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Abstract

Evaluating the performance of graph neural networks (GNNs) is an essential task
for practical GNN model deployment and serving, as deployed GNNs face signifi-
cant performance uncertainty when inferring on unseen and unlabeled test graphs,
due to mismatched training-test graph distributions. In this paper, we study a new
problem, GNN model evaluation, that aims to assess the performance of a specific
GNN model trained on labeled and observed graphs, by precisely estimating its
performance (e.g., node classification accuracy) on unseen graphs without labels.
Concretely, we propose a two-stage GNN model evaluation framework, including
(1) DiscGraph set construction and (2) GNNEvaluator training and inference. The
DiscGraph set captures wide-range and diverse graph data distribution discrep-
ancies through a discrepancy measurement function, which exploits the outputs
of GNNs related to latent node embeddings and node class predictions. Under
the effective training supervision from the DiscGraph set, GNNEvaluator learns
to precisely estimate node classification accuracy of the to-be-evaluated GNN
model and makes an accurate inference for evaluating GNN model performance.
Extensive experiments on real-world unseen and unlabeled test graphs demonstrate
the effectiveness of our proposed method for GNN model evaluation.

1 Introduction

As prevalent graph data learning models, graph neural networks (GNNs) have attracted much
attention and achieved great success for various graph structural data related applications in the real
world [36, 38, 35, 41, 42, 14, 21, 46, 44]. In practical scenarios of GNN model deployment and
serving [37, 40, 43], understanding and evaluating GNN models’ performance is a vital step [3, 13, 22],
where model designers need to determine if well-trained GNN models will perform well in practical
serving, and users want to know how the in-service GNN models will perform when inferring on their
own test graphs [10]. Conventionally, model evaluation utilizes well-annotated datasets for testing to
calculate certain model performance metrics (e.g., accuracy and F1-score) [3, 24, 23, 20]. However, it
may fail to work well in real-world GNN model deployment and serving, where the unseen test graphs
are usually not annotated, making it difficult to obtain essential model performance metrics without
ground-truth labels [4, 5]. As shown in Fig. 1 (a-1), taking node classification accuracy metric as
an example, it is typically calculated as the percentage of correctly predicted node labels. However,
when ground-truth node class labels are unavailable, we can not verify whether the predictions of
GNNs are correct, and thus cannot get the overall accuracy of the model.

In light of this, a natural question, referred to GNN model evaluation problem, arises: in the absence
of labels in an unseen test graph, can we estimate the performance of a well-trained GNN model?
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Figure 1: Illustration of conventional model evaluation vs. the proposed GNN model evaluation with
its applicable case. The symbol ∗ indicates GNNs are well-trained and fixed during model evaluation.

In this work, we provide a confirmed answer together with an effective solution to this question,
as shown in Fig.1 (a-2). Given a well-trained GNN model and an unseen test graph without labels,
GNN model evaluation directly outputs the overall accuracy of this GNN model. This enables users
to understand their GNN models at hand, benefiting many GNN deployment and serving scenarios
in the real world [2, 8, 30, 25, 47, 45, 16, 15]. For example, given a GNN model in service (e.g., a
GNN model trained and served with Amazon DGL and SageMaker [1]), GNN model evaluation can
provide users with a confidence score based on its estimated node classification accuracy, so that
users know how much faith they should place in GNN-predicted node labels on their own unlabeled
test graphs. Moreover, as shown in Fig. 1 (b), given a set of available well-trained GNNs in service,
GNN model evaluation can provide users with reliable guidance to make an informed choice among
these deployed GNN models on their own unlabeled test graphs.

In this paper, we focus on the node classification task, with accuracy as the primary GNN model
evaluation metric. Developing effective GNN model evaluation methods for this task faces three-
fold challenges: Challenge-1: The distribution discrepancies between various real-world unseen
test graphs and the observed training graph are usually complex and diverse, incurring significant
uncertainty for GNN model evaluation. Challenge-2: It is not allowed to re-train or fine-tune the
practically in-service GNN model to be evaluated, and the only accessible model-related information
is its outputs. Hence, how to fully exploit the limited GNN outputs and integrate various training-test
graph distribution differences into discriminative discrepancy representations is critically important.
Challenge-3: Given the discriminative discrepancy representations of training-test graph distributions,
how to develop an accurate GNN model evaluator to estimate the node classification accuracy of an
in-service GNN on the unseen test graph is the key to GNN model evaluation.

To address the above challenges, in this work, we propose a two-stage GNN model evaluation frame-
work, including (1) DiscGraph set construction and (2) GNNEvaluator training and inference. More
specifically, in the first stage, we first derive a set of meta-graphs from the observed training graph,
which involves wide-range and diverse graph data distributions to simulate (ideally) any potential
unseen test graphs in practice, so that the complex and diverse training-test graph data distribution
discrepancies can be effectively captured and modeled (Challenge-1). Based on the meta-graph set,
we build a set of discrepancy meta-graphs (DiscGraph) by jointly exploiting latent node embeddings
and node class predictions of the GNN with a discrepancy measurement function, which comprehen-
sively integrates GNN output discrepancies to expressive graph structural discrepancy representations
involving discrepancy node attributes, graph structures, and accuracy labels (Challenge-2). In the
second stage, we develop a GNNEvaluator composed of a typical GCN architecture and an accuracy
regression layer, and we train it to precisely estimate node classification accuracy with effective
supervision from the representative DiscGraph set (Challenge-3). During the inference, the trained
GNNEvaluator could directly output the node classification accuracy of the in-service GNN on the
unseen test graph without any node class labels.

In summary, the contributions of our work are listed as follows:

• Problem. We study a new research problem, GNN model evaluation, which opens the door for
understanding and evaluating the performance of well-trained GNNs on unseen real-world graphs
without labels in practical GNN model deployment and serving.

2



• Solution. We design an effective solution to simulate and capture the discrepancies of diverse
graph data distributions, together with a GNNEvaluator to estimate node classification accuracy of
the in-service GNNs, enabling accurate GNN model evaluation.

• Evaluation. We evaluate our method on real-world unseen and unlabeled test graphs, achieving
a low error (e.g., as small as 2.46%) compared with ground-truth accuracy, demonstrating the
effectiveness of our method for GNN model evaluation.

Prior Works. Our research is related to existing studies on predicting model generalization error,
which aims to estimate a model’s performance on unlabeled data from the unknown and shifted
distributions [6, 9, 34, 10, 4]. However, these researches are designed for data in Euclidean space
(e.g., images) while our research is dedicatedly designed for graph structural data. Our research
also significantly differs from others in unsupervised graph domain adaption [33, 39, 29], out-of-
distribution (OOD) generalization [18, 48], and OOD detection [19, 26], in the sense that we aim to
estimate well-trained GNN models’ performance, rather than improve the generalization ability of
new GNN models. Detailed related work can be found in Appendix A.

