
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADARC: MITIGATING GRAPH STRUCTURE SHIFTS
DURING TEST-TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

Powerful as they are, graph neural networks (GNNs) are known to be vulnerable to
distribution shifts. Recently, test-time adaptation (TTA) has attracted attention due
to its ability to adapt a pre-trained model to a target domain, without re-accessing
the source domain. However, existing TTA algorithms are primarily designed for
attribute shifts in vision tasks, where samples are independent. These methods
perform poorly on graph data that experience structure shifts, where node connec-
tivity differs between source and target graphs. We attribute this performance gap
to the distinct impact of node attribute shifts versus graph structure shifts: the latter
significantly degrades the quality of node representations and blurs the boundaries
between different node categories. To address structure shifts in graphs, we pro-
pose AdaRC, an innovative framework designed for effective and efficient adap-
tation to structure shifts by adjusting the hop-aggregation parameters in GNNs.
To enhance the representation quality, we design a prediction-informed clustering
loss to encourage the formation of distinct clusters for different node categories.
Additionally, AdaRC seamlessly integrates with existing TTA algorithms, allow-
ing it to handle attribute shifts effectively while improving overall performance
under combined structure and attribute shifts. We validate the effectiveness of
AdaRC on both synthetic and real-world datasets, demonstrating its robustness
across various combinations of structure and attribute shifts.

1 INTRODUCTION

Graph neural networks (GNNs) have shown great success in various graph applications such as
social networks (Rozemberczki et al., 2021), scientific literature networks (Hu et al., 2020), and
financial fraud detection (Pareja et al., 2020). Their superior performance heavily relies on the
assumption that training and testing graph data are identically distributed (Li et al., 2022a). However,
real-world graphs usually involve distribution shifts in both node attributes and graph structures
(Liu et al., 2023; Wu et al., 2023a;b). For example, given two social networks (e.g., LinkedIn for
professional networking and Pinterest for casual content sharing), the user profiles are likely to vary
due to the different functionalities of two graphs, resulting in attribute shifts. Besides, as LinkedIn
users tend to connect with professional colleges, while users on Pinterest often connect with family
and friends, the connectivity patterns vary across different networks, introducing structure shifts.
The co-existence of these complex shifts significantly undermines GNN model performance (Li
et al., 2022a).

Various approaches have been proposed to address the distribution shifts between the source and
target domains, e.g., domain adaptation (Wang & Deng, 2018) and domain generalization (Wang
et al., 2023). But most of these approaches require access to either target labels (Wu et al., 2023a;b)
or the source domain during adaptation (Liu et al., 2023; Xiao et al., 2023), which is often imprac-
tical in real-world applications. For example, when a model is deployed for fraud detection, the
original transaction data used for training may no longer be accessible. Test-time adaptation (TTA)
has emerged as a promising solution, allowing models to adapt to an unlabeled target domain with-
out re-accessing the source domain (Liang et al., 2023). These algorithms demonstrate robustness
against various image corruptions and style shifts in vision tasks (Wang et al., 2021; Iwasawa &
Matsuo, 2021; Zhang et al., 2023). However, when applied to graph data, existing TTA algorithms
face significant challenges, especially under structure shifts. As shown in Figure 1, both attribute
and structure shifts (e.g., homophily and degree shifts) lead to performance drops on target graphs,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Homophily Degree
Attribute Shift                                 Structure Shift                 

60

70

80

90

100

Ac
cu

ra
cy

86.1
89.7 88.5

90.6 90.4
88.4

98.6

89.9 89.2
91.5 90.0 88.5

ERM T3A Tent AdaNPC +AdaRC (Ours)

Figure 1: Generic TTA algorithms (T3A,
Tent, AdaNPC) are significantly less effec-
tive under structure shifts (right) than at-
tribute shifts (left). On the contrary, our
proposed AdaRC could significantly im-
prove the performance of generic TTA (gray
shaded area). The dataset used is CSBM.

4 2 0 2 4
0.0

0.2

0.4

0.6

Pr
ob

ab
ilit

y 
De

ns
ity

(a) No Distribution Shift

4 2 0 2 4
Projected Representations

0.0

0.2

0.4

0.6
(b) Attribute Shift

4 2 0 2 4
0.0

0.2

0.4

0.6
(c) Structure Shift

Histograms of Projected Representations Under Different Distribution Shifts

Decision Boundary Positive Class Negative Class

Figure 2: Attribute shifts and structure shifts have
different impact patterns. Compared to attribute
shifts (b), structure shifts (c) mix the distributions of
node representations from different classes, which
cannot be alleviated by adapting the decision bound-
ary. This explains the limitations of existing generic
TTA algorithms. The dataset used is CSBM.

but current TTA methods provide only marginal accuracy improvements under structure shifts com-
pared to attribute shifts.

