization that enables efficient
implementation with diagonal parameterization for scalable and stable computation.

• We provide theoretical guarantees characterizing the robustness of CTT-HiPPO coef-
ficients to graph perturbations and establish the permutation equivariance property of
CTDG-SSM. These properties are crucial for real-world scenarios where continuous data
stream collection and processing are susceptible to errors and failures.

We conduct extensive experiments to assess the ability of our model to preserve both LRT and LRS.
For temporal long-range dependency, we benchmark CTDG-SSM on dynamic graph learning tasks
such as link prediction and node classification, where it outperforms state-of-the-art methods on LRT
benchmarks, including LastFM, Enron, and MOOC. To evaluate spatial long-range dependency, we
conduct the sequence classification experiment (Gravina et al., 2024), demonstrating the model’s
capacity to capture LRS through node states generated using spatiotemporal updates.
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2 RELATED WORKS

Learning with DTDGs. Learning on dynamic graphs can be broadly categorized into two subar-
eas: learning for DTDGs and CTDGs. DTDGs represent data as a sequence of graph snapshots
observed at discrete time intervals. Most learning algorithms for DTDGs extend static graph learn-
ing methods, such as graph convolutional networks (GCNs), to each snapshot and employ recurrent
neural networks (RNNs) to capture temporal dependencies (Pareja et al., 2020; Chen et al., 2022).
Recently, efforts have been made to extend SSMs to the DTDGs to capture LRT dependencies (Li
et al., 2024b). However, it assumes a fixed graph structure within each interval and then combines
node embeddings from these snapshots using GNNs. A direct extension of this approach to CT-
DGs is challenging, since it involves continuous graph evolution, where the set of nodes evolves
over time, and edges occur at irregular intervals. Moreover, representing event streams using DT-
DGs rather than CTDGs inevitably leads to a loss of fine-grained temporal information (Rossi et al.,
2020; Kumar et al., 2019; Trivedi et al., 2018).

Learning with CTDGs. CTDGs represent dynamic graphs as streams of time-stamped events. Ex-
isting learning methods typically focus on either short-range or LRT dependencies, and are based
on random walks, message passing, or sequence modeling with Transformer or mamba layers. Rep-
resentative approaches include temporal random walks (Nguyen et al., 2018; Starnini et al., 2012),
message passing architectures such as TGAT (Xu et al., 2020), and memory-based methods such
as TGN and JODIE (Rossi et al., 2020; Kumar et al., 2019). Memory-based models that rely on
RNNs often suffer from gradient instability (vanishing or exploding), which limits their ability to
capture long-range dependencies (Rossi et al., 2020). To address this, recent architectures such as
DyGFormer and DyGmamba employ Transformers and Mamba, respectively (Yu et al., 2023; Ding
et al., 2024). However, these methods pre-process temporal data by restricting attention to one-hop
temporal neighborhoods before transformation, thereby limiting their ability to capture multi-hop
information. In contrast, our proposed method learns node representations without imposing such
structural constraints, enabling richer modeling of both temporal and spatial dependencies. Further-
more, the proposed method, primarily developed for CTDGs, can also handle DTDGs, given the
equivalence between CTDGs and DTDGs (Souza et al., 2022).

3 CONTINUOUS-TIME DYNAMIC GRAPHS

In this section, we describe continuous-time dynamic graphs (CTDGs) and the notation used
throughout the paper.
Consider a continuous-time observation G(t) = (u, v, t), which represents a temporal edge between
node u and v at time t. A CTDG (Rossi et al., 2020), denoted by G, is an ordered sequence of
temporal interactions G = {G(t1),G(t2), . . .} appearing at time instances t1 < t2 < · · · . It should
be noted that the same subset of nodes may appear in G(ti) and G(tj) for i ̸= j. In what follows,
we capture those unique subsets of nodes that appear within a temporal window and define their
underlying graph operator.

Active node set. For a given time τ ∈ R+, we define the subgraph Gτ of G as the collection of
temporal interactions that occur up to time τ . Formally, Gτ = {G(ti) | ti ≤ τ}. The set of active
nodes at time τ is then the set of nodes that participate in any interaction in Gτ , and is denoted by
Vτ = {u | u ∈ G(ti), ti ≤ τ}. Let us denote the number of nodes in Vτ by Nτ = |Vτ |.
Subgraph operator and filters. The temporal interactions of the active nodes in Gτ is captured
by the subgraph adjacency matrix Aτ ∈ RNτ×Nτ with entries Aτ [u, v] =

∑
ti≤τ

I
(
{u, v} ∈ G(ti)

)
,

where I(·) is the indicator function defined as I({u, v} ∈ G(ti)) = 1 if {u, v} ∈ G(ti), and 0

otherwise. We use the degree normalized Laplacian matrix defined as Lτ = I −D
−1/2
τ AτD

−1/2
τ ,

where Dτ is the corresponding degree matrix Dτ = diag(Aτ1).

Graph filters are expressed as matrix polynomials of the normalized Laplacian matrix. We define a
Kth-order filter as p(Lτ ) =

∑K−1
k=0 αk L

k
τ , where {αk}K−1

k=1 are learnable filter coefficients. Apply-
ing a Kth-order filter aggregates information from up to K-hop neighborhoods in the subgraph Gτ .
Specifically, as τ evolves continuously with time in CTDGs, both Aτ and Lτ evolve sequentially,
and thus the corresponding filters p(Lτ ) adapt to the temporal evolution of the graph structure.

3
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Each node u in the subgraph Gτ is associated with a feature vector xu(t) ∈ RDn . Collecting the
node features over the subgraph yields the graph-level feature matrix X ∈ RNτ×Dn .

4 THE PROPOSED STATE-SPACE MODELS FOR CTDGS

In this section, we develop SSMs for CTDGs, with the objective of compressing historical event
information into compact latent memory representations. We first present a HiPPO matrix (Gu
et al., 2020) computation that incorporates graph structure as an inductive bias within latent memory
representations. Specifically, we decompose node signals as graph-aware transformations of signals
represented in an orthogonal polynomial space. Subsequently, we develop a novel SSM model for
CTDG and derive its discrete counterpart, which is useful for practical implementation.

To begin with, we describe the HiPPO projection for graph data, drawing inspiration from (Li et al.,
2024b). Let us define an orthogonal polynomial g(t) ∈ Rd×1 and a coefficient matrix Hi,τ ∈
RNτ×d. We then model the ith features X[:, i](t) ∈ RNτ×1 on Vτ as

X[:, i](t) = p(Lτ )Hi,τg(t) + ri(t), ∀t < τ, (1)
for i = 1, · · · , Dn,where p(Lτ ) is the polynomial of the normalized Laplacian and the error ri(t) ∈
RNτ×1 accounts for any model mismatch. Here, the graph filter p(Lτ ) incorporates the topology
structure in Hi,τ by aggregating the HiPPO coefficients based on the temporal graph-structure in Gτ .

Then the coefficients Hi,τ are obtained by minimizing the residual in the temporal window [0, τ ] as

min
Hi,τ

∫ τ

0

∥X[:, i](t)− p(Lτ )Hi,τg(t)∥22 dµ(t), (2)

where µ(t) is the measure under which the orthogonality of g(t) is defined. Although the above
formulation provides a general framework with a learnable Kth-order graph filter for modeling the
HiPPO coefficients for graph data, it is related to the one in (Li et al., 2024b) that instead uses
a quadratic Laplacian regularizer in equation 2 with p(Lτ ) = I , whereas the classical HiPPO
formulation (without any graph structure) Gu et al. (2020) uses p(Lτ ) = I in equation 2.

Now, to find the optimal set of coefficients Hi,τ , we use the first-order optimality condition (detailed
derivation can be found in Appendix B) to obtain

p(Lτ )Hi,τ =

∫ τ

0

X[:, i](t)g(t)⊤dµ(t) = H(HiPPO)
i,τ (3)

Hi,τ = p(Lτ )
−1H(HiPPO)

i,τ (4)

where H(HiPPO)
i,τ denotes the solution to the classical HiPPO formulation without any graph struc-

ture (Gu et al., 2020), and by the choice of Lτ , p(Lτ )
−1 is well-defined. From equation 3, it can be

seen that the CTT-HiPPO coefficients Hi,τ are essentially the graph-aware extension of the clas-
sical HiPPO coefficients, obtained by projecting H(HiPPO)

i,τ through the inverse polynomial graph
filter. Although we provide the solution Hi,τ for a single feature i, it can be easily extended to
multiple features along the lines as above. Henceforth, for brevity, we drop the subscript i in Hi,τ

and X[:, i](t) and simply use Hτ and X(t).

4.1 THE CTDG STATE-SPACE MODEL

We now present the main result of the paper, i.e., the state-space formulation that governs the evolu-
tion of the memory coefficients Hτ . In SSMs, the temporal dynamics of an input signal are modeled
through the progression of latent memory representations (state space vectors). We now describe the
evolution of the representations of CTDGs over time through the evolution of the memory coeffi-
cient matrix Hτ , which jointly captures both temporal and topological structures. We refer to the
proposed SSM for CTDG as CTDG-SSM, whose model is described in the next theorem.
Theorem 4.1 (CTDG-SSM ). Consider a interval s ∈ [τ, τ+) with CTDGs Gτ and Gτ+ Let Gτ denote
a CTDG at time τ , and for new a observation G(τ+) with corresponding CTDG Gτ+ . The evolution
of the memory coefficients Hs for s ∈ [τ, τ+) admits the following state-space representation:

dHs

ds
= −Hs

A⊤

M(s)
− p(Ls)

−1 dp(Ls)

ds
Hs + p(Ls)

−1X(s)
B⊤

M(s)
, (5)
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where A ∈ Rd×d is the state-transition matrix that depends on the choice of the orthogonal poly-
nomial g(·), B ∈ Rd×1 is the input matrix, and M(s) : R+ → R+ is a normalization term
that depends on the choice of the measure µ(t). Here, Ls ∈ RNτ+

×Nτ+ , X(s) ∈ RNτ+
×1,

p(Ls) =
τ−s
τ−τ+

p(Lτ+) +
τ+−s
τ+−τ p(Lτ ), and Hs ∈ RNτ+

×d for s ∈ [τ, τ+). 2

The proof of this theorem is relegated to Appendix C.1. The result directly follows from the equiv-
alence between the classical HiPPO coefficients and a linear ODE (Theorem 1 in (Gu et al., 2020))
characterized by the state matrix A and input matrix B, and more importantly, incorporating the fact
that Lτ depends on τ in CTDGs. We end this subsection with the following remark that explicitly
connects CTDG-SSM to (Gu et al., 2020) and (Li et al., 2024b).
Remark. Equation 5 shows that the graph filter p(Lτ ) modifies the classical HiPPO dynamics by
introducing time-dependent graph-aware terms that account for the change in temporal evolution
of the graph. When the polynomial of Laplacian is static or fixed as in (Li et al., 2024b), we have
dp(Ls)

ds = 0. Thus, CTDG-SSM reduces to the SSM variant in (Li et al., 2024b).

When there is no graph, i.e., p(Lτ ) = I , CTDG-SSM reduces exactly to classical SSM (Gu et al.,
2020).

4.2 THE DISCRETE VERSION OF CTDG-SSM

We now describe the discrete-time version of CTDG-SSM in this section. In particular, we discretize
CTDG-SSM using the ZOH approach.

In practice, the continuous-time SSM is discretized using ZOH, which assumes piecewise constant
inputs, i.e., X(t) = X[k] for t ∈ [tk−1, tk) with step size ∆[k] = tk − tk−1. Here tk−1 is τ and tk
is τ+. Where L[k] ∈ RNτ+

×Nτ+ is obtained using a subgraph Gτ+ and L[k − 1] ∈ RNτ+
×Nτ+ is

obtained by removing the newly observed edges in ∆[k] time interval from L[k].
Theorem 4.2 (Discrete CTDG-SSM ). Let X[k] denote the input at time tk, and let the temporal
graph structures at times tk and tk−1 be represented by the Laplacians L[k] and L[k − 1], re-
spectively. Then for ∆[k] = tk − tk−1, the memory update of the proposed CTDG-SSM model is
governed by the following discrete-time recursion:

H[k + 1] = ĀL[k] H[k] Ā+ B̄(L[k],X[k]) (6)

Here, ĀL[k] = exp
(
−p(L[k])−1 (p(L[k])− p(L[k − 1]))

)
, Ā = exp(∆[k]A⊤), and

B̄(L[k],X[k]) =
∫ 1

0
(ĀL[k])

s p(L[k])−1X[k]B⊤(Ā)s ∆[k] ds.

We present the detailed proof in Appendix C.2. The proof proceeds by first simplifying Equa-
tion equation 5 to standard state-space form with system and input matrices, leveraging the proper-
ties of the Kronecker structure. We then apply the ZOH discretization to this form and subsequently
factorize the discretized equations to obtain the final expression.

The discrete memory update in equation 6 is structurally analogous to the vanilla mamba update (Gu
& Dao, 2024), with two key distinctions: there are two state-transition matrices that jointly operate
on the state variable, and the input-dependent component B̄(L[k],X[k]) does not admit a closed-
form solution.
Remark. The invertibility of p(L[k]) matrix involved in equation 6 is ensured by choosing all graph
filter coefficients to be strictly positive i.e., αi > 0∀i = 0, 1, . . . ,K − 1. Since L[k] is a normalized
graph Laplacian, the spectrum satisfies λ[k] ∈ [0, 2]. Therefore with αi > 0 we have p(λ[k]) > 0,
which implies that p(L[k]) is positive definite and therefore invertible. It is more important to notice
that complexity of this operation is influenced by the batch size as it directly influences the number
of the active nodes (more details in the Section 5).

5 ARCHITECTURE

In this section, we introduce the proposed architecture that implements discrete CTDG-SSM. The
overall modular design is illustrated in Fig. 2. It mainly consists of three blocks: (a) Subgraph sam-

2To match the dimension of Lτ and Lτ+ in equation 5, we construct Lτ by removing the edges observed
in G(τ+) from Lτ+ .