2 Problem Definition

Preliminary. Consider that we have a fully-observed training graph S = (X,A,Y), where X ∈
RN×d denotes N nodes with d-dimensional features, A ∈ RN×N denotes the adjacency matrix
indicating the edge connections, and Y ∈ RN×C denotes the C-classes of node labels. Then, training
a GNN model on S for node classification objective can be denoted as:

min
θS

Lcls

(
Ŷ,Y

)
, where ZS , Ŷ = GNNθS (X,A). (1)

where θS denotes the parameters of GNN trained on S , ZS ∈ RN×d1 is the output node embedding of
graph S from GNNθS , and Ŷ ∈ RN×C denotes GNN predicted node labels. By optimizing the node
classification loss function Lcls between GNN predictions Ŷ and ground-truth node labels Y, i.e.,
cross-entropy loss, we could obtain a well-trained GNN with optimal weight parameters θ∗

S , denoted
as GNN∗

S . Then, the node classification accuracy can be calculated to reflect GNN performance as:
Acc(S) =

∑N
i=1(ŷi == yi)/N , which indicates the percentage of correctly predicted node labels

between the GNN predicted labels ŷi ∈ Ŷ and ground truths yi ∈ Y. Given an unseen and unlabeled
graph T = (X′,A′) including M nodes with its features X′ ∈ RM×d and structures A′ ∈ RM×M ,
we assume the covariate shift between S and T , where the distribution shift mainly lies in node
numbers, node context features, and graph structures, but the label space of T keeps the same with S ,
i.e., all nodes in T are constrained in the same C-classes. Due to the absence of ground-truth node
labels, we could NOT directly calculate the node classification accuracy to assess the performance of
the well-trained GNN∗

S on T . In light of this, we present a new research problem for GNNs as:

Definition of GNN Model Evaluation. Given the observed training graph S , its well-trained model
GNN∗

S , and an unlabeled unseen graph T as inputs, the goal of GNN model evaluation aims to learn
an accuracy estimation model fϕ(·) parameterized by ϕ as:

Acc(T ) = fϕ(GNN∗
S , T ), (2)

where fϕ : (GNN∗
S , T ) → a and a ∈ R is a scalar denoting the overall node classification accuracy

Acc(T ) for all unlabeled nodes of T . When the context is clear, we will use fϕ(T ) for simplification.

3 The Proposed Method

3.1 Overall Framework of GNN Model Evaluation

As shown in Fig. 2, the proposed overall framework of GNN model evaluation contains two stages:
(1) DiscGraph set construction; and (2) GNNEvaluator training and inference.

Stage 1. Given the observed training graph S, we first extract a seed graph from it followed by
augmentations, leading to a set of meta-graphs from it for simulating any potential unseen graph
distributions in practice. Then, the meta-graph set Gmeta and the observed training graph S are fed into
the well-trained GNN for obtaining latent node embeddings, i.e., Z(i,∗)

meta and Z∗
S , respectively. After, a
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Figure 2: Overall two-stage pipeline of GNN model evaluation with (1) DiscGraph set construction
and (2) GNNEvaluator training and inference.

discrepancy measurement function D(·) works on these two latent node embeddings, leading to 1
discrepancy node attributes Xi

disc. Meanwhile, the output node class predictions of well-trained GNN
on each meta-graph are used to calculate the node classification accuracy according to its ground-
truth node labels, leading to the new 2 scalar accuracy labels yidisc. Along with 3 graph structures
Ai

disc from each meta-graph, these three important components composite the set of discrepancy
meta-graphs (DiscGraph) in expressive graph structural discrepancy representations.

Stage 2. In the second stage, the representative DiscGraph set is taken as effective supervi-
sion to train a GNNEvaluator through accuracy regression. During the inference, the trained
GNNEvaluator could directly output the node classification accuracy of the in-service GNN on the
unseen test graph T without any node class labels.

3.2 Discrepancy Meta-graph Set Construction

The critical challenge in developing GNN model evaluation methods is complex and diverse graph
data distribution discrepancies between various real-world unseen test graphs and the observed
training graph. As the in-service GNN in practice fits the observed training graph well, making
inferences on various and diverse unseen test graphs would incur significant performance uncertainty
for GNN model evaluation, especially when the node classification accuracy can not be calculated
due to label absence.

In light of this, we propose to construct a set of diverse graphs to simulate wide-range discrepancies
of potential unseen graph distributions. Specifically, such a graph set should have the following
characteristics: (1) sufficient quantity: it should contain a relatively sufficient number of graphs
with diverse node context and graph structure distributions; (2) represented discrepancy: the node
attributes of each graph should indicate its distribution distance gap towards the observed training
graph; (3) known accuracy: each graph should be annotated by node classification accuracy as its
label.

To address the characteristic of (1) sufficient quantity, we introduce a meta-graph simulation strategy
to synthesize a wide variety of meta-graphs for representing any potential unseen graph distributions
that may be encountered in practice. Specifically, we extract a seed sub-graph Sseed from the observed
training graph S. The principle of seed sub-graph selection strategy is that Sseed involves the least
possible distribution shift within PS from the observed training graph, and shares the same label
space with S, satisfying the assumption of covariate shift. Then, Sseed is fed to a pool of graph
augmentation operators as

A = {A1(EDGEDROP),A2(SUBGRAPH),A3(ATTRMASK),A4(NODEMIX)} , (3)

which belongs to the distribution PA(pi, |ϵ) with {pi}4i=1 ∈ (0, 1) represent the augmentation ratio
on Sseed for each augmentation type, and ϵ determines the probability of sampling a particular
augmentation type. For instance, p1 = 0.5 means dropping 50% edges in Sseed. In this way,
we can obtain a set of meta-graphs Gmeta =

{
gimeta

}K

i=1
with K numbers of graphs, and we have

Gmeta ∼ PA × PS : Sseed → gimeta. For each meta-graph gimeta =
{
Xi

meta,A
i
meta,Y

i
meta

}
, where
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Xi
meta ∈ RMi×d, Ai

meta ∈ RMi×Mi , and Yi
meta ∈ RMi×C have Mi number of nodes, d-dimensional

features, and known node labels from Sseed belonging to C classes.