In this paper, we seek to understand why generic TTA algorithms perform poorly under structure
shifts. Through both theoretical analysis and empirical evaluation, we reveal that while both attribute
and structure shifts affect model accuracy, they impact GNNs in different ways. Attribute shifts
mainly affect the decision boundary and can often be addressed by adapting the downstream clas-
sifier. In contrast, structure shifts degrade the upstream featurizer, causing node representations to
mix and become less distinguishable, which significantly hampers performance. Figure 2 illustrates
this distinction. Since most generic TTA algorithms rely on high-quality representations (Iwasawa
& Matsuo, 2021; Wang et al., 2021; Zhang et al., 2023), they struggle to improve GNN performance
under structure shifts.

To address these limitations, we propose that the key to mitigating structure shifts lies in restoring
the quality of node representations, making the representations of different classes distinct again.
Guided by theoretical insights, we propose adjusting the hop-aggregation parameters which con-
trol how GNNs integrate node features with neighbor information across different hops. Many
GNN designs include such hop-aggregation parameters, e.g., GPRGNN (Chien et al., 2021),
APPNP (Klicpera et al., 2019), JKNet (Xu et al., 2018), and GCNII (Chen et al., 2020). Build-
ing on this, we introduce our AdaRC framework. It restores representation quality impacted by
structure shifts by adapting hop-aggregation parameters through minimizing prediction-informed
clustering (PIC) loss, promoting discriminative node representations without falling into trivial so-
lutions as with traditional entropy loss. Additionally, our framework can be seamlessly integated
with existing TTA algorithms to harness their capability to handle attribute shifts. We empirically
evaluate AdaRC with a wide range of datasets and TTA algorithms. Extensive experiments on both
synthetic and real-world datasets show that AdaRC can handle a variety of structure shifts, including
homophily shifts and degree shifts. Moreover, it is compatible to a wide range of TTA algorithms
and is able to enhance their performance under various combinations of attribute shifts and structure
shifts. We summarize our contributions as follows:

• Theoretical analysis reveals the distinct impact patterns of attribute and structure shifts on GNNs,
which limits the effectiveness of generic TTA methods in graphs. Compared to attribute shifts,
structure shifts more significantly impair the node representation quality.

• A novel framework AdaRC is proposed to restore the quality of node representations and boost
existing TTA algorithms by adjusting the hop-aggregation parameters.

• Empirical evaluation on both synthetic and real-world scenarios demonstrates the effectiveness
of AdaRC under various distribution shifts. When applied alone, AdaRC enhances the source
model performance by up to 31.95%. When integrated with existing TTA methods, AdaRC further
boosts their performance by up to 40.61%.

2 RELATED WORKS

Test-time adaptation (TTA) aims to adapt a pre-trained model from the source domain to an unla-
beled target domain without re-accessing the source domain during adaptation (Liang et al., 2023).
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For i.i.d. data like images, several recent works propose to perform image TTA by entropy mini-
mization (Wang et al., 2021; Zhang et al., 2022), pseudo-labeling (Iwasawa & Matsuo, 2021; Zhang
et al., 2023), consistency regularization (Boudiaf et al., 2022), etc. However, graph TTA is more
challenging due to the co-existence of attribute shifts and structure shifts. To address this issue,
GTrans (Jin et al., 2023) proposes to refine the target graph at test time by minimizing a surrogate
loss. SOGA (Mao et al., 2024) maximizes the mutual information between model inputs and out-
puts, and encourages consistency between neighboring or structurally similar nodes, but it is only
applicable to homophilic graphs. Focusing on degree shift, GraphPatcher (Ju et al., 2023) learns to
generate virtual nodes to improve the prediction on low-degree nodes. In addition, GAPGC (Chen
et al., 2022) and GT3 (Wang et al., 2022) follow a self-supervised learning (SSL) scheme to fine-tune
the pre-trained model for graph classification.

Graph domain adaptation (GDA) aims to transfer knowledge from a labeled source graph to an
unlabeled target graph with access to both graphs. Most of the GDA algorithms focus on learning
invariant representations over the source and target graphs by adversarial learning (Zhang et al.,
2019; Wu et al., 2020; Xiao et al., 2023) or minimizing the distance between source and target
graphs (Zhu et al., 2021b; Wu et al., 2023b). More recent work (Liu et al., 2023) addresses the co-
existence of structure and node attribute shifts by reweighing the edge weights of the source graphs.
However, GDA methods require simultaneous access to both the source and target graphs, and thus
cannot be extended to TTA scenarios.

We also discuss related works in (1) graph out-of-distribution generalization and (2) homophily-
adaptive GNN models in Appendix E.1.

