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ABSTRACT

Continuous-time dynamic graphs (CTDGs) provide a richer framework to cap-
ture fine-grained temporal patterns in evolving relational data. Long-range in-
formation propagation is a key challenge in learning representations for CTDGs,
wherein it is important to retain and update information over long temporal hori-
zons. Existing approaches restrict models to capture one-hop or local temporal
neighborhoods and fail to capture multi-hop or global structural patterns. To mit-
igate limitations of the current approaches, we derive the state-space modelling
framework for continuous-time dynamic graphs (CTDG-SSM) from first prin-
ciples. We first introduce continuous-time Topology-Aware higher order poly-
nomial projection operator (CTT-HiPPO), a novel memory-based reformulation
of HiPPO to jointly encode temporal dynamics and graph structure, where solu-
tion for memory representations from CTT-HiPPO are obtained by projecting the
classical HiPPO solution through a polynomial of the Laplacian matrix, yielding
topology-aware memory updates that admit an equivalent state-space formulation
for CTDGs (CTDG-SSM). This is then discretized (e.g., using the zero-order hold
method) for practical implementation. We further provide theoretical guarantees
demonstrating the robustness of memory representations under graph structure
perturbations. Across benchmarks on dynamic link prediction, dynamic node
classification, and sequence classification, CTDG-SSM achieves state-of-the-art
performance. Notably, it achieves large performance gains on dynamic link pre-
diction and sequence classification tasks, specifically on datasets that require long
range temporal (LRT) and spatial reasoning

1 INTRODUCTION

Continuous-time dynamic graphs (CTDGs) provide a principle framework for modeling evolving
relational data as a continuous stream of timestamped events, with each event capturing interac-
tions between entities at a specific time instance (Rossi et al., 2020). Unlike discrete-time dynamic
graphs (DTDGs), which rely on coarser snapshot intervals (Kazemi et al., [2020), CTDGs preserve
fine-grained temporal information, making them especially well-suited for tasks such as dynamic
link prediction and dynamic node classification (Ding et al.,|2024; Rossi et al., [2020). These capa-
bilities have made CTDGs increasingly important in domains including finance, e-commerce, and
social network analysis, to name a few. Despite initial efforts in representation learning for CT-
DGs, existing approaches still face two primary challenges: (1) long-range temporal dependencies
(LRT): the ability to preserve and use node states and interactions over extended time horizons; and
(2) long-range spatial dependencies (LRS): the ability to capture multi-hop structural interactions
beyond immediate neighborhoods in dynamic graphs.

Based on these challenges, existing models for CTDGs can be broadly categorized into two types:
event-driven models and sequence-based models. Event-driven models update node states at the
arrival of each interaction and capture structural context through mechanisms such as tempo-
ral random walks and graph neural networks-based message passing (Wang et al.| |2021b; [Rossi
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et al., 2020; Xu et al) 2020). While computationally efficient, such models mainly capture
short-term temporal patterns and are weak at preserving LRT (Yu et al., |2023). The second
category includes sequence-based models, which explicitly target LRT using sequence models
such as Transformer or Mamba. These methods construct temporal sequences of node features
and their 1-hop temporal neighbors, patch them, and process them with either Transformer or
Mamba layers (Yu et al., [2023} [Ding et al., 2024). Although effective for LRT, these models
inherently restrict structural context to the local neighborhood, limiting their capacity to capture
LRS (Gravina et al., 2024) and global spatial patterns in dynamic graphs. Modeling LRS is par-
ticularly important in domains such as financial fraud detection, where money laundering typi-
cally spans long transaction chains rather than isolated local interactions (Altman et al) [2023).

To overcome the limitations of existing methods while
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evolution and graph-induced structural patterns, providing a principled way to construct a structure-
aware state matrix for the SSM.

To implement CTDG-SSM efficiently, we discretize the continuous-time formulation using zero-
order hold (ZOH), yielding the discrete counterpart of the model. The resulting CTDG-SSM remains
lightweight, with only a small set of learnable parameters-primarily the coefficients of the graph
polynomial filter and the system matrices governing state evolution. On the LRT task with the
MOOC dataset, Fig. [I|shows that the model captures temporal patterns effectively despite its small
parameter count. Using AUC-ROC and number of parameters as metrics, CTDG-SSM achieves top
performance while using roughly one-tenth the parameters of competing methods.

Contributions and main results. We summarize the main contributions of the paper as follows:

* We first develop CTT-HiPPO, a HiPPO-based memory mechanism for CTDGs that effi-
ciently compresses historical information from all events while maintaining LRT and LRS.
Further, leveraging the relation between the classical HiPPO coefficients and the coeffi-
cients of CTT-HiPPO, we derive an equivalent SSM, CTDG-SSM, that governs the evolu-
tion of CTT-HiPPO.

e We derive a discrete form of CTDG-SSM using ZOH discretization that enables efficient
implementation with diagonal parameterization for scalable and stable computation.

* We provide theoretical guarantees characterizing the robustness of CTT-HiPPO coef-
ficients to graph perturbations and establish the permutation equivariance property of
CTDG-SSM. These properties are crucial for real-world scenarios where continuous data
stream collection and processing are susceptible to errors and failures.

We conduct extensive experiments to assess the ability of our model to preserve both LRT and LRS.
For temporal long-range dependency, we benchmark CTDG—-SSM on dynamic graph learning tasks
such as link prediction and node classification, where it outperforms state-of-the-art methods on LRT
benchmarks, including LastFM, Enron, and MOOC. To evaluate spatial long-range dependency, we
conduct the sequence classification experiment (Gravina et al., 2024)), demonstrating the model’s
capacity to capture LRS through node states generated using spatiotemporal updates.
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2 RELATED WORKS

Learning with DTDGs. Learning on dynamic graphs can be broadly categorized into two subar-
eas: learning for DTDGs and CTDGs. DTDGs represent data as a sequence of graph snapshots
observed at discrete time intervals. Most learning algorithms for DTDGs extend static graph learn-
ing methods, such as graph convolutional networks (GCNs), to each snapshot and employ recurrent
neural networks (RNNs) to capture temporal dependencies (Pareja et al., [2020; (Chen et al., [2022)).
Recently, efforts have been made to extend SSMs to the DTDGs to capture LRT dependencies (Li
et al.| [2024b)). However, it assumes a fixed graph structure within each interval and then combines
node embeddings from these snapshots using GNNs. A direct extension of this approach to CT-
DGs is challenging, since it involves continuous graph evolution, where the set of nodes evolves
over time, and edges occur at irregular intervals. Moreover, representing event streams using DT-
DGs rather than CTDGs inevitably leads to a loss of fine-grained temporal information (Rossi et al.}
2020; [Kumar et al., [2019; (Trivedi et al., [2018)).

Learning with CTDGs. CTDGs represent dynamic graphs as streams of time-stamped events. Ex-
isting learning methods typically focus on either short-range or LRT dependencies, and are based
on random walks, message passing, or sequence modeling with Transformer or mamba layers. Rep-
resentative approaches include temporal random walks (Nguyen et al., [2018}; [Starnini et al.,|2012),
message passing architectures such as TGAT (Xu et al., 2020), and memory-based methods such
as TGN and JODIE (Rossi et al., 2020; | Kumar et al., |2019). Memory-based models that rely on
RNNs often suffer from gradient instability (vanishing or exploding), which limits their ability to
capture long-range dependencies (Rossi et al., 2020). To address this, recent architectures such as
DyGFormer and DyGmamba employ Transformers and Mamba, respectively (Yu et al.,2023;Ding
et al.| 2024). However, these methods pre-process temporal data by restricting attention to one-hop
temporal neighborhoods before transformation, thereby limiting their ability to capture multi-hop
information. In contrast, our proposed method learns node representations without imposing such
structural constraints, enabling richer modeling of both temporal and spatial dependencies. Further-
more, the proposed method, primarily developed for CTDGs, can also handle DTDGs, given the
equivalence between CTDGs and DTDGs (Souza et al., 2022).

3 CONTINUOUS-TIME DYNAMIC GRAPHS

In this section, we describe continuous-time dynamic graphs (CTDGs) and the notation used
throughout the paper.

Consider a continuous-time observation G(t) = (u, v, t), which represents a temporal edge between
node u and v at time t. A CTDG (Rossi et all 2020), denoted by G, is an ordered sequence of
temporal interactions G = {G(t1),G(t2), ...} appearing at time instances ¢; < t < ---. It should
be noted that the same subset of nodes may appear in G(¢;) and G(t;) for i # j. In what follows,
we capture those unique subsets of nodes that appear within a temporal window and define their
underlying graph operator.

Active node set. For a given time 7 € R, we define the subgraph G, of G as the collection of
temporal interactions that occur up to time 7. Formally, G, = {G(¢;) | t; < 7}. The set of active
nodes at time 7 is then the set of nodes that participate in any interaction in G, and is denoted by
Vr ={u|u € G(t),t; <7} Letus denote the number of nodes in V; by N, = |V,|.

Subgraph operator and filters. The temporal interactions of the active nodes in G, is captured
by the subgraph adjacency matrix A, € RN+ with entries A-[u,v] = Y I({u,v} € G(t;)),
i<

where I(-) is the indicator function defined as I({u,v} € G(t;)) = 1if {u,v} € G(t), and 0

otherwise. We use the degree normalized Laplacian matrix defined as L, = I — D, Y 2ATDT_ 1/2
where D is the corresponding degree matrix D, = diag(A,1).

)

Graph filters are expressed as matrix polynomials of the normalized Laplacian matrix. We define a

Kth-order filter as p(L,) = Zszol ay L¥, where {ak}f:_ll are learnable filter coefficients. Apply-
ing a K'th-order filter aggregates information from up to K-hop neighborhoods in the subgraph G .
Specifically, as 7 evolves continuously with time in CTDGs, both A, and L. evolve sequentially,
and thus the corresponding filters p(L ) adapt to the temporal evolution of the graph structure.
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Each node u in the subgraph G, is associated with a feature vector =, (t) € RP~. Collecting the
node features over the subgraph yields the graph-level feature matrix X € RN~*Dn

4 THE PROPOSED STATE-SPACE MODELS FOR CTDGS

In this section, we develop SSMs for CTDGs, with the objective of compressing historical event
information into compact latent memory representations. We first present a HiPPO matrix (Gu
et al.,|2020) computation that incorporates graph structure as an inductive bias within latent memory
representations. Specifically, we decompose node signals as graph-aware transformations of signals
represented in an orthogonal polynomial space. Subsequently, we develop a novel SSM model for
CTDG and derive its discrete counterpart, which is useful for practical implementation.

To begin with, we describe the HiPPO projection for graph data, drawing inspiration from (L1 et al.,
2024b). Let us define an orthogonal polynomial g(t) € RY*! and a coefficient matrix H; , €
RN7*4 We then model the i features X [:,4](t) € RM*! on V; as

X[, i)(t) = p(Lr)Hi - g(t) +7i(t), Vi <T, (1)
fori=1,---,D,, where p(L,) is the polynomial of the normalized Laplacian and the error ;(t) €

RN7*1 accounts for any model mismatch. Here, the graph filter p(L.) incorporates the topology
structure in H; - by aggregating the HiPPO coefficients based on the temporal graph-structure in G.

Then the coefficients H; , are obtained by minimizing the residual in the temporal window [0, 7] as

min / 1X L 41(8) — p(Lr) g (8))2 dut), @)

where p(t) is the measure under which the orthogonality of g(t) is defined. Although the above
formulation provides a general framework with a learnable Kth-order graph filter for modeling the
HiPPO coefficients for graph data, it is related to the one in (Li et al. [2024b) that instead uses
a quadratic Laplacian regularizer in equation [2] with p(L,) = I, whereas the classical HiPPO
formulation (without any graph structure) |Gu et al.[(2020) uses p(L.) = I in equation

Now, to find the optimal set of coefficients H; ., we use the first-order optimality condition (detailed
derivation can be found in Appendix [B) to obtain

L)H,, / X[ )T du(t) = H 220 3)
HZ = p( ) 1H HlPPO) (4)

where H,"'"*) denotes the solution to the classical HiPPO formulation without any graph struc-
ture (Gu et al.; 2020), and by the choice of L., p(LT)_1 is well-defined. From equation it can be
seen that the CTT-HiPPO coefficients H; ; are essentially the graph-aware extension of the clas-
sical HiPPO coefficients, obtained by projecting H.,' HiPPO) through the inverse polynomial graph
filter. Although we provide the solution H; . for a smgle feature i, it can be easily extended to

multiple features along the lines as above. Henceforth, for brevity, we drop the subscript i in H; i
and X [:,4|(¢) and simply use H; and X (¢).

4.1 THE CTDG STATE-SPACE MODEL

We now present the main result of the paper, i.e., the state-space formulation that governs the evolu-
tion of the memory coefficients H . In SSMs, the temporal dynamics of an input signal are modeled
through the progression of latent memory representations (state space vectors). We now describe the
evolution of the representations of CTDGs over time through the evolution of the memory coeffi-
cient matrix H ., which jointly captures both temporal and topological structures. We refer to the
proposed SSM for CTDG as CTDG-SSM, whose model is described in the next theorem.

