

000 CTDG-SSM: CONTINUOUS-TIME DYNAMIC GRAPH 001 STATE-SPACE MODELS FOR LONG RANGE PROPAGA- 002 TION 003 004

008 **Anonymous authors**

009 Paper under double-blind review

012 ABSTRACT

014 Continuous-time dynamic graphs (CTDGs) provide a richer framework to cap-
015 ture fine-grained temporal patterns in evolving relational data. Long-range in-
016 formation propagation is a key challenge in learning representations for CTDGs,
017 wherein it is important to retain and update information over long temporal hori-
018 zons. Existing approaches restrict models to capture one-hop or local temporal
019 neighborhoods and fail to capture multi-hop or global structural patterns. To mit-
020 iate limitations of the current approaches, we derive the state-space modelling
021 framework for continuous-time dynamic graphs (CTDG-SSM) from first prin-
022 ciples. We first introduce continuous-time Topology-Aware [higher order poly-](#)
023 [nomial projection operator \(CTT-HiPPO\)](#), a novel memory-based reformulation
024 of HiPPO to jointly encode temporal dynamics and graph structure, where solu-
025 tion for memory representations from CTT-HiPPO are obtained by projecting the
026 classical HiPPO solution through a polynomial of the Laplacian matrix, yielding
027 topology-aware memory updates that admit an equivalent state-space formulation
028 for CTDGs (CTDG-SSM). This is then discretized (e.g., using the zero-order hold
029 method) for practical implementation. We further provide theoretical guarantees
030 demonstrating the robustness of memory representations under graph structure
031 perturbations. Across benchmarks on dynamic link prediction, dynamic node
032 classification, and sequence classification, CTDG-SSM achieves state-of-the-art
033 performance. Notably, it achieves large performance gains on dynamic link pre-
034 diction and sequence classification tasks, specifically on datasets that require [long](#)
035 [range temporal \(LRT\)](#) and spatial reasoning.¹

036 1 INTRODUCTION

038 Continuous-time dynamic graphs (CTDGs) provide a principle framework for modeling evolving
039 relational data as a continuous stream of timestamped events, with each event capturing interac-
040 tions between entities at a specific time instance (Rossi et al., 2020). Unlike discrete-time dynamic
041 graphs (DTDGs), which rely on coarser snapshot intervals (Kazemi et al., 2020), CTDGs preserve
042 fine-grained temporal information, making them especially well-suited for tasks such as dynamic
043 link prediction and dynamic node classification (Ding et al., 2024; Rossi et al., 2020). These capa-
044 bilities have made CTDGs increasingly important in domains including finance, e-commerce, and
045 social network analysis, to name a few. Despite initial efforts in representation learning for CT-
046 DGs, existing approaches still face two primary challenges: (1) *long-range temporal dependencies*
047 (*LRT*): the ability to preserve and use node states and interactions over extended time horizons; and
048 (2) *long-range spatial dependencies (LRS)*: the ability to capture multi-hop structural interactions
049 beyond immediate neighborhoods in dynamic graphs.

050 Based on these challenges, existing models for CTDGs can be broadly categorized into two types:
051 *event-driven models* and *sequence-based models*. [Event-driven models](#) update node states at the
052 arrival of each interaction and capture structural context through mechanisms such as tempo-
053 ral random walks and graph neural networks-based message passing (Wang et al., 2021b; Rossi

¹Code to reproduce the results is available at: <https://anonymous.4open.science/r/CTDG-SSM-7D78>

et al., 2020; Xu et al., 2020). While computationally efficient, such models mainly capture short-term temporal patterns and are weak at preserving LRT (Yu et al., 2023). The second category includes *sequence-based models*, which explicitly target LRT using sequence models such as Transformer or Mamba. These methods construct temporal sequences of node features and their 1-hop temporal neighbors, patch them, and process them with either Transformer or Mamba layers (Yu et al., 2023; Ding et al., 2024). Although effective for LRT, these models inherently restrict structural context to the local neighborhood, limiting their capacity to capture LRS (Gravina et al., 2024) and global spatial patterns in dynamic graphs. Modeling LRS is particularly important in domains such as financial fraud detection, where money laundering typically spans long transaction chains rather than isolated local interactions (Altman et al., 2023).

To overcome the limitations of existing methods while ensuring both LRS and LRT, we introduce a continuous-time dynamic graph state-space model (CTDG-SSM)-a unified spatiotemporal state-space framework that integrates temporal memory compression through a temporal polynomial basis and graph structure through graph filters that are polynomials of the graph Laplacian. To begin with, we derive a continuous-time, topology-aware higher-order polynomial projection operator (CTT-HiPPO), in which time-varying node signals are expressed jointly through temporal and spatial polynomial bases. The resulting coefficients of CTT-HiPPO are computed by minimizing the discrepancy between the observed node features and their graph-filtered polynomial approximations, thereby extending GHIPPO (Li et al., 2024b) to the continuous-time dynamic graph setting. As a result, CTT-HiPPO captures both temporal evolution and graph-induced structural patterns, providing a principled way to construct a structure-aware state matrix for the SSM.

To implement CTDG-SSM efficiently, we discretize the continuous-time formulation using zero-order hold (ZOH), yielding the discrete counterpart of the model. The resulting CTDG-SSM remains lightweight, with only a small set of learnable parameters-primarily the coefficients of the graph polynomial filter and the system matrices governing state evolution. On the LRT task with the MOOC dataset, Fig. 1 shows that the model captures temporal patterns effectively despite its small parameter count. Using AUC-ROC and number of parameters as metrics, CTDG-SSM achieves top performance while using roughly one-tenth the parameters of competing methods.

Contributions and main results. We summarize the main contributions of the paper as follows:

- We first develop CTT-HiPPO, a HiPPO-based memory mechanism for CTDGs that efficiently compresses historical information from all events while maintaining LRT and LRS. Further, leveraging the relation between the classical HiPPO coefficients and the coefficients of CTT-HiPPO, we derive an equivalent SSM, CTDG-SSM, that governs the evolution of CTT-HiPPO.
- We derive a discrete form of CTDG-SSM using ZOH discretization that enables efficient implementation with diagonal parameterization for scalable and stable computation.
- We provide theoretical guarantees characterizing the robustness of CTT-HiPPO coefficients to graph perturbations and establish the permutation equivariance property of CTDG-SSM. These properties are crucial for real-world scenarios where continuous data stream collection and processing are susceptible to errors and failures.

We conduct extensive experiments to assess the ability of our model to preserve both LRT and LRS. For temporal long-range dependency, we benchmark CTDG-SSM on dynamic graph learning tasks such as link prediction and node classification, where it outperforms state-of-the-art methods on LRT benchmarks, including LastFM, Enron, and MOOC. To evaluate spatial long-range dependency, we conduct the sequence classification experiment (Gravina et al., 2024), demonstrating the model’s capacity to capture LRS through node states generated using spatiotemporal updates.

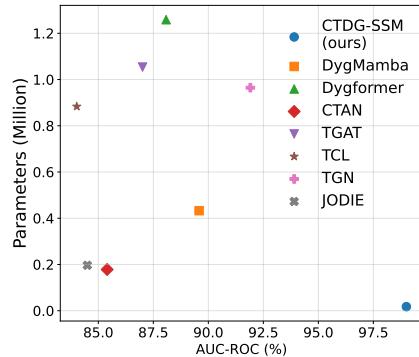


Figure 1: Efficiency of CTDG-SSM in terms of performance and number of learnable parameters

108

2 RELATED WORKS

109

110

Learning with DTDGs. Learning on dynamic graphs can be broadly categorized into two sub-
111 areas: learning for DTDGs and CTDGs. DTDGs represent data as a sequence of graph snapshots
112 observed at discrete time intervals. Most learning algorithms for DTDGs extend static graph learn-
113 ing methods, such as graph convolutional networks (GCNs), to each snapshot and employ recurrent
114 neural networks (RNNs) to capture temporal dependencies (Pareja et al., 2020; Chen et al., 2022).
115 Recently, efforts have been made to extend SSMs to the DTDGs to capture LRT dependencies (Li
116 et al., 2024b). However, it assumes a fixed graph structure within each interval and then combines
117 node embeddings from these snapshots using GNNs. A direct extension of this approach to CT-
118 DGs is challenging, since it involves continuous graph evolution, where the set of nodes evolves
119 over time, and edges occur at irregular intervals. Moreover, representing event streams using DT-
120 DGs rather than CTDGs inevitably leads to a loss of fine-grained temporal information (Rossi et al.,
121 2020; Kumar et al., 2019; Trivedi et al., 2018).

122

Learning with CTDGs. CTDGs represent dynamic graphs as streams of time-stamped events. Ex-
123 isting learning methods typically focus on either short-range or LRT dependencies, and are based
124 on random walks, message passing, or sequence modeling with Transformer or mamba layers. Rep-
125 resentative approaches include temporal random walks (Nguyen et al., 2018; Starnini et al., 2012),
126 message passing architectures such as TGAT (Xu et al., 2020), and memory-based methods such
127 as TGN and JODIE (Rossi et al., 2020; Kumar et al., 2019). Memory-based models that rely on
128 RNNs often suffer from gradient instability (vanishing or exploding), which limits their ability to
129 capture long-range dependencies (Rossi et al., 2020). To address this, recent architectures such as
130 DyGFormer and DyGmamba employ Transformers and Mamba, respectively (Yu et al., 2023; Ding
131 et al., 2024). However, these methods pre-process temporal data by restricting attention to one-hop
132 temporal neighborhoods before transformation, thereby limiting their ability to capture multi-hop
133 information. In contrast, our proposed method learns node representations without imposing such
134 structural constraints, enabling richer modeling of both temporal and spatial dependencies. **Further-
135 more, the proposed method, primarily developed for CTDGs, can also handle DTDGs, given the
136 equivalence between CTDGs and DTDGs (Souza et al., 2022).**

137

3 CONTINUOUS-TIME DYNAMIC GRAPHS

138

139

In this section, we describe continuous-time dynamic graphs (CTDGs) and the notation used
140 throughout the paper.

141

Consider a *continuous-time* observation $\mathcal{G}(t) = (u, v, t)$, which represents a temporal edge between
142 node u and v at time t . A CTDG (Rossi et al., 2020), denoted by \mathcal{G} , is an ordered sequence of
143 temporal interactions $\mathcal{G} = \{\mathcal{G}(t_1), \mathcal{G}(t_2), \dots\}$ appearing at time instances $t_1 < t_2 < \dots$. It should
144 be noted that the same subset of nodes may appear in $\mathcal{G}(t_i)$ and $\mathcal{G}(t_j)$ for $i \neq j$. In what follows,
145 we capture those unique subsets of nodes that appear within a temporal window and define their
146 underlying graph operator.

147

Active node set. For a given time $\tau \in \mathbb{R}_+$, we define the subgraph \mathcal{G}_τ of \mathcal{G} as the collection of
148 temporal interactions that occur up to time τ . Formally, $\mathcal{G}_\tau = \{\mathcal{G}(t_i) \mid t_i \leq \tau\}$. The set of *active*
149 *nodes* at time τ is then the set of nodes that participate in any interaction in \mathcal{G}_τ , and is denoted by
150 $\mathcal{V}_\tau = \{u \mid u \in \mathcal{G}(t_i), t_i \leq \tau\}$. Let us denote the number of nodes in \mathcal{V}_τ by $N_\tau = |\mathcal{V}_\tau|$.

151

Subgraph operator and filters. The temporal interactions of the active nodes in \mathcal{G}_τ is captured
152 by the subgraph adjacency matrix $\mathbf{A}_\tau \in \mathbb{R}^{N_\tau \times N_\tau}$ with entries $A_\tau[u, v] = \sum_{t_i \leq \tau} \mathbb{I}(\{u, v\} \in \mathcal{G}(t_i))$,
153 where $\mathbb{I}(\cdot)$ is the indicator function defined as $\mathbb{I}(\{u, v\} \in \mathcal{G}(t_i)) = 1$ if $\{u, v\} \in \mathcal{G}(t_i)$, and 0
154 otherwise. We use the degree normalized Laplacian matrix defined as $\mathbf{L}_\tau = \mathbf{I} - \mathbf{D}_\tau^{-1/2} \mathbf{A}_\tau \mathbf{D}_\tau^{-1/2}$,
155 where \mathbf{D}_τ is the corresponding degree matrix $\mathbf{D}_\tau = \text{diag}(\mathbf{A}_\tau \mathbf{1})$.

156

Graph filters are expressed as matrix polynomials of the normalized Laplacian matrix. We define a
157 K th-order filter as $p(\mathbf{L}_\tau) = \sum_{k=0}^{K-1} \alpha_k \mathbf{L}_\tau^k$, where $\{\alpha_k\}_{k=1}^{K-1}$ are learnable filter coefficients. Applying
158 a K th-order filter aggregates information from up to K -hop neighborhoods in the subgraph \mathcal{G}_τ .
159 Specifically, as τ evolves continuously with time in CTDGs, both \mathbf{A}_τ and \mathbf{L}_τ evolve sequentially,
160 and thus the corresponding filters $p(\mathbf{L}_\tau)$ adapt to the temporal evolution of the graph structure.

162 Each node u in the subgraph \mathcal{G}_τ is associated with a feature vector $\mathbf{x}_u(t) \in \mathbb{R}^{D_n}$. Collecting the
 163 node features over the subgraph yields the graph-level feature matrix $\mathbf{X} \in \mathbb{R}^{N_\tau \times D_n}$.
 164

165 4 THE PROPOSED STATE-SPACE MODELS FOR CTDGS

166 In this section, we develop SSMs for CTDGs, with the objective of compressing historical event
 167 information into compact latent memory representations. We first present a HiPPO matrix (Gu
 168 et al., 2020) computation that incorporates graph structure as an inductive bias within latent memory
 169 representations. Specifically, we decompose node signals as graph-aware transformations of signals
 170 represented in an orthogonal polynomial space. Subsequently, we develop a novel SSM model for
 171 CTDG and derive its discrete counterpart, which is useful for practical implementation.
 172

173 To begin with, we describe the HiPPO projection for graph data, drawing inspiration from (Li et al.,
 174 2024b). Let us define an orthogonal polynomial $\mathbf{g}(t) \in \mathbb{R}^{d \times 1}$ and a coefficient matrix $\mathbf{H}_{i,\tau} \in$
 175 $\mathbb{R}^{N_\tau \times d}$. We then model the i^{th} features $\mathbf{X}[:, i](t) \in \mathbb{R}^{N_\tau \times 1}$ on \mathcal{V}_τ as

$$177 \mathbf{X}[:, i](t) = p(\mathbf{L}_\tau) \mathbf{H}_{i,\tau} \mathbf{g}(t) + \mathbf{r}_i(t), \quad \forall t < \tau, \quad (1)$$

178 for $i = 1, \dots, D_n$, where $p(\mathbf{L}_\tau)$ is the polynomial of the normalized Laplacian and the error $\mathbf{r}_i(t) \in$
 179 $\mathbb{R}^{N_\tau \times 1}$ accounts for any model mismatch. Here, the graph filter $p(\mathbf{L}_\tau)$ incorporates the topology
 180 structure in $\mathbf{H}_{i,\tau}$ by aggregating the HiPPO coefficients based on the temporal graph-structure in \mathcal{G}_τ .
 181

182 Then the coefficients $\mathbf{H}_{i,\tau}$ are obtained by minimizing the residual in the temporal window $[0, \tau]$ as

$$183 \min_{\mathbf{H}_{i,\tau}} \int_0^\tau \|\mathbf{X}[:, i](t) - p(\mathbf{L}_\tau) \mathbf{H}_{i,\tau} \mathbf{g}(t)\|_2^2 d\mu(t), \quad (2)$$

185 where $\mu(t)$ is the measure under which the orthogonality of $\mathbf{g}(t)$ is defined. Although the above
 186 formulation provides a general framework with a learnable K th-order graph filter for modeling the
 187 HiPPO coefficients for graph data, it is related to the one in (Li et al., 2024b) that instead uses
 188 a quadratic Laplacian regularizer in equation 2 with $p(\mathbf{L}_\tau) = \mathbf{I}$, whereas the classical HiPPO
 189 formulation (without any graph structure) Gu et al. (2020) uses $p(\mathbf{L}_\tau) = \mathbf{I}$ in equation 2.
 190

191 Now, to find the optimal set of coefficients $\mathbf{H}_{i,\tau}$, we use the first-order optimality condition (detailed
 192 derivation can be found in Appendix B) to obtain

$$192 p(\mathbf{L}_\tau) \mathbf{H}_{i,\tau} = \int_0^\tau \mathbf{X}[:, i](t) \mathbf{g}(t)^\top d\mu(t) = \mathbf{H}_{i,\tau}^{(\text{HiPPO})} \quad (3)$$

$$194 \mathbf{H}_{i,\tau} = p(\mathbf{L}_\tau)^{-1} \mathbf{H}_{i,\tau}^{(\text{HiPPO})} \quad (4)$$

196 where $\mathbf{H}_{i,\tau}^{(\text{HiPPO})}$ denotes the solution to the classical HiPPO formulation without any graph structure
 197 (Gu et al., 2020), and by the choice of \mathbf{L}_τ , $p(\mathbf{L}_\tau)^{-1}$ is well-defined. From equation 3, it can be
 198 seen that the CTT-HiPPO coefficients $\mathbf{H}_{i,\tau}$ are essentially the graph-aware extension of the clas-
 199 sical HiPPO coefficients, obtained by projecting $\mathbf{H}_{i,\tau}^{(\text{HiPPO})}$ through the inverse polynomial graph
 200 filter. Although we provide the solution $\mathbf{H}_{i,\tau}$ for a single feature i , it can be easily extended to
 201 multiple features along the lines as above. Henceforth, for brevity, we drop the subscript i in $\mathbf{H}_{i,\tau}$
 202 and $\mathbf{X}[:, i](t)$ and simply use \mathbf{H}_τ and $\mathbf{X}(t)$.
 203

204 4.1 THE CTDG STATE-SPACE MODEL

205 We now present the main result of the paper, i.e., the state-space formulation that governs the evolution
 206 of the memory coefficients \mathbf{H}_τ . In SSMs, the temporal dynamics of an input signal are modeled
 207 through the progression of latent memory representations (state space vectors). We now describe the
 208 evolution of the representations of CTDGs over time through the evolution of the memory coeffi-
 209 cient matrix \mathbf{H}_τ , which jointly captures both temporal and topological structures. We refer to the
 210 proposed SSM for CTDG as CTDG-SSM, whose model is described in the next theorem.
 211

212 **Theorem 4.1 (CTDG-SSM).** *Consider a interval $s \in [\tau, \tau_+]$ with CTDGs \mathcal{G}_τ and \mathcal{G}_{τ_+} . Let \mathcal{G}_τ denote
 213 a CTDG at time τ , and for new a observation $\mathcal{G}(\tau_+)$ with corresponding CTDG \mathcal{G}_{τ_+} . The evolution
 214 of the memory coefficients \mathbf{H}_s for $s \in [\tau, \tau_+]$ admits the following state-space representation:*

$$214 \frac{d\mathbf{H}_s}{ds} = -\mathbf{H}_s \frac{\mathbf{A}^\top}{M(s)} - p(\mathbf{L}_s)^{-1} \frac{dp(\mathbf{L}_s)}{ds} \mathbf{H}_s + p(\mathbf{L}_s)^{-1} \mathbf{X}(s) \frac{\mathbf{B}^\top}{M(s)}, \quad (5)$$

216 where $\mathbf{A} \in \mathbb{R}^{d \times d}$ is the state-transition matrix that depends on the choice of the orthogonal poly-
 217 nomial $\mathbf{g}(\cdot)$, $\mathbf{B} \in \mathbb{R}^{d \times 1}$ is the input matrix, and $M(s) : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ is a normalization term
 218 that depends on the choice of the measure $\mu(t)$. Here, $\mathbf{L}_s \in \mathbb{R}^{N_{\tau_+} \times N_{\tau_+}}$, $\mathbf{X}(s) \in \mathbb{R}^{N_{\tau_+} \times 1}$,
 219 $p(\mathbf{L}_s) = \frac{\tau-s}{\tau-\tau_+}p(\mathbf{L}_{\tau_+}) + \frac{\tau_+-s}{\tau_+-\tau}p(\mathbf{L}_\tau)$, and $\mathbf{H}_s \in \mathbb{R}^{N_{\tau_+} \times d}$ for $s \in [\tau, \tau_+)$.²
 220

221 The proof of this theorem is relegated to Appendix C.1. The result directly follows from the equivalence
 222 between the classical HiPPO coefficients and a linear ODE (Theorem 1 in (Gu et al., 2020))
 223 characterized by the state matrix \mathbf{A} and input matrix \mathbf{B} , and more importantly, incorporating the fact
 224 that \mathbf{L}_τ depends on τ in CTDGs. We end this subsection with the following remark that explicitly
 225 connects CTDG-SSM to (Gu et al., 2020) and (Li et al., 2024b).