3 ANALYSIS

In this section, we explore how different types of distribution shifts affect GNN performance. We
first introduce the concepts of attribute shifts and structure shifts in Subsection 3.1. Subsequently,
in Subsection 3.2, we analyze how attribute shifts and structure shifts affect the GNN performance
in different ways, which explain the limitation of generic TTA methods. Finally, in Subsection 3.3,
we propose that adapting the hop-aggregation parameters can effectively handle structure shifts.

3.1 PRELIMINARIES

In this paper, we focus on graph test-time adaptation (GTTA) for node classification. A labeled
source graph is denoted as S = (XS ,AS) with node attribute matrix XS ∈ RN×D and adjacency
matrix AS ∈ {0, 1}N×N . The corresponding node label matrix is denoted as YS ∈ {0, 1}N×C .
For a node vi, we denote its neighbors as N(vi) and node degree as di. A GNN model gS ◦ fS(·)
is pre-trained on the source graph, where fS is the featurizer extracting node-level representations,
and gS is the classifier, which is usually a linear layer. The goal of GTTA is to adapt the pre-trained
GNN model to enhance node classification accuracy on an unlabeled target graph T = (XT ,AT )
with a different distribution, while the source graph S are not accessible during adaptation.1

Compared with TTA on regular data like images, GTTA is more challenging due to the co-existence
of attribute shifts and structure shifts (Li et al., 2022a; Wu et al., 2023b), which are formally defined
as follows (Liu et al., 2023).

Attribute shift. We assume that the node attributes xi for each node vi (given its label yi) are i.i.d.
sampled from a class-conditioned distribution Px|y . The attribute shift is defined as PS

x|y ̸= PT
x|y .

Structure shift. We consider the joint distribution of adjacency matrix and labels PA×Y . The
structure shift is defined as PS

A×Y ̸= PT
A×Y . Specifically, we focus on two types of structure shifts:

degree shift and homophily shift.

Degree shift. Degree shift refers to the difference in degree distribution, particularly the aver-
age degree, between the source graph and the target graph. For instance, in the context of a user
co-purchase graph, in more mature business regions, the degree of each user node may be rela-

1This setting is also referred to as source-free unsupervised graph domain adaptation (Mao et al., 2024).
Here, we primarily follow the terminology used by Jin et al. (2023). It is important to note that, unlike the online
setting often adopted in image TTA, graph TTA allows simultaneous access to the entire unlabeled target graph
T (Liang et al., 2023).
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tively higher due to multiple purchases on the platform. However, when the company expands its
operations to a new country where users are relatively new, the degree may be comparatively lower.

Homophily shift. Homophily refers to the phenomenon that a node tends to connect with nodes
with the same labels. Formally, the node homophily of a graph G is defined as (Pei et al., 2020):

h(G) = 1

N

∑
i

hi, where hi =
|{u∈N(vi) : yu=yvi}|

di
, (1)

where | · | denotes the cardinality of a set. Homophily shift refers to the phenomenon that the source
and target graphs have different levels of homophily. For example, with node labels as occupation,
business social networks (e.g., LinkedIn) are likely to be more homophilic than other social networks
(e.g., Pinterest, Instagram).

Although structure shifts do not directly change the distribution of each single node’s attribute,
they change the distribution of each node’s neighbors, and thus affects the distribution of node
representations encoded by GNNs.

3.2 IMPACTS OF DISTRIBUTION SHIFTS

As observed in Figure 1, both attribute shifts and structure shifts can impact the performance of
GNNs. However, the same TTA algorithm demonstrates remarkably different behaviors when ad-
dressing these two types of shifts. We posit that this is due to the distinct ways in which attribute
shifts and structure shifts affect GNN performance. We adopt the contextual stochastic block model
(CSBM) and single-layer GCNs to elucidate these differences.

CSBM (Deshpande et al., 2018) is a random graph generator widely used in the analysis of GNNs
(Ma et al., 2022; Mao et al., 2023; Yan et al., 2022). Specifically, we consider a CSBM with two
classes C+ = {vi : yi = +1} and C− = {vi : yi = −1}, each having N

2 nodes. The attributes
for each node vi are independently sampled from a Gaussian distribution xi ∼ N (µi, I), where
µi = µ+ for vi ∈ C+ and µi = µ− for vi ∈ C−. Each pair of nodes are connected with probability
p if they are from the same class, otherwise q. As a result, the average degree is d = N(p+q)

2 and
node homophily is h = p

p+q . We denote the graph as CSBM(µ+,µ−, d, h), where µ+,µ− encode
the node attributes and d, h encode the graph structure.

Single-layer GCN. We consider a single-layer GCN, whose featurizer is denoted as Z =
f(X,A) = X + γ · D−1AX = (I + γ · D−1A)X , where D is the degree matrix. Equiva-
lently, for each node vi, its node representation is zi = xi + γ · 1

di

∑
vj∈N(vi) xj . The parameter

γ controls the mixture between the node’s own representation and its one-hop neighbors’ average
representation. We consider γ as a fixed parameter for now, and adapt it later in Subsection 3.3. We
consider a linear classifier as g(Z) = Zw+1b, which predicts a node vi as positive if z⊤

i w+b ≥ 0
and vise versa.