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Sub-graph 
sampling

+

Batch Raw message

Static embedding

Node level feature
Memory

Agg

CTDG-SSMEncoder

D
ecoder

+

Figure 2: Architecture of the CTDG-SSM framework. A batch of events is subgraph-sampled to produce
the batch graph. Raw messages and static embeddings are combined to form node-level features, which are
encoded and processed by the CTDG-SSM module to update dynamic memory. The updated memory and
static embeddings are then aggregated to form the final node representations used by the decoder.

pler: constructs Nu-temporal neighborhoods for each node. (b) Node feature encoder: integrates
node, edge, and temporal information into node feature representations. (c) CTDG-SSM module:
generates memory representations that capture LRT dependencies and structural context.
Subgraph sampling. At each training step, we construct a mini-batch of temporal interactions by
grouping together B chronologically consecutive events. From this batch, we develop a batch level
Laplacian LB [k] ∈ RNB×NB by generating subgraphs via a neighborhood-based sampling strategy:
for every node participating in an event, we sample up to Nu of its most recent neighbors, where
Nu defines the spatial context size. To estimate LB [k − 1] we remove the current batch interaction
edges from LB [k] while preserving the neighborhood edges of the Nu neighbors. This subgraph-
based approach is motivated by two factors: (i) it captures information from the multi-hop temporal
neighborhood, and (ii) it enables the model to update states for nodes beyond those directly involved
in the observed interactions, thereby incorporating both local structural dependencies and broader
temporal context.
Node feature encoder. We construct input features XB ∈ RNB×DB for the current batch by
concatenating node-specific features, temporal neighbor features, edge attributes, and the cor-
responding timestamp information of events in the batch. For an interaction event G(ti) =
(u, v, ti) with edge feature xuv , the feature vectors for the participating nodes are defined
as XB [u, :] = [xu(ti)||xv(ti)||xu,v||ϕ(∆ti)], and XB [v, :] = [xu(ti)||xv(ti)||xu,v||ϕ(∆ti)].
Here, xu and xv denote the static embeddings of nodes u and v concatenated with their
raw features, and ϕ(·) denotes a fixed (non-trainable) time-encoding function. The term
∆ti corresponds to the inter-event time since the last occurrence of (u, v); for first-time
interactions, ∆ti is assigned a large constant following prior works (Ding et al., 2024).

Figure 3: Illustration of
single layer CTDG-SSM

Encoder. The encoder hθ takes the input feature matrix XB and projects
it into a latent space of d-dimension. These projected features are then
used to update the memory representation through the CTDG-SSM re-
currence. In experimentation, we implement the encoder as a 2-layer
neural network and represent augmented and projected node features as
hθ(XB) = X̃[k] ∈ RNB×d.

Learnable CTDG-SSMs.: The CTDG-SSM block computes node mem-
ory representations according to equation 6. While a single-layer
CTDG-SSM is sufficient to capture linear state-space dynamics, stack-
ing multiple layers enables the model to learn richer temporal feature
transformations. To enhance representational capacity, we incorporate
residual connections, RMSNorm normalization, and the GeLU activation
within our CTDG-SSM architecture, following design principles from mamba (Gu & Dao, 2024)
(see Figure 3).

Therefore, given the output of (l−1)-th layer denoted as X̃(l)[k], the l-th layer performs the follow-
ing sequence of operations: H(l)[k + 1] = CTDG-SSM(RMS(X̃(l)[k]),LB [k]), and X̃(l+1)[k] =

6
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X̃(l)[k] + σ
(
H(l)[k + 1]

)
, where RMS(·) denotes RMS normalization and σ is a nonlinear activa-

tion function. We use the GeLU activation, which promotes stable training and ensures well-scaled
feature transformations. The input for the first layer, i.e, X̃(0)[k] = X̃[k], is the projected node fea-
tures. For nodes participating in multiple events within the same batch, we apply a mean aggregator
to obtain a single consolidated representation.

Memory: The memory module maintains the latent representations of all nodes. These are ini-
tialized as zero vectors of dimension d. After each batch, the memory is updated with the newly
computed representations of the nodes involved in the current interactions and the sampled nodes.
Decoder. For downstream tasks such as link prediction and node classification, the decoder operates
on the memory representations of the target nodes.

Link Prediction. Given a query of the form (u, v, T ), we first retrieve the static embeddings and
dynamic memory states of nodes u and v, denoted hu and hv . This representation is augmented
with a learnable temporal embedding ψ(∆t), where ∆t = T − tlast and tlast denotes the most
recent interaction time between u and v. The concatenated vector

[
hu ∥hv ∥ψ(∆t)

]
is then passed

through a linear layer to produce an edge score.

Node Classification. For a query of the form (u, v, T ) or (u, T ), only the representation of node u is
used. The decoder applies a linear mapping to hu, optionally concatenated with available temporal
information, to produce a multi-class probability vector corresponding to the predicted node label.

6 THEORETICAL CHARACTERIZATION

In this section, we derive the robustness and permutation equivariance properties of CTDG-SSM. In
particular, robustness property characterizes the stability of memory representations under structural
perturbations and is crucial given that real-world temporal graphs may include spurious edges.

Theorem 6.1 (Robustness property). Let L̄ = L + ∆L be the perturbed graph Laplacian with
∥∆L∥2 ≤ ϵ. Then the error between the perturbed and true coefficients is bounded linearly in

terms of the energy of the perturbed graph Laplacian as ∥Ĥi,τ−Hi,τ∥2

∥Hi,τ∥2
≤ ϵΓ, where Γ = λ2λc

λ2
1

with

λ1 := miny∈[0,2] |p(y)| > 0, λ2 := maxy∈[0,2] |p(y)|, and λc := maxy∈[0,2] |dp(y)dy |.

We relegate the proof to Appendix C.3. The derivations follows by using the triangle inequality
and exploiting spectral bounds of the normalized graph Laplacian. The derived error bound shows
that the deviation between the perturbed and true coefficients scales linearly with the energy of
the perturbed Laplacian ∆L. In other words, this implies that small structural perturbations in
the underlying graph induce only proportionally small deviations in the coefficients. Hence, the
representations produced by CTT-HiPPO are stable and robust with respect to perturbations.

Theorem 6.2 (Permutation Equivariance). Let P = {Π ∈ {0, 1}Nτ×Nτ : Π⊤Π = ΠΠ⊤ = INτ
}

be the set of all Nτ ×Nτ permutation matrices. Then under the permutation of the graph Laplacian
L[k] and node-features X by any Π ∈ P , the representations from CTDG-SSM also modifies as
H̄[k + 1] = ΠH[k + 1].

We relegate the proof to the Appendix C.4. The permutation equivariance property guarantees that,
when the nodes in the observed CTDGs and their associated signals are permuted, the representa-
tions by CTDG-SSM permute in exactly the same way, thereby preserving equivariance.

7 NUMERICAL EXPERIMENTS

We evaluate the proposed algorithm on two downstream temporal graph learning tasks, namely
dynamic link prediction and node classification. Further, to assess the model’s ability to preserve
long-range information, we test it on a sequence classification task.

Baseline models. For all the three tasks, we compare the performance of our model against the fol-
lowing state of the art algorithms, namely, JODIE (Kumar et al., 2019), DyRep (Trivedi et al.,
2018), TGN (Rossi et al., 2020), TGAT (Xu et al., 2020), GraphMixer (Cong et al., 2023),
DyGFormer (Yu et al., 2023), CTAN (Gravina et al., 2024), DyGmamba (Ding et al., 2024). For dy-
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Table 1: AUC-ROC of dynamic link prediction with random negative sampling under T: Transductive, and I:
Inductive setup. Best-performing model per dataset is shown in bold.

Setup Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGmamba CTDG-SSM

T

LastFM 70.89 ± 1.97 71.40 ± 2.12 71.47 ± 0.14 76.64 ± 4.66 85.92 ± 0.16 71.09 ± 1.48 73.51 ± 0.14 93.03 ± 0.11 85.12 ± 0.77 93.31 ± 0.18 93.79 ± 0.22
Enron 87.77 ± 2.43 83.09 ± 2.20 68.57 ± 1.46 88.72 ± 0.95 90.34 ± 0.23 83.33 ± 0.93 84.16 ± 0.34 93.20 ± 0.12 87.09 ± 1.51 93.34 ± 0.23 94.98 ± 2.92
MOOC 84.50 ± 0.60 84.50 ± 0.87 87.01 ± 0.16 91.91 ± 0.82 80.48 ± 0.41 84.02 ± 0.59 84.04 ± 0.12 88.08 ± 0.50 85.40 ± 2.67 89.58 ± 0.12 99.00 ± 0.33
Reddit 98.29 ± 0.05 98.13 ± 0.04 98.50 ± 0.01 98.61 ± 0.05 99.02 ± 0.00 97.67 ± 0.01 97.17 ± 0.02 99.15 ± 0.01 97.24 ± 0.75 99.27 ± 0.01 99.48 ± 0.02
Wikipedia 96.36 ± 0.14 94.43 ± 0.32 96.60 ± 0.07 98.37 ± 0.10 98.54 ± 0.01 97.27 ± 0.06 96.89 ± 0.04 98.92 ± 0.03 97.00 ± 0.21 99.08 ± 0.02 99.33 ± 0.08
UCI 90.35 ± 0.51 69.46 ± 2.66 78.76 ± 1.10 92.03 ± 0.69 93.81 ± 0.23 85.49 ± 0.82 91.62 ± 0.52 94.45 ± 0.22 76.25 ± 2.83 94.77 ± 0.18 89.24 ± 0.43
Social Evo. 92.13 ± 0.20 90.37 ± 0.52 94.93 ± 0.06 95.31 ± 0.27 87.34 ± 0.10 95.45 ± 0.21 95.21 ± 0.07 96.25 ± 0.04 Timeout 96.38 ± 0.02 99.10 ± 0.49
Avg. Rank 7.93 9.36 7.86 4.57 5.71 8.00 7.71 3.00 7.50 2.00 1.86

I

LastFM 83.13 ± 1.19 83.47 ± 1.06 78.40 ± 0.30 81.18 ± 3.27 89.33 ± 0.06 81.38 ± 1.53 82.07 ± 0.31 94.17 ± 0.10 60.40 ± 3.01 94.42 ± 0.21 94.49 ± 0.27
Enron 78.97 ± 1.59 73.97 ± 3.00 66.67 ± 1.07 78.76 ± 1.69 86.30 ± 0.56 82.61 ± 0.61 75.55 ± 0.81 89.62 ± 0.27 74.61 ± 1.64 89.67 ± 0.27 93.66 ± 4.67
MOOC 80.57 ± 0.52 80.50 ± 0.68 85.28 ± 0.30 88.01 ± 1.48 81.32 ± 0.42 82.28 ± 0.99 81.38 ± 0.17 87.05 ± 0.51 64.99 ± 2.24 88.64 ± 0.08 98.67 ± 0.46
Reddit 96.43 ± 0.16 95.89 ± 0.26 97.13 ± 0.04 97.41 ± 0.12 98.62 ± 0.01 95.01 ± 0.10 95.24 ± 0.08 98.83 ± 0.02 80.07 ± 2.53 98.97 ± 0.01 99.13 ± 0.03
Wikipedia 94.91 ± 0.32 92.21 ± 0.29 96.26 ± 0.12 97.81 ± 0.18 98.27 ± 0.02 97.48 ± 0.06 96.61 ± 0.04 98.58 ± 0.01 93.58 ± 0.65 98.77 ± 0.03 99.06 ± 0.10
UCI 79.73 ± 1.48 58.39 ± 2.38 79.10 ± 0.49 87.81 ± 1.32 92.61 ± 0.35 84.19 ± 1.37 91.17 ± 0.29 94.45 ± 0.13 49.78 ± 5.02 94.76 ± 0.19 87.43 ± 0.79
Social Evo. 91.72 ± 0.66 89.10 ± 1.90 91.47 ± 0.10 90.74 ± 1.40 79.83 ± 0.14 92.51 ± 0.11 91.89 ± 0.05 93.05 ± 0.10 Timeout 93.13 ± 0.05 98.60 ± 0.14
Avg. Rank 7.29 9.00 8.00 6.00 5.29 6.57 6.71 3.00 10.57 1.86 1.71

Table 2: Performance comparison on the dynamic node classification task with AUC-ROC as a metric.
Dataset JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGmamba CTDG-SSM
Wikipedia 88.10 ± 1.57 87.41 ± 1.94 83.42 ± 2.92 85.51 ± 3.28 84.59 ± 1.16 79.03 ± 1.18 85.60 ± 1.73 86.35 ± 2.19 87.38 ± 0.14 87.44 ± 0.82 88.61 ± 0.64
Reddit 59.53 ± 3.18 63.12 ± 0.51 69.31 ± 2.18 63.21 ± 3.00 65.22 ± 0.79 68.04 ± 2.00 64.42 ± 1.15 67.67 ± 1.39 67.29 ± 0.15 67.70 ± 1.32 69.50 ± 0.82
Avg. Rank 7.14 8.86 7.14 3.86 4.86 7.29 7.14 2.14 7.29 1.14 1.00

namic link prediction and node classification tasks, we also consider models Edgebank (Poursafaei
et al., 2022), CAWN (Wang et al., 2021b), and TCL(Wang et al., 2021a) for comparison.

7.1 DYNAMIC LINK PREDICTION

In this section, we present results on dynamic link prediction where the task is to predict the ex-
istence of an edge between two nodes at a given time. We evaluate the proposed algorithm in
both transductive (test nodes are observed during training) and inductive (test nodes are unseen
during training) settings, under different sampling strategies (random, historical, and inductive) for
generating negative samples. Experiments are performed on benchmark temporal link prediction
datasets (Poursafaei et al., 2022) details are provided in Appendix D.1.

Results. In Table 1, we present the results with AUC-ROC as a metric calculated for 5 independent
trials on transductive and inductive settings with random negative sampling (more experiments with
different metrics and different sampling criteria are relegated to Appendix D.2). It can be seen
that on LRT benchmarks such as LastFM, MOOC, and Enron, our method consistently outperforms
state-of-the-art baselines due to the model’s ability in jointly encoding structural information via
graph polynomials that capture multi-hop neighborhood interactions and temporal evolution through
a state-space formulation. Further, importantly CTDG-SSM exhibits only a minor performance drop
in inductive setting, highlighting its ability to effectively capture global structural and temporal
patterns instead of learning local structural patterns.

7.2 DYNAMIC NODE CLASSIFICATION

For dynamic node classification, the goal is to predict the class label of nodes participating in an
interaction G(T ) at time T . We evaluate our model on the Wikipedia and Reddit datasets with 2
classes. We follow the dataset splits and preprocessing strategy outlined in Yu et al. (2023). The
model is trained for 200 epochs with early stopping, and memory representations are updated as
described in Section 5. During testing, we combine the memory states with static embeddings and
temporal encodings, which are then passed through an MLP decoder for classification.

In Table 2, we report the mean AUC-ROC over 5 independent runs. The results demonstrate that
CTDG-SSM consistently outperforms state-of-the-art approaches, highlighting the effectiveness of
jointly capturing LRS and LRT dependencies.