226 **Remark.** Equation 5 shows that the graph filter $p(\mathbf{L}_\tau)$ modifies the classical HiPPO dynamics by
 227 introducing time-dependent graph-aware terms that account for the change in temporal evolution
 228 of the graph. When the polynomial of Laplacian is static or fixed as in (Li et al., 2024b), we have
 229 $\frac{dp(\mathbf{L}_s)}{ds} = 0$. Thus, CTDG-SSM reduces to the SSM variant in (Li et al., 2024b).

230 When there is no graph, i.e., $p(\mathbf{L}_\tau) = \mathbf{I}$, CTDG-SSM reduces exactly to classical SSM (Gu et al.,
 231 2020).

233 4.2 THE DISCRETE VERSION OF CTDG-SSM

235 We now describe the discrete-time version of CTDG-SSM in this section. In particular, we discretize
 236 CTDG-SSM using the ZOH approach.

237 In practice, the continuous-time SSM is discretized using ZOH, which assumes piecewise constant
 238 inputs, i.e., $\mathbf{X}(t) = \mathbf{X}[k]$ for $t \in [t_{k-1}, t_k]$ with step size $\Delta[k] = t_k - t_{k-1}$. Here t_{k-1} is τ and t_k
 239 is τ_+ . Where $\mathbf{L}[k] \in \mathbb{R}^{N_{\tau_+} \times N_{\tau_+}}$ is obtained using a subgraph \mathcal{G}_{τ_+} and $\mathbf{L}[k-1] \in \mathbb{R}^{N_{\tau_+} \times N_{\tau_+}}$ is
 240 obtained by removing the newly observed edges in $\Delta[k]$ time interval from $\mathbf{L}[k]$.

241 **Theorem 4.2** (Discrete CTDG-SSM). Let $\mathbf{X}[k]$ denote the input at time t_k , and let the temporal
 242 graph structures at times t_k and t_{k-1} be represented by the Laplacians $\mathbf{L}[k]$ and $\mathbf{L}[k-1]$, re-
 243 spectively. Then for $\Delta[k] = t_k - t_{k-1}$, the memory update of the proposed CTDG-SSM model is
 244 governed by the following discrete-time recursion:

$$245 \quad \mathbf{H}[k+1] = \bar{\mathbf{A}}_{\mathbf{L}[k]} \mathbf{H}[k] \bar{\mathbf{A}} + \bar{\mathbf{B}}(\mathbf{L}[k], \mathbf{X}[k]) \quad (6)$$

246 Here, $\bar{\mathbf{A}}_{\mathbf{L}[k]} = \exp(-p(\mathbf{L}[k])^{-1}(p(\mathbf{L}[k]) - p(\mathbf{L}[k-1])))$, $\bar{\mathbf{A}} = \exp(\Delta[k]\mathbf{A}^\top)$, and
 247 $\bar{\mathbf{B}}(\mathbf{L}[k], \mathbf{X}[k]) = \int_0^1 (\bar{\mathbf{A}}_{\mathbf{L}[k]})^s p(\mathbf{L}[k])^{-1} \mathbf{X}[k] \mathbf{B}^\top (\bar{\mathbf{A}})^s \Delta[k] ds$.

249 We present the detailed proof in Appendix C.2. The proof proceeds by first simplifying Equation
 250 equation 5 to standard state-space form with system and input matrices, leveraging the properties
 251 of the Kronecker structure. We then apply the ZOH discretization to this form and subsequently
 252 factorize the discretized equations to obtain the final expression.

253 The discrete memory update in equation 6 is structurally analogous to the vanilla mamba update (Gu
 254 & Dao, 2024), with two key distinctions: there are two state-transition matrices that jointly operate
 255 on the state variable, and the input-dependent component $\bar{\mathbf{B}}(\mathbf{L}[k], \mathbf{X}[k])$ does not admit a closed-
 256 form solution.

257 **Remark.** The invertibility of $p(\mathbf{L}[k])$ matrix involved in equation 6 is ensured by choosing all graph
 258 filter coefficients to be strictly positive i.e., $\alpha_i > 0 \forall i = 0, 1, \dots, K-1$. Since $\mathbf{L}[k]$ is a normalized
 259 graph Laplacian, the spectrum satisfies $\lambda[k] \in [0, 2]$. Therefore with $\alpha_i > 0$ we have $p(\lambda[k]) > 0$,
 260 which implies that $p(\mathbf{L}[k])$ is positive definite and therefore invertible. It is more important to notice
 261 that complexity of this operation is influenced by the batch size as it directly influences the number
 262 of the active nodes (more details in the Section 5).

264 5 ARCHITECTURE

266 In this section, we introduce the proposed architecture that implements discrete CTDG-SSM. The
 267 overall modular design is illustrated in Fig. 2. It mainly consists of three blocks: (a) Subgraph sam-

269 ²To match the dimension of \mathbf{L}_τ and \mathbf{L}_{τ_+} in equation 5, we construct \mathbf{L}_τ by removing the edges observed
 in $\mathcal{G}(\tau_+)$ from \mathbf{L}_{τ_+} .

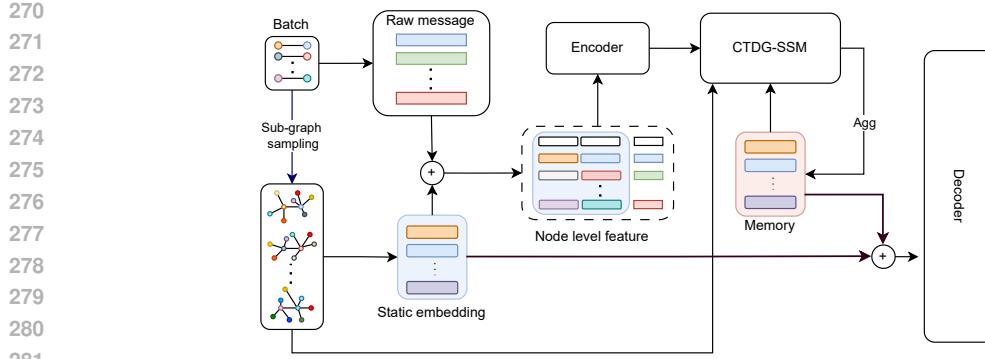


Figure 2: Architecture of the CTDG-SSM framework. A batch of events is subgraph-sampled to produce the batch graph. Raw messages and static embeddings are combined to form node-level features, which are encoded and processed by the CTDG-SSM module to update dynamic memory. The updated memory and static embeddings are then aggregated to form the final node representations used by the decoder.

pler: constructs N_u -temporal neighborhoods for each node. (b) Node feature encoder: integrates node, edge, and temporal information into node feature representations. (c) CTDG-SSM module: generates memory representations that capture LRT dependencies and structural context.

Subgraph sampling. At each training step, we construct a mini-batch of temporal interactions by grouping together B chronologically consecutive events. From this batch, we develop a batch level Laplacian $\mathbf{L}_B[k] \in \mathbb{R}^{N_B \times N_B}$ by generating subgraphs via a neighborhood-based sampling strategy: for every node participating in an event, we sample up to N_u of its most recent neighbors, where N_u defines the spatial context size. To estimate $\mathbf{L}_B[k-1]$ we remove the current batch interaction edges from $\mathbf{L}_B[k]$ while preserving the neighborhood edges of the N_u neighbors. This subgraph-based approach is motivated by two factors: (i) it captures information from the multi-hop temporal neighborhood, and (ii) it enables the model to update states for nodes beyond those directly involved in the observed interactions, thereby incorporating both local structural dependencies and broader temporal context.

Node feature encoder. We construct input features $\mathbf{X}_B \in \mathbb{R}^{N_B \times D_B}$ for the current batch by concatenating node-specific features, temporal neighbor features, edge attributes, and the corresponding timestamp information of events in the batch. For an interaction event $\mathcal{G}(t_i) = (u, v, t_i)$ with edge feature \mathbf{x}_{uv} , the feature vectors for the participating nodes are defined as $\mathbf{X}_B[u, :] = [\mathbf{x}_u(t_i) || \mathbf{x}_v(t_i) || \mathbf{x}_{u,v} || \phi(\Delta t_i)]$, and $\mathbf{X}_B[v, :] = [\mathbf{x}_u(t_i) || \mathbf{x}_v(t_i) || \mathbf{x}_{u,v} || \phi(\Delta t_i)]$. Here, \mathbf{x}_u and \mathbf{x}_v denote the static embeddings of nodes u and v concatenated with their raw features, and $\phi(\cdot)$ denotes a fixed (non-trainable) time-encoding function. The term Δt_i corresponds to the inter-event time since the last occurrence of (u, v) ; for first-time interactions, Δt_i is assigned a large constant following prior works (Ding et al., 2024).

Encoder. The encoder h_θ takes the input feature matrix \mathbf{X}_B and projects it into a latent space of d -dimension. These projected features are then used to update the memory representation through the CTDG-SSM recurrence. In experimentation, we implement the encoder as a 2-layer neural network and represent augmented and projected node features as $h_\theta(\mathbf{X}_B) = \tilde{\mathbf{X}}[k] \in \mathbb{R}^{N_B \times d}$.

Learnable CTDG-SSMs. The CTDG-SSM block computes node memory representations according to equation 6. While a single-layer CTDG-SSM is sufficient to capture linear state-space dynamics, stacking multiple layers enables the model to learn richer temporal feature transformations. To enhance representational capacity, we incorporate residual connections, RMSNorm normalization, and the GeLU activation within our CTDG-SSM architecture, following design principles from mamba (Gu & Dao, 2024) (see Figure 3).

Therefore, given the output of $(l-1)$ -th layer denoted as $\tilde{\mathbf{X}}^{(l)}[k]$, the l -th layer performs the following sequence of operations: $\mathbf{H}^{(l)}[k+1] = \text{CTDG-SSM}(\text{RMS}(\tilde{\mathbf{X}}^{(l)}[k]), \mathbf{L}_B[k])$, and $\tilde{\mathbf{X}}^{(l+1)}[k] =$

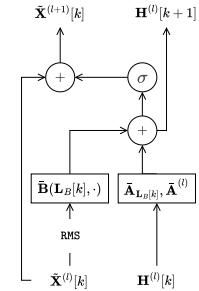


Figure 3: Illustration of single layer CTDG-SSM

324 $\tilde{\mathbf{X}}^{(l)}[k] + \sigma(\mathbf{H}^{(l)}[k+1])$, where $\text{RMS}(\cdot)$ denotes RMS normalization and σ is a nonlinear activation
 325 function. We use the GeLU activation, which promotes stable training and ensures well-scaled
 326 feature transformations. The input for the first layer, i.e., $\tilde{\mathbf{X}}^{(0)}[k] = \tilde{\mathbf{X}}[k]$, is the projected node features.
 327 For nodes participating in multiple events within the same batch, we apply a *mean* aggregator
 328 to obtain a single consolidated representation.

329 **Memory**: The memory module maintains the latent representations of all nodes. These are ini-
 330 tialized as zero vectors of dimension d . After each batch, the memory is updated with the newly
 331 computed representations of the nodes involved in the current interactions and the sampled nodes.

332 **Decoder**. For downstream tasks such as link prediction and node classification, the decoder operates
 333 on the memory representations of the target nodes.

334 *Link Prediction*. Given a query of the form (u, v, T) , we first retrieve the static embeddings and
 335 dynamic memory states of nodes u and v , denoted \mathbf{h}_u and \mathbf{h}_v . This representation is augmented
 336 with a learnable temporal embedding $\psi(\Delta t)$, where $\Delta t = T - t_{\text{last}}$ and t_{last} denotes the most
 337 recent interaction time between u and v . The concatenated vector $[\mathbf{h}_u \parallel \mathbf{h}_v \parallel \psi(\Delta t)]$ is then passed
 338 through a linear layer to produce an edge score.

339 *Node Classification*. For a query of the form (u, v, T) or (u, T) , only the representation of node u is
 340 used. The decoder applies a linear mapping to \mathbf{h}_u , optionally concatenated with available temporal
 341 information, to produce a multi-class probability vector corresponding to the predicted node label.

344 6 THEORETICAL CHARACTERIZATION

345 In this section, we derive the robustness and permutation equivariance properties of CTDG-SSM. In
 346 particular, robustness property characterizes the stability of memory representations under structural
 347 perturbations and is crucial given that real-world temporal graphs may include spurious edges.

348 **Theorem 6.1 (Robustness property).** *Let $\bar{\mathbf{L}} = \mathbf{L} + \Delta\mathbf{L}$ be the perturbed graph Laplacian with
 349 $\|\Delta\mathbf{L}\|_2 \leq \epsilon$. Then the error between the perturbed and true coefficients is bounded linearly in
 350 terms of the energy of the perturbed graph Laplacian as $\frac{\|\hat{\mathbf{H}}_{i,\tau} - \mathbf{H}_{i,\tau}\|_2}{\|\mathbf{H}_{i,\tau}\|_2} \leq \epsilon\Gamma$, where $\Gamma = \frac{\lambda_2\lambda_c}{\lambda_1^2}$ with
 351 $\lambda_1 := \min_{y \in [0,2]} |p(y)| > 0$, $\lambda_2 := \max_{y \in [0,2]} |p(y)|$, and $\lambda_c := \max_{y \in [0,2]} |\frac{dp(y)}{dy}|$.*

352 We relegate the proof to Appendix C.3. The derivations follows by using the triangle inequality
 353 and exploiting spectral bounds of the normalized graph Laplacian. The derived error bound shows
 354 that the deviation between the perturbed and true coefficients scales linearly with the energy of
 355 the perturbed Laplacian $\Delta\mathbf{L}$. In other words, this implies that small structural perturbations in
 356 the underlying graph induce only proportionally small deviations in the coefficients. Hence, the
 357 representations produced by CTT-HIPPO are stable and robust with respect to perturbations.

358 **Theorem 6.2 (Permutation Equivariance).** *Let $\mathcal{P} = \{\mathbf{\Pi} \in \{0,1\}^{N_\tau \times N_\tau} : \mathbf{\Pi}^\top \mathbf{\Pi} = \mathbf{\Pi} \mathbf{\Pi}^\top = \mathbf{I}_{N_\tau}\}$
 359 be the set of all $N_\tau \times N_\tau$ permutation matrices. Then under the permutation of the graph Laplacian
 360 $\mathbf{L}[k]$ and node-features \mathbf{X} by any $\mathbf{\Pi} \in \mathcal{P}$, the representations from CTDG-SSM also modifies as
 361 $\bar{\mathbf{H}}[k+1] = \mathbf{\Pi} \mathbf{H}[k+1]$.*

362 We relegate the proof to the Appendix C.4. The permutation equivariance property guarantees that,
 363 when the nodes in the observed CTDGs and their associated signals are permuted, the representa-
 364 tions by CTDG-SSM permute in exactly the same way, thereby preserving equivariance.

369 7 NUMERICAL EXPERIMENTS

370 We evaluate the proposed algorithm on two downstream temporal graph learning tasks, namely
 371 dynamic link prediction and node classification. Further, to assess the model’s ability to preserve
 372 long-range information, we test it on a sequence classification task.

373 **Baseline models.** For all the three tasks, we compare the performance of our model against the fol-
 374 lowing state of the art algorithms, namely, JODIE (Kumar et al., 2019), DyRep (Trivedi et al.,
 375 2018), TGN (Rossi et al., 2020), TGAT (Xu et al., 2020), GraphMixer (Cong et al., 2023),
 376 DyGFormer (Yu et al., 2023), CTAN (Gravina et al., 2024), DyGamba (Ding et al., 2024). For dy-

Table 1: AUC-ROC of dynamic link prediction with random negative sampling under T: Transductive, and I: Inductive setup. Best-performing model per dataset is shown in bold.

Setup	Datasets	JODIE	DyRep	TGAT	TGN	CAWN	TCL	GraphMixr	DyGFormer	CTAN	DyGmnb	CDT-SGS
T	LastFM	70.89 ± 1.97	74.40 ± 2.12	71.47 ± 0.14	76.64 ± 4.66	85.92 ± 0.16	71.09 ± 1.48	75.31 ± 0.14	93.03 ± 0.11	85.17 ± 0.77	93.31 ± 0.18	93.79 ± 0.22
	Enron	87.77 ± 2.43	83.09 ± 2.20	68.57 ± 1.46	88.72 ± 0.95	90.34 ± 0.23	83.33 ± 0.93	84.16 ± 0.34	93.20 ± 0.12	87.09 ± 1.51	93.34 ± 0.23	94.98 ± 2.92
	MOOC	84.50 ± 0.60	84.50 ± 0.78	87.01 ± 0.16	91.91 ± 0.82	80.48 ± 0.41	84.02 ± 0.59	84.04 ± 0.12	88.08 ± 0.50	85.40 ± 2.67	89.58 ± 0.12	99.00 ± 0.33
	Reddit	98.29 ± 0.05	98.13 ± 0.04	98.50 ± 0.01	98.61 ± 0.05	99.02 ± 0.00	97.67 ± 0.01	97.17 ± 0.02	99.15 ± 0.01	97.24 ± 0.75	99.27 ± 0.01	99.48 ± 0.02
	Wikipedia	96.36 ± 0.14	94.43 ± 0.32	96.60 ± 0.07	98.37 ± 0.10	98.54 ± 0.01	97.27 ± 0.06	98.69 ± 0.04	98.92 ± 0.03	97.09 ± 0.21	99.08 ± 0.02	99.33 ± 0.08
	UCI	90.35 ± 0.51	69.46 ± 2.66	78.76 ± 1.10	92.03 ± 0.69	93.81 ± 0.23	85.49 ± 0.82	91.62 ± 0.52	94.45 ± 0.22	76.25 ± 2.83	94.77 ± 0.18	89.24 ± 0.43
	Social Evo.	92.13 ± 0.20	90.37 ± 0.52	94.93 ± 0.06	95.31 ± 0.27	87.34 ± 0.10	95.45 ± 0.21	95.21 ± 0.07	96.25 ± 0.04	Timeout	96.38 ± 0.02	99.10 ± 0.49
Avg. Rank		7.93	9.36	7.86	4.57	5.71	8.00	7.71	3.00	7.50	2.00	1.86
I	LastFM	83.13 ± 1.19	83.47 ± 1.06	78.40 ± 0.30	81.18 ± 3.27	89.33 ± 0.06	81.38 ± 1.53	82.07 ± 0.31	94.17 ± 0.10	60.40 ± 3.01	94.42 ± 0.21	94.49 ± 0.27
	Enron	78.97 ± 1.59	73.97 ± 3.00	66.67 ± 1.07	78.76 ± 1.69	86.30 ± 0.56	82.61 ± 0.61	75.55 ± 0.81	89.62 ± 0.27	74.61 ± 1.64	89.67 ± 0.27	93.66 ± 4.67
	MOOC	80.57 ± 0.52	80.50 ± 0.68	85.28 ± 0.30	88.01 ± 1.48	81.32 ± 0.42	82.28 ± 0.99	81.38 ± 0.17	87.05 ± 0.51	64.99 ± 2.24	88.64 ± 0.08	98.67 ± 0.43
	Reddit	96.43 ± 0.16	95.89 ± 0.26	97.13 ± 0.04	97.41 ± 0.12	98.62 ± 0.01	95.01 ± 0.10	95.24 ± 0.08	98.83 ± 0.02	80.07 ± 2.53	98.97 ± 0.07	99.13 ± 0.03
	Wikipedia	94.91 ± 0.32	92.21 ± 0.29	96.26 ± 0.12	97.81 ± 0.18	98.27 ± 0.02	97.48 ± 0.06	96.61 ± 0.04	98.58 ± 0.01	93.58 ± 0.65	98.77 ± 0.03	99.06 ± 0.10
	UCI	79.73 ± 1.48	58.39 ± 2.38	79.10 ± 0.49	87.81 ± 1.32	92.61 ± 0.35	84.19 ± 1.37	91.17 ± 0.29	94.45 ± 0.13	49.78 ± 5.02	94.76 ± 0.19	87.43 ± 0.79
	Social Evo.	91.72 ± 0.66	89.10 ± 1.90	91.47 ± 0.10	90.74 ± 1.40	79.83 ± 0.14	92.51 ± 0.11	91.89 ± 0.05	93.05 ± 0.10	Timeout	93.13 ± 0.05	98.60 ± 0.14
Avg. Rank		7.29	9.00	8.00	6.00	5.29	6.57	6.71	3.00	10.57	1.86	1.71

Table 2: Performance comparison on the dynamic node classification task with AUC-ROC as a metric.

Dataset	JODIE	DyRep	TGAT	TGN	CAWN	TCL	GraphMixer	DyGFormer	CTAN	DyGmamba	CTDG-SSM
Wikipedia	88.10 \pm 1.57	87.41 \pm 1.94	83.42 \pm 2.92	85.51 \pm 3.28	84.59 \pm 1.16	79.03 \pm 1.18	85.60 \pm 1.73	86.35 \pm 2.19	87.38 \pm 0.14	87.44 \pm 0.82	88.61 \pm 0.64
Reddit	59.53 \pm 3.18	63.12 \pm 0.51	69.31 \pm 2.18	63.21 \pm 3.00	65.22 \pm 0.79	68.04 \pm 2.00	64.42 \pm 1.15	67.67 \pm 1.39	67.29 \pm 0.15	67.70 \pm 1.32	69.50 \pm 0.82
Avg. Rank	7.14	8.86	7.14	3.86	4.86	7.29	7.14	2.14	7.29	1.14	1.00

dynamic link prediction and node classification tasks, we also consider models Edgebank (Poursaefai et al., 2022), CAWN (Wang et al., 2021b), and TCL (Wang et al., 2021a) for comparison.