In Proposition 3.1 and Corollary 3.2 below, we derive the distribution of node representations
{z1, · · · , zN}, and give the analytical form of the optimal parameters and expected accuracy.
Proposition 3.1. For graphs generated by CSBM(µ+,µ−, d, h), the node representation zi of node
vi ∈ C+ generated by a single-layer GCN follows a Gaussian distribution of

zi ∼ N
(
(1 + γhi)µ+ + γ(1− hi)µ−,

(
1 +

γ2

di

)
I

)
, (2)

where di is the degree of node vi, and hi is the homophily of node vi defined in Eq. (1). Similar
results hold for vi ∈ C− after swapping µ+ and µ−.
Corollary 3.2. When µ+ = µ,µ− = −µ, and all nodes have the same homophily h = p

p+q and

degree d = N(p+q)
2 , the classifier maximizes the expected accuracy when w = sign(1+γ(2h−1)) ·

µ
∥µ∥2

and b = 0. It gives a linear decision boundary of {z : z⊤w = 0} and the expected accuracy

Acc = Φ

(√
d

d+ γ2
· |1 + γ(2h− 1)| · ∥µ∥2

)
, (3)

where Φ is the CDF of the standard normal distribution.
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To analyze the distinct impact patterns of attribute shifts and structure shifts, we decompose the
accuracy gap of GNNs between the source graph and the target graph into two parts as follows,
AccS(gS ◦ fS)− AccT (gS ◦ fS)︸ ︷︷ ︸

total accuracy gap

= AccS(gS ◦ fS)− sup
gT

AccT (gT ◦ fS)︸ ︷︷ ︸
representation degradation ∆f

+sup
gT

AccT (gT ◦ fS)− AccT (gS ◦ fS)︸ ︷︷ ︸
classifier bias ∆g

,

where AccS ,AccT denote the accuracies on the source and target graphs, respectively.
supgT AccT (gT ◦ fS) is the highest accuracy that a GNN can achieve on the target graph
when the featurizer fS is frozen and the classifier gT is allowed to adapt. Using this accuracy
as a pivot, the accuracy gap is decomposed into representation degradation and classifier bias. A
visualized illustration is shown in Figure 7.

• Representation degradation ∆f quantifies the performance gap attributed to the suboptimality of
the source featurizer fS . Intuitively, this term measures the minimal performance gap between the
source and target graphs that the GNN model can achieve by tuning the classifier gT .

• Classifier bias ∆g quantifies the performance gap attributed to the suboptimality of the source
classifier gS . Intuitively, this term measures the part of performance gap on the target graph the
GNN model can reduce by tuning the classifier gT .

Proposition 3.3 (Impacts of attribute shifts). When training a single-layer GCN on a source graph
of CSBM(µ,−µ, d, h), while testing it on a target graph of CSBM(µ +∆µ,−µ +∆µ, d, h) with
∥∆µ∥2 < | 1+γ(2h−1)

1+γ | · ∥µ∥2, we have

∆f = 0, ∆g = Θ(∥∆µ∥22), (4)

where Θ indicates the same order, i.e., a function l(x) = Θ(x) ⇔ there exists positive constants
C1, C2, s.t. C1 ≤ l(x)

x ≤ C2 for all x in its range. It implies that the performance gap under
attribute shifts mainly attributes to the classifier bias.
Proposition 3.4 (Impacts of structure shifts). When training a single-layer GCN on a source graph
of CSBM(µ,−µ, dS , hS), while testing it on a target graph of CSBM(µ,−µ, dT , hT ), where 1 ≤
dT = dS −∆d < dS and 1

2 < hT = hS −∆h < hS , if γ > 0, we have

∆f = Θ(∆h+∆d), ∆g = 0, (5)

which implies that the performance gap under structure shifts mainly attributes to the representation
degradation.

Propositions 3.3 and 3.4 imply that attribute shifts and structure shifts impact the accuracy of GNN
differently. Specifically, attribute shifts impact the decision boundary of the classifier, while struc-
ture shifts significantly degrade the node representation quality. These propositions also match with
our empirical findings in Figure 2 and Figure 10 (in Appendix C.1). Since generic TTA methods
(Wang et al., 2021; Iwasawa & Matsuo, 2021; Zhang et al., 2023) usually rely on the representation
quality and refine the decision boundary, their effectiveness is limited under structure shifts.