To incorporate the characteristic of (2) represented discrepancy, we fully exploit the outputs
of latent node embeddings and node class predictions from well-trained GNN∗

S , and integrate
various training-test graph distribution differences into discriminative discrepancy representa-
tions. Specifically, given the GNN∗

S learned latent node embeddings Z∗
S = GNN∗

S(X,A), and
Z

(i,∗)
meta , Ŷ

(i,∗)
meta = GNN∗

S(X
i
meta,A

i
meta), where Z∗

S ∈ RN×d1 and Z
(i,∗)
meta ∈ RMi×d1 , we derive a

distribution discrepancy measurement function D(·) to calculate the discrepancy meta-graph node
attributes as:

Xi
disc = D(Z

(i,∗)
meta ,Z

∗
S) =

Z
(i,∗)
meta Z

∗
S

T∥∥∥Z(i,∗)
meta

∥∥∥
2
· ∥Z∗

S∥2
, (4)

where Xi
disc ∈ RMi×N reflects the node-level distribution discrepancy between each gimeta and S with

the well-trained GNN∗
S . Each element in xi

u,v ∈ Xi
disc denotes the node embedding discrepancy gap

between a certain node u in the i-th meta-graph and a node v in the observed training graph. Taking
this representation as node attributes could effectively integrate representative node-level discrepancy
produced by well-trained GNN’s node embedding space.

Meanwhile, the characteristic of (3) known accuracy can be involved with the outputs of node
class predictions produced by GNN∗

S on meta-graph Ŷ
(i,∗)
meta = {ŷjmeta(i,∗)}

Mi
j=1. We calculate the

node classification accuracy on the meta-graph given its ground-truth node class labels Yi
meta =

{yjmeta(i)}
Mi
j=1 as:

yidisc = Acc(gimeta) =

∑Mi

j=1(ŷ
j
meta(i,∗) == yjmeta(i))

Mi
, (5)

where yjmeta(i) and ŷjmeta(i,∗) denote the ground truth label and GNN∗
S predicted label of j-th node in

the i-th graph of the meta-graph set, respectively. Note that yidisc ∈ R is a continuous scalar denoting
node classification accuracy under specific GNN∗

S within the range of (0, 1).

In this way, by incorporating all these characteristics with the discrepancy node attributes (Xi
disc,

the scalar node classification accuracy label yidisc, and the graph structure from meta-graph as
Ai

disc = Ai
meta for indicating discrepancy node interconnections, we could derive the final discrepancy

meta-graph set, i.e., DiscGraph set, as

Gdisc =
{
gidisc

}K

i=1
,where gidisc = (Xi

disc,A
i
disc, y

i
disc). (6)

The proposed DiscGraph set Gdist contains a sufficient number of graphs with diverse node context and
graph structure distributions, where each discrepancy meta-graph contains the latent node embedding
based discrepancy node attributes and the node class prediction based accuracy label, according to
the well-trained GNN’s outputs, along with diverse graph structures. All these make the proposed
DiscGraph set a discriminative graph structural discrepancy representation for capturing wide-range
graph data distribution discrepancies.

3.3 GNNEvaluator Training and Inference

Training. Given our constructed DiscGraph set Gdisc =
{
gidisc

}K

i=1
and gidisc = (Xi

disc,A
i
disc, y

i
disc) in

Eq. (6), we use it to train a GNN regressor with fϕ : gidisc → a for evaluating well-trained GNNs,
which we name as GNNEvaluator. Specifically, the proposed GNNEvaluator takes a two-layer
GCN architecture as the backbone, followed by a pooling layer to average the representation of all
nodes of each gidisc, and then maps the averaged embedding to a scalar node classification accuracy
on the whole graph. The objective function of our GNN regressor can be written as:

min
ϕ

K∑
i=1

Lreg(fϕ(X
i
disc,A

i
disc), y

i
disc), (7)

where Lreg is the regression loss, i.e., the mean square error (MSE) loss.

Inference. During the inference in the practical GNN model evaluation, we have: (1) to-be-evaluated
GNN∗

S , and (2) the unseen test graph T = (X′,A′) without labels. The first thing is to calculate
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the discrepancy node attributes on the unseen test graph T towards the observed training graph S
according to Eq. (4), so that we could obtain XT

disc = D(Z∗
T ,Z

∗
S), where Z∗

T = GNN∗
S(X

′,A′).
Along with the unseen graph structure AT

disc = A′, the proposed GNNEvaluator could directly
output the node classification accuracy of GNN∗

S on T as:

Acc(T ) = ŷTdist = fϕ∗(XT
disc,A

T
disc), (8)

where ϕ∗ denotes the optimal GNNEvaluator weight parameters trained by our constructed Disc-
Graph set Gdist.

4 Experiments

This section empirically evaluates the proposed GNNEvaluator on real-world graph datasets for
node classification task. In all experiments, to-be-evaluated GNN models have been well-trained
on observed training graphs and keep FIXED in GNN model evaluation. We only vary the unseen
test graph datasets and evaluate various different types and architectures of well-trained GNNs.
Throughout our proposed entire two-stage GNN model evaluation framework, we are unable to access
the labels of unseen test graphs. We only utilize these labels for the purpose of obtaining true error
estimates for experimental demonstration.

We investigate the following questions to verify the effectiveness of the proposed method. Q1: How
does the proposed GNNEvaluator perform in evaluating well-trained GNNs’ node classification
accuracy (Sec. 4.2)? Q2: How does the proposed GNNEvaluator perform when conducting an
ablation study regarding the DiscGraph set component? (Sec. 4.3) Q3: What characteristics does our
constructed DiscGraph set have (Sec. 4.4)? Q4: How many DiscGraphs in the set are needed for the
proposed GNNEvaluator to perform well (Sec. 4.5)?

4.1 Experimental Settings

Datasets. We perform experiments on three real-world graph datasets, i.e., DBLPv8, ACMv9, and
Citationv2, which are citation networks from different original sources (DBLP, ACM, and Microsoft
Academic Graph, respectively) by following the processing of [29]. Each dataset shares the same
label space with six categories of node class labels, including ‘Database’, ‘Data mining’, ‘Artificial
intelligent’, ‘Computer vision’, ‘Information Security’, and ‘High-performance computing’. We
evaluate our proposed GNNEvaluator with the following six cases, i.e., A→D, A→C, C→A, C→D,
D→A, and D→C, where A, C, and D denote ACMv9, DBLPv8, and Citationv2, respectively. Each
arrow denotes the estimation of GNNEvaluator trained by the former observed graph and tested on
the latter unseen graph. Note that, in all stages of GNNEvaluator training and inference, we do not
access the labels of the latter unseen graph. More detailed statistical information of the used dataset
can be found in Appendix B.

GNN Models and Evaluation. We evaluate four commonly-used GNN models, including GCN [17],
GraphSAGE [12] (abbr. SAGE), GAT [28], and GIN [31], as well as the baseline MLP model that is
prevalent for graph learning. For each model, we train it on the training set of the observed graph
under the transductive setting, until the model achieves the best node classification on its validation set
following the standard training process, i.e., the ‘well-trained’ GNN model. To minimize experimental
variability, we train each type of GNN with five random seeds. That means, for instance, we have five
well-trained GCN models on the same fully-observed graph with the same hyper-parameter space but
only five different random seeds. More details of these well-trained GNN models are provided in
Appendix D. We report the Mean Absolute Error (MAE), the average absolute difference between
the ground truth accuracy (in percentage) on the unseen graph and the estimated accuracy from ours
and baselines on the same unseen graph, across different random seeds for each evaluated GNN. The
smaller MAE denotes better GNN model evaluation performance.