7.1 DYNAMIC LINK PREDICTION

In this section, we present results on dynamic link prediction where the task is to predict the existence of an edge between two nodes at a given time. We evaluate the proposed algorithm in both transductive (test nodes are observed during training) and inductive (test nodes are unseen during training) settings, under different sampling strategies (random, historical, and inductive) for generating negative samples. Experiments are performed on benchmark temporal link prediction datasets (Pourafaie et al., 2022) details are provided in Appendix D.1.

Results. In Table 1, we present the results with AUC-ROC as a metric calculated for 5 independent trials on transductive and inductive settings with random negative sampling (more experiments with different metrics and different sampling criteria are relegated to Appendix D.2). It can be seen that on LRT benchmarks such as LastFM, MOOC, and Enron, our method consistently outperforms state-of-the-art baselines due to the model’s ability in jointly encoding structural information via graph polynomials that capture multi-hop neighborhood interactions and temporal evolution through a state-space formulation. Further, importantly CTDG-SSM exhibits only a minor performance drop in inductive setting, highlighting its ability to effectively capture global structural and temporal patterns instead of learning local structural patterns.

7.2 DYNAMIC NODE CLASSIFICATION

For dynamic node classification, the goal is to predict the class label of nodes participating in an interaction $\mathcal{G}(T)$ at time T . We evaluate our model on the Wikipedia and Reddit datasets with 2 classes. We follow the dataset splits and preprocessing strategy outlined in Yu et al. (2023). The model is trained for 200 epochs with early stopping, and memory representations are updated as described in Section 5. During testing, we combine the memory states with static embeddings and temporal encodings, which are then passed through an MLP decoder for classification.

In Table 2, we report the mean AUC-ROC over 5 independent runs. The results demonstrate that CTDG-SSM consistently outperforms state-of-the-art approaches, highlighting the effectiveness of jointly capturing LRS and LRT dependencies.

7.3 SEQUENCE CLASSIFICATION

In this section, we present results on the sequence classification task, primarily designed to test the model's ability to capture LRS and LRT (Gravina et al., 2024) dependency. The task involves predicting the label of the initial node after traversing a long path, where each new node was connected

432

433
434 Table 3: Performance comparison on the sequence classification task. Best-performing model is shown in
bold; second-best is underlined.

	$n = 3$	$n = 9$	$n = 15$	$n = 20$	Avg. Rank
DyRep	100.0 ± 0.0	47.93 ± 2.73	48.60 ± 2.48	50.47 ± 2.88	7.25
GraphMixer	100.0 ± 0.0	52.80 ± 5.56	52.49 ± 15.36	52.04 ± 8.20	6.75
JODIE	100.0 ± 0.0	100.0 ± 0.0	60.0 ± 14.91	50.87 ± 2.46	3.75
TGAT	100.0 ± 0.0	47.87 ± 2.72	50.53 ± 2.15	49.07 ± 1.55	7.50
TGN	100.0 ± 0.0	48.13 ± 1.63	48.67 ± 2.76	50.13 ± 2.17	7.00
CTAN	100.0 ± 0.0	<u>99.93 ± 0.21</u>	93.47 ± 8.78	88.93 ± 12.06	3.25
TU-SSM	47.0 ± 1.12	50.73 ± 1.74	52.26 ± 2.44	54.46 ± 0.73	8.00
DyGFormer	100.0 ± 0.0	53.02 ± 6.06	42.80 ± 16.25	42.79 ± 19.62	9.25
DyGmamba	100.0 ± 0.0	54.01 ± 6.06	45.60 ± 12.25	45.29 ± 17.62	8.25
CTDG-SSM (FO)	100.0 ± 0.0	97.06 ± 0.44	97.40 ± 0.20	97.13 ± 0.89	<u>2.75</u>
CTDG-SSM (SO)	100.0 ± 0.0	98.13 ± 0.58	97.80 ± 0.58	98.60 ± 0.29	2.25

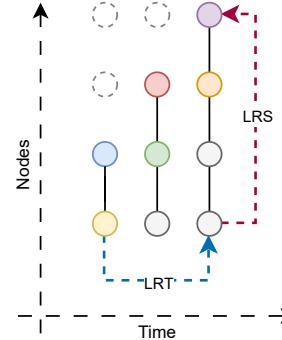
444

445
446 to the node from the previous event, as illustrated in Fig. 4. We generate the data using the procedure
447 in (Gravina et al., 2024).448
449 In this experiment, to depict the importance of aggregating the information from one-hop and multi-
450 hop and also to see the importance of aggregating the information using the structural change term
451 we present three variants CTDG-SSM (FO), employs a first-order polynomial filter of the form
452 $\mathbf{I} + \alpha_1 \mathbf{L}_\tau$, CTDG-SSM (SO), uses a second-order polynomial filter defined as $p(\mathbf{L}_\tau) = \mathbf{I} +$
453 $\alpha_1 \mathbf{L}_\tau + \alpha_2 \mathbf{L}_\tau^2$ and Topology unaware SSM (TU-SSM) fixes the spatial system matrix $\mathbf{A}_{L[k]}$ to the
454 identity, thereby isolating its contribution in learning structural patterns.455
456 **Results.** Table 3 reports results for the sequence classification
457 task, where prediction accuracy is defined as the ratio of correctly
458 classified sequences to the total number of sequences. We observe
459 that removing the structural update term in the memory update
460 (TU-SSM) leads to a substantial drop in performance, underscor-
461 ing the importance of modeling the time-varying graph structure in
462 CTDGs. Furthermore, incorporating higher-order polynomials for
463 multi-hop aggregation in CTDG-SSM (SO) yields clear gains over
464 the single-order variant, which primarily captures local patterns. Fi-
465 nally, the proposed method achieves significant improvements over
466 state-of-the-art baselines, particularly on longer sequence lengths,
467 highlighting its effectiveness in capturing LRS.468
469

7.4 IMPLEMENTATION DETAILS

470
471 For link prediction and node classification, we follow the experimental protocol of Yu et al. (2023)
472 and compare CTDG-SSM with established baselines. For sequence classification, we adopt the
473 setup from Gravina et al. (2024). The model is trained with binary cross-entropy using the Adam
474 optimizer; additional hyperparameter details are provided in Appendix D.2. We train for up to
475 200 epochs with early stopping and select the best validation model for testing. Experiments are
476 conducted on two machines equipped with NVIDIA A6000 and RTX 8000 GPUs (48 GB).477
478

8 CONCLUSIONS

479
480 In this work, we proposed CTDG-SSM, a novel representation learning framework for continuous-
481 time dynamic graphs that preserves long-range information across both spatial and temporal di-
482 mensions. Our approach formulates a SSM for CTDGs. In particular, we introduced CTT-HIPPO
483 that yields memory representations that are topology aware obtained by projecting HiPPO coeffi-
484 cients through a polynomial of graph Laplacian. Leveraging this we proposed a SSM for CTDGs
485 where the memory representations are governed using the evolving topology. We further established
486 theoretical guarantees on the robustness and permutation equivariance of CTDG-SSM. Extensive
487 experiments on diverse temporal graph learning tasks-including link prediction, node classifica-
488 tion, and sequence classification-demonstrate the effectiveness of our model in jointly capturing LRT and
489 LRS dependencies.490
491 Figure 4: Illustration of LRT
492 and LRS dependency in sequence
493 classification task .

486 REFERENCES
487

488 Erik Altman, Jovan Blanuša, Luc von Niederhäusern, Beni Egressy, Andreea Anghel, and Kubilay
489 Atasu. Realistic synthetic financial transactions for anti-money laundering models. In A. Oh,
490 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural*
491 *Information Processing Systems*, volume 36, pp. 29851–29874. Curran Associates, Inc., 2023.
492 URL https://proceedings.neurips.cc/paper_files/paper/2023/file/5f38404edff6f3f642d6fa5892479c42-Paper-Datasets_and_Benchmarks.pdf.

493

494

495 Óscar Celma. *Music Recommendation and Discovery: The Long Tail, Long Fail, and Long Play in*
496 *the Digital Music Space*. Springer, 2010.

497

498 Jie Chen, Aldo Pareja, Giacomo Domeniconi, Tengfei Ma, Toyotaro Suzumura, Timothy Kaler,
499 Tao B Schardl, and Charles E Leiserson. Evolving graph convolutional networks for dynamic
500 graphs, December 27 2022. US Patent 11,537,852.

501

502 Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
503 Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
504 In *11th International Conference on Learning Representations, ICLR 2023*, 2023.

505

506 Zifeng Ding, Yifeng Li, Yuan He, Antonio Norelli, Jingcheng Wu, Volker Tresp, Michael Bronstein,
507 and Yunpu Ma. Dygmamba: Efficiently modeling long-term temporal dependency on continuous-
508 time dynamic graphs with state space models. *arXiv preprint arXiv:2408.04713*, 2024.

509

510 Alessio Gravina, Giulio Lovisotto, Claudio Gallicchio, Davide Bacciu, and Claas Grohfeldt. Long
511 range propagation on continuous-time dynamic graphs. In *International Conference on Machine*
512 *Learning*, pp. 16206–16225. PMLR, 2024.

513

514 Albert Gu and Tri Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces, May
515 2024. URL <http://arxiv.org/abs/2312.00752>. arXiv:2312.00752 [cs].

516

517 Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
518 with optimal polynomial projections. *Advances in neural information processing systems*, 33:
519 1474–1487, 2020.

520

521 Albert Gu, Karan Goel, and Christopher Ré. Efficiently Modeling Long Sequences with
522 Structured State Spaces, August 2022. URL <http://arxiv.org/abs/2111.00396>.
523 arXiv:2111.00396 [cs].

524

525 Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele
526 Rossi, Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany.
527 Temporal graph benchmark for machine learning on temporal graphs. In A. Oh, T. Naumann,
528 A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural*
529 *Information Processing Systems*, volume 36, pp. 2056–2073. Curran Associates, Inc., 2023.
530 URL https://proceedings.neurips.cc/paper_files/paper/2023/file/066b98e63313162f6562b35962671288-Paper-Datasets_and_Benchmarks.pdf.

531

532 Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
533 Pascal Poupart. Representation learning for dynamic graphs: A survey. *Journal of Machine*
534 *Learning Research*, 21(70):1–73, 2020.

535

536 René F Kizilcec, Chris Piech, and Emily Schneider. Deconstructing disengagement: Analyzing
537 learner subpopulations in massive open online courses. In *Proceedings of the Third International*
538 *Conference on Learning Analytics and Knowledge (LAK)*, pp. 170–179, 2013.

539

540 Bryan Klimt and Yiming Yang. The enron corpus: A new dataset for email classification research.
541 In *European Conference on Machine Learning*, pp. 217–226. Springer, 2004.

542

543 Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
544 poral interaction networks. In *Proceedings of the 25th ACM SIGKDD international conference*
545 *on knowledge discovery & data mining*, pp. 1269–1278, 2019.

540 Dongyuan Li, Shiyin Tan, Ying Zhang, Ming Jin, Shirui Pan, Manabu Okumura, and Renhe
 541 Jiang. Dyg-mamba: Continuous state space modeling on dynamic graphs. *arXiv preprint*
 542 *arXiv:2408.06966*, 2024a.

543 Jintang Li, Ruofan Wu, Xinzhou Jin, Boqun Ma, Liang Chen, and Zibin Zheng. State space models
 544 on temporal graphs: A first-principles study. *Advances in Neural Information Processing Systems*,
 545 37:127030–127058, 2024b.

546 Giang H Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and Sungchul
 547 Kim. Dynamic network embeddings: From random walks to temporal random walks. In *2018*
 548 *IEEE International Conference on Big Data (Big Data)*, pp. 1085–1092. IEEE, 2018.

549 Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezawa,
 550 Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional
 551 networks for dynamic graphs. In *Proceedings of the AAAI conference on artificial intelligence*,
 552 volume 34, pp. 5363–5370, 2020.

553 Farimah Poursafaei, Shenyang Huang, Kellin Peltz, and Reihaneh Rabbany. Towards better eval-
 554 uation for dynamic link prediction. *Advances in Neural Information Processing Systems*, 35:
 555 32928–32941, 2022.

556 Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
 557 Bronstein. Temporal graph networks for deep learning on dynamic graphs. 2020.

558 Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified State Space Lay-
 559 ers for Sequence Modeling, March 2023. URL <http://arxiv.org/abs/2208.04933>.
 560 *arXiv:2208.04933 [cs]*.

561 Michele Starnini, Andrea Baronchelli, Alain Barrat, and Romualdo Pastor-Satorras. Random walks
 562 on temporal networks. *Physical Review E—Statistical, Nonlinear, and Soft Matter Physics*, 85(5):
 563 056115, 2012.

564 Yuxing Tian, Yiyi Qi, and Fan Guo. Freedyg: Frequency enhanced continuous-time dynamic graph
 565 model for link prediction. In *The twelfth international conference on learning representations*,
 566 2024.

567 Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Representation learn-
 568 ing over dynamic graphs. *arXiv preprint arXiv:1803.04051*, 2018.

569 Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song, Jingren
 570 Zhou, and Hongxia Yang. Tcl: Transformer-based dynamic graph modelling via contrastive
 571 learning. *arXiv preprint arXiv:2105.07944*, 2021a.

572 Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
 573 learning in temporal networks via causal anonymous walks. *arXiv preprint arXiv:2101.05974*,
 574 2021b.

575 Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive represen-
 576 tation learning on temporal graphs. *arXiv preprint arXiv:2002.07962*, 2020.

577 Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New
 578 architecture and unified library. *Advances in Neural Information Processing Systems*, 36:67686–
 579 67700, 2023.

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

A STATE-SPACE MODELS

597 State-space models (SSMs) are widely used for sequence modeling due to their ability to capture
 598 long-range dependencies through latent state evolution while remaining computationally efficient
 599 compared to Transformers (Gu et al., 2022). For an input signal $\mathbf{x}(t)$, an SSM evolves latent states
 600 $\mathbf{h}(t) \in \mathbb{R}^d$ according to a linear ordinary differential equation (ODE), producing output $\mathbf{y}(t)$ as (Gu
 601 et al., 2020; 2022; Smith et al., 2023):

$$602 \quad \frac{d\mathbf{h}(t)}{dt} = \mathbf{A}(t)\mathbf{h}(t) + \mathbf{B}(t)\mathbf{x}(t) \quad \text{and} \quad \mathbf{y}(t) = \mathbf{C}(t)\mathbf{h}(t) + \mathbf{D}(t)\mathbf{x}(t), \quad (7)$$

605 where $\mathbf{A}(t)$, $\mathbf{B}(t)$, $\mathbf{C}(t)$, and $\mathbf{D}(t)$ are the state transition, input, output, and feedforward matrices,
 606 respectively. In practice, the continuous-time model is discretized using zero-order hold (ZOH),
 607 which assumes piecewise constant inputs: $\mathbf{x}(t) = \mathbf{x}[k]$ for $t \in [t_k, t_{k+1})$ with step size $\Delta[k] =$
 608 $t_{k+1} - t_k$. This yields the discrete-time system:

$$610 \quad \mathbf{h}[k+1] = \bar{\mathbf{A}}\mathbf{h}[k] + \bar{\mathbf{B}}\mathbf{x}[k] \quad \text{and} \quad \mathbf{y}[k] = \bar{\mathbf{C}}\mathbf{h}[k] + \bar{\mathbf{D}}\mathbf{x}[k], \quad (8)$$

612 where $\bar{\mathbf{A}} = e^{\Delta[k]\mathbf{A}}$, $\bar{\mathbf{B}} = \int_0^{\Delta[k]} e^{\mathbf{A}\tau} \mathbf{B} d\tau$, $\bar{\mathbf{C}} = \mathbf{C}$, and $\bar{\mathbf{D}} = \mathbf{D}$.

614 Research in SSM design has significantly enhanced its effectiveness for sequence modeling.
 615 HiPPO (Gu et al., 2020) introduced principled initialization strategies for capturing long-range de-
 616 pendencies. S4 (Gu et al., 2022) extended these with structured parameterizations of the system
 617 matrix \mathbf{A} (e.g., diagonal plus low-rank decompositions) to enable efficient computation. More re-
 618 cent work like mamba (Gu & Dao, 2024) has further improved scalability and selectivity by making
 619 the input and output matrices \mathbf{B} and \mathbf{C} input-dependent and the system matrix diagonal, enhancing
 620 model expressivity while maintaining computational efficiency.

623

B DERIVATION FOR CTT–HIPPO COEFFICIENTS

625 We derive the solution for the representations/coefficients $(\mathbf{H}_{i,\tau})$ for CTT–HiPPO. Recall, to obtain
 626 the coefficients we minimize the residual in the observed time interval. To begin with the $\mathbf{r}_i(t)$ can
 627 be equivalently expressed as

$$630 \quad \int_0^\tau \|\mathbf{r}_i(t)\|_2^2 d\mu(t) = \int_0^\tau \|\mathbf{X}[:, i](t) - p(\mathbf{L}_\tau)\mathbf{H}_\tau \mathbf{g}(t)\|_2^2 d\mu(t),$$

$$631 \quad = \int_0^\tau \text{Tr} \left[(\mathbf{X}[:, i](t) - p(\mathbf{L}_\tau)\mathbf{H}_{i,\tau} \mathbf{g}(t)) (\mathbf{X}[:, i](t) - p(\mathbf{L}_\tau)\mathbf{H}_{i,\tau} \mathbf{g}(t))^\top \right] d\mu(t). \quad (9)$$

636 Using the first optimality condition i.e., $\frac{\partial \|\mathbf{r}_i(\tau)\|_2^2}{\partial \mathbf{H}_\tau} = 0$ and on simplifying we have

$$639 \quad \frac{\partial}{\partial \mathbf{H}_{i,\tau}} \int_0^\tau \text{Tr} \left[(\mathbf{X}[:, i](t) - p(\mathbf{L}_\tau)\mathbf{H}_{i,\tau} \mathbf{g}(t)) (\mathbf{X}[:, i](t) - p(\mathbf{L}_\tau)\mathbf{H}_{i,\tau} \mathbf{g}(t))^\top \right] d\mu(t) = 0,$$

$$641 \quad \int_0^\tau \frac{\partial}{\partial \mathbf{H}_{i,\tau}} [\text{Tr} (p(\mathbf{L}_\tau)\mathbf{H}_{i,\tau} \mathbf{g}(t) \mathbf{g}(t)^\top \mathbf{H}_{i,\tau}^\top p(\mathbf{L}_\tau)^\top) - 2 \text{Tr} (p(\mathbf{L}_\tau)\mathbf{H}_{i,\tau} \mathbf{g}(t) \mathbf{X}[:, i](t)^\top)] d\mu(t) = 0,$$

$$644 \quad \int_0^\tau 2p(\mathbf{L}_\tau)^\top p(\mathbf{L}_\tau)\mathbf{H}_{i,\tau} \mathbf{g}(t) \mathbf{g}(t)^\top - 2p(\mathbf{L}_\tau)^\top \mathbf{X}[:, i](t) \mathbf{g}(t)^\top d\mu(t) = 0,$$

$$646 \quad \int_0^\tau p(\mathbf{L}_\tau)^\top p(\mathbf{L}_\tau)\mathbf{H}_{i,\tau} \mathbf{g}(t) \mathbf{g}(t)^\top d\mu(t) = \int_0^\tau p(\mathbf{L}_\tau)^\top \mathbf{X}[:, i](t) \mathbf{g}(t)^\top d\mu(t). \quad (10)$$

648 For fixed set of orthogonal polynomials we have $\int_0^\tau \mathbf{g}(t)\mathbf{g}(t)^\top d\mu(t) = \mathbf{I}$, then equation 10 can be
 649 simplified as
 650

$$\begin{aligned} 651 \quad p(\mathbf{L}_\tau) \mathbf{H}_\tau &= \int_0^\tau \mathbf{X}[:, i](t) \mathbf{g}(t)^\top d\mu(t), \\ 652 \quad \mathbf{H}_{i, \tau} &= p(\mathbf{L}_\tau)^{-1} \int_0^\tau \mathbf{X}[:, i](t) \mathbf{g}(t)^\top d\mu(t), \\ 653 \quad \mathbf{H}_{i, \tau} &= p(\mathbf{L}_\tau)^{-1} \mathbf{H}_{i, \tau}^{(\text{HiPPO})}. \end{aligned} \quad (11)$$

654 where $\mathbf{H}_{i, \tau}$ corresponds to the solution from CTT-HiPPO, where it is obtained by projecting the
 655 HiPPO solution through graph-aware polynomial.
 656