Theorem 4.1 (CTDG-SSM). Consider a interval s € [, 7 ) with CTDGs G, and G, Let G denote
a CTDG at time T, and for new a observation G(74.) with corresponding CTDG G.. . The evolution
of the memory coefficients H for s € [T, 7) admits the following state-space representation.:

T T
M. m, _]\;‘(s)—pws) V) () X () TS

(&)
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where A € R4*? s the state-transition matrix that depends on the choice of the orthogonal poly-
nomial g(-), B € R is the input matrix, and M(s) : Ry — Ry is a normalization term

that depends on the choice of the measure ji(t). Here, Ly € RYN+*N X (s5) ¢ RN+,
p(Ls) = Z==p(L., )+ T*:ip(LT), and Hy € RN+ %4 for s € [T, 7'+).

T—T4 T4

The proof of this theorem is relegated to Appendix [C.1} The result directly follows from the equiv-
alence between the classical Hi PPO coefficients and a linear ODE (Theorem 1 in (Gu et al., 2020)))
characterized by the state matrix A and input matrix B, and more importantly, incorporating the fact
that L, depends on 7 in CTDGs. We end this subsection with the following remark that explicitly
connects CTDG-SSM to (Gu et al.| [2020) and (L1 et al.l [2024b)).

Remark. Equation shows that the graph filter p(L.) modifies the classical HIPPO dynamics by
introducing time-dependent graph-aware terms that account for the change in temporal evolution
of the graph. When the polynomial of Laplacian is static or fixed as in (Li et al.| |2024b), we have

% = 0. Thus, CTDG—-SSM reduces to the SSM variant in (Li et al.,|2024b).

When there is no graph, i.e., p(L;) = I, CTDG-SSM reduces exactly to classical SSM (Gu et al.|
2020).

4.2 THE DISCRETE VERSION OF CTDG-SSM

We now describe the discrete-time version of CTDG-SSM in this section. In particular, we discretize
CTDG-SSM using the ZOH approach.

In practice, the continuous-time SSM is discretized using ZOH, which assumes piecewise constant
inputs, i.e., X (t) = X [k] for t € [tp—1,tr) with step size A[k] =t} — t;—1. Here tx_1 is 7 and t;,
is 7. Where L[k] € R"™+*"+ is obtained using a subgraph G, and L[k — 1] € R¥+*Nr+ is
obtained by removing the newly observed edges in A[k] time interval from L[k].

Theorem 4.2 (Discrete CTDG—-SSM). Let X [k] denote the input at time tj, and let the temporal
graph structures at times tj, and t;_1 be represented by the Laplacians L[k] and L[k — 1], re-
spectively. Then for A[k] = ty — tx—1, the memory update of the proposed CTDG-SSM model is
governed by the following discrete-time recursion:

H[k+1] = Agy H[k] A + B(L[k], X [k]) (6)
Here, Ay = exp (—p(L[E)™" (p(L[K) —p(Lk~1))), A = exp(AK|AT), and
B(L[k], X [k]) = [, (Appy)* p(LK) ' X [K] BT (A)* Alk] ds.

We present the detailed proof in Appendix [C.2] The proof proceeds by first simplifying Equa-
tion equation [3] to standard state-space form with system and input matrices, leveraging the proper-
ties of the Kronecker structure. We then apply the ZOH discretization to this form and subsequently
factorize the discretized equations to obtain the final expression.

The discrete memory update in equation []is structurally analogous to the vanilla mamba update (Gu
& Dao, [2024), with two key distinctions: there are two state-transition matrices that jointly operate
on the state variable, and the input-dependent component B(L[k], X [k]) does not admit a closed-
form solution.

Remark. The invertibility of p(L[k]) matrix involved in equation|fis ensured by choosing all graph
filter coefficients to be strictly positive i.e., a; > 0Vi = 0,1,..., K — 1. Since L[k] is a normalized
graph Laplacian, the spectrum satisfies k] € [0,2]. Therefore with cv; > 0 we have p(A[k]) > 0,
which implies that p(L[k)) is positive definite and therefore invertible. It is more important to notice
that complexity of this operation is influenced by the batch size as it directly influences the number
of the active nodes (more details in the Section ).

5 ARCHITECTURE

In this section, we introduce the proposed architecture that implements discrete CTDG—-SSM. The
overall modular design is illustrated in Fig. 2] It mainly consists of three blocks: (a) Subgraph sam-

2To match the dimension of L, and L, . in equation|5| we construct L. by removing the edges observed
in G(7+) from L, .
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Figure 2: Architecture of the CTDG-SSM framework. A batch of events is subgraph-sampled to produce
the batch graph. Raw messages and static embeddings are combined to form node-level features, which are
encoded and processed by the CTDG-SSM module to update dynamic memory. The updated memory and
static embeddings are then aggregated to form the final node representations used by the decoder.

pler: constructs N, -temporal neighborhoods for each node. (b) Node feature encoder: integrates
node, edge, and temporal information into node feature representations. (c) CTDG-SSM module:
generates memory representations that capture LRT dependencies and structural context.
Subgraph sampling. At each training step, we construct a mini-batch of temporal interactions by
grouping together B chronologically consecutive events. From this batch, we develop a batch level
Laplacian Lg[k] € RN5*NE by generating subgraphs via a neighborhood-based sampling strategy:
for every node participating in an event, we sample up to N, of its most recent neighbors, where
N, defines the spatial context size. To estimate L[k — 1] we remove the current batch interaction
edges from L g[k] while preserving the neighborhood edges of the N, neighbors. This subgraph-
based approach is motivated by two factors: (i) it captures information from the multi-hop temporal
neighborhood, and (ii) it enables the model to update states for nodes beyond those directly involved
in the observed interactions, thereby incorporating both local structural dependencies and broader
temporal context.

Node feature encoder. We construct input features X € RV2*XP5 for the current batch by
concatenating node-specific features, temporal neighbor features, edge attributes, and the cor-
responding timestamp information of events in the batch. For an interaction event G(t;) =
(u,v,t;) with edge feature x,,, the feature vectors for the participating nodes are defined
as Xplu,:] = [@,(t)]@(t)][@u[6(AL)], and Xplo,:] = [@a(ts)l|z, () |2/ [6(AL;)).
Here, x, and x, denote the static embeddings of nodes w and v concatenated with their
raw features, and ¢(-) denotes a fixed (non-trainable) time-encoding function. The term
At; corresponds to the inter-event time since the last occurrence of (u,v); for first-time
interactions, At; is assigned a large constant following prior works (Ding et al) [2024).

XD (k] HO[k+1)

Encoder. The encoder hy takes the input feature matrix X g and projects
it into a latent space of d-dimension. These projected features are then
used to update the memory representation through the CTDG-SSM re-
currence. In experimentation, we implement the encoder as a 2-layer
neural network and represent augmented and projected node features as

ho(Xp) = X [k] € RNsxd,

Learnable CTDG-SSMs.: The CTDG-SSM block computes node mem-
ory representations according to equation [6f While a single-layer
CTDG-SSM is sufficient to capture linear state-space dynamics, stack- L xopy HO

ing multiple layers enables the model to learn richer temporal feature Figure 3: Illustration of
transformations. To enhance representational capacity, we incorporate single layer CTDG-SSM
residual connections, RMSNorm normalization, and the GeLU activation

within our CTDG-SSM architecture, following design principles from mamba (Gu & Dao, [2024)
(see Figure3).

Therefore, given the output of (I — 1)-th layer denoted as X (¥ [k], the I-th layer performs the follow-
ing sequence of operations: H()[k 4 1] = cTDG-3SM(RMS(X (D [k]), Lp[k]), and X HD[k] =
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XOTk] + o (HO[k + 1]), where RMS(-) denotes RMS normalization and o is a nonlinear activa-
tion function. We use the GeLU activation, which promotes stable training and ensures well-scaled
feature transformations. The input for the first layer, i.e, X (°)[k] = X[k], is the projected node fea-
tures. For nodes participating in multiple events within the same batch, we apply a mean aggregator
to obtain a single consolidated representation.

Memory: The memory module maintains the latent representations of all nodes. These are ini-
tialized as zero vectors of dimension d. After each batch, the memory is updated with the newly
computed representations of the nodes involved in the current interactions and the sampled nodes.
Decoder. For downstream tasks such as link prediction and node classification, the decoder operates
on the memory representations of the target nodes.

Link Prediction. Given a query of the form (u,v,T'), we first retrieve the static embeddings and
dynamic memory states of nodes u and v, denoted h,, and h,. This representation is augmented
with a learnable temporal embedding 1 (At), where At = T — t1,5 and ¢, denotes the most
recent interaction time between v and v. The concatenated vector | hy, || by, || ¢(At) | is then passed
through a linear layer to produce an edge score.

Node Classification. For a query of the form (u,v,T') or (u,T), only the representation of node v is
used. The decoder applies a linear mapping to h,,, optionally concatenated with available temporal
information, to produce a multi-class probability vector corresponding to the predicted node label.

6 THEORETICAL CHARACTERIZATION

In this section, we derive the robustness and permutation equivariance properties of CTDG-SSM. In
particular, robustness property characterizes the stability of memory representations under structural
perturbations and is crucial given that real-world temporal graphs may include spurious edges.

Theorem 6.1 (Robustness property). Let L = L + AL be the perturbed graph Laplacian with
|AL||s < e. Then the error between the perturbed and true coefficients is bounded linearly in

terms of the energy of the perturbed graph Laplacian as % < eI, where " = % with
. 2
. d
A1 = mingepo g [P(y)| > 0, A2 := maxye(o.9) [P(y)], and \. := max,e[o,2 | Z(Z,y) |

We relegate the proof to Appendix The derivations follows by using the triangle inequality
and exploiting spectral bounds of the normalized graph Laplacian. The derived error bound shows
that the deviation between the perturbed and true coefficients scales linearly with the energy of
the perturbed Laplacian AL. In other words, this implies that small structural perturbations in
the underlying graph induce only proportionally small deviations in the coefficients. Hence, the
representations produced by CTT-HiPPO are stable and robust with respect to perturbations.

Theorem 6.2 (Permutation Equivariance). Let P = {II € {0, 1}V>N- . TITTI = TIII " = Iy, }
be the set of all N, x N, permutation matrices. Then under the permutation of the graph Laplacian
L[k] and node-features X by any I1 € P, the representations from CTDG-SSM also modifies as
Hk+1)=IIHk + 1]

We relegate the proof to the Appendix The permutation equivariance property guarantees that,
when the nodes in the observed CTDGs and their associated signals are permuted, the representa-
tions by CTDG—-SSM permute in exactly the same way, thereby preserving equivariance.

7 NUMERICAL EXPERIMENTS

We evaluate the proposed algorithm on two downstream temporal graph learning tasks, namely
dynamic link prediction and node classification. Further, to assess the model’s ability to preserve
long-range information, we test it on a sequence classification task.

Baseline models. For all the three tasks, we compare the performance of our model against the fol-
lowing state of the art algorithms, namely, JODIE (Kumar et all 2019), DyRep (Trivedi et al.,
2018), TGN (Rossi et all 2020), TGAT (Xu et al) 2020), GraphMixer (Cong et al. [2023),
DyGFormer (Yuetal.,2023), CTAN (Gravina et al.}|2024), DyGmamba (Ding et al.,|2024). For dy-
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Table 1: AUC-ROC of dynamic link prediction with random negative sampling under T: Transductive, and I:
Inductive setup. Best-performing model per dataset is shown in bold.