7.3 SEQUENCE CLASSIFICATION

In this section, we present results on the sequence classification task, primarily designed to test the
model’s ability to capture LRS and LRT (Gravina et al., 2024) dependency. The task involves pre-
dicting the label of the initial node after traversing a long path, where each new node was connected
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Table 3: Performance comparison on the sequence classification task. Best-performing model is shown in
bold; second-best is underlined.

n = 3 n = 9 n = 15 n = 20 Avg. Rank
DyRep 100.0±0.0 47.93±2.73 48.60±2.48 50.47±2.88 7.25
GraphMixer 100.0±0.0 52.80±5.56 52.49±15.36 52.04±8.20 6.75
JODIE 100.0± 0.0 100.0 ± 0.0 60.0±14.91 50.87±2.46 3.75
TGAT 100.0±0.0 47.87±2.72 50.53±2.15 49.07±1.55 7.50
TGN 100.0±0.0 48.13±1.63 48.67±2.76 50.13±2.17 7.00
CTAN 100.0±0.0 99.93 ± 0.21 93.47±8.78 88.93±12.06 3.25
TU-SSM 47.0±1.12 50.73 ± 1.74 52.26± 2.44 54.46± 0.73 8.00
DyGFormer 100.0±0.0 53.02±6.06 42.80±16.25 42.79±19.62 9.25
DyGmamba 100.0±0.0 54.01±6.06 45.60±12.25 45.29±17.62 8.25
CTDG-SSM (FO) 100.0±0.0 97.06 ± 0.44 97.40± 0.20 97.13± 0.89 2.75
CTDG-SSM (SO) 100.0±0.0 98.13 ± 0.58 97.80 ± 0.58 98.60 ± 0.29 2.25

to the node from the previous event, as illustrated in Fig. 4. We generate the data using the procedure
in (Gravina et al., 2024).

In this experiment, to depict the importance of aggregating the information from one-hop and multi-
hop and also to see the importance of aggregating the information using the structural change term
we present three variants CTDG-SSM (FO), employs a first-order polynomial filter of the form
I + α1Lτ , CTDG-SSM (SO), uses a second-order polynomial filter defined as p(Lτ ) = I +
α1Lτ + α2L

2
τ and Topology unaware SSM (TU-SSM) fixes the spatial system matrix ĀL[k] to the

identity, thereby isolating its contribution in learning structural patterns.

LRT

Time

LRS
N
od
es

Figure 4: Illustration of LRT
and LRS dependency in sequence
classification task .

Results. Table 3 reports results for the sequence classification
task, where prediction accuracy is defined as the ratio of correctly
classified sequences to the total number of sequences. We observe
that removing the structural update term in the memory update
(TU-SSM) leads to a substantial drop in performance, underscor-
ing the importance of modeling the time-varying graph structure in
CTDGs. Furthermore, incorporating higher-order polynomials for
multi-hop aggregation in CTDG-SSM (SO) yields clear gains over
the single-order variant, which primarily captures local patterns. Fi-
nally, the proposed method achieves significant improvements over
state-of-the-art baselines, particularly on longer sequence lengths,
highlighting its effectiveness in capturing LRS.

7.4 IMPLEMENTATION DETAILS

For link prediction and node classification, we follow the experimental protocol of Yu et al. (2023)
and compare CTDG-SSM with established baselines. For sequence classification, we adopt the
setup from Gravina et al. (2024). The model is trained with binary cross-entropy using the Adam
optimizer; additional hyperparameter details are provided in Appendix D.2. We train for up to
200 epochs with early stopping and select the best validation model for testing. Experiments are
conducted on two machines equipped with NVIDIA A6000 and RTX 8000 GPUs (48 GB).

8 CONCLUSIONS

In this work, we proposed CTDG-SSM, a novel representation learning framework for continuous-
time dynamic graphs that preserves long-range information across both spatial and temporal di-
mensions. Our approach formulates a SSM for CTDGs. In particular, we introduced CTT-HiPPO
that yields memory representations that are topology aware obtained by projecting HiPPO coeffi-
cients through a polynomial of graph Laplacian. Leveraging this we proposed a SSM for CTDGs
where the memory representations are governed using the evolving topology. We further established
theoretical guarantees on the robustness and permutation equivariance of CTDG-SSM. Extensive
experiments on diverse temporal graph learning tasks-including link prediction, node classification,
and sequence classification-demonstrate the effectiveness of our model in jointly capturing LRT and
LRS dependencies.
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A STATE-SPACE MODELS

State-space models (SSMs) are widely used for sequence modeling due to their ability to capture
long-range dependencies through latent state evolution while remaining computationally efficient
compared to Transformers (Gu et al., 2022). For an input signal x(t), an SSM evolves latent states
h(t) ∈ Rd according to a linear ordinary differential equation (ODE), producing output y(t) as (Gu
et al., 2020; 2022; Smith et al., 2023):

dh(t)

dt
= A(t)h(t) +B(t)x(t) and y(t) = C(t)h(t) +D(t)x(t), (7)

where A(t), B(t), C(t), and D(t) are the state transition, input, output, and feedforward matrices,
respectively. In practice, the continuous-time model is discretized using zero-order hold (ZOH),
which assumes piecewise constant inputs: x(t) = x[k] for t ∈ [tk, tk+1) with step size ∆[k] =
tk+1 − tk. This yields the discrete-time system:

h[k + 1] = Āh[k] + B̄x[k] and y[k] = C̄h[k] + D̄x[k], (8)

where Ā = e∆[k]A, B̄ =
∫∆[k]

0
eAτB dτ , C̄ = C, and D̄ = D.

Research in SSM design has significantly enhanced its effectiveness for sequence modeling.
HiPPO (Gu et al., 2020) introduced principled initialization strategies for capturing long-range de-
pendencies. S4 (Gu et al., 2022) extended these with structured parameterizations of the system
matrix A (e.g., diagonal plus low-rank decompositions) to enable efficient computation. More re-
cent work like mamba (Gu & Dao, 2024) has further improved scalability and selectivity by making
the input and output matrices B and C input-dependent and the system matrix diagonal, enhancing
model expressivity while maintaining computational efficiency.

B DERIVATION FOR CTT-HIPPO COEFFICIENTS

We derive the solution for the representations/coefficients (Hi,τ ) for CTT-HiPPO. Recall, to obtain
the coefficients we minimize the residual in the observed time interval. To begin with the ri(t) can
be equivalently expressed as

∫ τ

0

∥ri(t)∥22 dµ(t) =
∫ τ

0

∥X[:, i](t)− p(Lτ )Hτg(t)∥22 dµ(t),

=

∫ τ

0

Tr
[
(X[:, i](t)− p(Lτ )Hi,τg(t)) (X[:, i](t)− p(Lτ )Hi,τg(t))

⊤
]
dµ(t).

(9)

Using the first optimality condition i.e., ∂∥ri(τ)∥2
2

∂Hτ
= 0 and on simplifying we have

∂

∂Hi,τ

∫ τ

0

Tr
[
(X[:, i](t)− p(Lτ )Hi,τg(t)) (X[:, i](t)− p(Lτ )Hi,τg(t))

⊤
]
dµ(t) = 0,∫ τ

0

∂

∂Hi,τ

[
Tr

(
p(Lτ )Hi,τg(t)g(t)

⊤H⊤
i,τp(Lτ )

⊤)− 2Tr
(
p(Lτ )Hi,τg(t)X[:, i](t)⊤

)]
dµ(t) = 0,∫ τ

0

2p(Lτ )
⊤p(Lτ )Hi,τg(t)g(t)

⊤ − 2p(Lτ )
⊤X[:, i](t)g(t)⊤ dµ(t) = 0,∫ τ

0

p(Lτ )
⊤p(Lτ )Hi,τg(t)g(t)

⊤dµ(t) =

∫ τ

0

p(Lτ )
⊤X[:, i](t)g(t)⊤dµ(t).

(10)
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For fixed set of orthogonal polynomials we have
∫ τ

0
g(t)g(t)⊤dµ(t) = I , then equation 10 can be

simplified as

p(Lτ )Hτ =

∫ τ

0

X[:, i](t)g(t)⊤dµ(t),

Hi,τ = p(Lτ )
−1

∫ τ

0

X[:, i](t)g(t)⊤dµ(t),

Hi,τ = p(Lτ )
−1H

(HiPPO)
i,τ . (11)

where Hi,τ corresponds to the solution from CTT-HiPPO, where it is obtained by projecting the
HiPPO solution through graph-aware polynomial.

C PROOF OF THEOREMS

This section presents detailed proofs of the theorems from the main text.

C.1 PROOF FOR THEOREM 4.1

Proof. We derive the SSM for CTDGs (CTDG-SSM) that governs the evolution of memory repre-
sentations. To begin with, we consider the relation between structural HiPPO coefficients Hτ and
HiPPO coefficients given in equation 3 and obtain the evolution of memory states as follows: For
an event observed at τ+ and corresponding CTDG Gτ+ , we define the polynomial as in the interval
[τ, τ+) as p(Ls) =

τ−s
τ−τ+

p(Lτ+) +
τ+−s
τ+−τ p(Lτ ) for s ∈ [τ, τ+). Here Lτ+ ∈ RNτ+

×Nτ+ and Lτ is
calculated by removing the newly observed edges from Lτ+ . Then the derivative of the coefficients
for s ∈ [τ, τ+) is given as :

d

ds
(p(Ls)Hs) =

dH
(HiPPO)
s

ds
,

dp(Ls)

ds
Hs + p(Ls)

dHs

ds
=
dH

(HiPPO)
s

ds
. (12)

This can be equivalently expressed on multiplying with p(Ls)
−1 as

dHs

ds
= p(Ls)

−1 dH
(HiPPO)
s

ds
− p(Ls)

−1 dp(Ls)

dτ
Hs

To obtain an equivalent SSM for CTDGs, we leverage the established result from (Gu et al., 2020)
that relates the evolution of HiPPO coefficients to a linear ordinary equation as

dH
(HiPPO)
s

ds
= −H(HiPPO)

s

A⊤

M(s)
+ x(s)

B⊤

M(s)
,

where A ∈ Rd×d is a state transition matrix, B ∈ Rd×1 input matrix and M(τ) : R+ → R+ is
a scalar that depends on the choice of bases polynomial and weigh function µ(t). The continuous
SSM for CTDGs for s ∈ [τ, τ+) is given by

dHs

ds
= −p(Ls)

−1H(HiPPO)
s

A⊤

M(s)
− p(Ls)

−1 dp(Ls)

ds
Hs + p(Ls)

−1X(s)
B⊤

M(s)
,

dHs

ds
= −Hτ

A⊤

M(s)
− p(Ls)

−1 dp(Ls)

ds
Hs + p(Ls)

−1x(s)
B⊤

M(s)
. (13)

We can further simplify equation 13 to express it in a standard first-order state-space model. To
do so, we apply vectorization operation on equation 13 and use the identity vec(ABC) = (C⊤ ⊗
A)vec(B), where ⊗ is a Kronecker product. Then we obtain

dhs

ds
= −

(
A

M(s)
⊕
(
p(Ls)

−1 dp(Ls)

ds

))
hs +

B

M(s)
⊗ p(Ls)

−1(x(s))

dhs

ds
= Ag(s)hs +Bg(s)X(s), s ∈ [τ, τ+) (14)
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where hτ = vec(Hτ ) ∈ RNT d×1, Ag(τ) and Bg(τ) denote the time-dependent system and input
matrices, respectively. Here ⊕ denotes the Kronecker sum. The evolution of memory coefficients
of nodes so far characterizes the continuous time-variant SSM that jointly encodes dynamic graphs’
structural and temporal information.
Corollary (Reduction to Classical HiPPO). Let the graph Laplacian be static (Lτ = L) and let the
filter satisfy p(Lτ ) = I . Then, the CTDG-SSM dynamics equation 5 reduce to the classical HiPPO
state-space dynamics:

dHτ

dτ
= −Hτ

A⊤

M(τ)
+X(τ)

B⊤

M(τ)
.

This shows that CTDG-SSM is a strict generalization of classical HiPPO: it recovers standard mem-
ory evolution when the graph is static or the filter is the identity, while naturally incorporating
dynamic graph information when p(Lτ ) varies over time.

Remark. The expression,

min
Hi,τ

∫ τ

0

∥X[:, i](t)− p(Lτ )Hi,τg(t)∥22 dµ(t),

is the CTDG-SSM formulation, where the polynomial operator p(Lτ ) specifies how the graph struc-
ture influences the reconstruction.

When p(Lτ ) = I, the Laplacian dependence vanishes, yielding the classical HiPPO (Gu et al.,
2020) objective:

min
Hi,τ

∫ τ

0

∥X[:, i](t)−Hi,τg(t)∥22 dµ(t),

which matches the standard HiPPO setting.

However, when a quadratic Laplacian regularizer is introduced to enforce smoothness over the
reconstructed signal, we obtain the GraphSSM (Li et al., 2024b) objective:

min
Hi,τ

∫ τ

0

∥X[:, i](t)−Hi,τg(t)∥22 dµ(t) +
∫ τ

0

(
Hi,τg(t)

)⊤
Lt

(
Hi,τg(t)

)
dµ(t).

C.2 PROOF FOR THEOREM 4.2

Proof. We present the equivalent discrete-time SSM for CTDG using ZOH technique. Recall from
equation 14 the continuous-time evolution for CTDGs is given as

dhi[k]

dt
= Ag(k)hi[k] +Bg(k)X[:, i][k]. (15)

Following equation 8, the equivalent discrete update is given as

hi[k + 1] = exp
(
Ag(tk)∆[k]

)
hi[k] +

∫ ∆[k]

0

exp
(
Ag(k)s

)
Bg(tk)X[:, i][k] ds, (16)

where ∆[k] = tk+1 − tk. Recall Ag(tk) = −A ⊕
(
− p(L[k])−1p(L[k])−p(L[k−1])

∆[k]

)
,Bg(tk) =

B ⊗ p(L[k])−1 Although one can directly apply equation 8 as discussed in the preliminaries to
obtain a discrete equivalent for equation 14, this approach incurs significant computational overhead
in implementation, since the Kronecker-structured matrices Ag and Bg involved in equation 14 are
of large dimensions (Nτd×Nτd) and (Nτd×Nτ ). To alleviate this complexity, we exploit algebraic
properties of the Kronecker product to derive an equivalent update rule as

h[k + 1] =
(
e−A∆[k] ⊗ e− p(L[k])−1 p(L[k])−p(L[k−1])

∆[k] ∆[k]
)
h[k],

+

∫ 1

0

(
e−A∆[k]s ⊗ e− p(L[k])−1 p(L[k])−p(L[k−1])

∆[k] ∆[k]s
)
(B ⊗ p(L[k])−1)X[:, i][k] ∆[k]ds,

(17)
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where equation 17 follows by using the following identities eA⊕B = eA ⊗ eB, vec(ABH) =
(H⊤ ⊗A) vec(B), (A⊗B)(H ⊗D) = (AH)⊗ (BD). This can be equivalently expressed as

H[k + 1] = e
− p(L[k])−1 p(L[k])−p(L[k−1])

∆[k] ∆[k]
H[k] e−A⊤∆[k],

+

∫ 1

0

e
− p(L[k])−1 p(L[k])−p(L[k−1])

∆[k] ∆[k]s
p(L[k])−1X[:, i][k]B⊤ e−A⊤∆[k]s ∆[k] ds.