Baseline Methods. As our method is the first GNN model evaluation approach, there is no available
baseline for direct comparisons. Therefore, we evaluate our proposed approach by comparing it to
three convolutional neural network (CNN) model evaluation methods applied to image data. Note
that existing CNN model evaluation methods are hard to be directly applied to GNNs, since GNNs
have entirely different convolutional architectures working on different data types. Compared with
Euclidean image data, graph structural data distributions have more complex and wider variations due
to their non-independent node-edge interconnections. Therefore, we make necessary adaptations to
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Table 1: Mean Absolute Error (MAE) performance of different GNN models across different random
seeds. (GNNs are well-trained on the ACMv9 dataset and evaluated on the unseen and unlabeled Citationv2 and DBLPv8 datasets, i.e., A→C
and A→D, respectively. Best results are in bold.)

Methods ACMv9→Citationv2 ACMv9→DBLPv8

GCN SAGE GAT GIN MLP Avg. GCN SAGE GAT GIN MLP Avg.

ATC-MC [9] 4.49 8.40 4.37 18.40 34.33 14.00 21.96 24.20 30.30 24.06 26.62 25.43
ATC-MC-c [9] 2.41 5.74 4.67 22.00 51.41 17.25 31.15 30.55 30.18 29.71 45.81 33.48
ATC-NE [9] 3.97 8.02 4.28 17.35 38.87 14.50 22.93 24.78 30.50 23.74 31.13 26.62
ATC-NE-c [9] 4.44 6.09 3.30 23.95 44.62 16.48 34.42 28.31 27.02 30.28 39.28 31.86
Thres. (τ = 0.7) [6] 32.64 35.81 33.63 50.76 35.28 37.63 9.59 12.14 14.30 32.67 39.72 21.68
Thres. (τ = 0.8) [6] 26.30 29.60 26.18 49.25 35.87 33.44 2.63 7.44 14.47 32.20 40.31 19.41
Thres. (τ = 0.9) [6] 17.56 21.34 16.38 46.53 36.08 27.58 8.20 7.42 16.07 31.47 40.56 20.74
AutoEval-G [6] 18.94 26.19 26.12 50.86 32.40 30.90 2.77 2.54 7.25 48.68 29.95 18.24

GNNEvaluator (Ours) 4.85 4.11 12.23 10.14 22.20 10.71 11.80 14.88 6.36 13.78 17.49 12.86

Table 2: Mean Absolute Error (MAE) performance of different GNN models across different random
seeds. (GNNs are well-trained on the Citationv2 dataset and evaluated on the unseen and unlabeled ACMv9 and DBLPv8 datasets, i.e., C→A
and C→D, respectively.Best results are in bold.)

Methods Citationv2→ACMv9 Citationv2→DBLPv8

GCN SAGE GAT GIN MLP Avg. GCN SAGE GAT GIN MLP Avg.

ATC-MC [9] 9.50 13.40 8.28 35.51 43.40 22.02 22.57 1.37 21.87 29.24 35.20 22.05
ATC-MC-c [9] 6.93 11.75 6.70 38.93 57.43 24.35 33.67 4.92 28.23 30.89 52.59 30.06
ATC-NE [9] 8.86 13.04 7.87 34.88 47.49 22.42 23.97 1.86 23.74 28.96 39.72 23.65
ATC-NE-C [9] 7.73 13.94 7.63 41.17 62.96 26.69 37.16 4.66 29.43 31.66 58.95 32.37
Thres. (τ = 0.7) [6] 37.33 36.61 31.68 58.91 34.33 39.77 10.70 23.05 12.74 34.60 38.29 23.88
Thres. (τ = 0.8) [6] 29.62 28.95 22.77 57.48 34.53 34.67 5.65 15.01 7.61 34.36 38.43 20.21
Thres. (τ = 0.9) [6] 19.59 19.06 11.37 55.72 34.56 28.06 10.65 8.28 8.07 34.00 38.44 19.89
AutoEval-G [6] 23.01 31.24 26.74 59.66 35.02 28.28 2.57 16.52 6.96 19.20 32.24 24.59

GNNEvaluator (Ours) 5.45 8.53 9.61 29.77 28.52 16.38 11.64 7.02 5.58 6.46 22.87 10.71

enable these methods to work on graph-structured data for GNN model evaluation. Specifically, we
compare: (1) Average Thresholded Confidence (ATC) score [9], which learns a threshold on CNN’s
confidence to estimate the accuracy as the fraction of unlabeled images whose confidence scores
exceed the threshold. We consider its four variants, denoting as ATC-NE, ATC-NE-c, ATC-MC,
and ATC-MC-c, where ATC-NE and ATC-MC calculate negative entropy and maximum confidence
scores, respectively, and ‘-c’ denotes their confidence calibrated versions. In our adaptation, we use
the training set of the observed graph under the transductive setting to calculate these confidence
scores, and use the validation set for their calibrated versions. (2) Threshold-based Method, which is
introduced by [6] and determines three threshold values for τ = {0.7, 0.8, 0.9} on the output softmax
logits of CNNs and calculates the percentage of images in the entire dataset whose maximum entry of
logits are greater than the threshold τ , which indicates these images are correctly classified. We make
an adaptation by using the GNN softmax logits and calculating the percentage of nodes in a single
graph. (3) AutoEval Method [6], which conducts the linear regression to learn the CNN classifier’s
accuracy based on the domain gap features between the observed training image data and unseen
real-world unlabeled image data. We adapt it to GNN models on graph structural data by calculating
the Maximum Mean Discrepancy (MMD) measurement as the graph domain gap features extracted
from our meta-graph set, followed by the linear regression, which we name as AutoEval-G variant.
More details of baseline methods can be found in the Appendix C.

4.2 GNN Model Evaluation Results

In Table 1, Table 2, and Table 3, we report MAE results of evaluating different GNN models
across different random seeds. In general, we observe that our proposed GNNEvaluator significantly
outperforms the other model evaluation baseline methods in all six cases, achieving the lowest average
MAE scores of all GNN model types, i.e., 10.71 and 12.86 in A→C and A→D cases, 16.38 and
10.71 in C→A and C→D cases, and 6.79 and 7.80 in D→A and D→C cases, respectively.