659 C PROOF OF THEOREMS

661 This section presents detailed proofs of the theorems from the main text.
 662

663 C.1 PROOF FOR THEOREM 4.1

664 *Proof.* We derive the SSM for CTDGs (CTDG-SSM) that governs the evolution of memory representations. To begin with, we consider the relation between structural HiPPO coefficients \mathbf{H}_τ and HiPPO coefficients given in equation 3 and obtain the evolution of memory states as follows: For an event observed at τ_+ and corresponding CTDG \mathcal{G}_{τ_+} , we define the polynomial as in the interval $[\tau, \tau_+]$ as $p(L_s) = \frac{\tau-s}{\tau-\tau_+}p(\mathbf{L}_{\tau_+}) + \frac{\tau_+-s}{\tau_+-\tau}p(\mathbf{L}_\tau)$ for $s \in [\tau, \tau_+]$. Here $\mathbf{L}_{\tau_+} \in \mathbb{R}^{N_{\tau_+} \times N_{\tau_+}}$ and \mathbf{L}_τ is calculated by removing the newly observed edges from \mathbf{L}_{τ_+} . Then the derivative of the coefficients for $s \in [\tau, \tau_+]$ is given as :

$$\begin{aligned} 665 \quad \frac{d}{ds} (p(\mathbf{L}_s) \mathbf{H}_s) &= \frac{d\mathbf{H}_s^{(\text{HiPPO})}}{ds}, \\ 666 \quad \frac{dp(\mathbf{L}_s)}{ds} \mathbf{H}_s + p(\mathbf{L}_s) \frac{d\mathbf{H}_s}{ds} &= \frac{d\mathbf{H}_s^{(\text{HiPPO})}}{ds}. \end{aligned} \quad (12)$$

667 This can be equivalently expressed on multiplying with $p(\mathbf{L}_s)^{-1}$ as

$$\frac{d\mathbf{H}_s}{ds} = p(\mathbf{L}_s)^{-1} \frac{d\mathbf{H}_s^{(\text{HiPPO})}}{ds} - p(\mathbf{L}_s)^{-1} \frac{dp(\mathbf{L}_s)}{d\tau} \mathbf{H}_s$$

668 To obtain an equivalent SSM for CTDGs, we leverage the established result from (Gu et al., 2020)
 669 that relates the evolution of HiPPO coefficients to a linear ordinary equation as
 670

$$\frac{d\mathbf{H}_s^{(\text{HiPPO})}}{ds} = -\mathbf{H}_s^{(\text{HiPPO})} \frac{\mathbf{A}^\top}{M(s)} + \mathbf{x}(s) \frac{\mathbf{B}^\top}{M(s)},$$

671 where $\mathbf{A} \in \mathbb{R}^{d \times d}$ is a state transition matrix, $\mathbf{B} \in \mathbb{R}^{d \times 1}$ input matrix and $M(\tau) : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ is
 672 a scalar that depends on the choice of bases polynomial and weigh function $\mu(t)$. The continuous
 673 SSM for CTDGs for $s \in [\tau, \tau_+]$ is given by

$$\begin{aligned} 674 \quad \frac{d\mathbf{H}_s}{ds} &= -p(\mathbf{L}_s)^{-1} \mathbf{H}_s^{(\text{HiPPO})} \frac{\mathbf{A}^\top}{M(s)} - p(\mathbf{L}_s)^{-1} \frac{dp(\mathbf{L}_s)}{ds} \mathbf{H}_s + p(\mathbf{L}_s)^{-1} \mathbf{X}(s) \frac{\mathbf{B}^\top}{M(s)}, \\ 675 \quad \frac{d\mathbf{H}_s}{ds} &= -\mathbf{H}_\tau \frac{\mathbf{A}^\top}{M(s)} - p(\mathbf{L}_s)^{-1} \frac{dp(\mathbf{L}_s)}{ds} \mathbf{H}_s + p(\mathbf{L}_s)^{-1} \mathbf{x}(s) \frac{\mathbf{B}^\top}{M(s)}. \end{aligned} \quad (13)$$

676 \square

677 We can further simplify equation 13 to express it in a standard first-order state-space model. To
 678 do so, we apply vectorization operation on equation 13 and use the identity $\text{vec}(\mathbf{ABC}) = (\mathbf{C}^\top \otimes$
 679 $\mathbf{A})\text{vec}(\mathbf{B})$, where \otimes is a Kronecker product. Then we obtain

$$\begin{aligned} 680 \quad \frac{d\mathbf{h}_s}{ds} &= - \left(\frac{\mathbf{A}}{M(s)} \oplus \left(p(\mathbf{L}_s)^{-1} \frac{dp(\mathbf{L}_s)}{ds} \right) \right) \mathbf{h}_s + \frac{\mathbf{B}}{M(s)} \otimes p(\mathbf{L}_s)^{-1}(\mathbf{x}(s)) \\ 681 \quad \frac{d\mathbf{h}_s}{ds} &= \mathbf{A}_g(s) \mathbf{h}_s + \mathbf{B}_g(s) \mathbf{X}(s), \quad s \in [\tau, \tau_+] \end{aligned} \quad (14)$$

702 where $\mathbf{h}_\tau = \text{vec}(\mathbf{H}_\tau) \in \mathbb{R}^{N_\tau d \times 1}$, $\mathbf{A}_g(\tau)$ and $\mathbf{B}_g(\tau)$ denote the time-dependent system and input
 703 matrices, respectively. Here \oplus denotes the Kronecker sum. The evolution of memory coefficients
 704 of nodes so far characterizes the continuous time-variant SSM that jointly encodes dynamic graphs'
 705 structural and temporal information.

706 **Corollary** (Reduction to Classical HiPPO). *Let the graph Laplacian be static ($\mathbf{L}_\tau = \mathbf{L}$) and let the
 707 filter satisfy $p(\mathbf{L}_\tau) = \mathbf{I}$. Then, the CTDG-SSM dynamics equation 5 reduce to the classical HiPPO
 708 state-space dynamics:*

$$\frac{d\mathbf{H}_\tau}{d\tau} = -\mathbf{H}_\tau \frac{\mathbf{A}^\top}{M(\tau)} + \mathbf{X}(\tau) \frac{\mathbf{B}^\top}{M(\tau)}.$$

711 This shows that CTDG-SSM is a strict generalization of classical HiPPO: it recovers standard mem-
 712 ory evolution when the graph is static or the filter is the identity, while naturally incorporating
 713 dynamic graph information when $p(\mathbf{L}_\tau)$ varies over time.

714 **Remark.** The expression,

$$\min_{\mathbf{H}_{i,\tau}} \int_0^\tau \|\mathbf{X}[:, i](t) - p(\mathbf{L}_\tau) \mathbf{H}_{i,\tau} \mathbf{g}(t)\|_2^2 d\mu(t),$$

719 is the CTDG-SSM formulation, where the polynomial operator $p(\mathbf{L}_\tau)$ specifies how the graph struc-
 720 ture influences the reconstruction.

721 When $p(\mathbf{L}_\tau) = \mathbf{I}$, the Laplacian dependence vanishes, yielding the classical HiPPO (Gu et al.,
 722 2020) objective:

$$\min_{\mathbf{H}_{i,\tau}} \int_0^\tau \|\mathbf{X}[:, i](t) - \mathbf{H}_{i,\tau} \mathbf{g}(t)\|_2^2 d\mu(t),$$

727 which matches the standard HiPPO setting.

729 However, when a quadratic Laplacian regularizer is introduced to enforce smoothness over the
 730 reconstructed signal, we obtain the GraphSSM (Li et al., 2024b) objective:

$$\min_{\mathbf{H}_{i,\tau}} \int_0^\tau \|\mathbf{X}[:, i](t) - \mathbf{H}_{i,\tau} \mathbf{g}(t)\|_2^2 d\mu(t) + \int_0^\tau (\mathbf{H}_{i,\tau} \mathbf{g}(t))^\top \mathbf{L}_t (\mathbf{H}_{i,\tau} \mathbf{g}(t)) d\mu(t).$$

735 C.2 PROOF FOR THEOREM 4.2

737 *Proof.* We present the equivalent discrete-time SSM for CTDG using ZOH technique. Recall from
 738 equation 14 the continuous-time evolution for CTDGs is given as

$$\frac{d\mathbf{h}_i[k]}{dt} = \mathbf{A}_g(k) \mathbf{h}_i[k] + \mathbf{B}_g(k) \mathbf{X}[:, i][k]. \quad (15)$$

741 Following equation 8, the equivalent discrete update is given as

$$\mathbf{h}_i[k+1] = \exp(\mathbf{A}_g(t_k) \Delta[k]) \mathbf{h}_i[k] + \int_0^{\Delta[k]} \exp(\mathbf{A}_g(k)s) \mathbf{B}_g(t_k) \mathbf{X}[:, i][k] ds, \quad (16)$$

745 where $\Delta[k] = t_{k+1} - t_k$. Recall $\mathbf{A}_g(t_k) = -\mathbf{A} \oplus \left(-p(\mathbf{L}[k])^{-1} p(\mathbf{L}[k-1]) \right)$, $\mathbf{B}_g(t_k) =$
 746 $\mathbf{B} \otimes p(\mathbf{L}[k])^{-1}$. Although one can directly apply equation 8 as discussed in the preliminaries to
 747 obtain a discrete equivalent for equation 14, this approach incurs significant computational overhead
 748 in implementation, since the Kronecker-structured matrices \mathbf{A}_g and \mathbf{B}_g involved in equation 14 are
 749 of large dimensions ($N_\tau d \times N_\tau d$) and ($N_\tau d \times N_\tau$). To alleviate this complexity, we exploit algebraic
 750 properties of the Kronecker product to derive an equivalent update rule as

$$\begin{aligned} \mathbf{h}[k+1] &= \left(e^{-\mathbf{A}\Delta[k]} \otimes e^{-p(\mathbf{L}[k])^{-1} \frac{p(\mathbf{L}[k]) - p(\mathbf{L}[k-1])}{\Delta[k]} \Delta[k]} \right) \mathbf{h}[k], \\ &+ \int_0^1 \left(e^{-\mathbf{A}\Delta[k]s} \otimes e^{-p(\mathbf{L}[k])^{-1} \frac{p(\mathbf{L}[k]) - p(\mathbf{L}[k-1])}{\Delta[k]} \Delta[k]s} \right) (\mathbf{B} \otimes p(\mathbf{L}[k])^{-1}) \mathbf{X}[:, i][k] \Delta[k] ds, \end{aligned} \quad (17)$$

756 where equation 17 follows by using the following identities $e^{\mathbf{A} \oplus \mathbf{B}} = e^{\mathbf{A}} \otimes e^{\mathbf{B}}$, $\text{vec}(\mathbf{ABH}) =$
 757 $(\mathbf{H}^\top \otimes \mathbf{A}) \text{vec}(\mathbf{B})$, $(\mathbf{A} \otimes \mathbf{B})(\mathbf{H} \otimes \mathbf{D}) = (\mathbf{AH}) \otimes (\mathbf{BD})$. This can be equivalently expressed as
 758

$$759 \mathbf{H}[k+1] = e^{-p(\mathbf{L}[k])^{-1} \frac{p(\mathbf{L}[k]) - p(\mathbf{L}[k-1])}{\Delta[k]} \Delta[k]} \mathbf{H}[k] e^{-\mathbf{A}^\top \Delta[k]}, \\ 760 + \int_0^1 e^{-p(\mathbf{L}[k])^{-1} \frac{p(\mathbf{L}[k]) - p(\mathbf{L}[k-1])}{\Delta[k]} \Delta[k]s} p(\mathbf{L}[k])^{-1} \mathbf{X}[:, i][k] \mathbf{B}^\top e^{-\mathbf{A}^\top \Delta[k]s} \Delta[k] ds. \\ 761 \quad (18)$$

$$762 \mathbf{H}[k+1] = \bar{\mathbf{A}}_{\mathbf{L}[k]} \mathbf{H}[k] \bar{\mathbf{A}} + \bar{\mathbf{B}}(\mathbf{L}[k], \mathbf{x}[k]), \\ 763 \quad (19)$$

764 where $\bar{\mathbf{A}}_{\mathbf{L}[k]} = \exp(-p(\mathbf{L}[k])^{-1} \frac{p(\mathbf{L}[k]) - p(\mathbf{L}[k-1])}{\Delta[k]} \Delta[k]$, $\bar{\mathbf{A}} = \exp(-\mathbf{A}^\top \Delta[k])$, $\bar{\mathbf{B}}(\mathbf{L}[k], \mathbf{X}[:, i][k]) = \int_0^1 (\bar{\mathbf{A}}_{\mathbf{L}[k]})^s p(\mathbf{L}[k])^{-1} \mathbf{X}[:, i][k] \mathbf{B}^\top (\bar{\mathbf{A}})^s \Delta[k] ds$. \square
 765

766 C.3 PROOF OF THEOREM 6.1

767 Consider the $\bar{\mathbf{H}}_\tau$ and \mathbf{H}_τ as the memory representations obtained with the perturbed graph Lapla-
 768 cian and true Laplacian. For brevity, we call the solution from HiPPO as \mathbf{H}_H . Then the error
 769 between the representations is given as

$$770 \|\bar{\mathbf{H}}_\tau - \mathbf{H}_\tau\|_2 = \|P(\bar{\mathbf{L}}_\tau)^{-1} \mathbf{H}_H - P(\mathbf{L}_\tau) \mathbf{H}_H\|_2 \\ 771 \stackrel{(a)}{\leq} \|P(\bar{\mathbf{L}}_\tau)^{-1} - P(\mathbf{L}_\tau)^{-1}\|_2 \|\mathbf{H}_H\|_2 \\ 772 \stackrel{(b)}{\leq} \|P(\bar{\mathbf{L}}_\tau)^{-1} (P(\mathbf{L}_\tau) - P(\bar{\mathbf{L}}_\tau)) P(\mathbf{L}_\tau)^{-1}\| \|\mathbf{H}_H\|_2 \\ 773 \stackrel{(c)}{\leq} \|P(\bar{\mathbf{L}}_\tau)^{-1}\|_2 \|P(\mathbf{L}_\tau) - P(\bar{\mathbf{L}}_\tau)\|_2 \|P(\mathbf{L}_\tau)^{-1}\| \|\mathbf{H}_H\|_2, \\ 774$$

775 where equation 20(a), (b), (c) follow from the norm inequalities. Recall \mathbf{L} is a normalized Laplacian,
 776 therefore the spectrum is bounded in the range $\lambda \in [0, 2]$. Let us call $\lambda_1 := \min_{\lambda \in [0, 2]} |p(\lambda)| > 0$,
 777 $\lambda_2 := \max_{\lambda \in [0, 2]} |p(\lambda)|$, and $\lambda_c := \max_{\lambda \in [0, 2]} |p(\lambda)'|$. Then we have
 778

$$779 \|\bar{\mathbf{H}}_\tau - \mathbf{H}_\tau\| \leq \frac{1}{\lambda_1^2} \|P(\mathbf{L}_\tau) - P(\bar{\mathbf{L}}_\tau)\|_2 \|\mathbf{H}_{i,H}\|_2, \\ 780 \leq \frac{\lambda_c}{\lambda_1^2} \|\mathbf{L}_\tau - \bar{\mathbf{L}}_\tau\|_2 \|\mathbf{H}_{i,H}\|_2, \\ 781 \leq \frac{\lambda_c}{\lambda_1^2} \|\mathbf{L}_\tau - \bar{\mathbf{L}}_\tau\|_2 \|P(\mathbf{L}_\tau)(\mathbf{H}_\tau)\|_2, \\ 782 \leq \frac{\lambda_c}{\lambda_1^2} \|\mathbf{L}_\tau - \bar{\mathbf{L}}_\tau\|_2 \|P(\mathbf{L}_\tau)\|_2 \|\mathbf{H}_\tau\|_2. \\ 783 \quad (20)$$

784 The normalized error given by
 785

$$786 \frac{\|\bar{\mathbf{H}}_\tau - \mathbf{H}_\tau\|_2}{\|\mathbf{H}_\tau\|_2} \leq \frac{\lambda_c}{\lambda_1^2} \|\mathbf{L}_\tau - \bar{\mathbf{L}}_\tau\|_2 \|P(\mathbf{L}_\tau)\|_2, \\ 787 \leq \frac{\lambda_2 \lambda_c}{\lambda_1^2} \|\mathbf{L}_\tau - \bar{\mathbf{L}}_\tau\|_2, \\ 788 \stackrel{(a)}{\leq} \epsilon H, \\ 789 \quad (21)$$

800 where equation 21(a) since energy of perturbation is bounded i.e., $\|\Delta \mathbf{L}\| \leq \epsilon$ and $H = \frac{\lambda_2 \lambda_c}{\lambda_1^2}$.
 801

802 C.4 PROOF OF THEOREM 6.2

803 To prove that the representations from CTDG-SSM as permutation equivariant we first show that rep-
 804 resentations from CTT-HiPPO are equivariant to permutation. Under the permutation the features
 805 signal and Laplacian modifies as $\hat{\mathbf{X}} = \mathbf{\Pi} \mathbf{X}$, $\hat{\mathbf{L}} = \mathbf{\Pi} \mathbf{L} \mathbf{\Pi}^\top$. Let $\hat{\mathbf{H}}_\tau$ be representations obtained
 806

under permutation, then we have

$$\begin{aligned}
\hat{\mathbf{H}}_\tau &= p(\hat{\mathbf{L}}_\tau)^{-1} \int_0^\tau \hat{\mathbf{X}}(t) \mathbf{g}(t)^\top dw(t), \\
&= p(\mathbf{\Pi} \mathbf{L}_\tau \mathbf{\Pi}^\top)^{-1} \int_0^\tau \mathbf{\Pi} \mathbf{X}(t) \mathbf{g}(t)^\top dw(t), \\
&= \mathbf{\Pi} p(\mathbf{L}_\tau)^{-1} \mathbf{\Pi}^\top \int_0^\tau \mathbf{\Pi} \mathbf{X}(t) \mathbf{g}(t)^\top dw(t), \\
&= \mathbf{\Pi} p(\mathbf{L}_\tau)^{-1} \int_0^\tau \mathbf{X}(t) \mathbf{g}(t)^\top dw(t) \\
&= \mathbf{\Pi} \mathbf{H}_\tau,
\end{aligned} \tag{22}$$

equation 22 implies the representations obtained from CTT-HiPPO are permutation equivariant. Now, to prove the equivariance for the representations from CTDG-SSM layer we first evaluate state matrix $\bar{\mathbf{A}}$ and system matrix $\bar{\mathbf{B}}$ under permutation as

$$\begin{aligned}
\bar{\mathbf{A}}_{\hat{\mathbf{L}}[k]}^s &= \exp(-p(\hat{\mathbf{L}}[k])^{-1}(p(\hat{\mathbf{L}}[k-1]) - p(\hat{\mathbf{L}}[k])s), \\
&= \exp(-\mathbf{\Pi} p(\mathbf{L}[k])^{-1} \mathbf{\Pi}^\top \mathbf{\Pi}(p(\mathbf{L}[k]) - p(\mathbf{L}[k-1]) \mathbf{\Pi}^\top s), \\
&= \exp(-\mathbf{\Pi} p(\mathbf{L}[k])^{-1}(p(\mathbf{L}[k]) - p(\mathbf{L}[k-1]) \mathbf{\Pi}^\top s), \\
&= \mathbf{\Pi} \exp(-p(\mathbf{L}[k])^{-1}(p(\mathbf{L}[k]) - p(\mathbf{L}[k-1])s) \mathbf{\Pi}^\top, \\
&= \mathbf{\Pi} \bar{\mathbf{A}}_{\mathbf{L}[k]}^s \mathbf{\Pi}^\top,
\end{aligned} \tag{23}$$

where $\bar{\mathbf{B}}$ modifies as

$$\begin{aligned}
\bar{\mathbf{B}}(\hat{\mathbf{L}}[k], \hat{\mathbf{X}}[k]) &= \int_0^1 \bar{\mathbf{A}}_{\hat{\mathbf{L}}[k]}^s p(\hat{\mathbf{L}}[k])^{-1} \hat{\mathbf{X}}[k] \mathbf{B}^\top \bar{\mathbf{A}}^s \Delta[k] ds, \\
&= \int_0^1 \mathbf{\Pi} \bar{\mathbf{A}}_{\mathbf{L}[k]}^s \mathbf{\Pi}^\top \mathbf{\Pi} p(\mathbf{L}[k])^{-1} \mathbf{\Pi}^\top \mathbf{\Pi} \mathbf{X}[k] \mathbf{B}^\top \bar{\mathbf{A}}^s \Delta[k] ds, \\
&= \mathbf{\Pi} \int_0^1 \bar{\mathbf{A}}_{\mathbf{L}[k]}^s p(\mathbf{L}[k])^{-1} \mathbf{X}[k] \mathbf{B}^\top \bar{\mathbf{A}}^s \Delta[k] ds, \\
&= \mathbf{\Pi} \bar{\mathbf{B}}(\mathbf{L}[k], \mathbf{X}[k])
\end{aligned} \tag{24}$$

Now we show that the updates from CTDG-SSM are permutation equivariant. Consider

$$\begin{aligned}
\hat{\mathbf{H}}[k+1] &= \bar{\mathbf{A}}_{\hat{\mathbf{L}}[k]} \hat{\mathbf{H}}[k] \bar{\mathbf{A}} + \bar{\mathbf{B}}(\hat{\mathbf{L}}[k], \hat{\mathbf{X}}[k]), \\
&\stackrel{(a)}{=} \bar{\mathbf{A}}_{\hat{\mathbf{L}}[k]} (\mathbf{\Pi} \mathbf{H}[k]) \bar{\mathbf{A}} + \mathbf{\Pi} \bar{\mathbf{B}}(\mathbf{L}[k], \mathbf{X}[k]), \\
&\stackrel{(b)}{=} \mathbf{\Pi} \bar{\mathbf{A}}_{\mathbf{L}[k]} \mathbf{H}[k] \bar{\mathbf{A}} + \mathbf{\Pi} \bar{\mathbf{B}}(\mathbf{L}[k], \mathbf{X}[k]), \\
&= \mathbf{\Pi} (\bar{\mathbf{A}}_{\mathbf{L}[k]} \mathbf{H}[k] \bar{\mathbf{A}} + \bar{\mathbf{B}}(\mathbf{L}[k], \mathbf{X}[k])), \\
&= \mathbf{\Pi} \mathbf{H}[k+1],
\end{aligned} \tag{25}$$

where equation 25(a) follows by recursion. Recall $k = 0$ we have $\hat{\mathbf{H}}[1] = \bar{\mathbf{B}}(\hat{\mathbf{L}}[0], \hat{\mathbf{X}}[0])$ as $\mathbf{H}[0] = \mathbf{0}$, hence $\hat{\mathbf{H}}[1] = \mathbf{\Pi} \bar{\mathbf{B}}(\mathbf{L}[0], \hat{\mathbf{X}}[0]) = \mathbf{\Pi} \mathbf{H}[1]$ from equation 24 which is propagated through k layers. Then equation 25(b) follows from equation 23 and equation 24.