3.3 ADAPTING HOP-AGGREGATION PARAMETERS TO RESTORE REPRESENTATIONS

To mitigate the representation degradation caused by structure shifts, it becomes essential to adjust
the featurizer of GNNs. In the following Proposition 3.5, we demonstrate that the degraded node
representations due to structure shifts can be restored by adapting γ, the hop-aggregation param-
eter. This is because γ determines the way to combine a node’s own attributes with its neighbors
in GNNs. It is important to note that although our theory focuses on single-layer GCNs, a wide
range of GNN models possess similar parameters for adaptation, e.g., the general PageRank param-
eters in GPRGNN (Chien et al., 2021), teleport probability in APPNP (Klicpera et al., 2019), layer
aggregation in JKNet (Xu et al., 2018), etc.
Proposition 3.5 (Adapting γ). Under the same learning setting as Proposition 3.4, adapting the
source γS to the optimal γT = dT (2hT − 1) on the target graph can alleviate the representation
degradation and improve the target classification accuracy by Θ((∆h)2 + (∆d)2).

Proposition 3.5 indicates that the optimal γ depends on both node degree d and homophily h. For
instance, consider a source graph with hS = 1 and dS = 10. In this case, the optimal featurizer
assigns equal weight to the node itself and each of its neighbors, resulting in optimal γS = 10.
However, when the target graph’s degree remains unchanged but the homophily decreases to hT =

5
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Figure 3: Our proposed framework of AdaRC (when combined with GPRGNN)

0.5, where each node’s neighbors are equally likely to be positive or negative, the neighbors no
longer provide reliable information for node classification, leading to an optimal γT = 0. Similarly,
when the homophily remains the same, but the target graph’s degree is reduced to dT = 1, γS
overemphasizes the neighbor’s representation by placing excessive weight on it, whereas the optimal
γT in this case would be 1. A visualization of these examples are given in Appendix A.2.

4 PROPOSED FRAMEWORK

So far, we have found that adjusting hop-aggregation parameters can address the issue of node
representation degradation caused by structure shifts. However, translating this theoretical insight
into a practical algorithm still faces two challenges:

• In the absence of labels, how to update hop-aggregation parameters to handle structure shifts?
• How to ensure that our proposed algorithm is compatible with existing TTA algorithms in order

to simultaneously address the co-existence of structure and attribute shifts?

In this section, we propose AdaRC, including a novel prediction-informed clustering loss to encour-
age high-quality node representations, and an adaptation framework compatible with a wide range
of TTA algorithms. Figure 3 gives a general framework.

To adapt to graphs with different degree distributions and homophily, AdaRC uses GNNs that are
capable of adaptively integrating multi-hop information, e.g., GPRGNN (Chien et al., 2021), APPNP
(Klicpera et al., 2019), JKNet (Xu et al., 2018), etc. Specifically, we illustrate our framework using
GPRGNN as a representative case. Notably, our framework’s applicability extends beyond this
example, as demonstrated by the experimental results presented in Appendix C.9, showcasing its
versatility across various network architectures.

GPRGNN. The featurizer of GPRGNN is an MLP followed by a general pagerank module.
We denote the parameters for MLP as θ, and the parameters for the general pagerank module
as γ = [γ0, · · · , γK ] ∈ RK+1. The node representation of GPRGNN can be computed as
Z =

∑K
k=0 γkH

(k), where H(0) = MLPθ(X),H(k) = ÃkH(0),∀k = 1, ...,K are the 0-hop
and k-hop representations, Ã is the normalized adjacency matrix. A linear layer with weight w
following the featurizer serves as the classifier.

4.1 PREDICTION-INFORMED CLUSTERING LOSS

This subsection introduces how AdaRC updates the hop-aggregation parameters without labels. Pre-
vious TTA methods (Liang et al., 2020; Wang et al., 2021; Zhang et al., 2022; Bao et al., 2023)
mainly adopt the entropy as a surrogate loss, as it measures the prediction uncertainty. However,
we find that entropy minimization has limited effectiveness in improving representation quality (see
Figure 4 and Table 6). Entropy is sensitive to the scale of logits rather than representation quality,
often leading to trivial solutions. For instance, for a linear classifier, simply scaling up all the node
representations can cause the entropy loss to approach zero, without improving the separability of
the node representations between different classes. To address this issue, we propose the prediction-
informed clustering (PIC) loss, which can better reflect the quality of node representation under
structure shifts. Minimizing the PIC loss encourages the representations of nodes from different
classes to be more distinct and less overlapping.
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Let Z = [z1, · · · , zN ]⊤ ∈ RN×D denote the representation matrix and Ŷ ∈ RN×C
+ denote the

prediction of BaseTTA subject to
∑C

c=1 Ŷi,c = 1, where N is the number of nodes, D is the
dimension of the node representations and C is the number of classes. We first compute µc as the
centroid representation of each (pseudo-)class c, and µ∗ as the centroid representation for all nodes,