More specifically, we observe that some baseline methods achieve the lowest MAE for a certain GNN
model type on a specific case. Taking GCN as an example in Table 1, ATC-MC-c performs best with
2.41 MAE under A→C case. However, it correspondingly has 31.15 worst MAE under A→D case.
That means, for a GCN model that is well-trained by ACMv9 dataset, ATC-MC-c provides model
evaluation results with significant performance variance under different unseen graphs. Such high-
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Table 3: Mean Absolute Error (MAE) performance of different GNN models across different random
seeds. (GNNs are well-trained on the DBLPv8 dataset and evaluated on the unseen and unlabeled ACMv9 and Citationv2 datasets, i.e., D→A
and D→C, respectively. Best results are in bold.)

Methods DBLPv8→ACMv9 DBLPv8→Citationv2

GCN SAGE GAT GIN MLP Avg. GCN SAGE GAT GIN MLP Avg.

ATC-MC [9] 4.98 31.49 37.08 28.74 30.42 26.54 5.47 29.72 37.43 32.07 36.42 28.22
ATC-MC-C [9] 3.42 32.83 40.31 37.68 34.72 29.79 4.66 28.67 43.89 38.13 41.64 31.40
ATC-NE [9] 2.83 27.67 40.90 35.88 36.03 28.66 4.25 26.04 39.38 38.38 45.15 30.64
ATC-NE-C [9] 12.95 20.86 39.34 43.41 38.85 31.08 16.87 15.77 40.26 47.64 47.61 33.63
Thres. (τ = 0.7) [6] 21.66 32.69 39.19 30.10 27.80 30.29 27.22 35.48 34.35 37.99 30.36 33.08
Thres. (τ = 0.8) [6] 18.63 29.34 37.25 25.80 20.34 26.27 22.70 30.86 32.48 32.73 22.36 28.23
Thres. (τ = 0.9) [6] 16.12 23.81 43.26 23.73 12.98 23.98 15.63 26.07 35.88 27.15 12.20 23.39
AutoEval-G [6] 7.28 9.72 12.05 14.17 22.07 13.06 21.13 15.11 5.65 12.33 31.90 17.22

GNNEvaluator (Ours) 2.46 10.27 6.94 8.86 5.42 6.79 11.68 7.83 3.97 9.62 5.92 7.80

variance evaluation performance would significantly limit the practical applications of ATC-MC-c, as
it only performs well on certain unseen graphs, incurring more uncertainty in GNN model evaluation.
Similar limitations can also be observed in Table 2 for ATC-MC-c on evaluating GAT model, with
6.70 lowest MAE in C→A but 28.23 high MAE in C→D. Moreover, in terms of AutoEval-G method
on GraphSAGE model evaluation in Table 3, it achieves the lowest MAE of 9.72 in D→A case,
but a high MAE of 15.11 in C→A case. In contrast, our proposed GNNEvaluator has smaller
MAE variance for different unseen graphs under the same well-trained models. For instance, our
GNNEvaluator achieves 4.85 MAE on GCN under A→C case, and 11.80 MAE on GCN in A→D
case, which is better than ATC-MC-c with 2.41 and 31.15 on the same cases. All these results verify
the effectiveness and consistently good performance of our proposed method on diverse unseen graph
distributions for evaluating different GNN models.

4.3 Ablation Study

Figure 3: Ablation study of the proposed Disc-
Graph set with discrepancy node attributes (w/
DiscAttr) in green lines vs. the meta-graph set
without discrepancy node attributes (w/o DiscAttr)
in blue lines. And the ground-truth node classifi-
cation accuracy is in histograms for reference.

We conduct an ablation study to verify the
effectiveness of the proposed DiscGraph set
component for our proposed GNN model eval-
uation pipeline. Concretely, we replace the
DiscGraph set with the meta-graph set for
GNNEvaluator training, which does not involve
discrepancy node attributes calculated based on
specific well-trained GNNs’ node embedding
space with the discrepancy measurement func-
tion. The output node classification accuracy (%)
of the proposed GNNEvaluator for evaluating
five GAT models under different seeds are shown
in Fig. 3 with lines for the proposed DiscGraph
set (w/ DiscAttr) in green and the meta-graph set
(w/o DiscAttr) in blue, respectively. And we also
list the ground-truth node classification accuracy
in histograms for comparison.

Generally, we observe that the proposed DiscGraph set (w/ DiscAttr) trained GNNEvaluator has
better performance for GAT model evaluation than that trained by the meta-graph set (w/o DiscAttr),
as all green lines are closer to the ground-truth histograms than the blue line, reflecting the effec-
tiveness of the proposed the proposed DiscGraph set, especially the discrepancy node attributes
with the discrepancy measurement function. Moreover, the meta-graph set (w/o DiscAttr) trained
GNNEvaluator almost produces the same accuracy on a certain GNN type, i.e., its performance stays
the same on all five GATs, making it fail to evaluate a certain GNN model type under different optimal
model parameters. That is because, compared with the proposed DiscGraph set, the meta-graph set
lacks the exploration of the latent node embedding space of well-trained GNNs and only utilizes the
output node class predictions from the well-trained GNNs. In contrast, the proposed DiscGraph set
fully exploits both latent node embedding space and output node class predictions of well-trained
GNNs for comprehensively modeling the discrepancy between the observed training graph and
unseen test graph, enabling its superior ability for GNN model evaluation.
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Figure 4: Visualizations on discrepancy node attributes in the proposed DiscGraph set for GCN
model evaluation. Darker color denotes a larger discrepancy.

4.4 Analysis of Discrepancy Meta-graph Set

We visualize the discrepancy node attributes in the proposed DiscGraph set on GCN model evaluation
trained on ACMv9 and tested on unseen DBLPv8 in Fig. 4 (a). Taking this as a reference, we present
visualizations of discrepancy node attributes derived between ACMv9 and arbitrary two meta-graphs
from our created meta-graph set in Fig. 4 (c) and (d). Darker color close to black indicates a larger
discrepancy in the output node embedding space of a well-trained GNN, and lighter color close to
white indicates a smaller discrepancy. As can be observed, the discrepancy pairs of (ACMv9, unseen
DBLPv8), (ACMv9, Meta-graph-1), and (ACMv9, Meta-graph-2) generally show similar heat map
patterns in terms of discrepancy. This indicates the effectiveness of the proposed meta-graph set
simulation strategy, which could capture potential unseen graph data distributions by synthesizing
diverse graph data with various graph augmentations. More detailed statistical information about the
proposed DiscGraph set, including the number of graphs, the average number of nodes and edges,
and the accuracy label distributions are provided in Appendix E.

4.5 Hyper-parameter Analysis of GNNEvaluator

Figure 5: Effects of different numbers of
DiscGraphs (K) for GNNEvaluator train-
ing. Histograms denote MAE for C → A
and C → D cases over five GCNs under
different K, and the line indicates the aver-
age MAE of such two evaluation cases.