D NUMERICAL EXPERIMENTS AND ADDITIONAL RESULTS

In this section, we discuss the dataset details, hyperparameters, and the additional results on the dynamic link prediction task.

D.1 DATASET DETAILS

We provide a detailed description of the datasets considered for experimentation in Table 4. In all the datasets, LastFM, Enron and MOOC are mainly considered for evaluating the LRT task. In

864

865 Table 4: Statistics of the datasets used in our experiments. #N & L feat corresponds to the dimension
866 of node and link features, where - represents the unavailability of node features.

Dataset	Domain	#Nodes	#Links	#N&L Feat	Bipartite	Duration	Unique Steps	Time Granularity
Wikipedia	Social	9,227	157,474	- & 172	True	1 month	152,757	Unix timestamps
Reddit	Social	10,984	672,447	- & 172	True	1 month	669,065	Unix timestamps
MOOC	Interaction	7,144	411,749	- & 4	True	17 months	345,600	Unix timestamps
LastFM	Interaction	1,980	1,293,103	- & -	True	1 month	1,283,614	Unix timestamps
Enron	Social	184	125,235	- & -	False	3 years	22,632	Unix timestamps
UCI	Social	1,899	59,835	- & -	False	196 days	58,911	Unix timestamps
Social Evo.	Proximity	74	2,099,519	- & 2	False	8 months	565,932	Unix timestamps
Flights	Transport	13,169	1,927,145	- & 1	False	4 months	122	days
Can. Parl.	Politics	734	74,478	- & 1	False	14 years	14	years
US Legis.	Politics	225	60,396	- & 1	False	12 congresses	12	congresses
UN Trade	Economics	255	507,497	- & 1	False	32 years	32	years
UN Vote	Politics	201	1,035,742	- & 1	False	72 years	72	years
Contact	Proximity	692	2,426,279	- & 1	False	1 month	8,064	5 minutes
tgbl-wiki	Interaction	9,227	157,474	- & 1	True	1 month	152,757	Unix timestamps
tgbl-coin	Economics	638,486	22,809,486	- & 1	False	7 month	1,295,720	Unix timestamps

878

880 particular, The LastFM dataset corresponds to data from a music streaming platform that records
881 user listening behaviors, where users and songs are nodes and links denote listening events (Celma,
882 2010). The Enron dataset is an email communication dataset among employees of the Enron Cor-
883 poration, recorded over a three-year period (Klimt & Yang, 2004). Whereas the MOOC dataset
884 captures student interactions on an online course platform, where links represent students accessing
885 course content such as videos or problem sets (Kizilcec et al., 2013), other DTDG datasets used for
886 evaluation include Flights, Can. Parl, US Legis., UN Trade, UN Vote, and Contact include. For all
887 datasets used in data processing, we employ the same pipeline described in (Yu et al., 2023). Ad-
888 ditionally, datasets including tgbl-wiki and tgbl-coin from (Huang et al., 2023) were also
889 utilized.

890

891 Table 5: AUC-ROC for transductive dynamic link prediction under. RNS: Random Negative Sam-
892 pling, HNS: Historical Negative Sampling, INS : Inductive Negative Sampling.

NSS	Datasets	JODIE	DyRep	TGAT	TGN	CAWN	TCL	GraphMixer	DyGFormer	CTAN	DyGmamba	CTDG-SSM
RNS	LastFM	70.89 ± 1.97	71.40 ± 2.12	71.47 ± 0.14	76.64 ± 4.66	85.92 ± 0.16	71.09 ± 1.48	75.31 ± 0.14	93.03 ± 0.11	85.12 ± 0.77	93.31 ± 0.18	93.79 ± 0.22
	Enron	87.77 ± 2.43	83.09 ± 2.20	68.57 ± 1.46	88.72 ± 0.95	90.34 ± 0.23	83.33 ± 0.93	84.16 ± 0.34	93.20 ± 0.12	87.09 ± 1.51	93.34 ± 0.23	94.98 ± 2.92
	MOOC	84.50 ± 0.60	84.50 ± 0.87	87.01 ± 0.16	91.91 ± 0.82	80.48 ± 0.41	84.02 ± 0.59	84.04 ± 0.12	88.08 ± 0.50	85.40 ± 2.67	89.58 ± 0.12	99.00 ± 0.33
	Reddit	98.29 ± 0.05	98.13 ± 0.04	98.50 ± 0.01	98.61 ± 0.05	99.02 ± 0.00	97.67 ± 0.01	97.17 ± 0.02	99.15 ± 0.01	97.24 ± 0.75	99.27 ± 0.01	99.48 ± 0.02
	Wikiedia	96.36 ± 0.14	94.43 ± 0.32	96.60 ± 0.07	98.37 ± 0.10	98.54 ± 0.01	97.27 ± 0.06	96.89 ± 0.04	98.92 ± 0.03	97.00 ± 0.21	99.08 ± 0.02	99.33 ± 0.08
	UCI	90.35 ± 0.51	69.46 ± 2.66	78.76 ± 1.10	92.03 ± 0.69	93.81 ± 0.23	85.49 ± 0.82	91.62 ± 0.52	94.45 ± 0.22	76.25 ± 2.83	94.77 ± 0.18	89.24 ± 0.43
HNS	Social Evo.	92.13 ± 0.20	90.37 ± 0.52	94.93 ± 0.06	95.31 ± 0.27	87.34 ± 0.10	95.45 ± 0.21	95.21 ± 0.07	96.25 ± 0.04	Timeout	96.38 ± 0.02	99.10 ± 0.49
	LastFM	75.65 ± 4.43	70.63 ± 2.56	64.23 ± 0.45	78.00 ± 2.97	67.92 ± 0.32	60.53 ± 2.54	64.06 ± 0.34	78.80 ± 0.02	79.50 ± 0.82	79.82 ± 0.27	89.55 ± 0.57
	Enron	75.21 ± 1.27	76.36 ± 1.42	62.36 ± 1.07	76.75 ± 1.40	65.62 ± 0.49	71.72 ± 1.24	74.82 ± 2.04	77.35 ± 0.64	81.95 ± 1.64	77.73 ± 0.61	95.86 ± 2.18
	MOOC	82.38 ± 1.75	80.71 ± 2.08	81.53 ± 0.79	86.59 ± 2.03	71.74 ± 0.88	73.22 ± 1.21	77.09 ± 0.83	87.26 ± 0.83	73.87 ± 2.77	87.91 ± 0.93	95.22 ± 1.65
	Reddit	80.70 ± 0.20	79.96 ± 0.23	79.60 ± 0.09	81.04 ± 0.23	80.42 ± 0.20	76.83 ± 0.12	77.83 ± 0.33	80.61 ± 0.48	90.63 ± 2.28	81.71 ± 0.49	97.49 ± 0.17
	Wikiedia	80.71 ± 0.64	77.49 ± 0.72	82.83 ± 0.27	83.28 ± 0.26	65.74 ± 3.46	85.55 ± 0.47	87.47 ± 0.20	72.78 ± 6.65	95.43 ± 0.07	78.99 ± 1.24	99.02 ± 0.17
INS	UCI	78.21 ± 3.18	58.65 ± 3.58	57.12 ± 0.98	78.48 ± 1.79	57.67 ± 1.11	65.42 ± 2.62	77.46 ± 1.63	75.71 ± 0.57	75.05 ± 0.13	75.43 ± 1.99	87.86 ± 0.59
	Social Evo.	91.83 ± 1.52	92.81 ± 0.60	93.63 ± 0.48	94.27 ± 1.33	87.61 ± 0.06	95.03 ± 0.82	94.65 ± 0.28	97.16 ± 0.06	Timeout	97.27 ± 0.30	98.89 ± 0.56
	LastFM	61.59 ± 5.72	60.62 ± 2.20	63.96 ± 0.41	65.48 ± 4.13	67.90 ± 0.44	54.75 ± 1.31	59.98 ± 0.20	67.87 ± 0.53	78.70 ± 0.87	68.74 ± 0.55	94.17 ± 0.22
	Enron	70.75 ± 0.69	67.37 ± 2.21	59.78 ± 1.12	72.32 ± 0.42	75.29 ± 0.66	69.74 ± 1.19	70.72 ± 1.08	74.67 ± 0.80	75.40 ± 1.92	75.47 ± 1.41	95.80 ± 1.96
	MOOC	67.53 ± 1.76	62.60 ± 1.27	74.44 ± 0.81	76.89 ± 2.13	70.08 ± 0.33	71.80 ± 1.09	72.25 ± 0.57	80.78 ± 0.89	68.17 ± 3.73	81.08 ± 0.82	99.08 ± 0.35
	Reddit	83.40 ± 0.33	82.75 ± 0.36	87.46 ± 0.10	84.57 ± 0.19	88.19 ± 0.20	84.41 ± 0.18	82.24 ± 0.24	86.25 ± 0.64	91.42 ± 2.18	86.35 ± 0.52	99.51 ± 0.03
INS	Wikiedia	70.41 ± 0.39	67.57 ± 0.94	81.54 ± 0.31	81.21 ± 0.30	68.48 ± 3.64	73.51 ± 1.88	84.20 ± 0.36	64.09 ± 9.75	93.67 ± 0.11	75.64 ± 2.42	99.36 ± 0.07
	UCI	64.14 ± 1.25	54.10 ± 2.74	59.60 ± 0.61	63.76 ± 0.99	57.85 ± 0.39	65.46 ± 2.07	74.25 ± 0.71	64.92 ± 0.83	66.51 ± 0.25	66.83 ± 2.83	89.75 ± 0.32
	Social Evo.	91.81 ± 1.69	92.77 ± 0.64	93.54 ± 0.48	94.86 ± 1.25	90.10 ± 0.11	95.13 ± 0.83	94.50 ± 0.26	95.01 ± 0.15	Timeout	97.37 ± 0.26	99.24 ± 0.47
	LastFM	8.29	9.86	6.71	5.86	6.86	7.14	6.57	5.71	3.67	3.29	1.00
	Enron	78.97 ± 1.59	73.97 ± 3.00	66.67 ± 1.07	78.76 ± 1.69	80.30 ± 0.56	82.61 ± 0.61	75.55 ± 0.81	89.62 ± 0.27	74.61 ± 1.64	89.67 ± 0.27	93.66 ± 4.67
	MOOC	80.57 ± 0.52	80.50 ± 0.68	85.28 ± 0.30	88.01 ± 1.48	81.32 ± 0.42	82.28 ± 0.99	81.38 ± 0.17	87.05 ± 0.51	64.99 ± 2.24	88.64 ± 0.08	98.67 ± 0.46
INS	Reddit	96.43 ± 0.16	95.89 ± 0.26	97.13 ± 0.08	97.41 ± 0.12	98.62 ± 0.05	95.01 ± 0.10	95.24 ± 0.08	98.83 ± 0.02	80.07 ± 2.53	98.97 ± 0.01	99.13 ± 0.03
	Wikiedia	94.91 ± 0.32	92.21 ± 0.29	96.26 ± 0.12	97.81 ± 0.18	98.27 ± 0.02	97.48 ± 0.06	96.61 ± 0.04	98.58 ± 0.01	93.58 ± 0.65	98.77 ± 0.03	99.06 ± 0.10
	UCI	79.73 ± 1.48	58.39 ± 2.38	79.10 ± 0.49	87.81 ± 1.32	92.61 ± 0.35	84.19 ± 1.37	91.17 ± 0.29	94.45 ± 0.13	49.78 ± 5.02	94.76 ± 0.19	87.43 ± 0.79
	Social Evo.	91.72 ± 0.66	89.10 ± 1.90	91.47 ± 0.10	90.74 ± 1.40	79.83 ± 0.14	92.51 ± 0.11	91.89 ± 0.05	93.05 ± 0.10	Timeout	93.13 ± 0.05	98.60 ± 0.14
	LastFM	69.85 ± 1.70	68.14 ± 1.61	69.89 ± 0.41	67.01 ± 5.77	67.72 ± 0.20	63.15 ± 1.17	69.93 ± 0.17	69.86 ± 0.80	57.85 ± 3.67	70.59 ± 0.57	94.77 ± 0.26
	Enron	65.95 ± 1.27	62.20 ± 2.15	56.52 ± 0.84	64.21 ± 0.94	62.07 ± 0.72	67.56 ± 1.34	67.39 ± 1.33	66.07 ± 0.65	68.70 ± 1.82	68.98 ± 1.00	94.59 ± 3.37
INS	MOOC	65.37 ± 0.98	62.97 ± 2.05	74.94 ± 0.80	76.36 ± 2.91	71.18 ± 0.54	71.30 ± 1.21	72.15 ± 0.65	80.42 ± 0.72	58.06 ± 0.89	81.12 ± 0.63	98.71 ± 0.47
	Reddit	61.84 ± 0.44	60.35 ± 0.53	64.92 ± 0.08	65.24 ± 0.08	65.37 ± 0.12	61.85 ± 0.11	64.56 ± 0.26	64.80 ± 0.53	81.70 ± 4.71	64.93 ± 0.89	99.15 ± 0.03
	Wikiedia	61.66 ± 0.30	56.34 ± 0.67	78.40 ± 0.77	78.86 ± 0.50	59.00 ± 0.43	71.45 ± 2.23	82.76 ± 0.11	58.21 ± 8.78	91.12 ± 1.03	67.92 ± 2.23	99.09 ± 0.10
	UCI	60.66 ± 1.82	51.50 ± 2.08	61.27 ± 0.78	62.07 ± 0.67	55.60 ± 1.22	65.87 ± 1.90	75.72 ± 0.70	64.37 ± 0.98	51.68 ± 2.60	66.95 ± 2.22	87.86 ± 0.73
	Social Evo.	88.98 ± 0.81	86.43 ± 1.48	92.37 ± 0.50	91.66 ± 2.14	83.84 ± 0.21	95.50 ± 0.31	93.88 ± 0.22	94.97 ± 0.36	Timeout	96.65 ± 0.29	98.90 ± 0.14
	LastFM	8.00	9.71	6.14	6.14	8.14	6.14	4.57	5.71	7.14	3.29	1.00

906

907

908

909

Table 6: AUC-ROC of inductive dynamic link prediction.

NSS	Datasets	JODIE	DyRep	TGAT	TGN	CAWN	TCL	GraphMixer	DyGFormer	CTAN	DyGmamba	CTDG-SSM
RNS	LastFM	83.13 ± 1.59	83.47 ± 1.06	78.40 ± 0.30	81.18 ± 3.27	89.33 ± 0.08	81.38 ± 1.53	82.07 ± 0.31	94.17 ± 0.10	60.40 ± 3.01	94.42 ± 0.21	94.49 ± 0.27
	Enron	78.97 ± 1.30	73.97 ± 3.00	66.67 ± 1.07	78.76 ± 1.69	80.30 ± 0.56	82.61 ± 0.61	75.55 ± 0.81	89.62 ± 0.27	74.61 ± 1.64	89.67 ± 0.27	93.66 ± 4.67
	MOOC	80.57 ± 0.52	80.50 ± 0.68	85.28 ± 0.30	88.01 ± 1.48	81.32 ± 0.42	82.28 ± 0.99	81.38 ± 0.17	87.05 ± 0.51	64.99 ± 2.24	88.64 ± 0.08	98.67 ± 0.46
	Reddit	96.43 ± 0.16	95.89 ± 0.26	97.13 ± 0.08	97.41 ± 0.12	98.62 ± 0.05	95.01 ± 0.10	98.54 ± 0.08	98.83 ± 0.02	80.07 ± 2.53	98.97 ± 0.01	99.13 ± 0.03
	Wikiedia	94.91 ± 0.32	92.21 ± 0.29	96.26 ± 0.12	97.81 ± 0.18	98.27 ± 0.02	97.48 ± 0.06	96.61 ± 0.04	98.58 ± 0.01	93.58 ± 0.65	98.77 ± 0.03	99.06 ± 0.10
	UCI	79.73 ± 1.48	58.39 ± 2.38	79.10 ± 0.49	87.81 ± 1.32	92.61 ± 0.35	84.19 ± 1.37	91.17 ± 0.29	94.45 ± 0.13	49.78 ± 5.02	94.76 ± 0.19	87.43 ± 0.79

918

919

Table 7: Model Hyperparameters. N/A: Not Applicable, OHE: One-hot encoding, LR: Learnable.

Dataset	Latent dimension	Time embedding dimension	N_u	Batch size	Static embedding
Enron	32	16	10	128	OHE
UCI	32	16	10	128	N/A
MOOC	32	16	10	128	N/A
Wikipedia	128	16	10	128	N/A
Reddit	128	16	10	128	N/A
Lastfm	32	16	10	128	N/A
Flights	32	16	10	128	N/A
Can. Parl.	32	16	10	128	N/A
US Legis.	32	16	10	128	N/A
UN Trade	32	16	10	128	N/A
UN Vote	32	16	10	128	N/A
Contact	32	16	10	128	N/A
tgb1-wiki	128	16	10	128	N/A
tgb1-coin	32	16	10	128	LR
Sequence Classification	32	N/A	10	128	N/A

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

D.2 ADDITIONAL RESULTS AND HYPERPARAMETER DETAILS

936

937

In this section, we provide additional results for the dynamic link prediction task. Specifically, we report performance using average precision (AP) as an evaluation metric. Furthermore, we present AUC-ROC results under both inductive and transductive settings, comparing different sampling strategies. In Table 5, 15 and Table 8, 14, 13 we report AUC-ROC and AP scores under the transductive setting with different sampling techniques. The results clearly demonstrate that the proposed model outperforms state-of-the-art algorithms on LRT datasets, primarily due to its ability to jointly encode structural information via graph polynomials that capture multi-hop neighborhood interactions and temporal evolution through a state-space formulation. In Table 6, 17, and Table 9, 16, 18 we report results under the inductive setting, where the task is more challenging since the test set includes nodes unseen during training. Additionally, we report the mean reciprocal rank (MRR) in Table 19 using the evaluation mechanism proposed in (Huang et al., 2023) (values close to 1 are better). The proposed model not only outperforms existing approaches but also exhibits only a minor performance drop compared to the transductive setting, highlighting its ability to effectively capture global structural and temporal patterns instead of learning local structural patterns.

951

952

Hyperparameter Details: In Table D.1, we report the hyperparameters used in all experiments. The latent dimension corresponds to the size of the memory representations, the batch size denotes the number of events in each batch, and OHE refers to one-hot encoding.

953

954

955

956

957

958

Table 8: AP of transductive dynamic link prediction.