Setup Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer ~ DyGFormer CTAN DyGmamba  CTDG-SSM
LastFM 70.89+£1.97 7140+£2.12 7147+0.14 76.64+4.66 8592+0.16 71.09+ 148 73.51+0.14 93.03+£0.11 8512+0.77 93.31+0.18 93.79 +0.22
Enron 8777 £243 83.094+220 68574146 8872+£0.95 90.34+023 83.33+093 84.16+£0.34 9320+0.12 87.09+ 1.51 93.34+£0.23 94.98 +2.92
MOOC 84.50 £0.60 84.50+0.87 87.01£0.16 91.91+0.82 8048041 84.02+0.59 84.04+0.12 88.08+0.50 8540+2.67 89.58+0.12 99.00+0.33
T Reddit 98.29 £ 0.05 98.13£0.04 98.50+£0.01 98.61£0.05 99.02£0.00 97.67+0.01 97.17+0.02 99.15£0.01 9724 +0.75 99.27 £0.01 99.48 £ 0.02

Wikipedia ~ 96.36 £ 0.14 94.43 £0.32 96.60 £ 0.07 98.37 £0.10 98.54 +0.01 97.27 £0.06 96.89 +£0.04 98.92+0.03 97.00+0.21 99.08 +0.02 99.33 + 0.08
UCI 90354+ 0.51  69.46£2.66 7876+ 1.10 92.03+£0.69 93.81+£023 8549+0.82 91.62+£0.52 9445+022 7625+283 9477 +0.18 89.24 +043
Social Evo.  92.13+£0.20 9037 £0.52 9493 +£0.06 953140.27 87.34+0.10 9545+0.21 9521+0.07 96.25+0.04 Timeout 96.38 +0.02  99.10 + 0.49

Avg. Rank 7.93 9.36 7.86 4.57 571 8.00 771 3.00 7.50 2.00 1.86
LastFM 83.13 £ 1.19 8347+1.06 7840+0.30 81.18+3.27 8933+0.06 81.38+1.53 82.07+031 9417+0.10 6040+3.01 9442021 94.49+0.27
Enron 78974+ 1.59 73.97+£3.00 66.67+1.07 7876+ 1.69 86.30+0.56 82.61+0.61 7555+0.81 89.62+0.27 74.61+1.64 89.67+027 93.66+ 4.67
MOOC 80.57 £0.52 80.50 £0.68 8528 £0.30 88.01 +1.48 81324042 8228 +£0.99 81.38+0.17 87.05+£0.51 64.99+224 88.64+0.08 98.67+0.46
1 Reddit 96.43£0.16 9589 +£0.26 97.13+0.04 97.41£0.12 98.62+0.01 9501+£0.10 9524+£0.08 98.83+0.02 80.07+253 98.97+0.01 99.13+0.03
Wikipedia ~ 94.91 £0.32 92214029 9626 +0.12 97.81 £0.18 9827 +0.02 9748 £0.06 96.61 £0.04 9858 +£0.01 93.58+0.65 98.77 +0.03 99.06 + 0.10
uct 7973+ 148 5839238 79.10+049 8781+ 132 9261 +035 8419137 91.17+£029 9445+0.13 4978 £5.02 9476 +0.19 87.43 +0.79
Social Evo.  91.72+0.66 89.10£1.90 9147 +0.10 90.74 £ 1.40 79.83 £0.14 9251+0.11 91.89£0.05 93.05+0.10 Timeout 93.13£0.05 98.60 + 0.14
Avg. Rank 729 9.00 8.00 6.00 529 6.57 6.71 3.00 10.57 1.86 1.71

Table 2: Performance comparison on the dynamic node classification task with AUC-ROC as a metric.

Dataset JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGmamba CTDG-SSM
Wikipedia ~ 88.10 £ 1.57 8741 £194 8342+292 8551+328 8459+1.16 79.03+1.18 B8560+1.73 8635+2.19 87.38+£0.14 8744+082 88.61+0.64
Reddit 59.53+3.18 63.12+£0.51 6931 +2.18 6321 £3.00 6522+0.79 68.04+2.00 6442+1.15 67.67+1.39 6729+0.15 6770+ 1.32 69.50 = 0.82

Avg. Rank 7.14 8.86 7.14 3.86 4.86 7.29 7.14 2.14 7.29 1.14 1.00

namic link prediction and node classification tasks, we also consider models Edgebank (Poursafaei
et al.,[2022), CAWN (Wang et al.,2021b), and TCL(Wang et al.,|2021a) for comparison.

7.1 DYNAMIC LINK PREDICTION

In this section, we present results on dynamic link prediction where the task is to predict the ex-
istence of an edge between two nodes at a given time. We evaluate the proposed algorithm in
both transductive (test nodes are observed during training) and inductive (test nodes are unseen
during training) settings, under different sampling strategies (random, historical, and inductive) for
generating negative samples. Experiments are performed on benchmark temporal link prediction
datasets (Poursafaei et al.| 2022) details are provided in Appendix [D.1]

Results. In Table |1} we present the results with AUC-ROC as a metric calculated for 5 independent
trials on transductive and inductive settings with random negative sampling (more experiments with
different metrics and different sampling criteria are relegated to Appendix [D.2). It can be seen
that on LRT benchmarks such as LastFM, MOOC, and Enron, our method consistently outperforms
state-of-the-art baselines due to the model’s ability in jointly encoding structural information via
graph polynomials that capture multi-hop neighborhood interactions and temporal evolution through
a state-space formulation. Further, importantly CTDG—SSM exhibits only a minor performance drop
in inductive setting, highlighting its ability to effectively capture global structural and temporal
patterns instead of learning local structural patterns.

7.2 DYNAMIC NODE CLASSIFICATION

For dynamic node classification, the goal is to predict the class label of nodes participating in an
interaction G(T') at time T'. We evaluate our model on the Wikipedia and Reddit datasets with 2
classes. We follow the dataset splits and preprocessing strategy outlined in [Yu et al.| (2023). The
model is trained for 200 epochs with early stopping, and memory representations are updated as
described in Section[5] During testing, we combine the memory states with static embeddings and
temporal encodings, which are then passed through an MLP decoder for classification.

In Table 2] we report the mean AUC-ROC over 5 independent runs. The results demonstrate that
CTDG-SSM consistently outperforms state-of-the-art approaches, highlighting the effectiveness of
jointly capturing LRS and LRT dependencies.

7.3 SEQUENCE CLASSIFICATION

In this section, we present results on the sequence classification task, primarily designed to test the
model’s ability to capture LRS and LRT (Gravina et al.,|2024) dependency. The task involves pre-
dicting the label of the initial node after traversing a long path, where each new node was connected
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Table 3: Performance comparison on the sequence classification task. Best-performing model is shown in
bold; second-best is underlined.

n=23 n=9 n =15 n =20 Avg. Rank
DyRep 100.0£0.0  47.93£2.73  48.60+2.48  50.47%2.88 7.25
GraphMixer 100.0+£0.0  52.80+£5.56  52.49£15.36  52.04%8.20 6.75
JODIE 100.0£0.0 100.0 £0.0 60.0£14.91  50.87+2.46 3.75
TGAT 100.0£0.0  47.87£2.72  50.53+2.15  49.07£1.55 7.50
TGN 100.0£0.0  48.13£1.63  48.67+£2.76  50.13£2.17 7.00
CTAN 100.0£0.0  99.93 £0.21 93.47+8.78  88.93£12.06 3.25
TU-SSM 47.0£1.12 5073 +£1.74 52.26 £2.44 54.46 £0.73 8.00
DyGFormer 100.0£0.0  53.02£6.06  42.80£16.25 42.79+19.62 9.25
DyGmamba 100.0+0.0  54.01£6.06  45.60£12.25 45.29417.62 8.25

CTDG-SSM (FO)  100.0+0.0  97.06 £0.44 97.404+0.20 97.13+0.89 2.5
CTDG-SSM (SO)  100.0+£0.0  98.13 £0.58 97.80 +0.58 98.60 + 0.29 2.25

to the node from the previous event, as illustrated in Fig.[d] We generate the data using the procedure
in (Gravina et al.| [2024).

In this experiment, to depict the importance of aggregating the information from one-hop and multi-
hop and also to see the importance of aggregating the information using the structural change term
we present three variants CTDG-SSM (FO), employs a first-order polynomial filter of the form
I+ aiL,, CTDG-SSM (SO), uses a second-order polynomial filter defined as p(LI) =1+
a1 L, + asL? and Topology unaware SSM (TU-SSM) fixes the spatial system matrix A L[x) to the
identity, thereby isolating its contribution in learning structural patterns.

task, where prediction accuracy is defined as the ratio of correctly
classified sequences to the total number of sequences. We observe
that removing the structural update term in the memory update
(TU-SSM) leads to a substantial drop in performance, underscor-
ing the importance of modeling the time-varying graph structure in
CTDGs. Furthermore, incorporating higher-order polynomials for
multi-hop aggregation in CTDG-SSM (SO) yields clear gains over
the single-order variant, which primarily captures local patterns. Fi-
nally, the proposed method achieves significant improvements over
state-of-the-art baselines, particularly on longer sequence lengths,
highlighting its effectiveness in capturing LRS. I Time

Figure 4: TIllustration of LRT
and LRS dependency in sequence
classification task .

Results.  Table [3| reports results for the sequence classification A OO -
SRR
[

[
[
[
[
[
[
[
[

7.4 IMPLEMENTATION DETAILS

For link prediction and node classification, we follow the experimental protocol of [Yu et al.| (2023)
and compare CTDG-SSM with established baselines. For sequence classification, we adopt the
setup from |Gravina et al.| (2024). The model is trained with binary cross-entropy using the Adam
optimizer; additional hyperparameter details are provided in Appendix [D.2] We train for up to
200 epochs with early stopping and select the best validation model for testing. Experiments are
conducted on two machines equipped with NVIDIA A6000 and RTX 8000 GPUs (48 GB).

8 CONCLUSIONS

In this work, we proposed CTDG-SSM, a novel representation learning framework for continuous-
time dynamic graphs that preserves long-range information across both spatial and temporal di-
mensions. Our approach formulates a SSM for CTDGs. In particular, we introduced CTT-HiPPO
that yields memory representations that are topology aware obtained by projecting HiPPO coeffi-
cients through a polynomial of graph Laplacian. Leveraging this we proposed a SSM for CTDGs
where the memory representations are governed using the evolving topology. We further established
theoretical guarantees on the robustness and permutation equivariance of CTDG-SSM. Extensive
experiments on diverse temporal graph learning tasks-including link prediction, node classification,
and sequence classification-demonstrate the effectiveness of our model in jointly capturing LRT and
LRS dependencies.
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A STATE-SPACE MODELS

State-space models (SSMs) are widely used for sequence modeling due to their ability to capture
long-range dependencies through latent state evolution while remaining computationally efficient
compared to Transformers (Gu et al.,[2022). For an input signal (¢), an SSM evolves latent states
h(t) € R? according to a linear ordinary differential equation (ODE), producing output () as (Gu
et al.| [2020; 2022; [Smith et al., [2023)):

d%t) = A(t)h(t) + B(t)x(t) and y(t) = C(t)h(t) + D(t)z(t), 7

where A(t), B(t), C(t), and D(t) are the state transition, input, output, and feedforward matrices,
respectively. In practice, the continuous-time model is discretized using zero-order hold (ZOH),
which assumes piecewise constant inputs: x(t) = x[k] for t € [ty, tr41) with step size A[k] =
tx+1 — t. This yields the discrete-time system:

hlk + 1] = Ah[k] + Bz[k] and y[k] = Ch[k] + Dzk], (8)

where A = cAKIA B — fOA[k] eA"Bdr,C = C,and D = D.

Research in SSM design has significantly enhanced its effectiveness for sequence modeling.
HiPPO (Gu et al.| 2020) introduced principled initialization strategies for capturing long-range de-
pendencies. S4 (Gu et al. 2022) extended these with structured parameterizations of the system
matrix A (e.g., diagonal plus low-rank decompositions) to enable efficient computation. More re-
cent work like mamba (Gu & Dao, |2024) has further improved scalability and selectivity by making
the input and output matrices B and C input-dependent and the system matrix diagonal, enhancing
model expressivity while maintaining computational efficiency.

B DERIVATION FOR CTT-H1PPO COEFFICIENTS

We derive the solution for the representations/coefficients (H; ) for CTT-HiPPO. Recall, to obtain
the coefficients we minimize the residual in the observed time interval. To begin with the r;(¢) can
be equivalently expressed as

[ @B = [

||
= |10 (X 10) = p(ED L (0) (K 10) = 9B (0) T a0
©))

X [:,d)(t) — p(L,)H,g(t)|[3 du(t),

9|

Using the first optimality condition i.e., ‘g%?“g = 0 and on simplifying we have

st ) T [XEA0 b i g0 (XLil(0) = (L) Hirg(0) ] dut) =0,

/0 ' 5 Ii ~ [Tr (L) Hirg(09(0) Hp(Lr) ) = 2Tt (p(L7) Hirg ()X [:4](1) )] dpa(t) = O,

/O " 9p(L) T p(L )V Hoag(t)g(t) — 2p(L0)T X[ i)(0g(6)T du(t) =0,

/0 ' p(L;) p(L,)H; -g(t)g(t) "du(t) = /O ' p(L:) " X[, i](t)g(t) " dp(t).
(10)
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For fixed set of orthogonal polynomials we have [ g(t)g(t) " du(t) = I, then equation|10|can be
simplified as

p(L,)H, = / " XL i) (0g() T du(t),

H,, - p(L,)"" / " XL il (0)g () Tdu(t),

H;. =p(L,) 'HI. (11)
where H; , corresponds to the solution from CTT-HiPPO, where it is obtained by projecting the
HiPPO solution through graph-aware polynomial.

C PROOF OF THEOREMS
This section presents detailed proofs of the theorems from the main text.