(18)

H[k + 1] = ĀL[k] H[k] Ā+ B̄(L[k],x[k]), (19)

where ĀL[k] = exp(−p(L[k])−1 (p(L[k])−p(L[k−1])
∆[k] ∆[k], Ā = exp(−A⊤∆[k]), B̄(L[k],X[:

, i][k]) =
∫ 1

0
(ĀL[k])

s p(L[k])−1X[:, i][k]B⊤(Ā)s ∆[k] ds.

C.3 PROOF OF THEOREM 6.1

Consider the H̄τ and Hτ as the memory representations obtained with the perturbed graph Lapla-
cian and true Laplacian. For brevity, we call the solution from HiPPO as HH . Then the error
between the representations is given as

∥H̄τ −Hτ∥2 = ∥P (L̄τ )
−1HH − P (Lτ )HH∥2

(a)

≤∥P (L̄τ )
−1 − P (Lτ )

−1∥2∥HH∥2
(b)

≤∥P (L̄τ )
−1(P (Lτ )− P (L̄τ ))P (Lτ )

−1∥∥HH∥2
(c)

≤∥P (L̄τ )
−1∥2∥P (Lτ )− P (L̄τ )∥2∥P (Lτ )

−1∥∥HH∥2,

where equation 20(a), (b), (c) follow from the norm inequalities. Recall L is a normalized Laplacian,
therefore the spectrum is bounded in the range λ ∈ [0, 2]. Let us call λ1 := minλ∈[0,2] |p(λ)| > 0,
λ2 := maxλ∈[0,2] |p(λ)|, and λc := maxλ∈[0,2] |p(y)′|. Then we have

∥H̄τ −Hτ∥ ≤ 1
λ2
1
∥P (Lτ )− P (L̄τ )∥2∥Hi,H∥2,

≤ λc

λ2
1
∥Lτ − L̄τ∥2∥Hi,H∥2,

≤ λc

λ2
1
∥2Lτ − L̄τ∥∥2P (Lτ )(Hτ )∥2, (20)

≤ λc

λ2
1
∥Lτ − L̄τ∥2∥P (Lτ )∥2∥Hτ∥2.

The normalized error given by

∥H̄τ −Hτ∥2
∥Hτ∥2

≤λc

λ2
1
∥Lτ − L̄τ∥∥2P (Lτ )∥2,

≤λ2λc

λ2
1
∥Lτ − L̄τ∥2,

(a)

≤ ϵH, (21)

where equation 21(a) since energy of perturbation is bounded i.e., ∥∆L∥ ≤ ϵ and H = λ2λc

λ2
1

.

C.4 PROOF OF THEOREM 6.2

To prove that the representations from CTDG-SSM as permutation equivariant we first show that rep-
resentations from CTT-HiPPO are equivariant to permutation. Under the permutation the features
signal and Laplacian modifies as X̂ = ΠX , L̂ = ΠLΠ⊤. Let Ĥτ be representations obtained
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under permutation, then we have

Ĥτ = p(L̂τ )
−1

∫ τ

0

X̂(t)g(t)⊤dw(t),

= p(ΠLτΠ
⊤)−1

∫ τ

0

ΠX(t)g(t)⊤dw(t),

= Πp(Lτ )
−1Π⊤

∫ τ

0

ΠX(t)g(t)⊤dw(t),

= Πp(Lτ )
−1

∫ τ

0

X(t)g(t)⊤dw(t)

= ΠHτ , (22)

equation 22 implies the representations obtained from CTT-HiPPO are permutation equivariant.
Now, to prove the equivariance for the representations from CTDG-SSM layer we first evaluate state
matrix Ā and system matrix B̄ under permutation as

Ās
L̂[k]

= exp(−p(L̂[k])−1(p(L̂[k − 1])− p(L̂[k])s),

= exp(−Πp(L[k])−1Π⊤Π(p(L[k])− p(L[k − 1])Π⊤s),

= exp(−Πp(L[k])−1(p(L[k])− p(L[k − 1])Π⊤s),

= Π exp(−p(L[k])−1(p(L[k])− p(L[k − 1])s)Π⊤,

= ΠĀs
L[k]Π

⊤, (23)

where B̄ modifies as

B̄(L̂[k], X̂[k]) =

∫ 1

0

Ās
L̂[k]

p(L̂[k])−1X̂[k]B⊤Ās ∆[k] ds,

=

∫ 1

0

ΠĀs
L[k]Π

⊤ Πp(L[k])−1Π⊤ΠX[k]B⊤Ās ∆[k] ds,

= Π

∫ 1

0

Ās
L[k] p(L[k])−1X[k]B⊤Ās ∆[k] ds.

= ΠB̄(L[k],X[k]) (24)

Now we show that the updates from CTDG-SSM are permutation equivariant. Consider

Ĥ[k + 1] =ĀL̂[k]Ĥ[k]Ā+ B̄(L̂[k], X̂[k]),

(a)
= ĀL̂[k](ΠH[k])Ā+ΠB̄(L[k],X[k]),

(b)
=ΠĀL[k]H[k]Ā+ΠB̄(L[k],X[k]),

=Π
(
ĀL[k]H[k]Ā+ B̄(L[k],X[k])

)
,

=ΠH[k + 1], (25)

where equation 25(a) follows by recursion. Recall k = 0 we have Ĥ[1] = B̄(L̂[0], X̂[0]) as
H[0] = 0, hence Ĥ[1] = ΠB̄(L[0], X̂[0]) = ΠH[1] from equation 24 which is propogated
through k layers. Then equation 25(b) follows from equation 23 and equation 24.

D NUMERICAL EXPERIMENTS AND ADDITIONAL RESULTS

In this section, we discuss the dataset details, hyperparameters, and the additional results on the
dynamic link prediction task.

D.1 DATASET DETAILS

We provide a detailed description of the datasets considered for experimentation in Table 4. In all
the datasets, LastFM, Enron and MOOC are mainly considered for evaluating the LRT task. In
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Table 4: Statistics of the datasets used in our experiments. #N & L feat corresponds to the dimension
of node and link features, where - represents the unavailability of node features.

Dataset Domain #Nodes #Links #N&L Feat Bipartite Duration Unique Steps Time Granularity

Wikipedia Social 9,227 157,474 – & 172 True 1 month 152,757 Unix timestamps
Reddit Social 10,984 672,447 – & 172 True 1 month 669,065 Unix timestamps
MOOC Interaction 7,144 411,749 – & 4 True 17 months 345,600 Unix timestamps
LastFM Interaction 1,980 1,293,103 – & – True 1 month 1,283,614 Unix timestamps
Enron Social 184 125,235 – & – False 3 years 22,632 Unix timestamps
UCI Social 1,899 59,835 – & – False 196 days 58,911 Unix timestamps
Social Evo. Proximity 74 2,099,519 – & 2 False 8 months 565,932 Unix timestamps
Flights Transport 13,169 1,927,145 - & 1 False 4 months 122 days
Can. Parl. Politics 734 74,478 - & 1 False 14 years 14 years
US Legis. Politics 225 60,396 - & 1 False 12 congresses 12 congresses
UN Trade Economics 255 507,497 - & 1 False 32 years 32 years
UN Vote Politics 201 1,035,742 - & 1 False 72 years 72 years
Contact Proximity 692 2,426,279 - & 1 False 1 month 8,064 5 minutes
tgbl-wiki Interaction 9,227 157,474 - & 1 True 1 month 152,757 Unix timestamps
tgbl-coin Economics 638,486 22,809,486 - & 1 False 7 month 1,295,720 Unix timestamps

particular, The LastFM dataset corresponds to data from a music streaming platform that records
user listening behaviors, where users and songs are nodes and links denote listening events (Celma,
2010). The Enron dataset is an email communication dataset among employees of the Enron Cor-
poration, recorded over a three-year period (Klimt & Yang, 2004). Whereas the MOOC dataset
captures student interactions on an online course platform, where links represent students accessing
course content such as videos or problem sets (Kizilcec et al., 2013), other DTDG datasets used for
evaluation include Flights, Can. Parl, US Legis., UN Trade, UN Vote, and Contact include. For all
datasets used in data processing, we employ the same pipeline described in (Yu et al., 2023). Ad-
ditionally, datasets including tgbl-wiki and tgbl-coin from (Huang et al., 2023) were also
utilized.

Table 5: AUC-ROC for transductive dynamic link prediction under. RNS: Random Negative Sam-
pling, HNS: Historical Negative Sampling, INS : Inductive Negative Sampling.

NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGmamba CTDG-SSM

RNS

LastFM 70.89 ± 1.97 71.40 ± 2.12 71.47 ± 0.14 76.64 ± 4.66 85.92 ± 0.16 71.09 ± 1.48 73.51 ± 0.14 93.03 ± 0.11 85.12 ± 0.77 93.31 ± 0.18 93.79 ± 0.22
Enron 87.77 ± 2.43 83.09 ± 2.20 68.57 ± 1.46 88.72 ± 0.95 90.34 ± 0.23 83.33 ± 0.93 84.16 ± 0.34 93.20 ± 0.12 87.09 ± 1.51 93.34 ± 0.23 94.98 ± 2.92
MOOC 84.50 ± 0.60 84.50 ± 0.87 87.01 ± 0.16 91.91 ± 0.82 80.48 ± 0.41 84.02 ± 0.59 84.04 ± 0.12 88.08 ± 0.50 85.40 ± 2.67 89.58 ± 0.12 99.00 ± 0.33
Reddit 98.29 ± 0.05 98.13 ± 0.04 98.50 ± 0.01 98.61 ± 0.05 99.02 ± 0.00 97.67 ± 0.01 97.17 ± 0.02 99.15 ± 0.01 97.24 ± 0.75 99.27 ± 0.01 99.48 ± 0.02
Wikipedia 96.36 ± 0.14 94.43 ± 0.32 96.60 ± 0.07 98.37 ± 0.10 98.54 ± 0.01 97.27 ± 0.06 96.89 ± 0.04 98.92 ± 0.03 97.00 ± 0.21 99.08 ± 0.02 99.33 ± 0.08
UCI 90.35 ± 0.51 69.46 ± 2.66 78.76 ± 1.10 92.03 ± 0.69 93.81 ± 0.23 85.49 ± 0.82 91.62 ± 0.52 94.45 ± 0.22 76.25 ± 2.83 94.77 ± 0.18 89.24 ± 0.43
Social Evo. 92.13 ± 0.20 90.37 ± 0.52 94.93 ± 0.06 95.31 ± 0.27 87.34 ± 0.10 95.45 ± 0.21 95.21 ± 0.07 96.25 ± 0.04 Timeout 96.38 ± 0.02 99.10 ± 0.49
Avg. Rank 7.93 9.36 7.86 4.57 5.71 8.00 7.71 3.00 7.50 2.00 1.86

HNS

LastFM 75.65 ± 4.43 70.63 ± 2.56 64.23 ± 0.45 78.00 ± 2.97 67.92 ± 0.32 60.53 ± 2.54 64.06 ± 0.34 78.80 ± 0.02 79.50 ± 0.82 79.82 ± 0.27 89.55 ± 0.57
Enron 75.21 ± 1.27 76.36 ± 1.42 62.36 ± 1.07 76.75 ± 1.40 65.62 ± 0.49 71.72 ± 1.24 74.82 ± 2.04 77.35 ± 0.64 81.95 ± 1.64 77.73 ± 0.61 95.86 ± 2.18
MOOC 82.38 ± 1.75 80.71 ± 2.08 81.53 ± 0.79 86.59 ± 2.03 71.74 ± 0.88 73.22 ± 1.21 77.09 ± 0.83 87.26 ± 0.83 73.87 ± 2.77 87.91 ± 0.93 95.22 ± 1.65
Reddit 80.70 ± 0.20 79.96 ± 0.23 79.60 ± 0.09 81.04 ± 0.23 80.42 ± 0.20 76.83 ± 0.12 77.83 ± 0.33 80.61 ± 0.48 90.63 ± 2.28 81.71 ± 0.49 97.49 ± 0.17
Wikipedia 80.71 ± 0.64 77.49 ± 0.72 82.83 ± 0.27 83.28 ± 0.26 65.74 ± 3.46 85.55 ± 0.47 87.47 ± 0.20 72.78 ± 6.65 95.43 ± 0.07 78.99 ± 1.24 99.02 ± 0.17
UCI 78.21 ± 3.18 58.65 ± 3.58 57.12 ± 0.98 78.48 ± 1.79 57.67 ± 1.11 65.42 ± 2.62 77.46 ± 1.63 75.71 ± 0.57 75.05 ± 0.13 75.43 ± 1.99 87.86 ± 0.59
Social Evo. 91.83 ± 1.52 92.81 ± 0.60 93.63 ± 0.48 94.27 ± 1.33 87.61 ± 0.06 95.03 ± 0.82 94.65 ± 0.28 97.16 ± 0.06 Timeout 97.27 ± 0.30 98.89 ± 0.56
Avg. Rank 6.00 7.71 8.43 4.43 9.57 8.14 6.86 5.00 5.14 3.71 1.00

INS

LastFM 61.59 ± 5.72 60.62 ± 2.20 63.96 ± 0.41 65.48 ± 4.13 67.90 ± 0.44 54.75 ± 1.31 59.98 ± 0.20 67.87 ± 0.53 78.70 ± 0.87 68.74 ± 0.55 94.17 ± 0.22
Enron 70.75 ± 0.69 67.37 ± 2.21 59.78 ± 1.12 73.22 ± 0.42 75.29 ± 0.66 69.74 ± 1.19 70.72 ± 1.08 74.67 ± 0.80 75.40 ± 1.92 75.47 ± 1.41 95.80 ± 1.96
MOOC 67.53 ± 1.76 62.60 ± 1.27 74.44 ± 0.81 76.89 ± 2.13 70.08 ± 0.33 71.80 ± 1.09 72.25 ± 0.57 80.78 ± 0.89 68.17 ± 3.73 81.08 ± 0.82 99.08 ± 0.35
Reddit 83.40 ± 0.33 82.75 ± 0.36 87.46 ± 0.10 84.57 ± 0.19 88.19 ± 0.20 84.41 ± 0.18 82.24 ± 0.24 86.25 ± 0.64 91.42 ± 2.18 86.35 ± 0.52 99.51 ± 0.03
Wikipedia 70.41 ± 0.39 67.57 ± 0.94 81.54 ± 0.31 81.21 ± 0.30 68.48 ± 3.64 73.51 ± 1.88 84.20 ± 0.36 64.09 ± 9.75 93.67 ± 0.11 75.64 ± 2.42 99.36 ± 0.07
UCI 64.14 ± 1.25 54.10 ± 2.74 59.60 ± 0.61 63.76 ± 0.99 57.85 ± 0.59 65.46 ± 2.07 74.25 ± 0.71 64.92 ± 0.83 66.51 ± 0.25 66.83 ± 2.83 89.75 ± 0.32
Social Evo. 91.81 ± 1.69 92.77 ± 0.64 93.54 ± 0.48 94.86 ± 1.25 90.10 ± 0.11 95.13 ± 0.83 94.50 ± 0.26 95.01 ± 0.15 Timeout 97.37 ± 0.26 99.24 ± 0.47
Avg. Rank 8.29 9.86 6.71 5.86 6.86 7.14 6.57 5.71 3.67 3.29 1.00