NSS	Datasets	JODIE	DyRep	TGAT	TGN	CAWN	TCL	GraphMixer	DyFormer	CTAN	DyGmamba	CTDG-SSM
RNS	LastFM	70.95 \pm 2.94	71.85 \pm 2.44	73.30 \pm 0.18	75.31 \pm 5.62	86.60 \pm 0.11	76.62 \pm 1.83	75.56 \pm 0.19	92.95 \pm 0.14	86.44 \pm 0.80	93.35 \pm 0.20	93.40 \pm 0.49
	Enron	84.85 \pm 3.13	79.80 \pm 2.28	70.76 \pm 1.05	86.98 \pm 1.05	89.50 \pm 0.10	85.41 \pm 0.71	82.13 \pm 0.30	92.42 \pm 0.11	92.52 \pm 1.20	92.65 \pm 0.12	94.46 \pm 4.73
	MOOC	81.04 \pm 0.83	81.50 \pm 0.77	85.71 \pm 0.20	89.15 \pm 1.69	80.30 \pm 0.43	83.89 \pm 0.86	82.80 \pm 0.15	87.66 \pm 0.48	84.71 \pm 2.85	89.21 \pm 0.08	98.85 \pm 0.35
	Reddit	98.31 \pm 0.08	98.18 \pm 0.03	98.57 \pm 0.01	98.65 \pm 0.08	99.11 \pm 0.01	97.78 \pm 0.02	97.31 \pm 0.01	99.22 \pm 0.01	97.21 \pm 0.84	99.32 \pm 0.01	99.53 \pm 0.02
	Wikipedia	96.51 \pm 0.22	94.88 \pm 0.29	96.88 \pm 0.06	98.45 \pm 0.10	98.77 \pm 0.01	97.75 \pm 0.04	97.22 \pm 0.02	99.03 \pm 0.03	96.61 \pm 0.79	99.15 \pm 0.02	99.40 \pm 0.09
	UCI	89.28 \pm 1.02	66.11 \pm 2.75	79.40 \pm 0.61	92.33 \pm 0.64	95.13 \pm 0.23	86.63 \pm 1.30	93.15 \pm 0.41	95.74 \pm 0.17	76.64 \pm 4.11	95.91 \pm 0.15	90.18 \pm 0.98
HNS	Social Evo.	89.88 \pm 0.40	88.39 \pm 0.69	93.33 \pm 0.06	93.45 \pm 0.29	84.90 \pm 0.11	93.82 \pm 0.19	93.36 \pm 0.06	94.63 \pm 0.07	Timeout	94.77 \pm 0.01	98.65 \pm 0.65
	Avg. Rank	8.71	9.71	7.86	5.29	5.86	6.71	7.29	3.14	7.86	1.86	1.71
	LastFM	74.38 \pm 6.27	71.85 \pm 2.91	71.60 \pm 0.36	75.03 \pm 6.90	69.93 \pm 0.33	71.02 \pm 2.07	72.28 \pm 0.37	81.51 \pm 0.14	82.29 \pm 0.94	83.02 \pm 0.16	88.91 \pm 0.93
	Enron	69.13 \pm 1.66	72.58 \pm 1.83	64.24 \pm 1.24	74.31 \pm 1.99	65.40 \pm 0.36	72.39 \pm 0.61	77.35 \pm 1.22	76.93 \pm 0.76	77.24 \pm 1.53	77.77 \pm 1.32	95.80 \pm 3.33
	MOOC	78.62 \pm 2.43	75.14 \pm 2.86	82.83 \pm 0.71	85.65 \pm 2.32	74.46 \pm 0.53	78.51 \pm 0.84	77.09 \pm 0.83	86.43 \pm 0.38	67.73 \pm 2.08	85.89 \pm 0.94	94.76 \pm 1.76
	Reddit	79.96 \pm 0.30	79.40 \pm 0.00	79.78 \pm 0.25	81.05 \pm 0.32	80.96 \pm 0.28	77.38 \pm 0.02	78.39 \pm 0.36	83.81 \pm 1.08	89.77 \pm 2.28	88.81 \pm 1.52	97.55 \pm 0.22
INS	Wikipedia	81.16 \pm 0.73	79.44 \pm 0.95	87.31 \pm 0.38	87.31 \pm 0.25	66.77 \pm 6.62	86.12 \pm 1.69	90.74 \pm 0.06	70.13 \pm 11.02	95.91 \pm 0.10	81.77 \pm 1.20	98.99 \pm 0.32
	UCI	74.77 \pm 5.35	55.89 \pm 2.83	66.78 \pm 0.77	81.32 \pm 1.26	64.69 \pm 1.79	74.62 \pm 2.70	83.88 \pm 1.06	80.44 \pm 1.16	76.62 \pm 0.33	81.03 \pm 1.09	88.87 \pm 1.28
	Social Evo.	91.26 \pm 2.47	92.88 \pm 0.99	95.31 \pm 0.38	93.84 \pm 1.66	85.65 \pm 0.14	95.93 \pm 0.63	95.30 \pm 0.34	97.05 \pm 0.16	Timeout	97.35 \pm 0.52	98.20 \pm 0.81
	Avg. Rank	7.43	8.71	7.36	4.93	9.71	7.71	5.57	4.71	5.57	3.29	1.00
	LastFM	62.63 \pm 6.89	62.49 \pm 3.04	71.16 \pm 0.33	65.09 \pm 7.05	67.38 \pm 0.57	62.76 \pm 0.81	67.87 \pm 0.37	72.60 \pm 0.06	80.06 \pm 0.85	73.63 \pm 0.54	93.81 \pm 0.44
	Enron	69.51 \pm 1.09	66.78 \pm 2.21	63.16 \pm 0.59	73.27 \pm 0.58	75.08 \pm 0.81	70.98 \pm 0.96	74.12 \pm 0.65	78.22 \pm 0.80	72.02 \pm 2.64	80.86 \pm 1.24	95.81 \pm 2.99
INS	MOOC	66.56 \pm 1.49	61.48 \pm 0.96	76.96 \pm 0.89	77.59 \pm 1.83	73.55 \pm 0.36	76.35 \pm 1.41	74.24 \pm 0.75	80.99 \pm 0.88	64.93 \pm 3.31	81.11 \pm 0.63	99.03 \pm 0.38
	Reddit	86.93 \pm 0.21	86.06 \pm 0.36	89.93 \pm 0.10	88.12 \pm 0.13	91.89 \pm 0.18	86.97 \pm 0.26	85.37 \pm 0.26	91.06 \pm 0.60	90.99 \pm 2.19	91.15 \pm 0.54	99.58 \pm 0.02
	Wikipedia	74.78 \pm 0.56	70.55 \pm 1.22	86.77 \pm 0.29	85.80 \pm 0.15	69.27 \pm 7.07	72.54 \pm 4.69	88.54 \pm 0.20	62.00 \pm 14.00	94.15 \pm 0.08	79.86 \pm 2.18	99.45 \pm 0.06
	UCI	66.02 \pm 1.28	54.64 \pm 2.52	67.63 \pm 0.51	70.34 \pm 0.72	64.08 \pm 1.06	73.49 \pm 2.21	79.57 \pm 0.61	70.51 \pm 1.83	66.25 \pm 0.51	71.95 \pm 2.51	91.44 \pm 0.50
	Social Evo.	91.08 \pm 3.29	92.84 \pm 0.98	95.20 \pm 0.30	94.58 \pm 1.52	88.50 \pm 0.13	96.14 \pm 0.63	95.11 \pm 0.32	97.62 \pm 0.12	Timeout	97.68 \pm 0.42	98.88 \pm 0.63
	Avg. Rank	8.86	10.00	6.14	6.14	7.29	6.57	5.71	4.71	6.43	3.14	1.00

971

972

973

Table 9: AP of inductive dynamic link prediction.												
NSS	Datasets	JODIE	DyRep	TGAT	TGN	CAWN	TCL	GraphMixer	DyGFormer	CTAN	DyGmamba	CTDG-SSM
RNS	LastFM	83.13 \pm 1.19	83.47 \pm 1.06	78.40 \pm 0.30	81.18 \pm 3.27	89.33 \pm 0.06	81.38 \pm 1.53	82.07 \pm 0.31	94.17 \pm 0.10	60.40 \pm 3.01	94.42 \pm 0.21	93.65 \pm 0.62
	Enron	78.97 \pm 1.59	73.97 \pm 3.00	66.67 \pm 1.07	78.76 \pm 1.69	86.30 \pm 0.56	82.61 \pm 0.61	75.55 \pm 0.81	89.62 \pm 0.27	74.61 \pm 1.64	89.67 \pm 0.27	93.02 \pm 7.25
	MOOC	80.57 \pm 0.52	80.50 \pm 0.68	85.28 \pm 0.30	88.01 \pm 1.48	81.32 \pm 0.42	82.28 \pm 0.99	81.38 \pm 0.17	87.05 \pm 0.51	64.99 \pm 2.24	88.64 \pm 0.08	98.49 \pm 0.48
	Reddit	96.43 \pm 0.16	95.89 \pm 0.26	97.13 \pm 0.04	97.41 \pm 0.12	98.62 \pm 0.01	95.01 \pm 0.18	95.24 \pm 0.08	98.83 \pm 0.02	80.07 \pm 2.53	98.97 \pm 0.01	99.28 \pm 0.03
	Wikipedia	94.91 \pm 0.32	92.21 \pm 0.29	96.26 \pm 0.12	97.81 \pm 0.18	98.27 \pm 0.03	97.48 \pm 0.06	96.61 \pm 0.04	98.58 \pm 0.01	93.58 \pm 0.65	98.77 \pm 0.03	99.19 \pm 0.09
	UCI	79.73 \pm 1.42	58.39 \pm 2.38	79.10 \pm 0.49	87.81 \pm 1.32	92.61 \pm 0.35	84.19 \pm 1.67	91.17 \pm 0.29	94.45 \pm 0.13	49.78 \pm 5.02	94.76 \pm 0.19	89.12 \pm 1.02
INS	Social Evo.	91.72 \pm 0.64	89.10 \pm 1.90	91.47 \pm 0.10	90.74 \pm 1.40	79.83 \pm 0.14	92.51 \pm 0.11	91.89 \pm 0.05	93.05 \pm 0.10	Timeout	93.13 \pm 0.05	97.56 \pm 0.45
	Avg. Rank	7.29	9.00	8.00	6.14	5.29	6.57	6.71	2.86	10.57	1.71	1.86
	LastFM	71.37 \pm 3.45	69.75 \pm 2.73	76.26 \pm 0.34	68.47 \pm 6.07	71.28 \pm 0.43	68.79 \pm 0.93	76.27 \pm 0.37	75.07 \pm 1.45	55.60 \pm 3.91	76.76 \pm 0.43	94.08 \pm 0.57
	Enron	66.99 \pm 1.15	62.64 \pm 2.33	59.95 \pm 1.00	64.51 \pm 1.66	60.61 \pm 0.63	68.93 \pm 1.34	71.71 \pm 1.33	67.21 \pm 0.72	68.66 \pm 2.31	68.77 \pm 0.60	94.56 \pm 5.02
	MOOC	64.67 \pm 1.18	62.05 \pm 2.11	77.43 \pm 0.81	76.81 \pm 2.83	74.36 \pm 0.78	75.95 \pm 1.46	73.87 \pm 0.99	80.66 \pm 0.94	57.49 \pm 1.34	80.75 \pm 1.00	98.64 \pm 0.51
	Reddit	62.54 \pm 0.52	61.07 \pm 0.86	63.96 \pm 0.25	65.27 \pm 0.57	64.10 \pm 0.22	61.45 \pm 0.25	64.82 \pm 0.30	65.03 \pm 1.20	78.35 \pm 5.03	65.30 \pm 1.05	99.32 \pm 0.03
INS	Wikipedia	68.22 \pm 0.36	61.07 \pm 0.82	84.19 \pm 0.96	81.96 \pm 0.62	62.34 \pm 0.79	71.46 \pm 4.95	87.47 \pm 0.25	57.90 \pm 11.05	92.61 \pm 0.90	71.14 \pm 2.44	99.23 \pm 0.09
	UCI	63.57 \pm 2.15	52.63 \pm 1.87	69.77 \pm 0.43	69.94 \pm 0.50	63.44 \pm 1.52	74.39 \pm 1.81	81.40 \pm 0.52	70.25 \pm 2.02	52.31 \pm 2.67	72.17 \pm 2.20	90.34 \pm 0.74
	Social Evo.	89.06 \pm 1.23	87.30 \pm 1.55	94.24 \pm 0.36	90.67 \pm 2.41	80.30 \pm 0.21	95.94 \pm 0.37	94.56 \pm 0.24	96.73 \pm 0.11	Timeout	96.83 \pm 0.56	98.15 \pm 0.27
	Avg. Rank	7.86	9.57	6.29	6.43	8.43	5.86	4.14	5.43	7.57	3.43	1.00

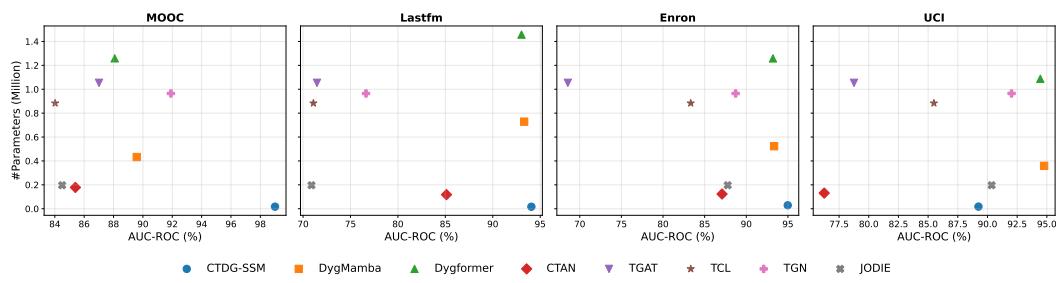


Figure 5: Model size vs. AUC-ROC under a transductive setting with random negative sampling.

E MODEL EFFICIENCY

E.1 BATCH LEVEL SUBGRAPH SAMPLING

The discrete update equation involves computing $p(\mathbf{L})^{-1}$, which incurs a cost of $\mathcal{O}(N_\tau^3)$, where N_τ denotes the number of nodes in \mathcal{G}_τ . To implement this update efficiently, we operate on a subset of nodes from \mathcal{G}_τ whose states are updated, while the remaining node states are kept unchanged. We refer to this subset as the *active batch nodes*. This set includes:

- Nodes appearing in interaction events of the form (u, v, t) within the batch.
- Neighbors of the nodes selected from these interactions.

Neighbor selection depends on the chosen polynomial. For first-order polynomials, we select at most K of the most recent 1-hop neighbors for each node u and v in interaction (u, v, t) . For a polynomial of order m , we extend this to an m -hop neighborhood. All nodes in this m -hop ego network are enumerated, and at most K neighbors are chosen based on temporal proximity, using the most recent timestamp along the path. For example, if a node w is connected to u via v through

$$u \xrightarrow{t_1} v \xrightarrow{t_2} w,$$

then the time associated with w when sampling neighbors for interaction (u, v, t) is computed as

$$t_w = (t - t_1) + (t - t_2).$$

The number of active batch nodes N_B for a batch of length B satisfies

$$N_B \leq 2BK \ll N_\tau,$$

resulting in a substantial reduction in update cost.

E.2 LEARNABLE PARAMETERS

In this section, we compare models based on the number of learnable parameters. Recall that the CTDG-SSM layer introduces learnable matrices only through $\bar{\mathbf{A}}_{\mathbf{L}_B[k]}$, $\bar{\mathbf{A}}$ and $\bar{\mathbf{B}}(\mathbf{L}[k], \mathbf{X}[k])$. Figure 5 illustrates the trade-off between parameter count and AUC-ROC. The results show that on

Models	LastFM		Enron		MOOC		UCI		Reddit		Social Evo.	
	Time	Mem	Time	Mem	Time	Mem	Time	Mem	Time	Mem	Time	Mem
JODIE	4.4	2.28	0.07	1.30	0.78	2.36	0.03	1.44	3.95	1.10	4.70	1.71
DyRep	6.6	2.29	0.10	1.34	0.88	2.38	0.05	1.51	5.75	1.21	7.55	1.76
TGAT	22.75	4.15	1.28	3.46	4.08	3.64	0.60	3.42	16.33	2.98	25.50	3.89
TGN	12.14	2.21	0.15	1.45	1.03	2.54	0.08	1.51	2.05	1.67	3.83	1.78
CAWN	99.00	14.92	2.62	4.03	13.45	8.02	1.95	9.40	20.16	5.89	85.66	8.14
TCL	6.23	3.04	0.30	2.51	1.00	2.49	0.13	2.00	2.25	1.82	5.05	2.48
GraphMixer	16.35	2.78	1.20	2.23	4.02	2.40	0.73	2.19	4.92	1.57	15.50	2.71
DyGFormer	47.00	7.57	2.73	3.23	8.32	3.35	0.62	2.30	7.00	2.42	20.00	2.77
CTAN	3.33	1.44	0.50	1.33	3.22	2.30	0.38	1.30	0.86	1.54	2.41	0.63
DyGMamba	28.45	4.17	2.05	2.74	4.88	2.48	0.60	1.93	6.30	2.07	17.80	2.59
CTDG-SSM	4.45	1.15	0.55	0.86	1.25	0.43	0.17	0.31	1.95	1.18	9.57	5.22

Table 10: Per-epoch time (minutes) and GPU memory usage (GB) across multiple datasets.

Models	Enron		UCI		Reddit	
	#Epoch	T _{tot}	#Epoch	T _{tot}	#Epoch	T _{tot}
CTAN	173.00	86.50	236.00	89.68	327.18	173.41
DyGFormer	32.80	89.54	34.80	21.58	24.60	104.30
DyGMamba	33.00	67.65	28.00	16.80	26.80	88.98
CTDG-SSM	83.00	45.65	38.00	6.46	27.00	52.65

Table 11: Number of epochs and total time (minutes) across datasets.

long-range datasets such as MOOC and Enron, the proposed model achieves superior performance while being highly parameter-efficient, requiring about one-tenth fewer parameters compared to existing approaches.

E.3 RUNTIME ANALYSIS

In this section, we compare the proposed model with state-of-the-art approaches using run-time as the performance metric. In Table 10 we report the per-epoch training time (in minutes) and GPU memory consumption (in GB) across all datasets. Notably, it can be observed that CTDG-SSM achieves significantly lower per-epoch training time and memory usage compared to DyGMamba and DyGFormer, both of which are specifically designed for long-range propagation tasks.

In Table 11 we present the total training time, obtained as the product of the per-epoch time and the number of training epochs. In Fig. 6, we analyze the convergence behavior of proposed algorithm where we show the training loss across epochs for multiple datasets. The plots clearly show that the proposed model converges within only a few epochs highlighting its computational efficiency.

E.4 ROBUSTNESS TO STRUCTURAL PERTURBATIONS

We evaluate the robustness of the proposed algorithm to structural perturbations on the Enron dataset with downstream task as link prediction. In particular, we introduce the perturbations to the true graph as $\bar{\mathbf{L}}_B[k] = \mathbf{L}_B[k] + \epsilon \Delta \mathbf{L}_B[k]$, where $\Delta \mathbf{L}_B[k]$ is a perturbation matrix whose entries are sampled from a normal distribution, i.e., $[\Delta \mathbf{L}_B]_{ij} \sim \mathcal{N}(0, 1)$ and ϵ controls the noise level.

Prediction Node	p(\mathbf{L}) = \mathbf{I}	p(\mathbf{L}) = $\alpha_0 \mathbf{I} + \alpha_1 \mathbf{L}$	p(\mathbf{L}) = $\alpha_0 \mathbf{I} + \alpha_1 \mathbf{L} + \alpha_2 \mathbf{L}^2$
First	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00
Second	0.51 \pm 0.06	0.97 \pm 0.02	1.00 \pm 0.00
Third	0.47 \pm 0.02	0.96 \pm 0.01	1.00 \pm 0.00
Second-Last	0.46 \pm 0.01	0.90 \pm 0.01	0.92 \pm 0.07
Last	0.45 \pm 0.02	0.88 \pm 0.18	0.90 \pm 0.06

Table 12: Ablation study with respect to the order of the graph filter.

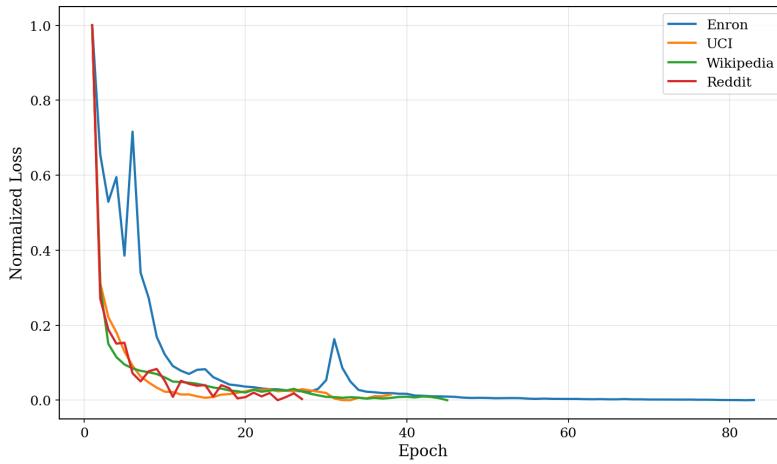
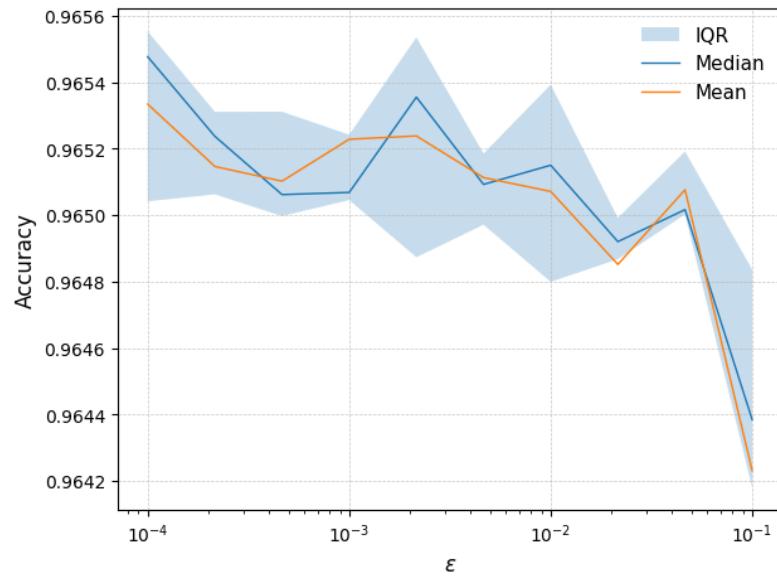


Figure 6: Convergence behavior of CTDG-SSM across the datasets

Figure 7: CTDG-SSM link prediction accuracy under noise insertion of form $\mathbf{L}_B[k] + \epsilon \frac{\Delta \mathbf{L}}{\|\Delta \mathbf{L}\|_2}$ at each update.