We test the effects of different numbers of discrep-
ancy meta-graphs (K) for GNNEvaluator training in
Fig. 5. Concretely, we utilize the number of Disc-
Graphs for K = [100, 200, 300, 400] to train the pro-
posed GNNEvaluator for evaluating five GCN models
that are well-trained on Citationv2 dataset and make
inferences on unseen ACMv9 and DBLPv8 datasets.
Considering the average performance under two trans-
fer cases reflected in the line, despite K = 100 hav-
ing a higher MAE, the average MAE over two cases
does not change much with the number K for train-
ing the proposed GNNEvaluator. This indicates that
the proposed GNNEvaluator can effectively learn to
accurately predict node attributes by training on an ap-
propriate number of DiscGraphs, without the need for
a significantly excessive amount of training examples.

5 Conclusion

In this work, we have studied a new problem, GNN model evaluation, for understanding and evaluating
the performance of well-trained GNNs on unseen and unlabeled graphs. A two-stage approach is
proposed, which first generates a diverse meta-graph set to simulate and capture the discrepancies
of different graph distributions, based on which a GNNEvaluator is trained to predict the accuracy
of a well-trained GNN model on unseen graphs. Extensive experiments with real-world unseen and
unlabeled graphs could verify the effectiveness of our proposed method for GNN model evaluation.
Our method assumes that the class label space is unchanged across training and testing graphs though
covariate shifts may exist between the two. We will look into relaxing this assumption and address a
broader range of natural real-world graph data distribution shifts in the future.
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Appendix

This is the appendix of our work: ‘GNNEvaluator: Evaluating GNN Performance On Unseen
Graphs Without Labels’. In this appendix, we present additional information regarding the GNN
model evaluation problem and corresponding solutions, including in-depth discussions that distinguish
our method from related works, dataset statistics used in our experiments, comprehensive details
about our compared baseline methods, training details with the performance of well-trained GNN
models on both the test set of the observed graph and the unseen test graphs (for ground-truth
reference), and more experimental results with detailed analysis.

A Related Work

Predicting Model Generalization Error. Our work is relevant to the line of research on predicting
model generalization error, which aims to develop a good estimator of a model’s classifier performance
on unlabeled data from the unknown distributions in the target domain, when the estimated models’
classifier has been trained well in the source domain with labeled data [6, 9, 34, 5, 10, 4]. Typically,
Guillory et al. [10] proposed to estimate a classifier’s performance of convolutional neural network
(CNN) models on image data based on a designed criterion, named difference of confidences (DoC),
that estimates and reflects model accuracy. And Garg et al. [9] proposed to learn a score-based
Average Thresholded Confidence (ATC) by leveraging the softmax probability of a CNN classifier,
whose accuracy is estimated as the fraction of unlabeled images that receive a score above that
threshold. In contrast, Deng et al. [6, 4] directly predicted CNN classifier accuracy by deriving
distribution distance features between training and test images with a linear regression model.

However, these existing methods mostly focus on evaluating CNN model classifiers on image data in
computer vision, and the formulation of evaluating GNNs for graph structural data still remains under-
explored in graph machine learning. Concretely, conducting the model evaluation on GNNs for graph
structural data has two critical challenges: (1) different from Euclidean image data, graph structural
data lies in non-Euclidean space with complex and non-independent node-edge interconnections, so
that its node contexts and structural characteristics significantly vary under wide-range graph data
distributions, posing severer challenges for GNN model evaluation when serving on unknown graph
data distributions. (2) GNNs have entirely different convolutional architectures from those of CNNs,
when GNN convolution aggregates neighbor node messages along graph structures. Such that GNNs
trained on the observed training graph might well fit its graph structure, and due to the complexity
and diversity of graph structures, serving well-trained GNNs on unlabeled test distributions that they
have not encountered before would incur more performance uncertainty.

Hence, in this work, we first investigate the GNN model evaluation problem for graph structural data
with a clear problem definition and a feasible solution, taking a significant step towards understanding
and evaluating GNN models for practical GNN deployment and serving. Our proposed two-stage
GNN model evaluation framework directly estimates the node classification accuracy results of
specific well-trained GNNs on practical unseen graphs without labels. Our method could not only
facilitate model designers to better evaluate well-trained GNNs’ performance in practical serving,
but also provide users with confidence scores or model selection guidance, when using well-trained
GNNs for inferring on their own test graphs.

Unsupervised Graph Domain Adaption. Our work is also relevant to the unsupervised graph
domain adaption (UGDA) problem, whose goal is to develop a GNN model with both labeled source
graphs and unlabeled target graphs for better generalization ability on target graphs. Typically,
existing UGDA methods focus on mitigating the domain gap by aligning the source graph distribution
with the target one. For instance, Yang et al. [33] and Shen et al. [27] optimized domain distance
loss based on the statistical information of datasets, e.g., maximum mean discrepancy (MMD)
metric. Moreover, DANE [39] and UDAGCN [29] introduced domain adversarial methods to learn
domain-invariant embeddings across the source domain and the target domain. Therefore, the critical
distinction between our work and UGDA is that our work is primarily concerned with evaluating the
GNNs’ performance on unseen graphs without labels, rather than improving the GNNs’ generalization
ability when adapting to unlabeled target graphs. Besides, different from UGDA which uses the
unlabeled target graphs in their model design and training stage, the GNN model evaluation problem
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explored by our work is not allowed to access the unlabeled test graphs, i.e., unseen in the whole
GNN model evaluation process.

Graph Out-of-distribution (OOD) Generalization & Detection. Out-of-distribution (OOD)
generalization [18, 48] on graphs aims to develop a GNN model given several different but related
source domains, so that the developed model can generalize well to unseen target domains. Li
et al. [18] categorized existing graph OOD generalization methodologies into three conceptually
different branches, i.e., data, model, and learning strategy, based on their positions in the graph
machine learning pipeline. We would like to highlight that, even ODD generalization and our
proposed GNN model evaluation both pay attention to the general graph data distribution shift issue,
we have different purposes: our proposed GNN model evaluation aims to evaluate well-trained GNNs’
performance on unseen test graphs, while ODD generalization aims to develop a new GNN model
for improve its performance or generalization capability on unseen test graphs. Moreover, OOD
detection [32], aims to detect test samples drawn from a distribution that is different from the training
distribution, with the definition of distribution to be well-defined according to the application in
the target domain. Hence, the primary difference between OOD detection and our GNN model
evaluation is, OOD detection works on detecting OOD test samples at the data level and our GNN
model evaluation works on evaluating well-trained GNN’s performance on ODD data at the model
level.

B Dataset Statistics

We provide the details of dataset statistics used in our experiments in Table. A1, where these datasets
meet the covariate shift assumption between any pair of test cases.

Table A1: Statistical details of the experimental real-world datasets.