C.1 PROOF FOR THEOREM [4.1]

Proof. We derive the SSM for CTDGs (CTDG-SSM) that governs the evolution of memory repre-
sentations. To begin with, we consider the relation between structural HiPPO coefficients H, and
HiPPO coefficients given in equation [3] and obtain the evolution of memory states as follows: For
an event observed at 74 and corresponding CTDG G, , we define the polynomial as in the interval

[7,74) as p(Ls) = Z=5p(L,,) + Z2=2p(L,) for s € [r,7;). Here L,, € R"+*Nv+ and L, is

T—T4 T4+ —T
calculated by removing the newly observed edges from L, . Then the derivative of the coefficients
for s € [r,74) is given as :

d dH HiPPO)
- L,)H,) = ;.
- (p(LOH,) = 2
dp(Ly) dH, dHPPO
H L, = . 12
ds s +pLs) ds ds 12)
This can be equivalently expressed on multiplying with p(L,)~! as
dH dH{TTTO) dp(Ly)
® = Ls -t > - Ls -t > Hs
ds p(Ls) ds p(Ls) dr

To obtain an equivalent SSM for CTDGs, we leverage the established result from (Gu et al., [2020)
that relates the evolution of HiPPO coefficients to a linear ordinary equation as
— _f(HiPPO) AT + BT

JH HiPPO)
———— =—H| x(s) ,
ds M(s) M(s)
where A € R4*? is a state transition matrix, B € R?*! input matrix and M (7) : RT — Rt is

a scalar that depends on the choice of bases polynomial and weigh function p(¢). The continuous
SSM for CTDG:s for s € [r, 74 ) is given by

@ _ —1 gy (HiPPO) AT _ _1dp(Ls) —1 BT

e p(Ls)™ H; M) p(Ls) 5 H; +p(Ls) X(S)M(S),

dH, AT _,dp(L, i BT

i = Heapy e : fis LH, 4 p(L) e (s) M) (13)
O

We can further simplify equation |13| to express it in_a standard first-order state-space model. To
do so, we apply vectorization operation on equation [13|and use the identity vec(ABC) = (CT ®
A)vec(B), where ® is a Kronecker product. Then we obtain

dhy (A —1dp(Ls) B (s
i = (e @ (0 ) ) s g et
dd}f; = Ay(s)hs + By(5)X(s), s € [r.7y) (14)

13
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where h, = vec(H,) € RN79*1 A (7) and B,(7) denote the time-dependent system and input
matrices, respectively. Here & denotes the Kronecker sum. The evolution of memory coefficients
of nodes so far characterizes the continuous time-variant SSM that jointly encodes dynamic graphs’
structural and temporal information.
Corollary (Reduction to Classical HiPPO). Let the graph Laplacian be static (L = L) and let the
Sfilter satisfy p(L.) = I. Then, the CTDG—SSM dynamics equation 5| reduce to the classical HiPPO
state-space dynamics:

dH ; AT BT
i~ T Xy
This shows that CTDG-SSMis a strict generalization of classical HiPPO: it recovers standard mem-
ory evolution when the graph is static or the filter is the identity, while naturally incorporating
dynamic graph information when p(L.) varies over time.

Remark. The expression,

T

min [ X[, d)(8) — p(Lo) Hirg(1)]l3 dpa(t),
i Jo

is the CTDG-SSM formulation, where the polynomial operator p(L. ) specifies how the graph struc-
ture influences the reconstruction.

When p(L.) = 1, the Laplacian dependence vanishes, yielding the classical HiPPO (Gu et al.|
2020) objective:

min / X[ d1(6) — Hirg(8)] dua(t),

which matches the standard HiPPO setting.

However, when a quadratic Laplacian regularizer is introduced to enforce smoothness over the
reconstructed signal, we obtain the GraphSSM (Li et al., |2024b) objective:

min / X[ dl(6) — Hong(8)]2 du() + / (L 9(t)) " Le(Hi-g(t))du(t).

C.2 PROOF FOR THEOREM [4.2]

Proof. We present the equivalent discrete-time SSM for CTDG using ZOH technique. Recall from
equation[T4]the continuous-time evolution for CTDGs is given as

dh;[k]
dt
Following equation [8] the equivalent discrete update is given as

= Ay (k)hs[k] + By (k) X [:, ][k]. (15)

Alk]
hilk + 1] = exp(Ag(te) A[K]) hi[k] + /0 exp(Ay(k)s) By (t,) X [:,4][k] ds, (16)

where A[k] = tj41 — tr. Recall Ay(ty) = —A @ (_ p(L[k])*%W) B,(t) =

B ® p(L[k])~! Although one can directly apply equation [§ I as discussed in the preliminaries to
obtain a discrete equlvalent for equation[T4] this approach incurs significant computational overhead
in implementation, since the Kronecker-structured matrices A, and B, involved in equatlon@ are
of large dimensions (N,dx N,d) and (N,dx N.). To allev1ate this complex1ty, we exploit algebraic
properties of the Kronecker product to derive an equivalent update rule as

_ (LK) —p(L[E—1])
hlk+1] = (e—AA[k] @ e PEED Alk] A[k])h[kL
1 - PR —p(LlE=1])
+/ (e—AL\[k]s®e p(L[K]) NG AM)(B ® p(L[E]) ™)X |1, ][k] A[k]ds,
0

a7)
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where equation . follows by using the following identities eA¥B = e ® eB vec(ABH) =
(H" @ A)vec(B),(A® B)(H ® D) = (AH) ® (BD). This can be equivalently expressed as

p(zgp - LD

Hlk+1=e H[k] e~ Al

1 _ P =p(Ek=1])
+/ € ;D(L[k]) A[k)] A[k] p(L[k])ilX[,Z} [k}BT G*ATA[IC]S A[k] dS

0
(18)

Hlk+1] = Ay H[K] A + B(L[k], z[k]), (19)

where Apyy = exp(—p(L[k]) " EEREERA[L] A = exp(— ATA[K]), B(L[k], X|:
) 1, 7 s

Jillk]) = [y (Ar)® p(L[K) " X5, 4)[k] BT (A)* Alk] ds. 0

C.3 PROOF OF THEOREMI[6.]]

Consider the H, and H, as the memory representations obtained with the perturbed graph Lapla-

cian and true Laplacian. For brevity, we call the solution from HiPPO as Hp. Then the error

between the representations is given as

|H; — He|> =|P(L;)" ' Hy — P(L;)Hpg|»

(@
<IIP( 2 = P(Ly) 7 2] Hal2

bu

< IP(L-)~ (P(Ly) = P(L:))P(Ly) " ||| H ]2

< IIP(L)’IIIQIIP(LT) = P(Ly)||2|P(L7) " ||| H 2,

where equation a), (b), (c) follow from the norm inequalities. Recall L is a normalized Laplacian,
therefore the spectrum is bounded in the range A € [0,2]. Let us call A; := miny¢ ) [p(A)]| > 0,
A2 1= maxyeo,2) Ip(A)], and A, := maxye|o,2] |p(y)’|. Then we have

|H — H | < & |P(L) ~ P(L.) ol il
< 2Ly — Lo o | o

38 ll2Lr = Le|[2P(Lr ) (H) |2, (20)
3511 Lr — Le 2| P(L7) 2] H -

IN

IN

The normalized error given by

”EIT - H‘r||2

||H ||2 <>\2H 'ET””QP(LT)”Q’

<32¢|L; — Le |2,
(@)
<eH, 1)

where equation a) since energy of perturbation is bounded i.e., ||AL|| < e and H = )‘2)‘ .

C.4 PROOF OF THEOREM[6.2]
To prove that the representations from CTDG—SSM as permutation equivariant we first show that rep-

resentations from CTT-HiPPO are equivariant to permutation. Under the permutation the features
signal and Laplacian modifies as X = IIX, L = IILII". Let H, be representations obtained
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under permutation, then we have

/ X () dw(t),

— p(IIL,ITT)"! / ILX ()g(1) " du(t),
— TIp(L,) T / X ()g(1) " du(t),

= IIp(L / X (t)g(t) " dw(t)
=1IH., (22)

equation [22] implies the representations obtained from CTT-HiPPO are permutation equivariant.
Now, to prove the equivariance for the representations from CTDG—SSM layer we first evaluate state
matrix A and system matrix B under permutation as

Ay = exp(=p(LK]) 7 (p(L[k = 1]) = p(L[K])s).

= exp(—TIp(L[k]) ' TT " TI(p(L[K]) — p(Lk — 1)TT"s),
= exp(—TIp(L[k]) ™" (p(L[K]) — p(L[k — 1])IT7s),
= I exp(—p(L[k) ™ (p(L[k]) = p(L[k — 1])s)ITT,
= A;,, ", (23)
where B modifies as
BULL XIH) = [ Ay n(EiK) " XIKBT A" Al ds

_ / TLA} 11" TIp(L{k)) T TLX [k BT A* A[k] ds,
0

1
= H/ A5y p(LIK) ' X [k] BT A® Alk] ds.
0
=IIB(L[k], X[k]) (24)
Now we show that the updates from CTDG-SSM are permutation equivariant. Consider
Hlk+1] :Ai[k]f{[k]fi + B(L[k], X[k]),

WAL, (TH[K)A

_|_
O ALy H[KA + TIB(L[K], X k),

+
=II1 (A H[k]A + B(L[k], X [k])) ,
=TIH | + 1], (25)
where equation a) follows by recursion. Recall k = 0 we have H[1] = B(L[0], X[0]) as

H[0] = 0, hence H[1] = TIB(L[0], X[0]) = IIH][1] from equation [24] which is propogated
through k layers. Then equation 25]b) follows from equation 23] and equation [24]

B(Lk], X [K)),

D NUMERICAL EXPERIMENTS AND ADDITIONAL RESULTS

In this section, we discuss the dataset details, hyperparameters, and the additional results on the
dynamic link prediction task.

D.1 DATASET DETAILS

We provide a detailed description of the datasets considered for experimentation in Table 4] In all
the datasets, LastFM, Enron and MOOC are mainly considered for evaluating the LRT task. In
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Table 4: Statistics of the datasets used in our experiments. #N & L feat corresponds to the dimension
of node and link features, where - represents the unavailability of node features.

Dataset Domain #Nodes #Links #N&L Feat  Bipartite Duration Unique Steps  Time Granularity
Wikipedia Social 9,227 157,474 -& 172 True 1 month 152,757 Unix timestamps
Reddit Social 10,984 672,447 -& 172 True 1 month 669,065 Unix timestamps
MOOC Interaction 7,144 411,749 -&4 True 17 months 345,600 Unix timestamps
LastFM Interaction 1,980 1,293,103 - & - True 1 month 1,283,614 Unix timestamps
Enron Social 184 125,235 - & - False 3 years 22,632 Unix timestamps
UCI Social 1,899 59,835 -& - False 196 days 58,911 Unix timestamps
Social Evo.  Proximity 74 2,099,519 -&2 False 8 months 565,932 Unix timestamps
Flights Transport 13,169 1,927,145 &1 False 4 months 122 days

Can. Parl. Politics 734 74,478 &1 False 14 years 14 years

US Legis. Politics 225 60,396 &1 False 12 congresses 12 congresses
UN Trade = Economics 255 507,497 -&1 False 32 years 32 years

UN Vote Politics 201 1,035,742 -& 1 False 72 years 72 years
Contact Proximity 692 2,426,279 -& 1 False 1 month 8,064 5 minutes
tgbl-wiki Interaction 9,227 157,474 -&1 True 1 month 152,757 Unix timestamps
tgbl-coin Economics 638,486 22,809,486 -& 1 False 7 month 1,295,720 Unix timestamps

particular, The LastFM dataset corresponds to data from a music streaming platform that records
user listening behaviors, where users and songs are nodes and links denote listening events (Celma,
2010). The Enron dataset is an email communication dataset among employees of the Enron Cor-
poration, recorded over a three-year period (Klimt & Yang, [2004). Whereas the MOOC dataset
captures student interactions on an online course platform, where links represent students accessing
course content such as videos or problem sets (Kizilcec et al.l 2013), other DTDG datasets used for
evaluation include Flights, Can. Parl, US Legis., UN Trade, UN Vote, and Contact include. For all
datasets used in data processing, we employ the same pipeline described in (Yu et al., [2023). Ad-
ditionally, datasets including tgbl-wiki and tgbl-coin from (Huang et al., 2023) were also
utilized.

Table 5: AUC-ROC for transductive dynamic link prediction under. RNS: Random Negative Sam-

pling, HNS: Historical Negative Sampling, INS : Inductive Negative Sampling.