1134 We then evaluate the proposed algorithm by replacing $L_B[k]$ with $\bar{L}_B[k]$ under different values of
 1135 ϵ , thereby varying the severity of the structural perturbation. In Fig. 7, we report the accuracy across
 1136 these noise levels. As expected, accuracy decreases as the noise variance increases; however, for
 1137 small values of ϵ , the model performs very close to the noise-free setting. This demonstrates that the
 1138 proposed approach is stable and robust under mild structural perturbations.
 1139

1140 E.5 ABLATION TO STUDY THE IMPORTANCE OF GRAPH FILTERS AND CTDG-SSM MODULE

1141
 1142 Considering the downstream task as sequence classification, we conduct an ablation study to under-
 1143 stand which components of the model capture long-range information. Specifically, we analyze the
 1144 role of graph filters and the proposed CTDG-SSM module on the long-range spatial (LRS) task and
 1145 the long-range temporal (LRT) task.
 1146

1147 To evaluate the LRT capabilities of CTDG-SSM, we first set the polynomial $p(L) = I$. For an event
 1148 of the form (u, v, t, x_u, x_v) in sequence classification, instead of restricting the model to update only
 1149 a small subset of nodes (i.e., those in the batch subgraph), we update the state vectors of all nodes.
 1150 Formally, we define the input signal at time t as:

$$1151 \quad \mathbf{X}(t) \in \mathbb{R}^{N_\tau \times 1} \quad \text{such that} \quad \mathbf{X}[u](t) = x_u, \mathbf{X}[v](t) = x_v, \text{ and } 0 \text{ otherwise.}$$

1152
 1153 This eliminates the step where the previous states of inactive nodes are carried forward through
 1154 memory. This carry-forward mechanism could aid the model in LRT, so by removing it, we can
 1155 evaluate the LRT capability of CTDG-SSM in isolation. In this setup, the model is tasked with pre-
 1156 dicting the initial feature $\mathbf{X}0$ observed at the first node using the final state vectors of different
 1157 nodes. A successful LRT would yield strong performance as long as the state vector of node 1 pre-
 1158 serves the information of the feature $\mathbf{X}0$. Notably, this model completely lacks LRS capability,
 1159 as it does not account for the underlying graph structure and updates states solely based on the input
 1160 at the corresponding nodes.
 1161

1162 Next, we evaluate the effect of aggregating multi-hop information by applying graph filters of dif-
 1163 ferent orders. In Table 12, we report the mean accuracies obtained from representations at different
 1164 nodes using filter orders 1 and 2. We observe a substantial improvement in prediction accuracy by
 1165 leveraging the representations from the node $2, \dots, 31$ (the last node), demonstrating the model’s
 1166 enhanced ability to preserve spatial information over longer ranges. In particular, using deeper
 1167 aggregation-i.e., a filter of order 2-yields a notable gain in accuracy, indicating that incorporating
 1168 information from larger hop neighborhoods significantly strengthens the model’s capacity to capture
 1169 long-range spatial dependencies.
 1170

F ADDITIONAL EXPERIMENTS

1171
 1172 In this section, we present results on additional temporal datasets-Flights, Contacts, UN Trade,
 1173 UN Vote, and CanParl (Yu et al., 2023)-using link prediction as the downstream task. We fur-
 1174 ther compare the proposed method with several state-of-the-art approaches, including Edgebank,
 1175 DyG-Mamba (Li et al., 2024a), and FreeDyG (Tian et al., 2024).
 1176

1177 In Tables 14, 15, 16, and 17 we compare the performance of proposed model against the state of the
 1178 art methods with across these datasets. It is clear that the proposed model consistently outperforms
 1179 competing methods on most datasets, which we attribute to its ability to jointly model structural and
 1180 temporal evolution through graph filters and state-space dynamics.
 1181

1182 Additionally, in Tables 13 and 18, we provide direct comparisons against Edgebank, DyG-Mamba,
 1183 and FreeDyG. The results clearly demonstrate that our model consistently achieves superior per-
 1184 formance across both transductive and inductive settings.
 1185

G CTDG-SSM BEYOND NODE/EDGE ADDITION.

1186
 1187 The CTDG-SSM state update equation depends on the change in the graph Laplacian, and therefore
 1188 naturally accommodates both the addition *and* removal of edges.
 1189

NSS	Datasets	Edgebank	DyG-Mamba	FreeDyG	CTDG-SSM
rnd	Wiki	90.37 \pm 0.00	99.08 \pm 0.09	99.26 \pm 0.01	99.40 \pm 0.00
	Reddit	94.86 \pm 0.00	99.27 \pm 0.00	99.48 \pm 0.01	99.53 \pm 0.00
	MOOC	57.97 \pm 0.00	90.25 \pm 0.01	89.61 \pm 0.10	98.85 \pm 0.00
	LastFM	79.29 \pm 0.00	94.23 \pm 0.01	92.15 \pm 0.16	93.40 \pm 0.49
	Enron	83.53 \pm 0.00	93.14 \pm 0.08	92.51 \pm 0.05	94.46 \pm 4.73
	Social Evo.	74.95 \pm 0.00	94.77 \pm 0.01	94.91 \pm 0.01	98.65 \pm 0.65
	UCI	76.20 \pm 0.00	96.14 \pm 0.14	96.28 \pm 0.11	90.18 \pm 0.98
hist	Wiki	73.35 \pm 0.00	82.35 \pm 1.25	91.59 \pm 0.57	98.99 \pm 0.32
	Reddit	73.59 \pm 0.00	81.02 \pm 0.19	85.67 \pm 1.01	97.55 \pm 0.22
	MOOC	60.71 \pm 0.00	87.42 \pm 1.57	86.71 \pm 0.81	94.76 \pm 1.76
	LastFM	73.03 \pm 0.00	84.08 \pm 0.45	79.71 \pm 0.51	88.91 \pm 0.93
	Enron	76.53 \pm 0.00	77.85 \pm 1.20	78.87 \pm 0.82	95.80 \pm 3.33
	Social Evo.	80.57 \pm 0.00	97.35 \pm 0.18	77.79 \pm 0.23	98.20 \pm 0.81
	UCI	65.50 \pm 0.00	81.36 \pm 0.14	86.10 \pm 1.19	88.87 \pm 1.28
ind	Wiki	80.63 \pm 0.00	87.06 \pm 0.86	90.05 \pm 0.79	99.45 \pm 0.06
	Reddit	85.48 \pm 0.00	91.77 \pm 0.46	90.74 \pm 0.17	99.58 \pm 0.02
	MOOC	49.43 \pm 0.00	81.19 \pm 2.02	83.01 \pm 0.87	99.03 \pm 0.38
	LastFM	75.49 \pm 0.00	75.05 \pm 0.40	72.19 \pm 0.24	93.81 \pm 0.44
	Enron	73.89 \pm 0.00	77.46 \pm 0.90	77.81 \pm 0.65	95.81 \pm 2.99
	Social Evo.	83.69 \pm 0.00	97.78 \pm 0.15	97.50 \pm 0.15	98.88 \pm 0.63
	UCI	57.43 \pm 0.00	77.75 \pm 1.56	82.35 \pm 0.73	91.44 \pm 0.50

Table 13: Performance comparison with AP on dynamic link prediction under transductive setting.

NSS	Dataset	JODIE	DyRep	TGAT	TGN	CAWN	Edgebank	TCL	GraphMixer	DyGFormer	DyGMamba	CTDG-SSM
rnd	Flights	95.60 \pm 1.73	95.29 \pm 0.72	94.03 \pm 0.18	97.95 \pm 0.14	98.51 \pm 0.01	89.35 \pm 0.00	91.23 \pm 0.02	90.99 \pm 0.05	98.91 \pm 0.01	98.95\pm0.05	98.70 \pm 0.05
	Can. Parl.	69.26 \pm 0.31	66.54 \pm 2.76	70.73 \pm 0.72	70.88 \pm 1.84	69.82 \pm 2.34	64.55 \pm 0.00	68.67 \pm 2.67	77.04 \pm 0.46	97.36 \pm 0.45	99.57\pm0.08	98.20 \pm 1.73
	US Legis.	75.05 \pm 0.52	75.34 \pm 0.39	68.52 \pm 3.16	75.99 \pm 0.58	70.58 \pm 0.48	69.39 \pm 0.00	69.59 \pm 0.48	71.11 \pm 0.59	71.11 \pm 0.59	71.75 \pm 0.26	82.51 \pm 0.00
	UN Trade	64.94 \pm 0.31	63.21 \pm 0.93	61.47 \pm 0.18	65.03 \pm 1.37	65.39 \pm 0.12	60.41 \pm 0.00	62.21 \pm 0.03	62.21 \pm 0.27	66.46 \pm 1.29	67.50 \pm 0.14	69.10\pm0.20
	UN Vote	63.91 \pm 0.81	62.81 \pm 0.80	52.21 \pm 0.98	65.72 \pm 2.17	52.84 \pm 0.10	58.49 \pm 0.00	51.90 \pm 0.30	52.11 \pm 0.16	55.55 \pm 0.42	56.39 \pm 0.18	95.31 \pm 0.01
	Contact	95.31 \pm 1.33	95.98 \pm 0.15	96.28 \pm 0.09	96.26 \pm 0.28	92.58 \pm 0.00	92.44 \pm 0.12	91.92 \pm 0.03	98.29 \pm 0.01	98.43 \pm 0.12	98.90 \pm 0.05	
	Flights	66.48 \pm 2.59	67.61 \pm 0.99	72.38 \pm 0.18	66.70 \pm 1.64	64.72 \pm 0.97	70.53 \pm 0.00	70.68 \pm 0.24	71.47 \pm 0.26	66.59 \pm 0.49	67.80 \pm 2.17	87.2 \pm 1.50
hist	Can. Parl.	51.79 \pm 0.63	63.31 \pm 1.23	67.13 \pm 0.84	68.42 \pm 3.07	66.53 \pm 2.77	63.84 \pm 0.00	65.93 \pm 3.00	74.34 \pm 0.87	97.00 \pm 0.31	99.77\pm1.00	97.8 \pm 1.24
	US Legis.	51.71 \pm 5.76	86.88 \pm 2.25	62.14 \pm 6.60	74.00 \pm 7.57	68.82 \pm 8.23	63.22 \pm 0.00	80.53 \pm 3.95	81.65 \pm 1.02	85.30 \pm 3.88	86.12\pm0.26	80.02 \pm 0.00
	UN Trade	61.39 \pm 1.83	59.19 \pm 0.17	55.74 \pm 0.91	58.44 \pm 5.51	55.71 \pm 0.38	81.32 \pm 0.00	55.90 \pm 1.17	57.05 \pm 1.22	64.41 \pm 1.44	66.10 \pm 1.02	68.4 \pm 0.04
	UN Vote	70.02 \pm 0.81	69.30 \pm 1.12	52.96 \pm 2.14	69.37 \pm 3.93	51.26 \pm 0.04	84.89 \pm 0.00	52.30 \pm 2.35	61.20 \pm 1.60	60.84 \pm 1.58	61.07 \pm 1.39	95.29\pm0.01
	Contact	95.31 \pm 2.13	96.39 \pm 0.20	96.05 \pm 0.52	93.05 \pm 2.35	84.16 \pm 0.49	88.81 \pm 0.00	93.86 \pm 0.01	93.36 \pm 0.41	97.57 \pm 0.00	97.61 \pm 0.04	98.2 \pm 0.05
	Flights	69.07 \pm 4.02	70.57 \pm 1.82	75.48 \pm 0.26	71.09 \pm 2.72	69.18 \pm 1.52	81.08 \pm 0.00	74.62 \pm 0.18	74.87 \pm 0.21	70.92 \pm 1.78	73.79 \pm 5.69	86.50\pm1.34
	Can. Parl.	48.42 \pm 0.66	58.61 \pm 0.86	68.82 \pm 1.21	65.34 \pm 2.87	67.75 \pm 1.00	62.16 \pm 0.00	65.85 \pm 1.75	69.48 \pm 0.63	95.44 \pm 0.57	94.87 \pm 0.67	94.2 \pm 0.50
ind	US Legis.	50.27 \pm 5.13	83.44 \pm 1.16	61.91 \pm 5.82	67.57 \pm 6.47	65.81 \pm 8.52	67.54 \pm 0.00	78.15 \pm 3.34	79.63 \pm 0.84	81.25 \pm 3.62	81.22 \pm 1.34	81.32 \pm 0.00
	UN Trade	60.42 \pm 1.48	60.19 \pm 1.24	60.61 \pm 1.24	61.04 \pm 6.01	62.54 \pm 0.67	72.97 \pm 0.00	61.06 \pm 1.74	60.15 \pm 1.29	55.79 \pm 1.02	58.89 \pm 0.59	67.92 \pm 0.5
	UN Vote	67.79 \pm 1.46	67.53 \pm 1.98	52.89 \pm 1.61	67.63 \pm 2.67	52.19 \pm 0.34	66.30 \pm 0.00	50.62 \pm 0.82	51.60 \pm 0.73	51.91 \pm 0.84	52.24 \pm 0.95	95.37 \pm 0.01
	Contact	93.43 \pm 1.78	94.18 \pm 0.10	94.35 \pm 0.48	90.18 \pm 3.28	89.31 \pm 0.27	85.20 \pm 0.00	91.35 \pm 0.21	90.87 \pm 0.35	94.75 \pm 0.28	95.43 \pm 0.17	97.60 \pm 0.32
	Flights	68.97 \pm 1.87	69.43 \pm 0.90	72.20 \pm 0.36	68.39 \pm 0.95	66.11 \pm 1.72	74.64 \pm 0.00	70.57 \pm 3.01	70.37 \pm 0.23	68.09 \pm 0.43	68.98 \pm 1.81	90.1 \pm 1.50
	Can. Parl.	62.44 \pm 1.11	70.16 \pm 1.70	70.86 \pm 0.94	73.23 \pm 3.08	72.06 \pm 3.94	63.04 \pm 0.00	69.95 \pm 3.70	79.03 \pm 1.01	97.61 \pm 0.40	99.82 \pm 0.10	97.5 \pm 0.05
	US Legis.	67.47 \pm 6.40	91.44 \pm 1.18	73.47 \pm 5.25	83.53 \pm 4.53	78.62 \pm 7.46	67.41 \pm 0.00	83.97 \pm 3.71	85.17 \pm 0.70	90.77 \pm 1.96	88.36 \pm 1.78	85.55 \pm 0.00
rnd	UN Trade	68.92 \pm 1.40	64.36 \pm 1.40	60.37 \pm 0.68	63.93 \pm 5.41	63.09 \pm 0.74	86.61 \pm 0.00	61.43 \pm 1.04	63.20 \pm 1.54	73.86 \pm 1.13	74.10 \pm 2.02	73.3 \pm 0.7
	UN Vote	76.84 \pm 1.01	74.72 \pm 1.43	53.95 \pm 3.15	73.40 \pm 5.20	51.27 \pm 0.33	89.62 \pm 0.00	52.29 \pm 2.39	52.61 \pm 1.44	64.27 \pm 1.78	65.17 \pm 1.24	97.22 \pm 0.00
	Contact	96.35 \pm 0.92	96.00 \pm 0.23	95.39 \pm 0.43	93.76 \pm 1.29	83.06 \pm 0.32	92.17 \pm 0.00	93.34 \pm 0.19	94.14 \pm 0.34	97.17 \pm 0.05	97.27 \pm 0.06	97.78 \pm 0.04
	Flights	69.99 \pm 3.10	71.13 \pm 1.55	73.47 \pm 0.18	71.63 \pm 1.72	69.70 \pm 0.75	81.10 \pm 0.00	72.54 \pm 0.19	72.21 \pm 0.21	69.53 \pm 1.17	71.16 \pm 3.24	89.25 \pm 1.24
	Can. Parl.	52.88 \pm 0.80	63.53 \pm 0.65	72.47 \pm 1.18	69.57 \pm 2.81	72.93 \pm 1.78	61.41 \pm 0.00	69.47 \pm 2.12	70.52 \pm 0.94	96.70 \pm 0.59	99.82 \pm 0.10	96.87 \pm 0.05
	US Legis.	59.05 \pm 5.52	89.44 \pm 0.71	71.62 \pm 5.42	78.12 \pm 4.46	76.45 \pm 7.02	68.66 \pm 0.00	82.54 \pm 3.91	84.22 \pm 0.91	87.96 \pm 1.80	86.08 \pm 2.27	86.06 \pm 0.00
	UN Trade	66.82 \pm 1.27	65.60 \pm 1.28	66.13 \pm 0.78	66.37 \pm 5.39	71.73 \pm 0.74	74.20 \pm 0.00	67.80 \pm 1.21	66.53 \pm 1.22	62.56 \pm 1.51	51.89 \pm 0.74	53.37 \pm 0.26
	Contact	94.47 \pm 1.08	94.23 \pm 0.18	94.10 \pm 0.41	91.64 \pm 1.72	87.68 \pm 0.24	91.23 \pm 0.19	90.96 \pm 0.27	95.01 \pm 0.15	95.68 \pm 0.20	97.50 \pm 0.45	

Table 15: AUC-ROC for dynamic link prediction under transductive setting

1242

1243

1244

NSS	Dataset	JODIE	DyRep	TGAT	TGN	CAWN	TCL	GraphMixer	DyGFormer	DyGMamba	CTDG-SSM
rnd	Flights	94.74 \pm 0.37	92.88 \pm 0.73	88.73 \pm 0.33	95.03 \pm 0.60	97.06 \pm 0.02	83.41 \pm 0.07	83.03 \pm 0.05	97.79 \pm 0.02	97.85 \pm 0.22	97.15 \pm 0.04
	Can. Parl.	53.92 \pm 0.94	54.02 \pm 0.76	55.18 \pm 0.93	54.10 \pm 0.93	55.80 \pm 0.69	54.30 \pm 0.66	55.91 \pm 0.82	87.74 \pm 0.71	93.46 \pm 2.62	88.65 \pm 0.70
	US Legis.	54.93 \pm 2.29	57.28 \pm 0.71	51.00 \pm 3.11	58.63 \pm 0.37	53.17 \pm 1.20	52.59 \pm 0.97	50.71 \pm 0.76	54.28 \pm 2.87	55.95 \pm 1.16	76.94 \pm 0.01
	UN Trade	59.65 \pm 0.77	57.02 \pm 0.69	61.03 \pm 0.18	58.31 \pm 3.15	65.24 \pm 0.21	62.21 \pm 0.12	62.17 \pm 0.31	64.55 \pm 0.62	70.55 \pm 0.04	72.42 \pm 0.02
	UN Vote	56.64 \pm 0.96	54.62 \pm 2.22	52.24 \pm 1.46	58.85 \pm 2.51	49.94 \pm 0.45	51.60 \pm 0.97	50.68 \pm 0.44	55.93 \pm 0.39	56.61 \pm 0.13	95.79 \pm 0.01
	Contact	94.34 \pm 1.45	92.18 \pm 0.41	95.87 \pm 0.11	93.82 \pm 0.99	89.55 \pm 0.30	91.11 \pm 0.12	90.59 \pm 0.05	98.03 \pm 0.02	98.16 \pm 0.03	98.42 \pm 0.01
ind	Flights	61.01 \pm 1.66	62.83 \pm 1.31	64.72 \pm 0.37	59.32 \pm 1.45	56.82 \pm 0.56	64.50 \pm 0.25	65.29 \pm 0.24	57.11 \pm 0.20	57.76 \pm 2.06	92.24 \pm 1.05
	Can. Parl.	52.58 \pm 0.86	52.24 \pm 0.28	56.46 \pm 0.50	54.18 \pm 0.73	57.06 \pm 0.08	55.46 \pm 0.69	55.76 \pm 0.65	87.22 \pm 0.82	92.68 \pm 0.97	88.42 \pm 0.65
	US Legis.	52.94 \pm 2.11	62.10 \pm 1.41	51.83 \pm 0.49	61.18 \pm 1.10	55.56 \pm 0.75	54.97 \pm 1.41	52.03 \pm 1.02	56.31 \pm 3.46	57.85 \pm 0.23	75.64 \pm 0.01
	UN Trade	55.43 \pm 1.20	55.42 \pm 0.87	55.58 \pm 0.68	52.80 \pm 3.24	54.97 \pm 0.38	55.66 \pm 0.98	54.88 \pm 1.01	52.56 \pm 1.70	52.81 \pm 0.18	69.24 \pm 1.02
	UN Vote	61.17 \pm 1.33	60.29 \pm 1.79	53.08 \pm 3.10	63.71 \pm 2.97	48.01 \pm 0.82	54.13 \pm 2.16	48.10 \pm 0.40	52.61 \pm 1.25	53.70 \pm 2.40	95.77 \pm 0.00
	Contact	90.43 \pm 2.33	89.22 \pm 0.65	94.14 \pm 0.45	88.12 \pm 1.50	74.19 \pm 0.81	90.43 \pm 0.17	89.91 \pm 0.36	93.55 \pm 0.52	94.05 \pm 0.32	96.78 \pm 0.72