µc =

∑N
i=1 Ŷi,czi∑N
i=1 Ŷi,c

, ∀c = 1, · · · , C, µ∗ =
1

N

N∑
i=1

zi. (6)

We further define the intra-class variance σ2
intra and inter-class variance σ2

inter as:

σ2
intra =

N∑
i=1

C∑
c=1

Ŷi,c∥zi − µc∥22, σ2
inter =

C∑
c=1

(
N∑
i=1

Ŷi,c

)
∥µc − µ∗∥22. (7)

To obtain discriminative representations, it is natural to expect small intra-class variance σ2
intra, i.e.,

nodes with the same label are clustered together, and high inter-class variance σ2
inter, i.e., different

classes are separated. Therefore, we propose the PIC loss as follows:

LPIC =
σ2

intra

σ2
intra + σ2

inter
=

σ2
intra

σ2
, (8)

where σ2 can be simplified as σ2 = σ2
intra + σ2

inter =
∑N

i=1 ∥zi − µ∗∥22 (proof in Appendix A.8).

It should be noted that although the form of PIC loss seems not reusing the adjacency matrix A,
it still evaluates the suitability of the current hop-aggregation parameters for the graph structure
through the distribution of the representation Z. As shown in Figure 4 and Proposition 3.4, structure
shifts cause node representations to overlap more, leading to a smaller σ2

inter/σ
2
intra and a larger PIC

loss. Alternatively, some algorithms, like SOGA (Mao et al., 2024), incorporate edge information by
promoting connected nodes to share the same label. These designs implicitly assume of homophilic
graph, limiting their applicability. As a result, SOGA performs poorly on heterophilic target graphs,
as seen in Table 1. In contrast, our PIC loss directly targets GNN-encoded node representations,
allowing it to generalize across different graph structures, whether homophilic or heterophilic.

By minimizing the PIC loss, we reduce intra-class variance while maximizing inter-class variance.
Importantly, the ratio form of the PIC loss reduces sensitivity to the scale of representations; as the
norm increases, the loss does not converge to zero, thus avoiding trivial solutions. It is also worth
noting that the proposed PIC loss differs from the Fisher score (Gu et al., 2012) in two key aspects:
First, PIC loss operates on model predictions, while Fisher score relies on true labels, making Fisher
inapplicable in our setting where labels are unavailable. Second, PIC loss uses soft predictions for
variance computation, which aids in the convergence of AdaRC, whereas the Fisher score uses hard
labels, which can lead to poor convergence due to the unbounded Lipschitz constant, as we show
in Theorem 4.1. We also provide an example in Appendix C.2 showing that AdaRC with PIC loss
improves accuracy even when initial predictions are highly noisy.

4.2 INTEGRATION OF GENERIC TTA METHODS

Algorithm 1 AdaRC
AdaRC (target graph T , featurizer fθ,γ , classifier gw)
1: for epoch t = 1 to T do
2: Apply generic TTA:

Ŷ ← BaseTTA(T , fθ,γ , gw)
3: Update hop-aggregation parameters:

γ ← γ − η∇γL(T , fθ,γ , gw, Ŷ )

4: return Ŷ ← BaseTTA(T , fθ,γ , gw)

This subsection introduces how AdaRC inte-
grates the adaptation of hop-aggregation pa-
rameters with existing TTA algorithms to si-
multaneously address the co-existence of struc-
ture and attribute shifts. Our approach is mo-
tivated by the complementary nature of adapt-
ing the hop-aggregation parameter and exist-
ing generic TTA methods. While the adapted
hop-aggregation parameter effectively manages
structure shifts, generic TTA methods handle
attribute shifts in various ways. Consequently, we design a simple yet effective framework that
seamlessly integrates the adaptation of hop-aggregation parameter with a broad range of existing
generic TTA techniques.

Our proposed AdaRC framework is illustrated in Algorithm 1. Given a pre-trained source GNN
model fθ,γ◦gw and the target graph T , we first employ the baseline TTA method, named BaseTTA,

7
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to produce the soft prediction Ŷ ∈ RN×C
+ as pseudo-classes, where

∑C
c=1 Ŷi,c = 1. Equipped

with pseudo-classes, the hop-aggregation parameters γ is adapted by minimizing the PIC loss as
described in Subsection 4.1. Intuitively, the predictions of BaseTTA are crucial for identifying
pseudo-classes to cluster representations, and in return, better representations enhance the predic-
tion accuracy of BaseTTA. Such synergy between representation quality and prediction accuracy
mutually reinforces each other during the adaptation process, leading to much more effective out-
comes. It is worth noting that AdaRC is a plug-and-play method that can seamlessly integrate with
various TTA algorithms, including Tent (Wang et al., 2021), T3A (Iwasawa & Matsuo, 2021), and
AdaNPC (Zhang et al., 2023).