NSS  Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer ~ DyGFormer CTAN DyGmamba  CTDG-SSM
LastFM 7089 +£1.97 71404212 71.4740.14 7664 +4.66 8592+0.16 71.09+148 73.51+£0.14 93.03+£0.11 8512+0.77 9331 +0.18 93.79 +0.22
Enron 8777 £2.43 83.09+£220 68574146 887240095 90.34+023 8333+£093 84164034 93204012 87.09+ 1.51 93.34+023 94.98 +2.92
MOOC 84.50 £ 0.60 84.50 £0.87 87.01 £0.16 91.91 £0.82 8048 +£0.41 84.02+059 84.04+0.12 88.08+0.50 854042.67 89.58+0.12 99.00 £ 0.33
RNS  Reddit 98.29 £0.05 98.134+0.04 98.50+0.01 98.61 £0.05 99.02+0.00 97.67+0.01 97.17+0.02 99.15+0.01 97.24+0.75 99.27 £0.01 99.48 + 0.02
Wikipedia ~ 96.36 - 0.14 9443 4032 96.60 +0.07 98.37 £0.10 98.54 £0.01 97.27 £0.06 96.89 +0.04 98.92+0.03 97.00£0.21 99.08 £0.02 99.33 + 0.08
ucClt 90.35+0.51 69.46 +2.66 7876+ 1.10 92.03+0.69 93.81 +£0.23 8549+0.82 91.62+0.52 9445+0.22 7625+2.83 9477 +0.18 89.24 +043
Social Evo.  92.13 £0.20 9037 £0.52 9493 +£0.06 95314027 87.34+£0.10 9545+0.21 9521+£0.07 96.2540.04 Timeout 96.38 £ 0.02  99.10 + 0.49
Avg. Rank 7.93 9.36 7.86 4.57 571 8.00 771 3.00 7.50 2.00 1.86
LastFM 75.65 =443 70.63£2.56 64234045 78004297 67.92+032 60.53£2.54 64.06+£034 78.80+£0.02 79.50+0.82 79.82+0.27 89.55+0.57
Enron 75214127 76364+ 142 6236+ 1.07 7675+ 140 65.62+049 71.724+124 74824204 77354064 81.95+1.64 77.73+0.61 9586+ 2.18
MOOC 8238 £ 1.75 80.71 £2.08 81.53£0.79 86.59+£203 71.74+0.88 7322+121 77.09+0.83 87264083 73874277 8791093 9522+ 1.65
HNS  Reddit 80.70 £0.20 79.96 £0.23 79.60 +0.09 81.04+0.23 8042+020 76.83+0.12 77.83+033 80.61+048 90.63+228 81.71+049 97.49+0.17
Wikipedia ~ 80.71 £ 0.64 77.4940.72 82.834+0.27 83.28+0.26 65.74+3.46 85554047 87474020 72.78+6.65 9543 +0.07 7899+ 124 99.02+0.17
ucI 7821 £3.18 58.65+£3.58 57.12+£098 7848+1.79 57.67+1.11 6542+262 7746+1.63 7571+057 75054013 7543+199 87.86+0.59
Social Evo. 91.83 £1.52 9281 £0.60 93.63£048 9427 +1.33 87.61£0.06 95.03+£0.82 94.65+028 97.16+0.06 Timeout 97.27 £0.30 98.89 + 0.56
Avg. Rank 6.00 771 8.43 443 9.57 8.14 6.86 5.00 5.14 371 1.00
LastFM 61.59+572 60.624+2.20 63964041 6548+4.13 6790044 5475+£131 59.98+£020 67.87+£0.53 7870+0.87 68.74+0.55 94.17+0.22
Enron 70.75+£0.69 67.374+221 5978 £1.12 73224042 7529+0.66 69.74+1.19 70.72+1.08 74.67+0.80 7540+192 7547+ 141 9580+ 1.96
MOOC 67.53+1.76  62.604+1.27 74.4440.81 76.89+2.13 70.08+0.33 71.80£1.09 72.25+0.57 80.78£0.89 68.17+3.73 81.08+0.82 99.08 1 0.35
INS  Reddit 83.40+£0.33 8275+£036 8746+£0.10 8457+0.19 88.19+020 8441+0.18 82244024 86254064 91424218 86.35+0.52 99.51+0.03
Wikipedia ~ 70.41 £0.39 67.57 £0.94 81.54+£0.31 81.21+£030 6848+£3.64 7351+£1.88 8420+£0.36 6409+£9.75 93.67£0.11 7564242 99.36+0.07
ucI 64.14 £ 125 54.10+274 59.60 £0.61 63.76+0.99 57.85+0.59 6546+2.07 7425+0.71 64.92+0.83 66.51+025 66.83+2.83 89.75+0.32
Social Evo. 91.81 £1.69 9277 £0.64 9354 +£048 9486+£1.25 90.10£0.11 9513+£0.83 9450+£0.26 9501 +£0.15 Timeout 97.37+£0.26  99.24 + 0.47
Avg. Rank 8.29 9.86 6.71 5.86 6.86 7.14 6.57 571 3.67 3.29 1.00
Table 6: AUC-ROC of inductive dynamic link prediction.
NSS  Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer ~ DyGFormer CTAN DyGmamba CTDG-SSM
LastFM 83.134+1.19 8347+£1.06 7840+£0.30 81.18+£3.27 8933+0.06 81.38+1.53 82.07+031 94.174+0.10 60.40+3.01 94424021 94.49+0.27
Enron 7897+ 1.59 73.97+£3.00 66.67+1.07 7876+1.69 86.30+0.56 82.61+£0.61 7555+0.81 89.62+027 7461%1.64 89.67+027 93.66+4.67
MOOoC 80.57+£0.52 80.50£0.68 8528+0.30 88.01+1.48 81324042 8228+0.99 81.38+0.17 87.054+051 64994224 88.64+0.08 98.67+0.46
RNS  Reddit 96.43+0.16 9589026 97.13+£0.04 9741012 98.62+0.01 9501£0.10 9524+0.08 9883 +0.02 80.07+2.53 98.97+0.01 99.13+0.03
Wikipedia 9491 £0.32 9221 +£0.29 9626+0.12 97.81 £0.18 98.27+£0.02 9748 4+0.06 96.61 +0.04 98.58+0.01 93.58+£0.65 98.77+£0.03 99.06 + 0.10
uct 79.73 £ 148 5839238 79.10+£049 8781132 9261035 8419+137 91.17+£029 9445+0.13 4978 £5.02 94.76 = 0.19 87.43 £0.79
Social Evo.  91.72 £ 0.66 89.10+£1.90 91.47+0.10 90.744+1.40 79.83+0.14 9251+£0.11 91.89+0.05 93.05+0.10 Timeout 93.134+0.05  98.60 + 0.14
Avg. Rank 7.29 9.00 8.00 6.00 5.29 6.57 6.71 3.00 10.57 1.86 171
LastFM 69.85+1.70 68.14 £ 1.61 69.89 £0.41 67.01 £577 67.72+020 63.15£1.17 69.93+£0.17 69.86+0.80 57.85+3.67 70.59+0.57 94.77 £ 0.26
Enron 65954127 6220+£2.15 56.52+0.84 6421+£094 62.07+£0.72 67.56+ 134 67.39+133 66.07+0.65 68704182 6898+1.00 94.59+3.37
MOOoC 65374096 62.97+£205 7494+080 7636+291 7118054 71.30+£121 72.15+0.65 8042+0.72 5806+0.89 81.12+0.63 98.71 £ 0.47
INS  Reddit 61.844+044 6035+£0.53 6492+£0.08 65244008 6537+0.12 61.854+0.11 64.56+026 64804053 81.70+£471 6493+£0.89 99.15+0.03
Wikipedia ~ 61.66 +0.30 56.34 £0.67 78.40+0.77 7586+0.50 59.00+4.33 7145+£223 8276+0.11 5821+8.78 91.12+0.13 67924223 99.09 £ 0.10
uclt 60.66 4+ 1.82 51.50£2.08 6127 +0.78 62.07 £0.67 5560+ 122 6587+190 7572+0.70 64.374+098 51.68+260 66.95+2.22 87.86+0.73
Social Evo.  88.98 £0.81 86434+ 148 92.37+0.50 91.66+2.14 83.84+£021 9550+£0.31 9388+£0.22 9497 +0.36 Timeout 96.65+0.29  98.90 £ 0.14
Avg. Rank 8.00 9.71 6.14 6.14 8.14 6.14 4.57 571 7.14 3.29 1.00
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Table 7: Model Hyperparameters. N/A: Not Applicable, OHE: One-hot encoding, LR: Learnable.

Dataset Latent dimension ~ Time embedding dimension ~N,, Batch size  Static embedding
Enron 32 16 10 128 OHE
UCI 32 16 10 128 N/A
MOOC 32 16 10 128 N/A
Wikipedia 128 16 10 128 N/A
Reddit 128 16 10 128 N/A
Lastfm 32 16 10 128 N/A
Flights 32 16 10 128 N/A
Can. Parl. 32 16 10 128 N/A
US Legis. 32 16 10 128 N/A
UN Trade 32 16 10 128 N/A
UN Vote 32 16 10 128 N/A
Contact 32 16 10 128 N/A
tgbl-wiki 128 16 10 128 N/A
tgbl-coin 32 16 10 128 LR
Sequence Classification 32 N/A 10 128 N/A

D.2 ADDITIONAL RESULTS AND HYPERPARAMETER DETAILS

In this section, we provide additional results for the dynamic link prediction task. Specifically,
we report performance using average precision (AP) as an evaluation metric. Furthermore, we
present AUC-ROC results under both inductive and transductive settings, comparing different
sampling strategies. In Table[5] [I3]and Table[8] [[4} [[3] we report AUC-ROC and AP scores under
the transductive setting with different sampling techniques. The results clearly demonstrate that
the proposed model outperforms state-of-the-art algorithms on LRT datasets, primarily due to
its ability to jointly encode structural information via graph polynomials that capture multi-hop
neighborhood interactions and temporal evolution through a state-space formulation. In Table|[6]
and Table 9} [T6] [I8] we report results under the inductive setting, where the task is more challenging
since the test set includes nodes unseen during training. Additionally, we report the mean reciprocal
rank (MRR) in Table @l using the evaluation mechanism proposed in (Huang et al., [2023) (values
close to 1 are better). The proposed model not only outperforms existing approaches but also
exhibits only a minor performance drop compared to the transductive setting, highlighting its ability
to effectively capture global structural and temporal patterns instead of learning local structural
patterns.

Hyperparameter Details: In Table we report the hyperparameters used in all experiments.
The latent dimension corresponds to the size of the memory representations, the batch size denotes
the number of events in each batch, and OHE refers to one-hot encoding.

Table 8: AP of transductive dynamic link prediction.

NSS  Datasets JODIE DyRep TGAT TGN CAWN TCL Gi i DyGFormer CTAN DyGmamba  CTDG-55M
LastFM 70.95+294 71.85+244 7330+£0.18 7531£5.62 86.60+0.11 76.62+1.83 7556+0.19 9295+0.14 86.44+0.80 93.35+020 93.40 +0.49
Enron 8485 +3.13 79.80+228 70.76+1.05 8698+ 1.05 89.50+0.10 8541=+0.71 8213+0.30 9242+0.11 9252+120 92.65+0.12 94.46 +4.73
MOOC 81.04 £0.83 81.504+0.77 8571 +£020 89.15+1.69 80.30+043 83.89+0.86 8280+0.15 87.66+048 8471 +2.85 89.21+0.08 98.85+0.35
RNS  Reddit 9831 4+0.06 98.18£0.03 98.57+0.01 98.65+0.04 99.11 +0.01 97.78+0.02 97.31 +£0.01 9922+0.01 9721 +0.84 99.32+0.01 99.53 + 0.02
Wikipedia ~ 96.51 £0.22 94884029 96.88£0.06 98.45+0.10 98.77£0.01 97.75+0.04 97.22+£0.02 99.03+£0.03 96.61 £0.79 99.15+0.02 99.40 + 0.09
uct 8928 £1.02 66.11 275 7940+0.61 9233+0.64 9513+£023 86.63+1.30 93.15+041 9574+0.17 76.64+4.11 9591+0.15 90.18 £0.98
Social Evo.  89.88 £0.40 8839+ 0.69 93.33+£0.06 93.45+0.29 8490+0.11 93.82+0.19 93364006 94.63 £ 0.07 Timeout 94.77+0.01  98.65 + 0.65
Avg. Rank 8.71 9.71 7.86 529 5.86 6.71 7.29 3.14 7.86 1.86 171
LastFM 7438+627 T71.85+291 71.60+036 7503£690 69.93+033 71.02+207 7228+037 B8IL51+0.14 8229+094 83.02+0.16 88.91%0.93
Enron 69.134 1.66 72.58 £1.83 64244124 7431 £199 6540+036 7239+0.61 7735+122 7693+0.76 77244153 77.77+132 95.80+3.33
MOOC 78624243 7514 +£286 8283 +0.71 8565+232 7446+0.53 7851+0.84 77.09+083 86.43+038 67.73+2.08 85.80+094 94.76 +1.76
HNS  Reddit 79.96 +0.30  79.40 £0.00 79.78 £0.25 81.05+£0.32 80.96+0.28 77.38+£0.02 7839+036 83.81+1.08 89.77+228 88.81+152 97.55+0.22
Wikipedia ~ 81.16 £0.73  79.44 095 87.31£0.36 87.31+0.25 66.77+£6.62 86.12+1.69 90.74+0.06 70.13+11.02 9591 +0.10 81.77+120 98.99 +0.32
uct 74774535 5589283 66.78+0.77 81.32+£126 64.69+1.78 74.62+270 83.88+1.06 80.44+1.16 76.62+0.33 81.03+1.09 88.87+1.28
Social Evo.  91.26 £2.47 9286 +0.90 9531 +£0.30 93.84+1.68 8565+0.11 9593 +0.63 95304034 97.05+0.16 Timeout 97.354+0.52  98.20 + 0.81
Avg. Rank 743 8.71 7.36 4.93 9.71 7.71 5.57 4.71 5.57 3.29 1.00
LastFM 62.63 689 6249 £3.04 71.16+033 6509£7.05 6738+0.57 6276081 67.87 037 72.60+0.06 80.06+ 085 73.63+0.54 93.81%0.44
Enron 69.514+1.06 6678 £221 63.16+0.59 73.27+£0.58 75.08+0.81 7098+0.96 74.12+0.65 7822+0.80 72.02+2.64 80.86+124 9581 +2.99
MOOC 66.56 +1.49 6148 £0.96 76.96+0.89 77.59+183 7355+036 7635+ 141 7424+075 80.99+0.88 64934331 81.11+0.63 99.03+0.38
INS  Reddit 86.93 £0.21 86.064+0.36 89.93+£0.10 88.12+0.13 91.89+£0.18 8697 +0.26 85374026 91.06+0.60 90.99+2.19 91.15+0.54 99.58 + 0.02

Wikipedia ~ 74.78 £0.56  70.55+1.22 86.77£0.29 8580+0.15 69.27£7.07 72.54+4.69 8854+020 62.00%14.00 94.15+0.08 79.86=+2.18 99.45+0.06
uct 66.024 1.28 54.64 £252 67.63+0.51 7034£0.72 64.08+1.06 73.49+£221 79.57+0.61 7051183 66254051 71.95+251 9144+ 0.50
Social Evo.  91.08 £3.29 92.84 £0.98 95204030 94.58 +1.52 88.50+0.13 96.14 £0.63 95.114+0.32 97.62 +0.12 Timeout 97.68 042  98.88 + 0.63
Avg. Rank 8.86 10.00 6.14 6.14 7.29 6.57 5.71 4.71 6.43 3.14 1.00
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Table 9: AP of inductive dynamic link prediction.