Table 6: AUC-ROC of inductive dynamic link prediction.
NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGmamba CTDG-SSM

RNS

LastFM 83.13 ± 1.19 83.47 ± 1.06 78.40 ± 0.30 81.18 ± 3.27 89.33 ± 0.06 81.38 ± 1.53 82.07 ± 0.31 94.17 ± 0.10 60.40 ± 3.01 94.42 ± 0.21 94.49 ± 0.27
Enron 78.97 ± 1.59 73.97 ± 3.00 66.67 ± 1.07 78.76 ± 1.69 86.30 ± 0.56 82.61 ± 0.61 75.55 ± 0.81 89.62 ± 0.27 74.61 ± 1.64 89.67 ± 0.27 93.66 ± 4.67
MOOC 80.57 ± 0.52 80.50 ± 0.68 85.28 ± 0.30 88.01 ± 1.48 81.32 ± 0.42 82.28 ± 0.99 81.38 ± 0.17 87.05 ± 0.51 64.99 ± 2.24 88.64 ± 0.08 98.67 ± 0.46
Reddit 96.43 ± 0.16 95.89 ± 0.26 97.13 ± 0.04 97.41 ± 0.12 98.62 ± 0.01 95.01 ± 0.10 95.24 ± 0.08 98.83 ± 0.02 80.07 ± 2.53 98.97 ± 0.01 99.13 ± 0.03
Wikipedia 94.91 ± 0.32 92.21 ± 0.29 96.26 ± 0.12 97.81 ± 0.18 98.27 ± 0.02 97.48 ± 0.06 96.61 ± 0.04 98.58 ± 0.01 93.58 ± 0.65 98.77 ± 0.03 99.06 ± 0.10
UCI 79.73 ± 1.48 58.39 ± 2.38 79.10 ± 0.49 87.81 ± 1.32 92.61 ± 0.35 84.19 ± 1.37 91.17 ± 0.29 94.45 ± 0.13 49.78 ± 5.02 94.76 ± 0.19 87.43 ± 0.79
Social Evo. 91.72 ± 0.66 89.10 ± 1.90 91.47 ± 0.10 90.74 ± 1.40 79.83 ± 0.14 92.51 ± 0.11 91.89 ± 0.05 93.05 ± 0.10 Timeout 93.13 ± 0.05 98.60 ± 0.14
Avg. Rank 7.29 9.00 8.00 6.00 5.29 6.57 6.71 3.00 10.57 1.86 1.71

INS

LastFM 69.85 ± 1.70 68.14 ± 1.61 69.89 ± 0.41 67.01 ± 5.77 67.72 ± 0.20 63.15 ± 1.17 69.93 ± 0.17 69.86 ± 0.80 57.85 ± 3.67 70.59 ± 0.57 94.77 ± 0.26
Enron 65.95 ± 1.27 62.20 ± 2.15 56.52 ± 0.84 64.21 ± 0.94 62.07 ± 0.72 67.56 ± 1.34 67.39 ± 1.33 66.07 ± 0.65 68.70 ± 1.82 68.98 ± 1.00 94.59 ± 3.37
MOOC 65.37 ± 0.96 62.97 ± 2.05 74.94 ± 0.80 76.36 ± 2.91 71.18 ± 0.54 71.30 ± 1.21 72.15 ± 0.65 80.42 ± 0.72 58.06 ± 0.89 81.12 ± 0.63 98.71 ± 0.47
Reddit 61.84 ± 0.44 60.35 ± 0.53 64.92 ± 0.08 65.24 ± 0.08 65.37 ± 0.12 61.85 ± 0.11 64.56 ± 0.26 64.80 ± 0.53 81.70 ± 4.71 64.93 ± 0.89 99.15 ± 0.03
Wikipedia 61.66 ± 0.30 56.34 ± 0.67 78.40 ± 0.77 75.86 ± 0.50 59.00 ± 4.33 71.45 ± 2.23 82.76 ± 0.11 58.21 ± 8.78 91.12 ± 0.13 67.92 ± 2.23 99.09 ± 0.10
UCI 60.66 ± 1.82 51.50 ± 2.08 61.27 ± 0.78 62.07 ± 0.67 55.60 ± 1.22 65.87 ± 1.90 75.72 ± 0.70 64.37 ± 0.98 51.68 ± 2.60 66.95 ± 2.22 87.86 ± 0.73
Social Evo. 88.98 ± 0.81 86.43 ± 1.48 92.37 ± 0.50 91.66 ± 2.14 83.84 ± 0.21 95.50 ± 0.31 93.88 ± 0.22 94.97 ± 0.36 Timeout 96.65 ± 0.29 98.90 ± 0.14
Avg. Rank 8.00 9.71 6.14 6.14 8.14 6.14 4.57 5.71 7.14 3.29 1.00
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Table 7: Model Hyperparameters. N/A: Not Applicable, OHE: One-hot encoding, LR: Learnable.
Dataset Latent dimension Time embedding dimension Nu Batch size Static embedding
Enron 32 16 10 128 OHE
UCI 32 16 10 128 N/A
MOOC 32 16 10 128 N/A
Wikipedia 128 16 10 128 N/A
Reddit 128 16 10 128 N/A
Lastfm 32 16 10 128 N/A
Flights 32 16 10 128 N/A
Can. Parl. 32 16 10 128 N/A
US Legis. 32 16 10 128 N/A
UN Trade 32 16 10 128 N/A
UN Vote 32 16 10 128 N/A
Contact 32 16 10 128 N/A
tgbl-wiki 128 16 10 128 N/A
tgbl-coin 32 16 10 128 LR
Sequence Classification 32 N/A 10 128 N/A

D.2 ADDITIONAL RESULTS AND HYPERPARAMETER DETAILS

In this section, we provide additional results for the dynamic link prediction task. Specifically,
we report performance using average precision (AP) as an evaluation metric. Furthermore, we
present AUC-ROC results under both inductive and transductive settings, comparing different
sampling strategies. In Table 5, 15 and Table 8, 14, 13 we report AUC-ROC and AP scores under
the transductive setting with different sampling techniques. The results clearly demonstrate that
the proposed model outperforms state-of-the-art algorithms on LRT datasets, primarily due to
its ability to jointly encode structural information via graph polynomials that capture multi-hop
neighborhood interactions and temporal evolution through a state-space formulation. In Table 6, 17,
and Table 9, 16, 18 we report results under the inductive setting, where the task is more challenging
since the test set includes nodes unseen during training. Additionally, we report the mean reciprocal
rank (MRR) in Table 19 using the evaluation mechanism proposed in (Huang et al., 2023) (values
close to 1 are better). The proposed model not only outperforms existing approaches but also
exhibits only a minor performance drop compared to the transductive setting, highlighting its ability
to effectively capture global structural and temporal patterns instead of learning local structural
patterns.

Hyperparameter Details: In Table D.1, we report the hyperparameters used in all experiments.
The latent dimension corresponds to the size of the memory representations, the batch size denotes
the number of events in each batch, and OHE refers to one-hot encoding.

Table 8: AP of transductive dynamic link prediction.
NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGmamba CTDG-SSM

RNS

LastFM 70.95 ± 2.94 71.85 ± 2.44 73.30 ± 0.18 75.31 ± 5.62 86.60 ± 0.11 76.62 ± 1.83 75.56 ± 0.19 92.95 ± 0.14 86.44 ± 0.80 93.35 ± 0.20 93.40 ± 0.49
Enron 84.85 ± 3.13 79.80 ± 2.28 70.76 ± 1.05 86.98 ± 1.05 89.50 ± 0.10 85.41 ± 0.71 82.13 ± 0.30 92.42 ± 0.11 92.52 ± 1.20 92.65 ± 0.12 94.46 ± 4.73
MOOC 81.04 ± 0.83 81.50 ± 0.77 85.71 ± 0.20 89.15 ± 1.69 80.30 ± 0.43 83.89 ± 0.86 82.80 ± 0.15 87.66 ± 0.48 84.71 ± 2.85 89.21 ± 0.08 98.85 ± 0.35
Reddit 98.31 ± 0.06 98.18 ± 0.03 98.57 ± 0.01 98.65 ± 0.04 99.11 ± 0.01 97.78 ± 0.02 97.31 ± 0.01 99.22 ± 0.01 97.21 ± 0.84 99.32 ± 0.01 99.53 ± 0.02
Wikipedia 96.51 ± 0.22 94.88 ± 0.29 96.88 ± 0.06 98.45 ± 0.10 98.77 ± 0.01 97.75 ± 0.04 97.22 ± 0.02 99.03 ± 0.03 96.61 ± 0.79 99.15 ± 0.02 99.40 ± 0.09
UCI 89.28 ± 1.02 66.11 ± 2.75 79.40 ± 0.61 92.33 ± 0.64 95.13 ± 0.23 86.63 ± 1.30 93.15 ± 0.41 95.74 ± 0.17 76.64 ± 4.11 95.91 ± 0.15 90.18 ± 0.98
Social Evo. 89.88 ± 0.40 88.39 ± 0.69 93.33 ± 0.06 93.45 ± 0.29 84.90 ± 0.11 93.82 ± 0.19 93.36 ± 0.06 94.63 ± 0.07 Timeout 94.77 ± 0.01 98.65 ± 0.65
Avg. Rank 8.71 9.71 7.86 5.29 5.86 6.71 7.29 3.14 7.86 1.86 1.71

HNS

LastFM 74.38 ± 6.27 71.85 ± 2.91 71.60 ± 0.36 75.03 ± 6.90 69.93 ± 0.33 71.02 ± 2.07 72.28 ± 0.37 81.51 ± 0.14 82.29 ± 0.94 83.02 ± 0.16 88.91 ± 0.93
Enron 69.13 ± 1.66 72.58 ± 1.83 64.24 ± 1.24 74.31 ± 1.99 65.40 ± 0.36 72.39 ± 0.61 77.35 ± 1.22 76.93 ± 0.76 77.24 ± 1.53 77.77 ± 1.32 95.80 ± 3.33
MOOC 78.62 ± 2.43 75.14 ± 2.86 82.83 ± 0.71 85.65 ± 2.32 74.46 ± 0.53 78.51 ± 0.84 77.09 ± 0.83 86.43 ± 0.38 67.73 ± 2.08 85.89 ± 0.94 94.76 ± 1.76
Reddit 79.96 ± 0.30 79.40 ± 0.00 79.78 ± 0.25 81.05 ± 0.32 80.96 ± 0.28 77.38 ± 0.02 78.39 ± 0.36 83.81 ± 1.08 89.77 ± 2.28 88.81 ± 1.52 97.55 ± 0.22
Wikipedia 81.16 ± 0.73 79.44 ± 0.95 87.31 ± 0.36 87.31 ± 0.25 66.77 ± 6.62 86.12 ± 1.69 90.74 ± 0.06 70.13 ± 11.02 95.91 ± 0.10 81.77 ± 1.20 98.99 ± 0.32
UCI 74.77 ± 5.35 55.89 ± 2.83 66.78 ± 0.77 81.32 ± 1.26 64.69 ± 1.78 74.62 ± 2.70 83.88 ± 1.06 80.44 ± 1.16 76.62 ± 0.33 81.03 ± 1.09 88.87 ± 1.28
Social Evo. 91.26 ± 2.47 92.86 ± 0.90 95.31 ± 0.30 93.84 ± 1.68 85.65 ± 0.11 95.93 ± 0.63 95.30 ± 0.34 97.05 ± 0.16 Timeout 97.35 ± 0.52 98.20 ± 0.81
Avg. Rank 7.43 8.71 7.36 4.93 9.71 7.71 5.57 4.71 5.57 3.29 1.00

INS

LastFM 62.63 ± 6.89 62.49 ± 3.04 71.16 ± 0.33 65.09 ± 7.05 67.38 ± 0.57 62.76 ± 0.81 67.87 ± 0.37 72.60 ± 0.06 80.06 ± 0.85 73.63 ± 0.54 93.81 ± 0.44
Enron 69.51 ± 1.06 66.78 ± 2.21 63.16 ± 0.59 73.27 ± 0.58 75.08 ± 0.81 70.98 ± 0.96 74.12 ± 0.65 78.22 ± 0.80 72.02 ± 2.64 80.86 ± 1.24 95.81 ± 2.99
MOOC 66.56 ± 1.49 61.48 ± 0.96 76.96 ± 0.89 77.59 ± 1.83 73.55 ± 0.36 76.35 ± 1.41 74.24 ± 0.75 80.99 ± 0.88 64.93 ± 3.31 81.11 ± 0.63 99.03 ± 0.38
Reddit 86.93 ± 0.21 86.06 ± 0.36 89.93 ± 0.10 88.12 ± 0.13 91.89 ± 0.18 86.97 ± 0.26 85.37 ± 0.26 91.06 ± 0.60 90.99 ± 2.19 91.15 ± 0.54 99.58 ± 0.02
Wikipedia 74.78 ± 0.56 70.55 ± 1.22 86.77 ± 0.29 85.80 ± 0.15 69.27 ± 7.07 72.54 ± 4.69 88.54 ± 0.20 62.00 ± 14.00 94.15 ± 0.08 79.86 ± 2.18 99.45 ± 0.06
UCI 66.02 ± 1.28 54.64 ± 2.52 67.63 ± 0.51 70.34 ± 0.72 64.08 ± 1.06 73.49 ± 2.21 79.57 ± 0.61 70.51 ± 1.83 66.25 ± 0.51 71.95 ± 2.51 91.44 ± 0.50
Social Evo. 91.08 ± 3.29 92.84 ± 0.98 95.20 ± 0.30 94.58 ± 1.52 88.50 ± 0.13 96.14 ± 0.63 95.11 ± 0.32 97.62 ± 0.12 Timeout 97.68 ± 0.42 98.88 ± 0.63
Avg. Rank 8.86 10.00 6.14 6.14 7.29 6.57 5.71 4.71 6.43 3.14 1.00

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 9: AP of inductive dynamic link prediction.
NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGmamba CTDG-SSM