Dataset # of Nodes # of Edges # of Features # of Labels

ACMv9 7410 11135 7537 6
Citationv2 4715 6717 7537 6
DBLPv8 5578 7341 7537 6

C Baseline Methods Details

Average Thresholded Confidence (ATC) & Its Variants. This metric [9] learns a threshold on
CNN’s confidence to estimate the accuracy as the fraction of unlabeled images whose confidence
scores exceed the threshold as:

ATC =
1

M

M∑
j=1

1
{
s
(
Softmax

(
fθ∗

(
x′
j

)))
< t

}
, (9)

where fθ∗(·) denotes the well-trained CNN’s classifier with the optimal parameter θ∗, and s(·)
denotes the score function working on the softmax prediction of fθ∗(·). When the context is clear,
we will use f(·) for simplification. We adopted two different score functions, deriving two variants
as: (1) Maximum confidence variant ATC-MC with s(f(x′

j)) = maxk∈Y fk(x
′
j); and (2) Negative

Entropy variant ATC-NE with s(f(x′
j)) =

∑
k fk(x

′
j) log

(
fk(x

′
j)
)
, where Y = {1, 2, . . . , C} is the

label space. And for t in Eq. (9), it is calculated based on the validation set of the observed training
set (xval

u ,yval
u ) ∈ Sval:

1

Nval

Nval∑
u=1

1
{
s
(
Softmax

(
fθ∗

(
xval
u

)))
< t

}
=

1

Nval

Nval∑
u=1

1
{
p
(
xval
u ;θ∗) ̸= yval

u

}
, (10)

where p(·) denotes the predicted labels of samples. For all the calibration variants with ‘-c’ in our
experiments, they conduct standard Temperature Scaling [11] with following equations:

pu = max
k

Softmax (zu/T )
(k)

, (11)
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Table A2: Hyperparameters of learning rate (lr) and weight decay (wd) in training different GNNs
and MLP.

Datasets ACMv9 Citationv2 DBLPv8

Models lr wd lr wd lr wd

GCN 0.01 1.00E-05 0.01 1.00E-05 0.01 1.00E-05
SAGE 0.005 1.00E-06 0.005 1.00E-06 0.005 1.00E-06
GAT 0.005 1.00E-06 0.005 1.00E-06 0.005 1.00E-06
GIN 0.01 1.00E-06 0.01 1.00E-06 0.01 1.00E-06
MLP 0.001 1.00E-05 0.001 1.00E-05 0.001 1.00E-05

where zu denotes the network output logits before softmax and T is the temperature scaling factor.

Threshold-based Method. This is an intuitive solution introduced by [6], which is not a learning-
based method. It follows the basic assumption that a class prediction will likely be correct when it
has a high softmax output score. Then, the threshold-based method would provide the estimated
accuracy of a model as:

ACC =

∑M
i=1 1

{
max

(
fθ∗(x′

j)
)
> τ

}
M

, (12)

where τ is the pre-defined thresholds as τ = {0.7, 0.8, 0.9} on the output softmax logits of CNNs.
This metric calculates the percentage of images in the entire dataset whose maximum entry of logits
are greater than the threshold τ , which indicates these images are correctly classified.

AutoEval & Our Adaption AutoEval-G. This is a learning-based method of estimating classifier
accuracy by utilizing dataset-level feature statistics [6]. AutoEval synthesizes a meta image dataset
D (a dataset comprised of many datasets) from the observed training dataset Dori, and conducts the
linear regression to learn the CNN classifier’s accuracy based on the dataset-level feature statistics
between the observed training image data and unseen real-world unlabeled image data. The accuracy
linear regression with the dataset statistic feature flinear is written as:

flinear = FD(Dori,D) = ∥µori − µ∥22 +Tr
(
Σori +Σ− 2 (Σori Σ)

1
2

)
,

ACC = w1flinear + w0

(13)

where FD is the Fréchet distance [7] to measure the domain gap with the mean feature vectors µori
and µ, the covariance matrices Σori and Σ of Dori and D, respectively. And Tr(·) denotes the trace
of the matrix, w1 and w0 denote the parameters of linear regression.

We make the following necessary adaptions to expand the AutoEval method to graph structural data
on GNN model evaluation, deriving AutoEval-G by: (1) we synthesize a meta-graph set Gmeta as
demonstrated in Sec. 3.2 of the main manuscript; (2) we calculate the Maximum Mean Discrepancy
(MMD) distance as AutoEval-G’s graph dataset discrepancy representation f

′

linear, which measures
the graph distribution gap between the observed training graph S and each meta-graph gmeta ∈ Gmeta
with their node embeddings from the well-trained GNNS as:

f
′

linear = MMD(S, gmeta) = MMD(Z∗
S ,Z

(i,∗)
meta ). (14)

where Z∗
S = GNN∗

S(X,A), and Z
(i,∗)
meta = GNN∗

S(X
i
meta,A

i
meta).

D Well-trained GNN Model Details

In this section, we provide the details of well-trained GNN models in terms of their architecture
parameters and training details.

For all GNN and MLP models, the default settings are : (a) the number of layers is 2; (b) the
hidden feature dimension is 128; (c) the output feature dimension before the softmax operation is
16. The hyperparameters of training these GNNs and MLP are shown in Table A2. The five seeds
for training each type of models (GCN, GraphSAGE, GAT, GIN, MLP) are {0, 1, 2, 3, 4}, and the
node classification performance (accuracy) on the test set of each observed training graph and the
ground-truth accuracy on the unseen test graphs without labels are shown in Table A3, Table A4,
Table A5, Table A6, and Table A7, respectively.
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Table A3: Node classification results in accuracy(%) of GCN with different seeds in terms of the test
set of the observed graph and unseen test graphs.

GCN Observed ACMv9 Observed Citationv2 Observed DBLPv8

Seeds Atest GT A→C GT A→D Ctest GT C→A GT C→D Dtest GT D→A GT D→C

0 83.13 45.51 63.88 88.98 46.86 60.18 97.58 70.81 57.65
1 83.74 49.01 68.09 88.45 40.76 61.60 98.30 68.43 57.90
2 82.73 55.08 69.29 88.45 45.51 60.95 98.57 70.04 53.36
3 83.40 48.89 69.85 89.09 46.09 60.58 98.57 68.11 52.85
4 83.87 55.63 68.75 88.24 37.25 58.62 98.66 70.61 58.37

Table A4: Node classification results in accuracy (%) of GraphSAGE with different seeds in terms of
the test set of the observed graph and unseen test graphs.