NSS  Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer  DyGFormer CTAN DyGmamba ~ CTDG-SSM
LastFM 8313+ 1.19 83.47+106 7840+030 81.18+£327 89.33+006 8138+ 153 82.07+031 94.17+0.10 6040 =301 9442+0.21 93.65+0.62
Enron 7897+ 1.59 73.97+300 66.67+1.07 7876+169 86.30+056 82.61+0.61 7555+081 89.62+027 7461+ 1.64 89.67+027 93.02+7.25
MOOC 80.57+0.52 80.50+0.68 8528+030 88.01+ 148 81.32+042 8228+099 81.38+0.17 87.05+0.51 64.99+224 88.64+0.08 9849+ 0.48
RNS  Reddit 9643 +£0.16 9589026 97.13+0.04 97.41+£0.12 98.62+001 9501+£0.18 9524+008 98.83+002 80.07+£253 9897+0.01 99.28 +0.03

Wikipedia 9491 +£0.32 9221 £0.29 9626 +0.12 97.81 £0.18 9827+0.02 9748 +0.06 96.61 £0.04 98.58+0.01 93.58+0.65 98.77+0.03 99.19 £ 0.09
ucI 7973+ 148 58.39+£238 79.10+£049 87.81+1.32 9261035 8419+1.67 91.17+£029 9445+0.13 4978 £5.02 9476 +0.19 89.12+1.02
Social Evo.  91.72+0.66 89.10 £1.90 9147 +0.10 90.74 £1.40 79.834+0.14 9251 £0.11 91.89£0.05 93.05 + 0.10 Timeout 93.134+0.05 97.56 + 0.45

Avg. Rank 729 9.00 8.00 6.14 529 6.57 671 286 1057 171 1.86
LastPM  71.37+345 69.75+273 7626+ 034 6847 +607 7128 +043 6879 £0.93 7627 +037 7507+ 145 5560 £391 7676+ 043 94.08 + 0.57
Enron 6699+ 115 62.64+233 59.95+100 64.51+1.66 60.61 +063 6893+ 134 7171+133 67214072 68.66+231 68.77+0.60 94.56+5.02
MOOC 6467+ 1.18 6205+2.11 7743+081 7681+2.83 74.36+078 7595+ 146 73874099 80.66+094 5749+ 134 80.75+1.00 98.64 + 0.51

INS  Reddit 62544052 61.07+086 63.96+025 6527+0.57 64104022 61454025 64824030 65034120 78354503 6530 +1.05 99.32+0.03
Wikipedia 6822036 61074082 8419+096 81.96+0.62 62.34+679 71.46+£495 8747+025 5790+ 1105 92.61+£090 71.14+244 99.23 +0.09
ucr 6357215 5263+ 1.87 69.77+043 69.94+050 6344+ 152 7439+ 181 81404052 7025+202 52314267 72.07+220 90.34+0.74
Social Evo.  89.06 + 123 8730+ 1.5 9424 +036 90.67+241 80.30+021 9594+037 9456+024 9673+0.11  Timeout  96.83 £0.56 98.15 + 0.27
Avg. Rank 7.86 9.57 6.29 643 843 5.86 414 543 7.57 343 1.00
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Figure 5: Model size vs. AUC-ROC under a transductive setting with random negative sampling.

E MODEL EFFICIENCY

E.1 BATCH LEVEL SUBGRAPH SAMPLING

The discrete update equation involves computing p(L) !, which incurs a cost of O(N2), where N,
denotes the number of nodes in G.. To implement this update efficiently, we operate on a subset of
nodes from G, whose states are updated, while the remaining node states are kept unchanged. We
refer to this subset as the active batch nodes. This set includes:

* Nodes appearing in interaction events of the form (u, v, t) within the batch.

* Neighbors of the nodes selected from these interactions.
Neighbor selection depends on the chosen polynomial. For first-order polynomials, we select at
most K of the most recent 1-hop neighbors for each node u and v in interaction (u,v,t). For a
polynomial of order m, we extend this to an m-hop neighborhood. All nodes in this m-hop ego
network are enumerated, and at most K neighbors are chosen based on temporal proximity, using
the most recent timestamp along the path. For example, if a node w is connected to w via v through

t1 to
U — v — w,

then the time associated with w when sampling neighbors for interaction (u, v, t) is computed as

ty = (t—tl)—l—(t—tg).

The number of active batch nodes Ny for a batch of length B satisfies
Np <2BK < N,

resulting in a substantial reduction in update cost.

E.2 LEARNABLE PARAMETERS
In this section, we compare models based on the number of learnable parameters. Recall that the

CTDG-SSM layer introduces learnable matrices only through Ay, ;). A and B(L[k], X[k]). Fig-
ure [3] illustrates the trade-off between parameter count and AUC-ROC. The results show that on
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Models LastFM Enron MOOC 10[03 § Reddit Social Evo.
Time Mem Time Mem Time Mem Time Mem Time Mem Time Mem
JODIE 4.4 2.28 0.07 1.30 0.78 236  0.03 1.44 3.95 1.10 4.70 1.71
DyRep 6.6 2.29 0.10 1.34 0.88 2.38 0.05 1.51 5.75 1.21 7.55 1.76
TGAT 2275 4.15 1.28 3.46 4.08 364 060 342 1633 298 2550 3.89
TGN 12.14  2.21 0.15 1.45 1.03 2.54  0.08 1.51 2.05 1.67 3.83 1.78
CAWN 99.00 1492 262 403 1345 8.02 1.95 940 20.16 5.89 8566 8.14
TCL 6.23 3.04 030 251 1.00 249  0.13 2.00 2.25 1.82 5.05 2.48
GraphMixer 1635  2.78 1.20 223 4.02 240 0.73 2.19 4.92 1.57 1550 2.71
DyGFormer 47.00 7.57 2.73 3.23 8.32 3.35 0.62 230 7.00 242 20.00 2.77
CTAN 3.33 1.44 0.50 1.33 3.22 230 0.38 1.30 0.86 1.54 2.41 0.63
DyGMamba 2845 4.17 2.05 2.74 4.88 2.48 0.60 1.93 6.30 2.07 17.80 2.9
CTDG-SSM  4.45 1.15 0.55 0.86 1.25 0.43 0.17 0.31 1.95 1.18 9.57 5.22

Table 10: Per-epoch time (minutes) and GPU memory usage (GB) across multiple datasets.

Models Enron UCI Reddit
#Epoch T;,; | #Epoch T;,; | #Epoch Tio
CTAN 173.00 86.50 | 236.00 89.68 | 327.18 173.41

DyGFormer 32.80 89.54 | 3480 21.58 | 24.60  104.30
DyGMamba | 33.00 67.65 | 28.00 16.80 | 26.80 88.98
CTDG-SSM | 83.00 45.65 | 38.00 6.46 27.00 52.65

Table 11: Number of epochs and total time (minutes) across datasets.

long-range datasets such as MOOC and Enron, the proposed model achieves superior performance
while being highly parameter-efficient, requiring about one-tenth fewer parameters compared to
existing approaches.

E.3 RUNTIME ANALYSIS

In this section, we compare the proposed model with state-of-the-art approaches using run-time as
the performance metric. In Table [T0] we report the per-epoch training time (in minutes) and GPU
memory consumption (in GB) across all datasets. Notably, it can be observed that CTDG-SSM
achieves significantly lower per-epoch training time and memory usage compared to DyGMamba
and DyGFormer, both of which are specifically designed for long-range propagation tasks.

In Table[IT] we present the total training time, obtained as the product of the per-epoch time and the
number of training epochs. In Fig.[f] we analyze the convergence behavior of proposed algorithm
where we show the training loss across epochs for multiple datasets. The plots clearly show that the
proposed model converges within only a few epochs highlighting its computational efficiency.

E.4 ROBUSTNESS TO STRUCTURAL PERTURBATIONS

We evaluate the robustness of the proposed algorithm to structural perturbations on the Enron dataset
with downstream task as link prediction. In particular, we introduce the perturbations to the true
graph as Lp[k] = Lglk] + eALg[k], where ALg[k] is a perturbation matrix whose entries are
sampled from a normal distribution, i.e., [ALg];; ~ N (0,1) and € controls the noise level.

Prediction Node p(L)=1 p(L)=aol +aiL p(L)=aol +aiL+ asL?

First 1.00 = 0.00 1.00 = 0.00 1.00 & 0.00
Second 0.51 £ 0.06 0.97 £0.02 1.00 £ 0.00
Third 0.47 £ 0.02 0.96 £+ 0.01 1.00 = 0.00
Second-Last 0.46 + 0.01 0.90 £ 0.01 0.92 + 0.07
Last 0.45 £+ 0.02 0.88 £0.18 0.90 + 0.06

Table 12: Ablation study with respect to the order of the graph filter.
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We then evaluate the proposed algorithm by replacing L 5 [k] with Lz[k] under different values of
€, thereby varying the severity of the structural perturbation. In Fig.|7} we report the accuracy across
these noise levels. As expected, accuracy decreases as the noise variance increases; however, for
small values of €, the model performs very close to the noise-free setting. This demonstrates that the
proposed approach is stable and robust under mild structural perturbations.

E.5 ABLATION TO STUDY THE IMPORTANCE OF GRAPH FILTERS AND CTDG-SSM MODULE

Considering the downstream task as sequence classification, we conduct an ablation study to under-
stand which components of the model capture long-range information. Specifically, we analyze the
role of graph filters and the proposed CTDG-SSM module on the long-range spatial (LRS) task and
the long-range temporal (LRT) task.

To evaluate the LRT capabilities of CTDG-SSM, we first set the polynomial p(L) = I. For an event
of the form (u, v, t, z,,, ©,) in sequence classification, instead of restricting the model to update only
a small subset of nodes (i.e., those in the batch subgraph), we update the state vectors of all nodes.
Formally, we define the input signal at time ¢ as:

X (t) e RV"*1 suchthat X[u](t) = x,, X [v](t) = z.,and 0 otherwise.

This eliminates the step where the previous states of inactive nodes are carried forward through
memory. This carry-forward mechanism could aid the model in LRT, so by removing it, we can
evaluate the LRT capability of CTDG-SSM in isolation. In this setup, the model is tasked with pre-
dicting the initial feature X [0](0) observed at the first node using the final state vectors of different
nodes. A successful LRT would yield strong performance as long as the state vector of node 1 pre-
serves the information of the feature X [0](0). Notably, this model completely lacks LRS capability,
as it does not account for the underlying graph structure and updates states solely based on the input
at the corresponding nodes.

Next, we evaluate the effect of aggregating multi-hop information by applying graph filters of dif-
ferent orders. In Table[T2] we report the mean accuracies obtained from representations at different
nodes using filter orders land 2. We observe a substantial improvement in prediction accuracy by
leveraging the representations from the node 2, ..., 31(the last node), demonstrating the model’s
enhanced ability to preserve spatial information over longer ranges. In particular, using deeper
aggregation-i.e., a filter of order 2-yields a notable gain in accuracy, indicating that incorporating
information from larger hop neighborhoods significantly strengthens the model’s capacity to capture
long-range spatial dependencies.

F ADDITIONAL EXPERIMENTS

In this section, we present results on additional temporal datasets-Flights, Contacts, UN Trade,
UN Vote, and CanParl (Yu et al.| 2023)-using link prediction as the downstream task. We fur-
ther compare the proposed method with several state-of-the-art approaches, including Edgebank,

DyG-Mamba (Li et al} 2024), and FreeDyG (Tran et al} 2024).