RNS

LastFM 83.13 ± 1.19 83.47 ± 1.06 78.40 ± 0.30 81.18 ± 3.27 89.33 ± 0.06 81.38 ± 1.53 82.07 ± 0.31 94.17 ± 0.10 60.40 ± 3.01 94.42 ± 0.21 93.65 ± 0.62
Enron 78.97 ± 1.59 73.97 ± 3.00 66.67 ± 1.07 78.76 ± 1.69 86.30 ± 0.56 82.61 ± 0.61 75.55 ± 0.81 89.62 ± 0.27 74.61 ± 1.64 89.67 ± 0.27 93.02 ± 7.25
MOOC 80.57 ± 0.52 80.50 ± 0.68 85.28 ± 0.30 88.01 ± 1.48 81.32 ± 0.42 82.28 ± 0.99 81.38 ± 0.17 87.05 ± 0.51 64.99 ± 2.24 88.64 ± 0.08 98.49 ± 0.48
Reddit 96.43 ± 0.16 95.89 ± 0.26 97.13 ± 0.04 97.41 ± 0.12 98.62 ± 0.01 95.01 ± 0.18 95.24 ± 0.08 98.83 ± 0.02 80.07 ± 2.53 98.97 ± 0.01 99.28 ± 0.03
Wikipedia 94.91 ± 0.32 92.21 ± 0.29 96.26 ± 0.12 97.81 ± 0.18 98.27 ± 0.02 97.48 ± 0.06 96.61 ± 0.04 98.58 ± 0.01 93.58 ± 0.65 98.77 ± 0.03 99.19 ± 0.09
UCI 79.73 ± 1.48 58.39 ± 2.38 79.10 ± 0.49 87.81 ± 1.32 92.61 ± 0.35 84.19 ± 1.67 91.17 ± 0.29 94.45 ± 0.13 49.78 ± 5.02 94.76 ± 0.19 89.12 ± 1.02
Social Evo. 91.72 ± 0.66 89.10 ± 1.90 91.47 ± 0.10 90.74 ± 1.40 79.83 ± 0.14 92.51 ± 0.11 91.89 ± 0.05 93.05 ± 0.10 Timeout 93.13 ± 0.05 97.56 ± 0.45
Avg. Rank 7.29 9.00 8.00 6.14 5.29 6.57 6.71 2.86 10.57 1.71 1.86

INS

LastFM 71.37 ± 3.45 69.75 ± 2.73 76.26 ± 0.34 68.47 ± 6.07 71.28 ± 0.43 68.79 ± 0.93 76.27 ± 0.37 75.07 ± 1.45 55.60 ± 3.91 76.76 ± 0.43 94.08 ± 0.57
Enron 66.99 ± 1.15 62.64 ± 2.33 59.95 ± 1.00 64.51 ± 1.66 60.61 ± 0.63 68.93 ± 1.34 71.71 ± 1.33 67.21 ± 0.72 68.66 ± 2.31 68.77 ± 0.60 94.56 ± 5.02
MOOC 64.67 ± 1.18 62.05 ± 2.11 77.43 ± 0.81 76.81 ± 2.83 74.36 ± 0.78 75.95 ± 1.46 73.87 ± 0.99 80.66 ± 0.94 57.49 ± 1.34 80.75 ± 1.00 98.64 ± 0.51
Reddit 62.54 ± 0.52 61.07 ± 0.86 63.96 ± 0.25 65.27 ± 0.57 64.10 ± 0.22 61.45 ± 0.25 64.82 ± 0.30 65.03 ± 1.20 78.35 ± 5.03 65.30 ± 1.05 99.32 ± 0.03
Wikipedia 68.22 ± 0.36 61.07 ± 0.82 84.19 ± 0.96 81.96 ± 0.62 62.34 ± 6.79 71.46 ± 4.95 87.47 ± 0.25 57.90 ± 11.05 92.61 ± 0.90 71.14 ± 2.44 99.23 ± 0.09
UCI 63.57 ± 2.15 52.63 ± 1.87 69.77 ± 0.43 69.94 ± 0.50 63.44 ± 1.52 74.39 ± 1.81 81.40 ± 0.52 70.25 ± 2.02 52.31 ± 2.67 72.17 ± 2.20 90.34 ± 0.74
Social Evo. 89.06 ± 1.23 87.30 ± 1.55 94.24 ± 0.36 90.67 ± 2.41 80.30 ± 0.21 95.94 ± 0.37 94.56 ± 0.24 96.73 ± 0.11 Timeout 96.83 ± 0.56 98.15 ± 0.27
Avg. Rank 7.86 9.57 6.29 6.43 8.43 5.86 4.14 5.43 7.57 3.43 1.00
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Figure 5: Model size vs. AUC-ROC under a transductive setting with random negative sampling.

E MODEL EFFICIENCY

E.1 BATCH LEVEL SUBGRAPH SAMPLING

The discrete update equation involves computing p(L)−1, which incurs a cost ofO(N3
τ ), where Nτ

denotes the number of nodes in Gτ . To implement this update efficiently, we operate on a subset of
nodes from Gτ whose states are updated, while the remaining node states are kept unchanged. We
refer to this subset as the active batch nodes. This set includes:

• Nodes appearing in interaction events of the form (u, v, t) within the batch.
• Neighbors of the nodes selected from these interactions.

Neighbor selection depends on the chosen polynomial. For first-order polynomials, we select at
most K of the most recent 1-hop neighbors for each node u and v in interaction (u, v, t). For a
polynomial of order m, we extend this to an m-hop neighborhood. All nodes in this m-hop ego
network are enumerated, and at most K neighbors are chosen based on temporal proximity, using
the most recent timestamp along the path. For example, if a node w is connected to u via v through

u
t1−→ v

t2−→ w,

then the time associated with w when sampling neighbors for interaction (u, v, t) is computed as

tw = (t− t1) + (t− t2).

The number of active batch nodes NB for a batch of length B satisfies

NB ≤ 2BK ≪ Nτ ,

resulting in a substantial reduction in update cost.

E.2 LEARNABLE PARAMETERS

In this section, we compare models based on the number of learnable parameters. Recall that the
CTDG-SSM layer introduces learnable matrices only through ĀLB [k], Ā and B̄(L[k],X[k]). Fig-
ure 5 illustrates the trade-off between parameter count and AUC-ROC. The results show that on
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Models LastFM Enron MOOC UCI Reddit Social Evo.

Time Mem Time Mem Time Mem Time Mem Time Mem Time Mem

JODIE 4.4 2.28 0.07 1.30 0.78 2.36 0.03 1.44 3.95 1.10 4.70 1.71
DyRep 6.6 2.29 0.10 1.34 0.88 2.38 0.05 1.51 5.75 1.21 7.55 1.76
TGAT 22.75 4.15 1.28 3.46 4.08 3.64 0.60 3.42 16.33 2.98 25.50 3.89
TGN 12.14 2.21 0.15 1.45 1.03 2.54 0.08 1.51 2.05 1.67 3.83 1.78
CAWN 99.00 14.92 2.62 4.03 13.45 8.02 1.95 9.40 20.16 5.89 85.66 8.14
TCL 6.23 3.04 0.30 2.51 1.00 2.49 0.13 2.00 2.25 1.82 5.05 2.48
GraphMixer 16.35 2.78 1.20 2.23 4.02 2.40 0.73 2.19 4.92 1.57 15.50 2.71
DyGFormer 47.00 7.57 2.73 3.23 8.32 3.35 0.62 2.30 7.00 2.42 20.00 2.77
CTAN 3.33 1.44 0.50 1.33 3.22 2.30 0.38 1.30 0.86 1.54 2.41 0.63
DyGMamba 28.45 4.17 2.05 2.74 4.88 2.48 0.60 1.93 6.30 2.07 17.80 2.59
CTDG-SSM 4.45 1.15 0.55 0.86 1.25 0.43 0.17 0.31 1.95 1.18 9.57 5.22

Table 10: Per-epoch time (minutes) and GPU memory usage (GB) across multiple datasets.

Models Enron UCI Reddit
#Epoch Ttot #Epoch Ttot #Epoch Ttot

CTAN 173.00 86.50 236.00 89.68 327.18 173.41
DyGFormer 32.80 89.54 34.80 21.58 24.60 104.30
DyGMamba 33.00 67.65 28.00 16.80 26.80 88.98
CTDG-SSM 83.00 45.65 38.00 6.46 27.00 52.65

Table 11: Number of epochs and total time (minutes) across datasets.

long-range datasets such as MOOC and Enron, the proposed model achieves superior performance
while being highly parameter-efficient, requiring about one-tenth fewer parameters compared to
existing approaches.

E.3 RUNTIME ANALYSIS

In this section, we compare the proposed model with state-of-the-art approaches using run-time as
the performance metric. In Table 10 we report the per-epoch training time (in minutes) and GPU
memory consumption (in GB) across all datasets. Notably, it can be observed that CTDG-SSM
achieves significantly lower per-epoch training time and memory usage compared to DyGMamba
and DyGFormer, both of which are specifically designed for long-range propagation tasks.

In Table 11 we present the total training time, obtained as the product of the per-epoch time and the
number of training epochs. In Fig. 6, we analyze the convergence behavior of proposed algorithm
where we show the training loss across epochs for multiple datasets. The plots clearly show that the
proposed model converges within only a few epochs highlighting its computational efficiency.

E.4 ROBUSTNESS TO STRUCTURAL PERTURBATIONS

We evaluate the robustness of the proposed algorithm to structural perturbations on the Enron dataset
with downstream task as link prediction. In particular, we introduce the perturbations to the true
graph as L̄B [k] = LB [k] + ϵ∆LB [k], where ∆LB [k] is a perturbation matrix whose entries are
sampled from a normal distribution, i.e., [∆LB ]ij ∼ N (0, 1) and ϵ controls the noise level.

Prediction Node p(L) = I p(L) = α0I + α1L p(L) = α0I + α1L+ α2L
2

First 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Second 0.51 ± 0.06 0.97 ± 0.02 1.00 ± 0.00
Third 0.47 ± 0.02 0.96 ± 0.01 1.00 ± 0.00
Second-Last 0.46 ± 0.01 0.90 ± 0.01 0.92 ± 0.07
Last 0.45 ± 0.02 0.88 ± 0.18 0.90 ± 0.06

Table 12: Ablation study with respect to the order of the graph filter.
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Figure 6: Convergence behavior of CTDG-SSM across the datasets

Figure 7: CTDG-SSM link prediction accuracy under noise insertion of form LB [k] + ϵ ∆L
∥∆L∥2

at
each update.
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We then evaluate the proposed algorithm by replacing LB [k] with L̄B [k] under different values of
ϵ, thereby varying the severity of the structural perturbation. In Fig. 7, we report the accuracy across
these noise levels. As expected, accuracy decreases as the noise variance increases; however, for
small values of ϵ, the model performs very close to the noise-free setting. This demonstrates that the
proposed approach is stable and robust under mild structural perturbations.

E.5 ABLATION TO STUDY THE IMPORTANCE OF GRAPH FILTERS AND CTDG-SSM MODULE

Considering the downstream task as sequence classification, we conduct an ablation study to under-
stand which components of the model capture long-range information. Specifically, we analyze the
role of graph filters and the proposed CTDG-SSM module on the long-range spatial (LRS) task and
the long-range temporal (LRT) task.

To evaluate the LRT capabilities of CTDG-SSM, we first set the polynomial p(L) = I. For an event
of the form (u, v, t, xu, xv) in sequence classification, instead of restricting the model to update only
a small subset of nodes (i.e., those in the batch subgraph), we update the state vectors of all nodes.
Formally, we define the input signal at time t as:

X(t) ∈ RNτ×1 such that X[u](t) = xu,X[v](t) = xv, and 0 otherwise.

This eliminates the step where the previous states of inactive nodes are carried forward through
memory. This carry-forward mechanism could aid the model in LRT, so by removing it, we can
evaluate the LRT capability of CTDG-SSM in isolation. In this setup, the model is tasked with pre-
dicting the initial feature X[0](0) observed at the first node using the final state vectors of different
nodes. A successful LRT would yield strong performance as long as the state vector of node 1 pre-
serves the information of the feature X[0](0). Notably, this model completely lacks LRS capability,
as it does not account for the underlying graph structure and updates states solely based on the input
at the corresponding nodes.

Next, we evaluate the effect of aggregating multi-hop information by applying graph filters of dif-
ferent orders. In Table 12, we report the mean accuracies obtained from representations at different
nodes using filter orders 1and 2. We observe a substantial improvement in prediction accuracy by
leveraging the representations from the node 2, . . . , 31(the last node), demonstrating the model’s
enhanced ability to preserve spatial information over longer ranges. In particular, using deeper
aggregation-i.e., a filter of order 2-yields a notable gain in accuracy, indicating that incorporating
information from larger hop neighborhoods significantly strengthens the model’s capacity to capture
long-range spatial dependencies.

F ADDITIONAL EXPERIMENTS

In this section, we present results on additional temporal datasets-Flights, Contacts, UN Trade,
UN Vote, and CanParl (Yu et al., 2023)-using link prediction as the downstream task. We fur-
ther compare the proposed method with several state-of-the-art approaches, including Edgebank,
DyG-Mamba (Li et al., 2024a), and FreeDyG (Tian et al., 2024).

In Tables 14, 15, 16, and 17 we compare the performance of proposed model against the state of the
art methods with across these datasets. It is clear that the proposed model consistently outperforms
competing methods on most datasets, which we attribute to its ability to jointly model structural and
temporal evolution through graph filters and state-space dynamics.

Additionally, in Tables 13 and 18, we provide direct comparisons against Edgebank, DyG-Mamba,
and FreeDyG. The results clearly demonstrate that our model consistently achieves superior per-
formance across both transductive and inductive settings.

G CTDG-SSM BEYOND NODE/EDGE ADDITION.