Computational complexity. For each epoch, the computational complexity of the PIC loss is
O(NCD), linear to the number of nodes. Compared to SOGA (Mao et al., 2024), which has
quadratic complexity from comparing every node pair, PIC loss enjoys greater scalability to the
graph size. For the whole AdaRC framework, it inevitably introduces additional computational
overhead, which depends on both the GNN architecture and the baseline TTA algorithm. How-
ever, in practice, the additional computational cost is generally minimal since intermediate results
(e.g. {H(k)}Kk=0) can be cached and reused. We empirically evaluate the efficiency of AdaRC in
Subsection 5.3.

Convergence analysis. Finally, we analyze the convergence property of AdaRC in Theorem 4.1
below. The formal theorem and complete proofs can be found in Appendix B.
Theorem 4.1 (Convergence of AdaRC). Let M = [vec(H(0)), · · · , vec(H(K))] ∈ RND×(K+1)

denote the concatenation of 0-hop to K-hop node representations. Given a base TTA algorithm, if
(1) the prediction Ŷ is L-Lipschitz w.r.t. the (aggregated) node representation Z, and (2) the loss
function is β-smooth w.r.t. Z, after T steps of gradient descent with step size η = 1

β∥M∥2
2

, we have

1

T

T∑
t=0

∥∥∥∇γL(γ(t))
∥∥∥2
2
≤ 2

β∥M∥22
T

L(γ(0)) + CL2∥M∥22, (9)

where C is a constant.

Theorem 4.1 shows that AdaRC is guaranteed to converge to a flat region with small gradients, with
convergence rate 1

T and error rate ∝ L2. Essentially, the convergence of AdaRC depends on the
sensitivity of the BaseTTA algorithm. Intuitively, if BaseTTA has large Lipschitz constant L, it is
likely to make completely different predictions in each epoch, and thus hindering the convergence of
AdaRC. However, in general cases, L is upper bounded. We give theoretical verification in Lemma
B.9 under ERM, and further empirically verify the convergence of AdaRC in Figure 6.

5 EXPERIMENTS

We conduct extensive experiments on synthetic and real-world datasets to evaluate our proposed
AdaRC from the following aspects:

• RQ1: How can AdaRC empower TTA algorithms and handle various structure shifts on graphs?
• RQ2: To what extent can AdaRC restore the representation quality better than other methods?

5.1 ADARC HANDLES VARIOUS STRUCTURE SHIFTS (RQ1)

Experiment setup. We first adopt CSBM (Deshpande et al., 2018) to generate synthetic graphs
with controlled structure and attribute shifts. We consider a hybrid of attribute shift, homophily
shift and degree shift. For homophily shift, we generate a homophily graph with h = 0.8 and a
heterophily graph with h = 0.2. For degree shift, we generate a high-degree graph with d = 10
and a low-degree graph with d = 2. For attribute shift, we transform the class centers µ+,µ− on
the target graph. For real-world datasets, we adopt Syn-Cora (Zhu et al., 2020), Syn-Products (Zhu
et al., 2020), Twitch-E (Rozemberczki et al., 2021), and OGB-Arxiv (Hu et al., 2020). For Syn-Cora
and Syn-Products, we use h = 0.8 as the source graph and h = 0.2 has the target graph. For Twitch-
E and OGB-Arxiv, we delete a subset of homophilic edges in the target graph to inject both degree
and homophily shifts. The detailed dataset statistics are provided in Appendix D.1.

We adopt GPRGNN (Chien et al., 2021) as the backbone model for the main experiments. We also
provide results on other backbone models, including APPNP (Klicpera et al., 2019), JKNet (Xu
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Table 1: Accuracy (mean ± s.d. %) on CSBM with structure shifts and attribute shifts.

Method Homophily shift Degree shift Attribute + homophily shift Attribute + degree shift

homo → hetero hetero → homo high → low low → high homo → hetero hetero → homo high → low low → high

ERM 73.62 ± 0.44 76.72 ± 0.89 86.47 ± 0.38 92.92 ± 0.43 61.06 ± 1.67 72.61 ± 0.38 77.63 ± 1.13 73.60 ± 3.53
+ AdaRC 89.71 ± 0.27 90.68 ± 0.26 88.55 ± 0.44 93.78 ± 0.74 85.34 ± 4.68 74.70 ± 0.99 78.29 ± 1.41 73.86 ± 4.20

T3A 73.85 ± 0.24 76.68 ± 1.08 86.52 ± 0.44 92.94 ± 0.37 65.77 ± 2.11 72.92 ± 0.90 80.89 ± 1.28 81.94 ± 3.24
+ AdaRC 90.40 ± 0.11 90.50 ± 0.24 88.42 ± 0.60 93.83 ± 0.41 88.49 ± 0.58 79.34 ± 1.85 81.82 ± 1.36 82.12 ± 4.03