In Tables[T4] [T3] [16] and[T7)we compare the performance of proposed model against the state of the
art methods with across these datasets. It is clear that the proposed model consistently outperforms
competing methods on most datasets, which we attribute to its ability to jointly model structural and
temporal evolution through graph filters and state-space dynamics.

Additionally, in Tables[T3]and[T8] we provide direct comparisons against Edgebank, DyG-Mamba,
and FreeDyG. The results clearly demonstrate that our model consistently achieves superior per-
formance across both transductive and inductive settings.

G CTDG-SSM BEYOND NODE/EDGE ADDITION.

The CTDG-SSM state update equation depends on the change in the graph Laplacian, and therefore
naturally accommodates both the addition *and* removal of edges.
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NSS Datasets

Edgebank

DyG—Mamba

FreeDyG

CTDG-SSM

rnd

Wiki
Reddit
MOOC
LastFM
Enron
Social Evo.
UCI

90.37£0.00
94.86+0.00
57.97+0.00
79.29+0.00
83.53 £ 0.00
74.95 £ 0.00
76.20 = 0.00

99.08 + 0.09
99.27 £ 0.00
90.25 £ 0.01
94.23 + 0.01
93.14 + 0.08
94.77 + 0.01
96.14 + 0.14

99.26 + 0.01
99.48 + 0.01
89.61 £0.10
92.15 £ 0.16
92.51 +0.05
94.91 £ 0.01
96.28 £+ 0.11

99.40 £ 0.00
99.53 + 0.00
98.85 + 0.00
93.40+0.49
94.46 + 4.73
98.65 + 0.65
90.18 +£0.98

hist

Wiki
Reddit
MOOC
LastFM
Enron

Social Evo.
UCI

73.35 £ 0.00
73.59 £ 0.00
60.71 + 0.00
73.03 + 0.00
76.53 + 0.00
80.57 £0.00
65.50 + 0.00

82.35 £1.25
81.02 £0.19
87.42 £1.57
84.08 £ 0.45
77.85 £ 1.20
97.35 £ 0.18
81.36 £0.14

91.59 £ 0.57
85.67 £ 1.01
86.71 = 0.81
79.71 £ 0.51
78.87 £ 0.82
77.79 £0.23
86.10 £ 1.19

98.99 + 0.32
97.55 £ 0.22
94.76 + 1.76
88.91 + 0.93
95.80 + 3.33
98.20 + 0.81
88.87 + 1.28

ind

Wiki
Reddit
MOOC
LastFM
Enron
Social Evo.
UCI

80.63 £ 0.00
85.48 £0.00
49.43 £0.00
75.49 = 0.00
73.89 £ 0.00
83.69+0.00
57.43 +£0.00

87.06 £ 0.86
91.77 £0.46
81.19 £2.02
75.05 £ 0.40
77.46 + 0.90
97.78 £ 0.15
77.75 £ 1.56

90.05 £ 0.79
90.74 £ 0.17
83.01 £0.87
72.19 £ 0.24
77.81 + 0.65
97.50 £ 0.15
82.35£0.73

99.45 £ 0.06
99.58 + 0.02
99.03 + 0.38
93.81 £+ 0.44
95.81 + 2.99
98.88 £+ 0.63
91.44 £0.50

Table 13: Performance comparison with AP on dynamic link prediction under transductive setting.

NSS  Dataset JODIE DyRep TGAT TGN CAWN Edgebank TCL GraphMixer DyGFormer DyGMamba CTDG-SSM
Flights 95.6041.73 95.29+0.72 94.03+0.18 97.95+0.14 98.510.01 89.35+0.00 91.23+0.02 90.99+0.05 98.91+0.01 98.95+0.05 98.70£0.05
Can. Parl.  69.26 £ 0.31  66.54 £2.76  70.73 £0.72 70.88 +2.34 69.8242.34  64.55+£0.00 68.67 £2.67 77.04 £0.46 97.36£0.45 99.57+0.08  98.20 +1.73
md US Legis. 75.05+1.52 7534+039 685243.16 7599 +£0.58 70.58 £0.48 58.39+0.00 69.59+0.48 70.74 £ 1.02 7111 £059  71.75+£026 8251 +0.00
UN Trade 64.94 £031 6321 £093 61.47+0.18 6503 +£137 6539+0.12 60.41£0.00 62.21=+0.03 62.21 £0.27 66.46 £1.29  67.504+0.14 69.10+0.20
UN Vote 63.91 +0.81 62.81+0.80 5221 4+0.98 65724217 5284+0.10 5849+0.00 51.90=+0.30 11+0.16 55.5540.42 56.39+0.18  95.31 +0.01
Contact 95.31£1.33 95.98+0.15  96.2840.09  96.8940.56  90.26:£0.28 92.58+0.00 92.44%0.12 91.92+0.03 98.2940.01 98.43+0.12  98.90 + 0.05
Flights 66.484+2.59 67.61+0.99  72.38+£0.18  66.70£1.64 64.724:0.97 70.53+£0.00  70.68+ 0.24 71.474+0.26 66.59+0.49 67.80+2.17 87.2 £ 1.50
Can. Parl.  51.79+0.63 63.31+1.23 67.13+0.84 68.4243.07 66.534+2.77 63.844+0.00  65.93 +3.00 74.34 £0.87 97.004+0.31 99.77+1.00 97.8 +£1.24
hist US Legis. 51.71 £5.76  86.88 £225 62.144+6.60 74.00 £7.57 68.82+823 63.22+0.00 80.53 +3.95 81.65 + 1.02 85.3043.88 86.12+0.26  80.02 = 0.00
: UNTrade 61.39£1.83 59.19+£0.17 5574+091 5844 £551 5571+£038 81.32+£0.00 5590=+1.17 57.05+1.22 64.41+1.40 66.10+1.02 68.4 + 0.04
UN Vote 70.02+0.81  69.304+ 1.12 5296 +£2.14 69.37+3.93 51.26+0.04 84.89+0.00 52.30+2.35 51.20 + 1.60 60.84+1.58 61.07+1.39 95.29+0.01
Contact 95314+213 9639+020 96.05+0.52 93.05+£235 84.16+049 8881+0.00 93.86=+0.01 93.36+ 0.41 97.57 £0.06  97.61:£0.04 98.2 £ 0.05
Flights 69.07 £4.02 7057 +1.82 7548 4£0.26 71.09+£272 69.18+1.52 81.08+0.00 74.62+£0.18 74.87 £0.21 70.924+1.78 73.7945.69 86.50+1.34
Can. Parl.  48.42+0.66 58.61+0.86 6882+ 121  653442.87 67.754+1.00 62.16+0.00 6585+ 1.75 6948 +0.63 95444+ 0.57  94.87+0.67 94.2 £+ 0.50
ind US Legis. 50.27+5.13 83.44+1.16 6191 582  67.57+£6.47 6581+£852 6574+0.00 78.15+3.34 79.63 £ 0.84 81.2543.62 81.22+1.34 81.32 + 0.00
UN Trade 60.42+1.48 60.19+124 60.61 =124 61.04+6.01 6254+0.67 72.97+0.00 61.06+1.74 60.15 +1.29 55.79+1.02 58.89+0.59 6792+ 0.5
UN Vote 67.79 £ 146 67.53+1.98 52.89+1.61 67.63+2.67 5219+0.34 66.30+0.00 50.62+0.82 51.60 +£0.73 51.914+0.84 52244095  95.37 +0.01
Contact 9343+ 1.78 9418 +0.10 94.35£048 90.18 £3.28 89.31 £0.27 8520+0.00 91.35+0.21 90.87 £ 0.35 94.75+0.28 95.43+0.17  97.60 + 0.32
Table 14: AP for dynamic link prediction under transductive setting
NSS Dataset JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer DyGMamba  CTDG-SSM
Flights 96.21 142 9595+0.62 9413£0.17 9822+0.13 9845+0.01 90.23+0.00 91.21+0.02 91.13£0.01 98.934+0.01 98.98 +0.05 98.53 +0.02
Can. Parl. 7821 +£0.23 7335+3.67 7569+0.78 7699+ 180 7570+327 64.14+0.00 72464323 83.17+0.53 97.76+0.41 99.69 +£0.06 98.1+0.80
md US Legis. 82.85+1.07 8228+032 75844199 83344043 7716039 62.57+£0.00 7627 +0.63 7696+0.79 77.90+0.58 79.03+0.26 85.92+0.00
UN Trade 69.62+ 044 67.44+£0.83 6401 +£0.12 69.10+£1.67 68.54+0.18 66.75+0.00 64.72+0.05 6552+£0.51 7020+ 1.44 7141 +0.21 73.76 £ 0.30
UN Vote ~ 68.53 £0.95 67.18+1.04 5283+ 1.12 68.714+2.65 53.09+£022 6297000 51.88+036 5246+027 57.1240.62 5848+0.12 97.41+0.00
Contact 96.66 - 0.89 96.48 £0.14 96.95+0.08 97.544+035 89.99+034 9434+£0.00 94.15+£0.09 93944002 9853+£0.01 98.68+0.02 98.70+0.01
Flights 68.97 & 1.87 69.43+090 7220+£0.16 6839+095 66.11£0.71 74.64+£0.00 7057+3.01 7037+£023 68.09+043 68984181 90.1+£1.50
Can. Parl. 6244 £ 1.11 70.16 £ 1.70 70.86 +0.94 7323 +3.08 72.06+3.94 63.04+0.00 69.95+370 79.03+1.01 97.61 £ 040 99.82+0.10 97.5+0.05
hist US Legis. 6747 £640 9144 +1.18 73474525 83534453 78.62+746 6741+000 83.97+371 8517+£0.70 90.77+196 8836+1.78 85.55+0.00
s UN Trade 6892+ 1.40 64.36+1.40 60.374+0.68 63934541 63.09+074 86.61£0.00 61.43+104 6320+154 7386+1.13 7410+£202 733+07
UN Vote 7684 £1.01 7472+ 143 5395+3.15 7340+£520 51274033 89.62+0.00 52.29+239 5261 +£144 64.27+178 65.17+1.24 97.22+0.00
Contact 96.354+0.92 96.00+023 9539043 9376129 83.06+032 92.17+0.00 9334+0.19 94.14+034 97.17£0.05 97.27+0.06 97.78 £ 0.04
Flights 69.99+3.10 71.13+1.55 7347+0.18 71.63+1.72 69.70£0.75 81.10£0.00 7254+0.19 7221+0.21 69.53+1.17 71.16 £3.24 89.25 +1.24
Can. Parl.  52.88 £0.80 63.53+£0.65 7247+ 1.18 69.57 +£281 7293+ 178 61.414+0.00 69.47+212 70.52+094 96.70+0.59 99.82+0.10 96.87 +0.05
ind US Legis. 59.054+552 89.44+0.71 71624542 78.12+4.46 7645+7.02 68.66+0.00 8254+391 84224091 87.96 + 1.80  86.08 +£2.27 86.06 + 0.00
UN Trade 66.82+1.27 6560+ 128 66.13+£0.78 6637 £5.39 71.73+£0.74 7420+0.00 67.80+ 121 66.53+£122 62.56+ 1.51 67.60+0.64 72.65+0.45
UNVote 73734+ 1.61 72.80+2.16 53.04+258 72694372 5275+£090 7285+£0.00 52.02+122 62.56=+1.51 51.894+0.74 5337 +126 97.45+0.01
Contact 94474+ 1.08 9423+0.18 9410041 91.64+1.72 87.68+£0.24 8587+£0.00 91.23£0.19 90.96+0.27 9501 £0.15 95.68+020 97.50+0.45