The CTDG-SSM state update equation depends on the change in the graph Laplacian, and therefore
naturally accommodates both the addition *and* removal of edges.
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NSS Datasets Edgebank DyG-Mamba FreeDyG CTDG-SSM

rnd

Wiki 90.37±0.00 99.08 ± 0.09 99.26 ± 0.01 99.40 ± 0.00
Reddit 94.86±0.00 99.27 ± 0.00 99.48 ± 0.01 99.53 ± 0.00
MOOC 57.97±0.00 90.25 ± 0.01 89.61 ± 0.10 98.85 ± 0.00
LastFM 79.29±0.00 94.23 ± 0.01 92.15 ± 0.16 93.40±0.49
Enron 83.53 ± 0.00 93.14 ± 0.08 92.51 ± 0.05 94.46 ± 4.73
Social Evo. 74.95 ± 0.00 94.77 ± 0.01 94.91 ± 0.01 98.65 ± 0.65
UCI 76.20 ± 0.00 96.14 ± 0.14 96.28 ± 0.11 90.18 ±0.98

hist

Wiki 73.35 ± 0.00 82.35 ±1.25 91.59 ± 0.57 98.99 ± 0.32
Reddit 73.59 ± 0.00 81.02 ± 0.19 85.67 ± 1.01 97.55 ± 0.22
MOOC 60.71 ± 0.00 87.42 ± 1.57 86.71 ± 0.81 94.76 ± 1.76
LastFM 73.03 ± 0.00 84.08 ± 0.45 79.71 ± 0.51 88.91 ± 0.93
Enron 76.53 ± 0.00 77.85 ± 1.20 78.87 ± 0.82 95.80 ± 3.33
Social Evo. 80.57 ± 0.00 97.35 ± 0.18 77.79 ± 0.23 98.20 ± 0.81
UCI 65.50 ± 0.00 81.36 ± 0.14 86.10 ± 1.19 88.87 ± 1.28

ind

Wiki 80.63 ± 0.00 87.06 ± 0.86 90.05 ± 0.79 99.45 ± 0.06
Reddit 85.48 ±0.00 91.77 ±0.46 90.74 ± 0.17 99.58 ± 0.02
MOOC 49.43 ±0.00 81.19 ± 2.02 83.01 ± 0.87 99.03 ± 0.38
LastFM 75.49 ± 0.00 75.05 ± 0.40 72.19 ± 0.24 93.81 ± 0.44
Enron 73.89 ± 0.00 77.46 ± 0.90 77.81 ± 0.65 95.81 ± 2.99
Social Evo. 83.69±0.00 97.78 ± 0.15 97.50 ± 0.15 98.88 ± 0.63
UCI 57.43 ±0.00 77.75 ± 1.56 82.35 ± 0.73 91.44 ±0.50

Table 13: Performance comparison with AP on dynamic link prediction under transductive setting.

NSS Dataset JODIE DyRep TGAT TGN CAWN Edgebank TCL GraphMixer DyGFormer DyGMamba CTDG-SSM

rnd

Flights 95.60±1.73 95.29±0.72 94.03±0.18 97.95±0.14 98.51±0.01 89.35±0.00 91.23±0.02 90.99±0.05 98.91±0.01 98.95±0.05 98.70±0.05
Can. Parl. 69.26 ± o.31 66.54 ±2.76 70.73 ±0.72 70.88 ± 2.34 69.82 ±2.34 64.55 ±0.00 68.67 ±2.67 77.04 ±0.46 97.36±0.45 99.57±0.08 98.20 ±1.73
US Legis. 75.05 ± 1.52 75.34 ± 0.39 68.52±3.16 75.99 ± 0.58 70.58 ± 0.48 58.39 ± 0.00 69.59 ± 0.48 70.74 ± 1.02 71.11 ± 0.59 71.75 ± 0.26 82.51 ± 0.00
UN Trade 64.94 ± 0.31 63.21 ± 0.93 61.47 ± 0.18 65.03 ± 1.37 65.39 ± 0.12 60.41 ± 0.00 62.21 ± 0.03 62.21 ± 0.27 66.46 ± 1.29 67.50±0.14 69.10±0.20
UN Vote 63.91 ± 0.81 62.81±0.80 52.21 ± 0.98 65.72 ± 2.17 52.84 ± 0.10 58.49 ± 0.00 51.90 ± 0.30 52.11 ± 0.16 55.55±0.42 56.39±0.18 95.31 ± 0.01
Contact 95.31±1.33 95.98±0.15 96.28±0.09 96.89±0.56 90.26±0.28 92.58±0.00 92.44±0.12 91.92±0.03 98.29±0.01 98.43±0.12 98.90 ± 0.05

hist

Flights 66.48±2.59 67.61±0.99 72.38± 0.18 66.70±1.64 64.72±0.97 70.53±0.00 70.68± 0.24 71.47±0.26 66.59±0.49 67.80±2.17 87.2 ± 1.50
Can. Parl. 51.79±0.63 63.31±1.23 67.13±0.84 68.42±3.07 66.53±2.77 63.84±0.00 65.93 ±3.00 74.34 ±0.87 97.00±0.31 99.77±1.00 97.8 ± 1.24
US Legis. 51.71 ±5.76 86.88 ± 2.25 62.14 ± 6.60 74.00 ±7.57 68.82 ± 8.23 63.22±0.00 80.53 ± 3.95 81.65 ± 1.02 85.30±3.88 86.12±0.26 80.02 ± 0.00
UN Trade 61.39 ± 1.83 59.19 ± 0.17 55.74 ± 0.91 58.44 ± 5.51 55.71 ± 0.38 81.32 ± 0.00 55.90 ± 1.17 57.05± 1.22 64.41±1.40 66.10±1.02 68.4 ± 0.04
UN Vote 70.02 ± 0.81 69.30± 1.12 52.96 ± 2.14 69.37 ± 3.93 51.26 ± 0.04 84.89 ± 0.00 52.30 ± 2.35 51.20 ± 1.60 60.84±1.58 61.07±1.39 95.29±0.01
Contact 95.31 ± 2.13 96.39 ± 0.20 96.05 ± 0.52 93.05 ± 2.35 84.16 ± 0.49 88.81 ± 0.00 93.86 ± 0.01 93.36± 0.41 97.57 ± 0.06 97.61±0.04 98.2 ± 0.05

ind

Flights 69.07 ± 4.02 70.57 ± 1.82 75.48 ± 0.26 71.09 ± 2.72 69.18± 1.52 81.08 ± 0.00 74.62 ± 0.18 74.87 ± 0.21 70.92±1.78 73.79±5.69 86.50±1.34
Can. Parl. 48.42 ± 0.66 58.61± 0.86 68.82 ± 1.21 65.34±2.87 67.75±1.00 62.16±0.00 65.85 ± 1.75 69.48 ± 0.63 95.44 ± 0.57 94.87±0.67 94.2 ± 0.50
US Legis. 50.27±5.13 83.44±1.16 61.91 ± 5.82 67.57±6.47 65.81± 8.52 65.74 ± 0.00 78.15 ± 3.34 79.63 ± 0.84 81.25±3.62 81.22±1.34 81.32 ± 0.00
UN Trade 60.42 ± 1.48 60.19 ± 1.24 60.61 ± 1.24 61.04 ± 6.01 62.54 ± 0.67 72.97±0.00 61.06±1.74 60.15 ±1.29 55.79±1.02 58.89±0.59 67.92 ± 0.5
UN Vote 67.79 ± 1.46 67.53 ± 1.98 52.89 ± 1.61 67.63 ± 2.67 52.19 ± 0.34 66.30 ± 0.00 50.62 ± 0.82 51.60 ± 0.73 51.91±0.84 52.24±0.95 95.37 ± 0.01
Contact 93.43 ± 1.78 94.18 ± 0.10 94.35± 0.48 90.18 ± 3.28 89.31 ± 0.27 85.20 ± 0.00 91.35 ± 0.21 90.87 ± 0.35 94.75±0.28 95.43±0.17 97.60 ± 0.32

Table 14: AP for dynamic link prediction under transductive setting

NSS Dataset JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer DyGMamba CTDG-SSM

rnd

Flights 96.21 ± 1.42 95.95 ± 0.62 94.13 ± 0.17 98.22 ± 0.13 98.45 ± 0.01 90.23 ± 0.00 91.21 ± 0.02 91.13 ± 0.01 98.93 ± 0.01 98.98 ± 0.05 98.53 ± 0.02
Can. Parl. 78.21 ± 0.23 73.35 ± 3.67 75.69 ± 0.78 76.99 ± 1.80 75.70 ± 3.27 64.14 ± 0.00 72.46 ± 3.23 83.17 ± 0.53 97.76 ± 0.41 99.69 ± 0.06 98.1 ± 0.80
US Legis. 82.85 ± 1.07 82.28 ± 0.32 75.84 ± 1.99 83.34 ± 0.43 77.16 ± 0.39 62.57 ± 0.00 76.27 ± 0.63 76.96 ± 0.79 77.90 ± 0.58 79.03 ± 0.26 85.92 ± 0.00
UN Trade 69.62 ± 0.44 67.44 ± 0.83 64.01 ± 0.12 69.10 ± 1.67 68.54 ± 0.18 66.75 ± 0.00 64.72 ± 0.05 65.52 ± 0.51 70.20 ± 1.44 71.41 ± 0.21 73.76 ± 0.30
UN Vote 68.53 ± 0.95 67.18 ± 1.04 52.83 ± 1.12 68.71 ± 2.65 53.09 ± 0.22 62.97 ± 0.00 51.88 ± 0.36 52.46 ± 0.27 57.12 ± 0.62 58.48 ± 0.12 97.41 ± 0.00
Contact 96.66 ± 0.89 96.48 ± 0.14 96.95 ± 0.08 97.54 ± 0.35 89.99 ± 0.34 94.34 ± 0.00 94.15 ± 0.09 93.94 ± 0.02 98.53 ± 0.01 98.68 ± 0.02 98.70 ± 0.01

hist

Flights 68.97 ± 1.87 69.43 ± 0.90 72.20 ± 0.16 68.39 ± 0.95 66.11 ± 0.71 74.64 ± 0.00 70.57 ± 3.01 70.37 ± 0.23 68.09 ± 0.43 68.98 ± 1.81 90.1 ± 1.50
Can. Parl. 62.44 ± 1.11 70.16 ± 1.70 70.86 ± 0.94 73.23 ± 3.08 72.06 ± 3.94 63.04 ± 0.00 69.95 ± 3.70 79.03 ± 1.01 97.61 ± 0.40 99.82 ± 0.10 97.5 ± 0.05
US Legis. 67.47 ± 6.40 91.44 ± 1.18 73.47 ± 5.25 83.53 ± 4.53 78.62 ± 7.46 67.41 ± 0.00 83.97 ± 3.71 85.17 ± 0.70 90.77 ± 1.96 88.36 ± 1.78 85.55 ± 0.00
UN Trade 68.92 ± 1.40 64.36 ± 1.40 60.37 ± 0.68 63.93 ± 5.41 63.09 ± 0.74 86.61 ± 0.00 61.43 ± 1.04 63.20 ± 1.54 73.86 ± 1.13 74.10 ± 2.02 73.3 ± 0.7
UN Vote 76.84 ± 1.01 74.72 ± 1.43 53.95 ± 3.15 73.40 ± 5.20 51.27 ± 0.33 89.62 ± 0.00 52.29 ± 2.39 52.61 ± 1.44 64.27 ± 1.78 65.17 ± 1.24 97.22 ± 0.00
Contact 96.35 ± 0.92 96.00 ± 0.23 95.39 ± 0.43 93.76 ± 1.29 83.06 ± 0.32 92.17 ± 0.00 93.34 ± 0.19 94.14 ± 0.34 97.17 ± 0.05 97.27 ± 0.06 97.78 ± 0.04

ind

Flights 69.99 ± 3.10 71.13 ± 1.55 73.47 ± 0.18 71.63 ± 1.72 69.70 ± 0.75 81.10 ± 0.00 72.54 ± 0.19 72.21 ± 0.21 69.53 ± 1.17 71.16 ± 3.24 89.25 ± 1.24
Can. Parl. 52.88 ± 0.80 63.53 ± 0.65 72.47 ± 1.18 69.57 ± 2.81 72.93 ± 1.78 61.41 ± 0.00 69.47 ± 2.12 70.52 ± 0.94 96.70 ± 0.59 99.82 ± 0.10 96.87 ± 0.05
US Legis. 59.05 ± 5.52 89.44 ± 0.71 71.62 ± 5.42 78.12 ± 4.46 76.45 ± 7.02 68.66 ± 0.00 82.54 ± 3.91 84.22 ± 0.91 87.96 ± 1.80 86.08 ± 2.27 86.06 ± 0.00
UN Trade 66.82 ± 1.27 65.60 ± 1.28 66.13 ± 0.78 66.37 ± 5.39 71.73 ± 0.74 74.20 ± 0.00 67.80 ± 1.21 66.53 ± 1.22 62.56 ± 1.51 67.60 ± 0.64 72.65 ±0.45
UN Vote 73.73 ± 1.61 72.80 ± 2.16 53.04 ± 2.58 72.69 ± 3.72 52.75 ± 0.90 72.85 ± 0.00 52.02 ± 1.22 62.56 ± 1.51 51.89 ± 0.74 53.37 ± 1.26 97.45 ± 0.01
Contact 94.47 ± 1.08 94.23 ± 0.18 94.10 ± 0.41 91.64 ± 1.72 87.68 ± 0.24 85.87 ± 0.00 91.23 ± 0.19 90.96 ± 0.27 95.01 ± 0.15 95.68 ± 0.20 97.50 ± 0.45

Table 15: AUC-ROC for dynamic link prediction under transductive setting
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NSS Dataset JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer DyGMamba CTDG-SSM

rnd

Flights 94.74 ± 0.37 92.88 ± 0.73 88.73 ± 0.33 95.03 ± 0.60 97.06 ± 0.02 83.41 ± 0.07 83.03 ± 0.05 97.79 ± 0.02 97.85 ± 0.22 97.15±0.04
Can. Parl. 53.92 ± 0.94 54.02 ± 0.76 55.18 ± 0.79 54.10 ± 0.93 55.80 ± 0.69 54.30 ± 0.66 55.91 ± 0.82 87.74 ± 0.71 93.46 ± 2.62 88.65 ± 0.70
US Legis. 54.93 ± 2.29 57.28 ± 0.71 51.00 ± 3.11 58.63 ± 0.37 53.17 ± 1.20 52.59 ± 0.97 50.71 ± 0.76 54.28 ± 2.87 55.95 ± 1.16 76.94 ± 0.01
UN Trade 59.65 ± 0.77 57.02 ± 0.69 61.03 ± 0.18 58.31 ± 3.15 65.24 ± 0.21 62.21 ± 0.12 62.17 ± 0.31 64.55 ± 0.62 70.55 ± 0.04 72.42 ± 0.02
UN Vote 56.64 ± 0.96 54.62 ± 2.22 52.24 ± 1.46 58.85 ± 2.51 49.94 ± 0.45 51.60 ± 0.97 50.68 ± 0.44 55.93 ± 0.39 56.61 ± 0.13 95.79±0.01
Contact 94.34 ± 1.45 92.18 ± 0.41 95.87 ± 0.11 93.82 ± 0.99 89.55 ± 0.30 91.11 ± 0.12 90.59 ± 0.05 98.03 ± 0.02 98.16 ± 0.03 98.42 ± 0.01

ind

Flights 61.01 ± 1.66 62.83 ± 1.31 64.72 ± 0.37 59.32 ± 1.45 56.82 ± 0.56 64.50 ± 0.25 65.29 ± 0.24 57.11 ± 0.20 57.76 ±2.06 92.24 ± 1.05
Can. Parl. 52.58 ± 0.86 52.24 ± 0.28 56.46 ± 0.50 54.18 ± 0.73 57.06 ± 0.08 55.46 ± 0.69 55.76 ± 0.65 87.22 ± 0.82 92.68 ± 0.97 88.42 ± 0.65
US Legis. 52.94 ± 2.11 62.10 ± 1.41 51.83 ± 3.95 61.18 ± 1.10 55.56 ± 1.71 53.87 ± 1.41 52.03 ± 1.02 56.31 ± 3.46 57.85 ± 0.23 75.64 ± 0.01
UN Trade 55.43 ± 1.20 55.42 ± 0.87 55.58 ± 0.68 52.80 ± 3.24 54.97 ± 0.38 55.66 ± 0.98 54.88 ± 1.01 52.56 ± 1.70 52.81 ± 0.18 69.24 ± 1.02
UN Vote 61.17 ± 1.33 60.29 ± 1.79 53.08 ± 3.10 63.71 ± 2.97 48.01 ± 0.82 54.13 ± 2.16 48.10 ± 0.40 52.61 ± 1.25 53.70 ± 2.40 95.77 ± 0.00
Contact 90.43 ± 2.33 89.22 ± 0.65 94.14 ± 0.45 88.12 ± 1.50 74.19 ± 0.81 90.43 ± 0.17 89.91 ± 0.36 93.55 ± 0.52 94.05 ± 0.32 96.78± 0.72