SAGE Observed ACMv9 Observed Citationv2 Observed DBLPv8

Seeds Atest GT A→C GT A→D Ctest GT C→A GT C→D Dtest GT D→A GT D→C

0 82.32 45.49 63.54 88.98 50.59 59.90 98.66 42.24 42.27
1 83.54 48.97 69.67 88.14 48.87 58.03 98.84 39.41 35.21
2 83.67 52.56 71.15 88.45 41.17 54.61 98.39 45.82 55.99
3 82.79 48.19 66.22 88.03 42.20 53.96 98.48 31.30 27.25
4 82.05 47.04 66.67 88.35 37.46 55.70 98.84 36.99 35.14

Table A5: Node classification results in accuracy (%) of GAT with different seeds in terms of the test
set of the observed graph and unseen test graphs.

GAT Observed ACMv9 Observed Citationv2 Observed DBLPv8

Seeds Atest GT A→C GT A→D Ctest GT C→A GT C→D Dtest GT D→A GT D→C

0 83.00 44.84 72.53 87.82 41.55 57.94 97.85 64.10 51.77
1 82.73 44.18 57.08 88.67 48.80 60.40 98.84 57.03 42.18
2 81.65 45.07 69.59 88.77 45.74 59.04 98.48 39.65 63.99
3 82.79 43.82 60.18 88.98 41.48 61.03 98.93 62.33 58.43
4 81.71 42.04 57.62 87.50 37.04 60.06 98.30 63.64 52.64

Table A6: Node classification results in accuracy (%) of GIN with different seeds in terms of the test
set of the observed graph and unseen test graphs.

GIN Observed ACMv9 Observed Citationv2 Observed DBLPv8

Seeds Atest GT A→C GT A→D Ctest GT C→A GT C→D Dtest GT D→A GT D→C

0 82.19 50.37 74.94 88.24 33.35 59.47 98.48 35.13 40.78
1 82.52 43.12 51.58 86.97 35.40 64.83 66.70 35.37 28.14
2 82.86 42.93 58.21 81.57 39.28 65.04 98.93 53.91 30.56
3 82.46 47.93 69.79 87.92 44.59 69.72 63.47 30.61 21.53
4 82.39 47.04 78.13 88.56 40.23 65.72 98.93 59.39 45.56

Table A7: Node classification results in accuracy (%) of MLP with different seeds in terms of the test
set of the observed graph and unseen test graphs.

MLP Observed ACMv9 Observed Citationv2 Observed DBLPv8

Seeds Atest GT A→C GT A→D Ctest GT C→A GT C→D Dtest GT D→A GT D→C

0 71.59 33.28 38.17 74.89 34.48 37.25 62.67 59.18 51.41
1 70.18 33.47 39.05 74.58 35.30 38.62 63.12 54.44 43.92
2 70.11 42.65 43.67 74.36 34.74 39.12 63.12 53.74 42.59
3 68.62 35.12 39.71 72.56 33.91 37.41 62.94 54.28 44.31
4 69.23 35.95 42.33 74.58 34.41 39.82 64.37 54.08 43.88
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E More Experimental Analysis and Results.

E.1 DiscGraph Statistics

As a vital component of our proposed two-stage GNN model evaluation framework, DiscGraph
set captures wide-range and diverse graph data distribution discrepancies. By fully exploiting the
latent node embeddings and node class predictions from well-trained GNNs, the DiscGraph set
involves representative node attributes incorporating diverse discrepancies through a discrepancy
measurement function, leading to effective instructions for the training of GNNEvaluator. Hence, in
the following, we show the statistical information of our derived DiscGraph set in Table A8. Note
that, each generated DiscGraph set is related to a specific dataset and a specific well-trained GNN,
as it considers the outputs of node embeddings and predictions on a well-trained GNN trained by a
specific graph dataset.

Table A8: Statistics of the proposed DiscGraph in terms of GNNs on ACMv9, Citationv2, DBLPv8,
where the accuracy label distributions calculate average minimum and maximum node classification
accuracy on GNNs with five random seeds with standard deviations (std).

Statistics DiscGraph-ACMv9 DiscGraph-Citationv2 DiscGraph-DBLPv8

#Num of Graphs (K) 400 400 400
#Avg. Num of Nodes 2105 1340 1585
#Avg. Num of Edges 1595 927 1205

Accuracy Label Distributions
(Min. | Max.±std)

GCN 39.95±0.00 | 80.45±1.40 13.89±7.82 | 85.36±1.00 17.53±0.57 | 91.95±0.56

SAGE 39.95±0.00 | 77.76±2.22 21.29±7.28 | 82.43±0.54 19.07±3.52 | 77.27±2.03

GAT 39.50±1.01 | 79.67±0.63 19.53±12.27 | 86.13±0.47 19.58±1.34 | 87.26±3.99

GIN 28.50±10.15 | 76.06±2.27 13.48±8.24 | 81.50±2.91 19.06±5.18 | 63.63±16.83

MLP 39.92±0.04 | 71.91±1.19 33.65±7.08 | 77.41±0.75 17.71±0.39 | 64.68±0.41

Figure A1: Visualizations on discrepancy node attributes in the proposed DiscGraph set for (a) GAT,
(b) GraphSAGE, and (c) GIN model evaluation. Darker color denotes a larger discrepancy.

Figure A2: Effects of different numbers of DiscGraphs (K) for GNNEvaluator training with Absolute
Error (AE) for each GCN model under C→A and C→D cases.
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E.2 More Visualization Results of Discrepancy Node Attributes

In Fig. A1, we present more visualization results on discrepancy node attributes in the proposed
DiscGraph set for different GNN models, i.e., (a) GAT, (b) GraphSAGE, and (c) GIN, under
ACMv9→DBLPv8 case.

As can be observed, for different GNNs, the node attributes in the proposed DiscGraph set show
significant differences, denoting the effectiveness of the proposed discrepancy measurement function,
which could capture model-specific discrepancy representations effectively. And such discrepancy
representations could instruct our proposed GNNEvaluator to learn graph data distribution discrep-
ancies with different well-trained GNNs for accuracy regression.

E.3 More Results on The Number of DiscGraphs

We provide more results for illustrating the effects of different numbers of discGraphs for training
the proposed GNNEvaluator in Fig. A2. Along with the MAE results reported in Fig. 5 in the main
manuscript, we report the Absolute Error (AE) results for each GCN model under C→A and C→D
cases. Lower AE denotes better performance. It can be observed that different GCN models have
different appropriate K values for GNNEvaluator training, but they show similar trends for each
unseen test graph in the left and the middle figures. For instance, the proposed GNNEvaluator has
highest AE when it is trained with K = 100 DiscGraphs, and comparable AEs with K = 300 and
K = 400 for evaluating all five GCNs under the C→D case. Nevertheless, in general, as shown in
the red ‘Avg.’ line of the right figure, the performance of the proposed GNNEvaluator would not
significantly vary along the number of DiscGraphs when evaluating all GCNs that are well-trained on
Citationv2 dataset and served on unseen DBLPv8 dataset.
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