1251

1252

Table 16: AP for dynamic link prediction under inductive setting

1253

1254

1255

NSS	Dataset	JODIE	DyRep	TGAT	TGN	CAWN	TCL	GraphMixer	DyGFormer	DyGMamba	CTDG-SSM
rnd	Flights	95.21 \pm 0.32	93.56 \pm 0.70	88.64 \pm 0.35	95.92 \pm 0.43	96.86 \pm 0.02	82.48 \pm 0.01	82.27 \pm 0.06	97.80 \pm 0.02	97.98 \pm 0.25	97.36 \pm 0.04
	Can. Parl.	53.81 \pm 1.14	55.27 \pm 0.49	56.51 \pm 0.75	55.86 \pm 0.75	58.83 \pm 1.13	55.83 \pm 1.07	58.32 \pm 1.08	89.33 \pm 0.48	94.02 \pm 3.42	89.78 \pm 0.78
	US Legis.	58.12 \pm 2.35	61.07 \pm 0.56	48.27 \pm 3.50	62.38 \pm 0.48	51.49 \pm 1.13	50.43 \pm 1.48	47.20 \pm 0.89	53.21 \pm 3.03	57.17 \pm 0.20	81.17 \pm 0.00
	UN Trade	62.28 \pm 0.50	58.82 \pm 0.98	62.72 \pm 0.12	59.99 \pm 3.50	67.05 \pm 0.21	63.76 \pm 0.07	63.48 \pm 0.37	67.25 \pm 1.05	68.26 \pm 0.26	73.76 \pm 0.45
	UN Vote	58.13 \pm 1.43	55.13 \pm 3.46	51.83 \pm 1.35	61.23 \pm 2.71	48.34 \pm 0.76	50.51 \pm 1.05	50.04 \pm 0.86	56.73 \pm 0.69	56.91 \pm 0.12	97.72 \pm 0.01
	Contact	95.37 \pm 0.92	91.89 \pm 0.38	96.53 \pm 0.10	94.84 \pm 0.75	89.07 \pm 0.34	93.05 \pm 0.09	92.83 \pm 0.05	98.30 \pm 0.02	98.44 \pm 0.05	98.70 \pm 0.65
ind	Flights	60.72 \pm 1.29	61.99 \pm 1.39	63.40 \pm 0.26	59.66 \pm 1.05	56.58 \pm 0.44	63.49 \pm 0.23	63.32 \pm 0.19	56.05 \pm 0.22	56.58 \pm 2.12	91.36 \pm 1.87
	Can. Parl.	51.61 \pm 0.98	52.35 \pm 0.52	58.15 \pm 0.62	55.43 \pm 0.42	60.01 \pm 0.47	56.88 \pm 0.93	56.63 \pm 1.09	88.51 \pm 0.73	92.37 \pm 0.18	89.56 \pm 0.69
	US Legis.	58.12 \pm 2.94	67.94 \pm 0.98	49.99 \pm 4.88	64.87 \pm 1.65	54.41 \pm 1.31	52.12 \pm 2.13	49.28 \pm 0.86	56.57 \pm 3.22	57.91 \pm 3.41	81.46 \pm 0.01
	UN Trade	58.71 \pm 1.20	57.87 \pm 1.36	59.98 \pm 0.59	55.62 \pm 3.59	60.88 \pm 0.79	61.01 \pm 0.93	59.71 \pm 1.17	57.28 \pm 3.06	57.58 \pm 0.20	71.43 \pm 0.04
	UN Vote	65.29 \pm 1.30	64.10 \pm 2.10	51.78 \pm 4.14	68.58 \pm 3.08	48.04 \pm 1.76	54.65 \pm 2.20	45.57 \pm 0.41	53.87 \pm 2.01	54.83 \pm 2.17	97.73 \pm 0.01
	Contact	90.80 \pm 1.18	88.87 \pm 0.67	93.76 \pm 0.40	88.85 \pm 1.39	74.79 \pm 0.38	90.37 \pm 0.16	90.04 \pm 0.29	94.14 \pm 0.26	94.35 \pm 0.29	96.98 \pm 0.56

1263

1264

Table 17: AUC-ROC for dynamic link under inductive setting.

1265

1266

1267

NSS	Datasets	Edgebank	DyG-Mamba	FreeDyG	CTDG-SSM
rnd	Wiki	N/A	98.65 \pm 0.03	98.97 \pm 0.01	99.19 \pm 0.09
	Reddit	N/A	98.88 \pm 0.00	98.91 \pm 0.01	99.28 \pm 0.00
	MOOC	N/A	90.20 \pm 0.06	87.75 \pm 0.62	98.49 \pm 0.48
	LastFM	N/A	95.13 \pm 0.08	94.89 \pm 0.01	93.65 \pm 0.62
	Enron	N/A	91.14 \pm 0.07	89.69 \pm 0.17	93.02 \pm 7.25
	Social Evo.	N/A	93.23 \pm 0.01	94.76 \pm 0.05	97.56 \pm 0.45
ind	UCI	N/A	94.15 \pm 0.04	94.85 \pm 0.10	89.12 \pm 1.02
	Wiki	N/A	79.44 \pm 2.78	87.54 \pm 0.26	99.23 \pm 0.09
	Reddit	N/A	65.61 \pm 0.01	64.98 \pm 0.20	99.32 \pm 0.03
	MOOC	N/A	81.67 \pm 1.08	81.41 \pm 0.31	98.64 \pm 0.51
	LastFM	N/A	79.60 \pm 0.28	77.01 \pm 0.43	94.08 \pm 0.57
	Enron	N/A	68.44 \pm 1.85	72.85 \pm 0.81	94.56 \pm 5.02
1281	Social Evo.	N/A	96.93 \pm 0.21	96.91 \pm 0.12	98.15 \pm 0.27
	UCI	N/A	79.27 \pm 1.03	82.06 \pm 0.58	90.34 \pm 0.74

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Dataset	CTDG-SSM	DyGMamba	DyGFormer	CTAN	TGN
tgb1-wiki	0.817 \pm 0.027	0.739 \pm 0.009	0.798 \pm 0.004	0.668 \pm 0.007	0.396 \pm 0.060
tgb1-coin	0.862 \pm 0.003	—	0.752 \pm 0.004	0.748 \pm 0.004	0.586 \pm 0.037

Table 19: MRR on the tgb1-wiki and tgb1-coin datasets.

1296 To handle edge deletions within the subgraph, one can simply invert the construction process de-
 1297 scribed in the paper. Specifically, if an edge is removed in batch B , we construct batch Laplacian
 1298 $\mathbf{L}_B[k]$ without this edge, while $\mathbf{L}_B[k-1]$ includes it. The resulting difference $\mathbf{L}_B[k] - \mathbf{L}_B[k-1]$
 1299 correctly captures the effect of edge removal.

1300 Node deletion can be treated analogously by removing all edges incident to that node. In this case,
 1301 $\mathbf{L}_B[k]$ contains no edges between the removed node and its neighbors, while $\mathbf{L}_B[k-1]$ retains these
 1302 edges. This ensures that the update mechanism captures the effective removal of the node.
 1303

1304 H LIMITATIONS AND FUTURE RESEARCH DIRECTIONS.

1305 In the current model, we implement a polynomial of the Laplacian using simple graph filters, which
 1306 provide an efficient linear approximation to the underlying differential operator. While effective, this
 1307 design restricts the expressiveness of the operator. An important direction for future work is to ex-
 1308 plore learning these operators and their inverses directly through graph neural networks, potentially
 1309 enabling more adaptive and data-dependent approximations. Also, the current framework is primar-
 1310 ily evaluated on CTDG datasets, where all node and edge features are fully observed. Extending the
 1311 framework to handle scenarios with missing features in sampled events, or to accommodate inter-
 1312 leaved and partially observed dynamic graphs, presents a promising direction for future research.
 1313

1315 I CTDG-SSM PSEUDO CODE AND TIME COMPLEXITY

1316 The CTDG-SSM model consists of two primary components: the online update and the inference.
 1317 In this section, we will provide the algorithm for both of these parts.
 1319

1320 I.1 ONLINE UPDATE

1322 From a stream of events, we form a batch of B concurrent events. Using subgraph sampling, we
 1323 construct the corresponding batch Laplacian $\mathbf{L}_B[k]$. By removing the edges associated with the
 1324 events in the current batch from $\mathbf{L}_B[k]$, we obtain the previous-step Laplacian $\mathbf{L}_B[k-1]$. Algo-
 1325 rithm 1 summarizes this procedure. For active batch nodes N_B , state vectors of dimension d , and a
 1326 polynomial of highest order m , the state update has a time complexity of $\mathcal{O}(mN_B^3 + dN_B^2)$, it is to
 1327 be noted that $N_B \ll N$.
 1328

1329 I.2 INFERENCE

1331 The query provided to the model for a downstream task may take the form (u, v, t) , where the model
 1332 must determine whether this constitutes a valid link or classify node u based on the interaction and
 1333 its historical context. Alternatively, the query may be of the form (u) , in which case the model
 1334 retrieves the stored state of node u and processes it according to the downstream task. In this
 1335 section, Algorithm 2 specifies the procedure for link prediction queries, and Algorithm 3 details the
 1336 procedure for node classification queries. The inference time complexity depends on the task:
 1337

- 1338 • for link prediction and node classification, it is $\mathcal{O}(\deg(u))$ due to the computation of Δt ;
- 1339 • for sequence classification, it is $\mathcal{O}(1)$ per query.

1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

Algorithm 1 CTDG-SSM ZOH Update

Require: Batch Laplacian $\mathbf{L}_B[k]$, Batch Laplacian $\mathbf{L}_B[k-1]$, events $\{u_i, v_i, t_i, \mathbf{x}_u[t_i], \mathbf{x}_v[t_i], \mathbf{x}_{u,v}[t_i]\}_{i=1}^B$ and batch active node indices $\{\hat{u}_i\}_{i=1}^{N_B}$, learnable polynomial p_α , Gaussian quadrature node $\mathbf{q}_{\text{nodes}} \in \mathbb{R}^{8 \times 1}$, $\mathbf{q}_{\text{weights}} \in \mathbb{R}^{8 \times 1}$. State matrices parameters $\mathbf{A}_{\log}^{(0)} \in \mathbb{R}^d$, $\mathbf{A}_{\log}^{(1)} \in \mathbb{R}^d$, hidden states $\mathbf{H}^{(0)}[k]$ and $\mathbf{H}^{(1)}[k]$.

1: $\mathbf{I} \leftarrow \mathbf{I}_{\dim(\mathbf{L}[k])}$ {Identity matrix}
2: $\Delta p_\alpha(\mathbf{L}_B[k]) \leftarrow p_\alpha(\mathbf{L}_B[k]) - p_\alpha(\mathbf{L}_B[k-1])$
3: $\bar{\mathbf{A}}_{\mathbf{L}_B[k]} \leftarrow \exp(-p_\alpha(\mathbf{L}_B[k])^{-1} \Delta p_\alpha(\mathbf{L}_B[k]))$
4: $\text{LHS} \leftarrow \mathbf{O}_{\dim(N_B \times N_B \times 8)}$
5: **for** $i = 0$ to 7 **do**
6: $\text{LHS}[:, :, i] \leftarrow \exp(-p_\alpha(\mathbf{L}_B[k])^{-1} \Delta p_\alpha(\mathbf{L}_B[k]) \mathbf{q}_{\text{node}}[i])$
7: **end for**
8: Construct SSM Input \mathbf{X} :
9: $\mathbf{N}_{\text{St}} \leftarrow \mathbf{0}_{\dim(N_\tau \times 2d_s)}$ {Zero matrix, d_s : Static embedding dimensions}
10: **for** $i = 0$ to $B-1$ **do**
11: $\mathbf{N}_{\text{St}}[i, 1:d] \leftarrow \text{Static-Embedding}(u_i)$
12: $\mathbf{N}_{\text{St}}[i, d+1:2d] \leftarrow \text{Static-Embedding}(v_i)$
13: $\mathbf{N}_{\text{St}}[i+B, 1:d] \leftarrow \text{Static-Embedding}(v_i)$
14: $\mathbf{N}_{\text{St}}[i+B, d+1:2d] \leftarrow \text{Static-Embedding}(u_i)$
15: **end for**
16: **for** $i = 1$ to B **do**
17: $\mathbf{X}[i, :] \leftarrow [\mathbf{x}_u[t_i] \mid \mathbf{x}_v[t_i] \mid \mathbf{x}_{u,v}[t_i] \mid \phi(\Delta[t_i]) \mid \mathbf{N}_{\text{st}}[i, :]]$ { \mathbf{V} has N_τ rows}
18: $\mathbf{X}[i+B, :] \leftarrow [\mathbf{x}_u[t_i] \mid \mathbf{x}_v[t_i] \mid \mathbf{x}_{u,v}[t_i] \mid \phi(\Delta[t_i]) \mid \mathbf{N}_{\text{st}}[i+B, :]]$ {rest filled with 0.}
19: **end for**
20: **CTDG-SSM 1st Layer:**
21: $\tilde{\mathbf{X}}^{(0)}[k] \leftarrow h_\theta(\mathbf{X})$ { encoder h_θ }
22: $\mathbf{X}_n^{(0)}[k] \leftarrow \text{RMS}_0(\tilde{\mathbf{X}}^{(0)}[k])$
23: $\mathbf{B}_{x,0} \leftarrow \mathbf{B}_0(\mathbf{X}_n^{(0)}[k])$
24: $\Delta_0 \leftarrow \tau_\Delta^{(0)}(\mathbf{X}_n^{(0)}[k])$ ($N_\tau \times 1$)
25: $\mathbf{A}_c^{(0)} \leftarrow -\exp(\mathbf{A}_{\log}^{(0)})$
26: $\bar{\mathbf{A}}^{(0)} \leftarrow \exp(\Delta_0 \odot \mathbf{A}_c^{(0)}[\text{None}, :])$
27: $\mathbf{C}_0 \leftarrow (p_\alpha(\mathbf{L}_B[k])^{-1} (\Delta_0 \odot \mathbf{B}_{x,0}))[:, :, \text{None}] \odot \mathbf{q}_{\text{weights}}[\text{None}, \text{None}, :]$
28: $\text{RHS}_0 \leftarrow \exp((\Delta_0 \odot \mathbf{A}_c^{(0)}[\text{None}, :])[:, :, \text{None}] \odot \mathbf{q}_{\text{nodes}}[\text{None}, \text{None}, :])$ ($N_\tau \times d \times 8$)
29: $\bar{\mathbf{B}}(\mathbf{L}_B[k], \mathbf{X}_n^{(0)}[k]) \leftarrow \sum_{q=0}^7 \text{LHS}[:, :, q] \mathbf{C}_0[:, :, q] \text{RHS}_0[:, :, q]$
30: $\hat{\mathbf{H}}^{(0)}[k+1] \leftarrow \bar{\mathbf{A}}_{\mathbf{L}_B[k]}(\mathbf{H}^{(0)}[k][\{\hat{u}_i\}_{i=1}^{N_B}] \odot \bar{\mathbf{A}}^{(0)}) + \bar{\mathbf{B}}(\mathbf{L}_B[k], \mathbf{X}_n^{(0)}[k])$
31: $\tilde{\mathbf{X}}^{(1)}[k] \leftarrow \tilde{\mathbf{X}}^{(0)}[k] + \text{GeLU}(\hat{\mathbf{H}}^{(0)}[k+1])$
32: **CTDG-SSM 2nd Layer:**
33: $\mathbf{X}_n^{(1)}[k] \leftarrow \text{RMS}_1(\tilde{\mathbf{X}}^{(1)})$
34: $\mathbf{B}_{x,1} \leftarrow \mathbf{B}_1(\mathbf{X}_n^{(1)}[k])$
35: $\Delta_1 \leftarrow \tau_\Delta^{(1)}(\mathbf{X}_n^{(1)}[k])$
36: $\mathbf{A}_c^{(1)} \leftarrow -\exp(\mathbf{A}_{\log}^{(1)})$
37: $\bar{\mathbf{A}}^{(1)} \leftarrow \exp(\Delta_1 \odot \mathbf{A}_c^{(1)}[:, \text{None}])$
38: $\mathbf{C}_1 \leftarrow (p_\alpha(\mathbf{L}_B[k])^{-1} (\mathbf{B}_{x,2} \odot \Delta_1))[:, :, \text{None}] \odot \mathbf{q}_{\text{weights}}[\text{None}, \text{None}, :]$
39: $\text{RHS}_1 \leftarrow \exp((\Delta_1 \odot \mathbf{A}_c^{(1)}[\text{None}, :])[:, :, \text{None}] \odot \mathbf{q}_{\text{nodes}}[\text{None}, \text{None}, :])$
40: $\bar{\mathbf{B}}(\mathbf{L}_B[k], \mathbf{X}_n^{(1)}[k]) \leftarrow \sum_{q=0}^7 \text{LHS}[:, :, q] \mathbf{C}_1[:, :, q] \text{RHS}_1[:, :, q]$
41: $\hat{\mathbf{H}}^{(1)}[k+1] \leftarrow \bar{\mathbf{A}}_{\mathbf{L}_B[k]}(\mathbf{H}^{(1)}[k][\{\hat{u}_i\}_{i=1}^{N_B}] \odot \bar{\mathbf{A}}^{(1)}) + \bar{\mathbf{B}}(\mathbf{L}_B[k], \mathbf{X}_n^{(1)}[k])$
42: $\hat{\mathbf{X}}^{(2)}[k] \leftarrow \tilde{\mathbf{X}}^{(1)}[k] + \text{GeLU}(\hat{\mathbf{H}}^{(1)}[k+1])$
43: $\mathbf{H}^{(0)}[k+1] \leftarrow \text{MeanAgg}(\hat{\mathbf{H}}^{(0)}[k+1], \{\hat{u}_i\}_{i=1}^{N_B})$ {Only update for batch active node}
44: $\mathbf{H}^{(1)}[k+1] \leftarrow \text{MeanAgg}(\hat{\mathbf{H}}^{(1)}[k+1], \{\hat{u}_i\}_{i=1}^{N_B})$ {rest of the node retain old values.}
45: $\tilde{\mathbf{X}}^{(2)}[k] \leftarrow \text{MeanAgg}(\hat{\mathbf{X}}^{(2)}[k], \{\hat{u}_i\}_{i=1}^{N_B})$
46: **return**

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

Algorithm 2 CTDG-SSM Inference (link-prediction)

1416

Require: Link prediction queries $\{(u_i, v_i, t_i)\}_i$

1417

1: $\Delta t_i = \ln(1 + t_i - t_{\text{last}, u_i v_i})$ $\{t_{\text{last}, u_i v_i} \text{ is the last interaction time of node } u_i \text{ and } v_i.\}$

1418

2: $\hat{\mathbf{y}}_{\text{(link)}}(u_i, v_i, t_i) = [\tilde{\mathbf{X}}^{(2)}[u_i] \mid \tilde{\mathbf{X}}^{(2)}[v_i] \mid \psi(\Delta t_i)]$ $\{\psi \text{ is temporal encoding function}\}$

1419

3: $p_i = \mathbf{w}^\top \hat{\mathbf{y}}_{u_i}$ $\{\text{logit for link prediction}\}$

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

Algorithm 3 CTDG-SSM Inference (node-classification)

1442

Require: Interaction $\{(u_i, v_i, t_i)\}_i$

1443

1: $\Delta t_i = \ln(1 + t_i - t_{\text{last}, u_i v_i})$ $\{t_{\text{last}, u_i v_i} \text{ is the last interaction time of node } u_i \text{ and } v_i.\}$

1444

2: $\hat{\mathbf{y}}_{u_i} = [\tilde{\mathbf{X}}^{(2)}[u_i] \mid \psi(\Delta t_i)]$ $\{\psi \text{ is temporal encoding function}\}$

1445

3: $\mathbf{p}_i = \mathbf{W} \hat{\mathbf{y}}_{\text{(link)}}(u_i, v_i, t_i)$ $\{\text{Multiclass logits}\}$

1446

4: **return**

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457