Table 16: AP for dynamic link prediction under inductive setting

NSS Dataset JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer DyGMamba CTDG-SSM

rnd

Flights 95.21 ± 0.32 93.56 ± 0.70 88.64 ± 0.35 95.92 ± 0.43 96.86 ± 0.02 82.48 ± 0.01 82.27 ± 0.06 97.80 ± 0.02 97.98 ± 0.25 97.36±0.04
Can. Parl. 53.81 ± 1.14 55.27 ± 0.49 56.51 ± 0.75 55.86 ± 0.75 58.83 ± 1.13 55.83 ± 1.07 58.32 ± 1.08 89.33 ± 0.48 94.02 ± 3.42 89.78±0.78
US Legis. 58.12 ± 2.35 61.07 ± 0.56 48.27 ± 3.50 62.38 ± 0.48 51.49 ± 1.13 50.43 ± 1.48 47.20 ± 0.89 53.21 ± 3.04 57.17 ± 0.20 81.17 ± 0.00
UN Trade 62.28 ± 0.50 58.82 ± 0.98 62.72 ± 0.12 59.99 ± 3.50 67.05 ± 0.21 63.76 ± 0.07 63.48 ± 0.37 67.25 ± 1.05 68.26 ± 0.26 73.76±0.45
UN Vote 58.13 ± 1.43 55.13 ± 3.46 51.83 ± 1.35 61.23 ± 2.71 48.34 ± 0.76 50.51 ± 1.05 50.04 ± 0.86 56.73 ± 0.69 56.91 ± 0.12 97.72 ±0.01
Contact 95.37 ± 0.92 91.89 ± 0.38 96.53 ± 0.10 94.84 ± 0.75 89.07 ± 0.34 93.05 ± 0.09 92.83 ± 0.05 98.30 ± 0.02 98.44±0.05 98.70±0.65

ind

Flights 60.72 ± 1.29 61.99 ± 1.39 63.40 ± 0.26 59.66 ± 1.05 56.58 ± 0.44 63.49 ± 0.23 63.32 ± 0.19 56.05 ± 0.22 56.58±2.12 91.36 ± 1.87
Can. Parl. 51.61 ± 0.98 52.35 ± 0.52 58.15 ± 0.62 55.43 ± 0.42 60.01 ± 0.47 56.88 ± 0.93 56.63 ± 1.09 88.51 ± 0.73 92.37 ± 0.18 89.56 ± 0.69
US Legis. 58.12 ± 2.94 67.94 ± 0.98 49.99 ± 4.88 64.87 ± 1.65 54.41 ± 1.31 52.12 ± 2.13 49.28 ± 0.86 56.57 ± 3.22 57.91 ± 3.41 81.46 ± 0.01
UN Trade 58.71 ± 1.20 57.87 ± 1.36 59.98 ± 0.59 55.62 ± 3.59 60.88 ± 0.79 61.01 ± 0.93 59.71 ± 1.17 57.28 ± 3.06 57.58 ± 0.20 71.43 ± 0.04
UN Vote 65.29 ± 1.30 64.10 ± 2.10 51.78 ± 4.14 68.58 ± 3.08 48.04 ± 1.76 54.65 ± 2.20 45.57 ± 0.41 53.87 ± 2.01 54.83 ± 2.17 97.73 ± 0.01
Contact 90.80 ± 1.18 88.87 ± 0.67 93.76 ± 0.40 88.85 ± 1.39 74.79 ± 0.38 90.37 ± 0.16 90.04 ± 0.29 94.14 ± 0.26 94.35 ± 0.29 96.98 ± 0.56

Table 17: AUC-ROC for dynamic link under inductive setting.

NSS Datasets Edgebank DyG-Mamba FreeDyG CTDG-SSM

rnd

Wiki N/A 98.65 ± 0.03 98.97 ± 0.01 99.19 ± 0.09
Reddit N/A 98.88 ± 0.00 98.91 ± 0.01 99.28 ± 0.00
MOOC N/A 90.20 ± 0.06 87.75 ± 0.62 98.49 ± 0.48
LastFM N/A 95.13 ± 0.08 94.89 ± 0.01 93.65 ± 0.62
Enron N/A 91.14 ± 0.07 89.69 ± 0.17 93.02 ± 7.25
Social Evo. N/A 93.23 ± 0.01 94.76 ± 0.05 97.56 ± 0.45
UCI N/A 94.15 ± 0.04 94.85 ± 0.10 89.12 ± 1.02

ind

Wiki N/A 79.44 ± 2.78 87.54 ± 0.26 99.23 ± 0.09
Reddit N/A 65.61 ± 0.01 64.98 ± 0.20 99.32 ± 0.03
MOOC N/A 81.67 ± 1.08 81.41 ± 0.31 98.64 ± 0.51
LastFM N/A 79.60 ± 0.28 77.01 ± 0.43 94.08 ± 0.57
Enron N/A 68.44 ± 1.85 72.85 ± 0.81 94.56 ± 5.02
Social Evo. N/A 96.93 ± 0.21 96.91 ± 0.12 98.15 ± 0.27
UCI N/A 79.27 ± 1.03 82.06 ± 0.58 90.34 ± 0.74

Table 18: Performance comparison with AP on dynamic link prediction under inductive setting.

Dataset CTDG-SSM DyGMamba DyGFormer CTAN TGN

tgbl-wiki 0.817 ± 0.027 0.739 ± 0.009 0.798 ± 0.004 0.668 ± 0.007 0.396 ± 0.060
tgbl-coin 0.862 ± 0.003 — 0.752 ± 0.004 0.748 ± 0.004 0.586 ± 0.037

Table 19: MRR on the tgbl-wiki and tgbl-coin datasets.
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To handle edge deletions within the subgraph, one can simply invert the construction process de-
scribed in the paper. Specifically, if an edge is removed in batch B, we construct batch Laplacian
LB [k] without this edge, while LB [k − 1] includes it. The resulting difference LB [k]−LB [k − 1]
correctly captures the effect of edge removal.

Node deletion can be treated analogously by removing all edges incident to that node. In this case,
LB [k] contains no edges between the removed node and its neighbors, while LB [k−1] retains these
edges. This ensures that the update mechanism captures the effective removal of the node.

H LIMITATIONS AND FUTURE RESEARCH DIRECTIONS.

In the current model, we implement a polynomial of the Laplacian using simple graph filters, which
provide an efficient linear approximation to the underlying differential operator. While effective, this
design restricts the expressiveness of the operator. An important direction for future work is to ex-
plore learning these operators and their inverses directly through graph neural networks, potentially
enabling more adaptive and data-dependent approximations. Also, the current framework is primar-
ily evaluated on CTDG datasets, where all node and edge features are fully observed. Extending the
framework to handle scenarios with missing features in sampled events, or to accommodate inter-
leaved and partially observed dynamic graphs, presents a promising direction for future research.

I CTDG-SSM PSEUDO CODE AND TIME COMPLEXITY

The CTDG-SSM model consists of two primary components: the online update and the inference.
In this section, we will provide the algorithm for both of these parts.

I.1 ONLINE UPDATE

From a stream of events, we form a batch of B concurrent events. Using subgraph sampling, we
construct the corresponding batch Laplacian LB [k]. By removing the edges associated with the
events in the current batch from LB [k], we obtain the previous-step Laplacian LB [k − 1]. Algo-
rithm 1 summarizes this procedure. For active batch nodes NB , state vectors of dimension d, and a
polynomial of highest order m, the state update has a time complexity of O(mN3

B + dN2
B), it is to

be noted that NB << N .

I.2 INFERENCE

The query provided to the model for a downstream task may take the form (u, v, t), where the model
must determine whether this constitutes a valid link or classify node u based on the interaction and
its historical context. Alternatively, the query may be of the form (u), in which case the model
retrieves the stored state of node u and processes it according to the downstream task. In this
section, Algorithm 2 specifies the procedure for link prediction queries, and Algorithm 3 details the
procedure for node classification queries. The inference time complexity depends on the task:

• for link prediction and node classification, it is O(deg(u)) due to the computation of ∆t;
• for sequence classification, it is O(1) per query.
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Algorithm 1 CTDG-SSM ZOH Update
Require: Batch Laplacian LB [k], Batch Laplacian LB [k − 1], events
{ui, vi, ti,xu[ti],xv[ti],xu,v[ti]}Bi=1 and batch active node indices {ûi}NB

i=1. learnable
polynomial pα, Gaussian quadrature node qnodes ∈ R8×1, qweights ∈ R8×1. State matrices
parameters A(0)

log ∈ Rd,A
(1)
log ∈ Rd, hidden states H(0)[k] and H(1)[k].

1: I ← Idim(L[k]) {Identity matrix}
2: ∆pα(LB [k])← pα(LB [k])− pα(LB [k − 1])
3: ĀLB [k] ← exp

(
−pα(LB [k])

−1∆pα(LB [k])
)

4: LHS← Odim(NB×NB×8)

5: for i = 0 to 7 do
6: LHS[:,:,i]← exp

(
−pα(LB [k])

−1∆pα(LB [k])qnode[i]
)

7: end for
8: Construct SSM Input X:
9: NSt ← 0dim(Nτ×2ds) {Zero matrix, ds: Static embedding dimensions}

10: for i = 0 to B − 1 do
11: NSt[i, 1:d]← Static-Embedding(ui)
12: NSt[i, d+1:2d]← Static-Embedding(vi)
13: NSt[i+B, 1:d]← Static-Embedding(vi)
14: NSt[i+B, d+1:2d]← Static-Embedding(ui)
15: end for
16: for i = 1 to B do
17: X[i, :]← [xu[ti] | xv[ti] | xu,v[ti] | ϕ(∆[ti]) |Nst[i, :]] {V has Nτ rows}
18: X[i+B, :]← [xu[ti] | xv[ti] | xu,v[ti] | ϕ(∆[ti]) |Nst[i+B, :]] {rest filled with 0.}
19: end for

20: CTDG-SSM 1st Layer:
21: X̃(0)[k]← hθ(X) { encoder hθ}
22: X

(0)
n [k]← RMS0(X̃

(0)[k])

23: Bx,0 ← B0(X
(0)
n [k])

24: ∆0 ← τ
(0)
∆ (X

(0)
n [k]) (Nτ × 1)

25: A
(0)
c ← − exp(A

(0)
log)

26: Ā(0) ← exp
(
∆0 ⊙A

(0)
c [None, :]

)
27: C0 ← (pα(LB [k])

−1(∆0 ⊙Bx,0))[:, :,None]⊙ qweights[None,None, :]
28: RHS0 ← exp((∆0 ⊙A

(0)
c [None, :])[:, :,None]⊙ qnodes[None,None, :]) (Nτ × d× 8)

29: B̄(LB [k],X
(0)
n [k])←

∑7
q=0 LHS[:, :, q]C0[:, :, q]RHS0[:, :, q]

30: Ĥ(0)[k + 1]← ĀLB [k](H
(0)[k][{ûi}NB

i=1]⊙ Ā(0)) + B̄(LB [k],X
(0)
n [k])

31: X̃(1)[k]← X̃(0)[k] + GeLU(Ĥ(0)[k + 1])

32: CTDG-SSM 2nd Layer:
33: X

(1)
n [k]← RMS1(X̃

(1))

34: Bx,1 ← B1(X
(1)
n [k])

35: ∆1 ← τ
(1)
∆ (X

(1)
n [k])

36: A
(1)
c ← − exp(A

(1)
log)

37: Ā(1) ← exp(∆1 ⊙A
(1)
c [:,None])

38: C1 ← (pα(LB [k])
−1(Bx,2 ⊙∆1))[:, :,None]⊙ qweights[None,None, :]

39: RHS1 ← exp((∆1 ⊙A
(1)
c [None, :])[:, :,None]⊙ qnodes[None,None, :])

40: B̄(L[k],X
(1)
n [k])←

∑7
q=0 LHS[:, :, q]C1[:, :, q]RHS1[:, :, q]

41: Ĥ(1)[k + 1]← ĀLB [k](H
(1)[k][{ûi}NB

i=1]⊙ Ā(1)) + B̄(LB [k],X
(1)
n [k])

42: X̂(2)[k]← X̃(1)[k] + GeLU(Ĥ2[k + 1])

43: H(0)[k + 1]← MeanAgg(Ĥ(0)[k + 1], {ûi}NB
i=1) {Only update for batch active node

44: H(1)[k + 1]← MeanAgg(Ĥ(1)[k + 1], {ûi}NB
i=1) rest of the node retain old values.}

45: X̃(2)[k]← MeanAgg(X̂(2)[k], {ûi}NB
i=1)

46: return
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Algorithm 2 CTDG-SSM Inference (link-prediction)
Require: Link prediction queries {(ui, vi, ti)}i

1: ∆ti = ln(1 + ti − tlast,uivi) {tlast,uivi is the last interaction time of node ui and vi.}
2: ŷ(link)(ui, vi, ti) = [X̃(2)[ui] | X̃(2)[vi] | ψ(∆ti)] {ψ is temporal encoding function}
3: pi = w⊤ŷui

{logit for link prediction}

Algorithm 3 CTDG-SSM Inference (node-classification)
Require: Interaction {(ui, vi, ti)}i

1: ∆ti = ln(1 + ti − tlast,uivi) {tlast,uivi is the last interaction time of node ui and vi.}
2: ŷui

= [X̃(2)[ui] | ψ(∆ti)] {ψ is temporal encoding function}
3: pi = Wŷ(link)(ui, vi, ti) {Multiclass logits}
4: return
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