Table 15: AUC-ROC for dynamic link prediction under transductive setting
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NSS Dataset JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer DyGMamba CTDG-SSM
Flights 9474 £ 037 92.88+0.73 88.73+0.33 95.03£0.60 97.06+0.02 83.41+0.07 83.03+005 97.79+0.02 97.85+0.22 97.15+0.04
Can. Parl.  53.924+0.94 54.02+0.76 55.18£0.79 54.10+£093 558040.69 54.30+0.66 5591+ 0.82 8774+ 0.71 93.46 +2.62 88.65+ 0.70
md US Legis. 54.93+229 5728+0.71 51.00£3.11 58.63+037 53.17+120 5259+097 50.71+£0.76 5428 4+2.87 5595+1.16 76.94+0.01
UN Trade 59.65+0.77 57.02+0.69 61.03+0.18 58314315 6524+021 6221+0.12 62.17 +0.31 64.55+0.62 70.55+0.04 72.42+0.02
UN Vote 56.64 096 54.62+222 52244146 5885+£251 4994+045 51.60+097 50.68 044 5593+039 56.61 £0.13 95.79+0.01
Contact 9434 + 145 9218+ 041 9587 +0.11 93.82+0.99 89.55+0.30 91.11+£0.12 9059 +0.05 98.03+0.02 98.16+0.03 98.42+ 0.01
Flights 61.01 £ 1.66 6283+ 131 6472+037 5932+ 145 56824056 6450+025 6529+024 57.11+020 57.76+2.06 92.24 + 1.05
Can. Parl. 5258 £0.86 52.24+0.28 56.46+£0.50 54.18+£0.73 57.064+0.08 55.46+0.69 5576 = 0.65 87.22+0.82 92.68 +0.97 88.4240.65
ind US Legis. 52944211 6210+ 141 51.83+395 61.18+1.10 5556+ 1.71 53.87+ 141 5203+1.02 5631+346 57854023 75.64-+0.01
n UN Trade 5543 +£1.20 5542+0.87 5558 +£0.68 52.80+324 54974038 55.66+0.98 54.88+1.01 5256 +1.70 52.81 £0.18 69.24 + 1.02
UN Vote  61.17+ 133 6029 +£1.79 53.08+3.10 63.714+297 48.01 £0.82 54.13+2.16 48.10+040 52.61 +125 53.70+240 95.77 + 0.00
Contact 9043 +£233 89.22+0.65 94.14+045 88.12+150 74.19+081 9043+0.17 8991 +£036 93.55+052 94.05+0.32 96.78+0.72
Table 16: AP for dynamic link prediction under inductive setting
NSS Dataset JODIE DyRep TGAT TGN CAWN TCL GraphMixer  DyGFormer DyGMamba CTDG-SSM
Flights 95.21 +0.32 93.56 + 0.70 88.64 £ 0.35 95.92 +0.43 96.86 + 0.02 82.48 £ 0.01 82.27 £ 0.06 97.80 + 0.02 97.98 + 0.25 97.3640.04
Can. Parl. 5381 + 1.14 55.27 + 0.49 56.51 4+ 0.75 55.86 + 0.75 58.83 + 1.13 55.83 £ 1.07 5832 + 1.08 89.33 +0.48 94.02 + 3.42 89.78+0.78
d US Legis. 58.12 +2.35 61.07 + 0.56 48.27 £ 3.50 62.38 + 0.48 5149 + 1.13 50.43 + 1.48 47.20 + 0.89 53.21 +3.04 57.17 £ 0.20 81.17 + 0.00
b UN Trade 62.28 £ 0.50 58.82 + 0.98 62.72 £ 0.12 59.99 +3.50 67.05 £ 0.21 63.76 £ 0.07 63.48 +0.37 67.25 + 1.05 68.26 £ 0.26 73.761+0.45
UN Vote 58.13 £ 1.43 55.13 +£3.46 51.83 £1.35 61.23 £2.71 48.34 £0.76 50.51 + 1.05 50.04 +0.86 56.73 + 0.69 56.91 £ 0.12 97.72 £0.01
Contact 95.37 £0.92 91.89 + 0.38 96.53 £ 0.10 94.84 +0.75 89.07 £0.34  93.05 £ 0.09 92.83 + 0.05 98.30 & 0.02 98.44+0.05 98.70+0.65
Flights 60.72 £ 1.29 61.99 + 1.39 63.40 £ 0.26 59.66 + 1.05 56.58 £ 044 6349 £0.23 63.32 +0.19 56.05 +0.22 56.58+2.12 91.36 + 1.87
Can. Parl. 51.61 +0.98 52.354+0.52 58.15 £+ 0.62 55.43 +0.42 60.01 £ 0.47 56.88 + 0.93 56.63 + 1.09 88.51 +0.73 92.37 + 0.18 89.56 £ 0.69
ind US Legis. 58.12 +2.94 67.94 4 0.98 49.99 + 4.88 64.87 + 1.65 54.41 £+ 1.31 52.12+£2.13 49.28 + 0.86 56.57 +3.22 5791 4 3.41 81.46 + 0.01
UN Trade 58.71 +1.20 57.87 + 1.36 59.98 4 0.59 55.62 + 3.59 60.88 4 0.79 61.01 £ 0.93 59.71 + 1.17 57.28 +3.06 57.58 £ 020  71.43 + 0.04
UN Vote 65.29 + 1.30 64.10 +2.10 51.78 + 4.14 68.58 + 3.08 48.04 + 1.76 54.65 4+ 2.20 45.57 + 041 53.87 +2.01 54.83 +£2.17 97.73 + 0.01
Contact 90.80 + 1.18 88.87 + 0.67 93.76 + 0.40 88.85 + 1.39 74.79 + 0.38 90.37 £ 0.16 90.04 + 0.29 94.14 + 0.26 94.35 4+ 0.29 96.98 + 0.56
Table 17: AUC-ROC for dynamic link under inductive setting.
NSS Datasets Edgebank DyG-Mamba FreeDyG CTDG-SSM

rnd

Wiki
Reddit
MOOC
LastFM
Enron
Social Evo.

ucCl

N/A
N/A
N/A
N/A
N/A
N/A
N/A

98.65 £+ 0.03
98.88 £ 0.00
90.20 £ 0.06
95.13 £0.08
91.14 £ 0.07
93.23 £0.01
94.15 £ 0.04

98.97 £ 0.01
98.91 £ 0.01
87.75 £ 0.62
94.89 + 0.01
89.69 + 0.17
94.76 £ 0.05
94.85 £+ 0.10

99.19 + 0.09
99.28 + 0.00
98.49 + 0.48
93.65 £ 0.62
93.02 + 7.25
97.56 + 0.45
89.12 £1.02

ind

Wiki
Reddit
MOOC
LastFM
Enron
Social Evo.
UCI

N/A
N/A
N/A
N/A
N/A
N/A
N/A

79.44 £2.78
65.61 £0.01
81.67 £1.08
79.60 £ 0.28
68.44 £+ 1.85
96.93 £0.21
79.27 £ 1.03

87.54 £0.26
64.98 £ 0.20
81.41 £ 0.31
77.01 +0.43
72.85 £0.81
96.91 £0.12
82.06 £ 0.58

99.23 + 0.09
99.32 + 0.03
98.64 + 0.51
94.08 + 0.57
94.56 + 5.02
98.15 £ 0.27
90.34 + 0.74

Table 18: Performance comparison with AP on dynamic link prediction under inductive setting.

Dataset CTDG-SSM DyGMamba DyGFormer CTAN TGN
tgbl-wiki  0.817 £0.027 0.739 £0.009 0.798 4+ 0.004 0.668 + 0.007  0.396 + 0.060
tgbl-coin 0.862 + 0.003 — 0.752 + 0.004 0.748 £ 0.004 0.586 &+ 0.037

Table 19: MRR on the tgbl-wiki and tgbl-coin datasets.

24



Under review as a conference paper at ICLR 2026

To handle edge deletions within the subgraph, one can simply invert the construction process de-
scribed in the paper. Specifically, if an edge is removed in batch B, we construct batch Laplacian
L g[k] without this edge, while L[k — 1] includes it. The resulting difference Lg[k] — L[k — 1]
correctly captures the effect of edge removal.

Node deletion can be treated analogously by removing all edges incident to that node. In this case,
L g[k] contains no edges between the removed node and its neighbors, while L 5[k — 1] retains these
edges. This ensures that the update mechanism captures the effective removal of the node.

H LIMITATIONS AND FUTURE RESEARCH DIRECTIONS.

In the current model, we implement a polynomial of the Laplacian using simple graph filters, which
provide an efficient linear approximation to the underlying differential operator. While effective, this
design restricts the expressiveness of the operator. An important direction for future work is to ex-
plore learning these operators and their inverses directly through graph neural networks, potentially
enabling more adaptive and data-dependent approximations. Also, the current framework is primar-
ily evaluated on CTDG datasets, where all node and edge features are fully observed. Extending the
framework to handle scenarios with missing features in sampled events, or to accommodate inter-
leaved and partially observed dynamic graphs, presents a promising direction for future research.

I CTDG-SSM PSEUDO CODE AND TIME COMPLEXITY

The CTDG-SSM model consists of two primary components: the online update and the inference.
In this section, we will provide the algorithm for both of these parts.

1.1 ONLINE UPDATE

From a stream of events, we form a batch of B concurrent events. Using subgraph sampling, we
construct the corresponding batch Laplacian Lp[k]. By removing the edges associated with the
events in the current batch from L g[k], we obtain the previous-step Laplacian L[k — 1]. Algo-
rithm summarizes this procedure. For active batch nodes Np, state vectors of dimension d, and a
polynomial of highest order m, the state update has a time complexity of O(mN3 + dN3), it is to
be noted that Ngp << N.

1.2 INFERENCE

The query provided to the model for a downstream task may take the form (u, v, t), where the model
must determine whether this constitutes a valid link or classify node u based on the interaction and
its historical context. Alternatively, the query may be of the form (u), in which case the model
retrieves the stored state of node u and processes it according to the downstream task. In this
section, Algorithm [2]specifies the procedure for link prediction queries, and Algorithm 3] details the
procedure for node classification queries. The inference time complexity depends on the task:

» for link prediction and node classification, it is O(deg(u)) due to the computation of At;

« for sequence classification, it is O(1) per query.
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Algorithm 1 CTDG-SSM ZOH Update
Require: Batch Laplacian Lglk], Batch Laplacian Lglk — 1], events

{wi,viy tiy Ty [ti], To[ti], Tu o[t }E., and batch active node indices {uz}f\f‘l learnable
polynomial p,, Gaussian quadrature node Qnoges € RE*L, Queights € R8*1  State matrices
parameters AI(S; e R4, Al(;g); € R?, hidden states H) [k] and HM[k].

I T < Tgim(zin) {Identity matrix }

2: Apa(Lplk]) < pa(Lslk]) = pa(Lplk —1])

3 Ap k) < exp (—pa(Lplk]) "' Apa(Lslk]))

4: LHS <= Ogim(Np x Np x8)

5: fori =0to 7 do

6:  LHS[:5i] « exp (—pa(LB[k]) " Apa(L 5 k])gnodeli])

7: end for

8: Construct SSM Input X:

9: Nsi <= 0gim (N, x2d.) {Zero matrix, d: Static embedding dimensions}

10: fori =0to B —1do

11:  Ngi, 1:d] < Static-Embedding(u;)

12:  Ngli,d+1:2d] < Static-Embedding(v;)

13:  Ngi + B, 1:d] + Static-Embedding(v;)

14:  Ngi + B, d+1:2d] < Static-Embedding(u;)

15: end for

16: for i = 1to B do

17: X[i,:] =[x [ti] | ®olts] | Tuw[ti] | ¢(A[E]) | Nseld, 1] {V has N, rows}

18:  X[i+ B,:] < [xu[ti] | ®o[ts] | Tuwti] | ¢(A[t:]) | Nsei + B, ] {rest filled with 0.}

19: end for

20: CTDG-SSM 1* Layer:

21: XO[K] < he(X) { encoder hg}
22: X V(K] + RMSo(X ©[k])

23: B, + Bo(X\"[k])

24: Ag 7O (X TK]) (N, x 1)
250 AV exp(Al(gg);)

26: A©) < exp (Ao ©AY [None, ])

27: Cy + (pa(Lp[k]) (Ao ® By ))[:, 1, None] ® Gueighis[None, None, |

28: RHSy + exp((Ag ® AL [None, :])[:, :, None] ® gnodes[None, None, :]) (N; xdx8)
29: B(Lp[k], XV k) <_2q OLHS[, ,q) Col:, 1, q) RHSo[:, 2, q]
300 HOK +1] + Ap,pg(HO [K][{a,}5] © A®) + B(Lp[K], x{"[k])

31: XW[k] + XO[k] + GeLUH O [k 4 1))

32: CTDG-SSM 2" Layer:

33 XV[k] « RMS; (X D)

34: B, < By(XV[k)

35: Ay <—T(1)(X7(L1)[k])

36: AQ) — — exp(Al(;;)

37: AW — exp(A; © Ag)[:, None])

38: Cy + (pa(Lpk]) ' (Bz2 ® A1))[:, :, None] ® yeighis[None, None, :]
39: RHS, < exp((A1 © Al )[None D[z, :, None] ® @nodes[None, None, :)
40: B(L[H, X5V [K]) « Y5 o LHSEisd)Culod] RHS i d

41: HOk +1] < Ap, i (HOF[{a:35] © AV) + B(Li[k], X3 [k)

42: XO[k] « XO[k] + GeLU(H?[k + 1))

43: HOk +1] « MeanAgg(H(O) [k + 1], {4 }¥5) {Only update for batch active node
44: HO[k +1] « MeanAgg( W[k + 1} {a;}N5) rest of the node retain old values. }
45: X [k] < MeanAgg(X @ [k], {4} X5)

46: return
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Algorithm 2 CTDG-SSM Inference (link-prediction)
Require: Link prediction queries {(u;, v, ;) }

LAt =In(l + ¢ — tastuiw;) {t1ast,u;v; 18 the last interaction time of node w; and v;.}
20 Yaink) (Ui, Vi, t;) = [X @] | XP[wg] | h(Aty)] {1 is temporal encoding function}
3 pi=w' Yy, {logit for link prediction}

Algorithm 3 CTDG-SSM Inference (node-classification)
Require: Interaction {(u;, v;,t;)}

I Aty =In(1 4+t — tiast,uv;) {tiast,u;v; 18 the last interaction time of node w; and v;.}
20 Yy, = [X(2) [w;] | Y(AL)] {4 is temporal encoding function}
3: pi = WYgink) (wi, vi, ti) {Multiclass logits }
4: return
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