Tent 74.64 ± 0.38 79.40 ± 0.57 86.49 ± 0.50 92.84 ± 0.18 74.42 ± 0.41 79.57 ± 0.40 86.05 ± 0.33 93.06 ± 0.24
+ AdaRC 89.93 ± 0.16 91.26 ± 0.08 89.20 ± 0.20 94.88 ± 0.09 90.12 ± 0.07 91.15 ± 0.20 87.76 ± 0.16 95.04 ± 0.06
AdaNPC 76.03 ± 0.46 81.66 ± 0.17 86.92 ± 0.38 91.15 ± 0.39 63.96 ± 1.31 76.33 ± 0.71 77.69 ± 0.91 76.24 ± 3.06
+ AdaRC 90.03 ± 0.33 90.36 ± 0.67 88.49 ± 0.31 92.84 ± 0.57 85.81 ± 0.30 77.63 ± 1.55 78.41 ± 1.03 76.31 ± 3.68

GTrans 74.01 ± 0.44 77.28 ± 0.56 86.58 ± 0.11 92.74 ± 0.13 71.60 ± 0.60 74.45 ± 0.42 83.21 ± 0.25 89.40 ± 0.62
+ AdaRC 89.47 ± 0.20 90.31 ± 0.31 87.88 ± 0.77 93.23 ± 0.52 88.88 ± 0.38 76.87 ± 0.66 83.41 ± 0.16 89.98 ± 0.93

SOGA 74.33 ± 0.18 83.99 ± 0.35 86.69 ± 0.37 93.06 ± 0.21 70.45 ± 1.71 76.41 ± 0.79 81.31 ± 1.03 88.32 ± 1.94
+ AdaRC 89.92 ± 0.26 90.69 ± 0.27 88.83 ± 0.32 94.49 ± 0.23 88.92 ± 0.28 90.14 ± 0.33 87.11 ± 0.28 93.38 ± 1.06

GraphPatcher 79.14 ± 0.62 82.14 ± 1.11 87.87 ± 0.18 93.64 ± 0.45 64.16 ± 3.49 76.98 ± 1.04 76.99 ± 1.43 73.31 ± 4.48
+ AdaRC 91.28 ± 0.28 90.66 ± 0.15 88.01 ± 0.18 93.88 ± 0.69 89.99 ± 0.41 87.94 ± 0.39 78.43 ± 1.84 77.86 ± 4.14

Table 2: Accuracy on real-world datasets.
Method Syn-Cora Syn-Products Twitch-E OGB-Arxiv

ERM 65.67 ± 0.35 37.80 ± 2.61 56.20 ± 0.63 41.06 ± 0.33
+ AdaRC 78.96 ± 1.08 69.75 ± 0.93 56.76 ± 0.22 41.74 ± 0.34

T3A 68.25 ± 1.10 47.59 ± 1.46 56.83 ± 0.22 38.17 ± 0.31
+ AdaRC 78.40 ± 1.04 69.81 ± 0.36 56.97 ± 0.28 38.56 ± 0.27

Tent 66.26 ± 0.38 29.14 ± 4.50 58.46 ± 0.37 34.48 ± 0.28
+ AdaRC 78.87 ± 1.07 68.45 ± 1.04 58.57 ± 0.42 35.20 ± 0.27

AdaNPC 67.34 ± 0.76 44.67 ± 1.53 55.43 ± 0.50 40.20 ± 0.35
+ AdaRC 77.45 ± 0.62 71.66 ± 0.81 56.35 ± 0.27 40.58 ± 0.35

GTrans 68.60 ± 0.32 43.89 ± 1.75 56.24 ± 0.41 41.28 ± 0.31
+ AdaRC 83.49 ± 0.78 71.75 ± 0.65 56.75 ± 0.40 41.81 ± 0.31

SOGA 67.16 ± 0.72 40.96 ± 2.87 56.12 ± 0.30 41.23 ± 0.34
+ AdaRC 79.03 ± 1.10 70.13 ± 0.86 56.62 ± 0.17 41.78 ± 0.34

GraphPatcher 63.01 ± 2.29 36.94 ± 1.50 57.05 ± 0.59 41.27 ± 0.87
+ AdaRC 80.99 ± 0.50 69.39 ± 1.29 57.41 ± 0.53 41.83 ± 0.90

Figure 4: T-SNE visualization of node repre-
sentations on CSBM homo → hetero.

et al., 2018), and GCNII (Chen et al., 2020) in Appendix C.9. Details on model architectures are
provided in Appendix D.2. We run each experiment five times with different random seeds and
report the mean accuracy and standard deviation.

Baselines. We consider two groups of base TTA methods, including: (1) generic TTA methods:
T3A (Iwasawa & Matsuo, 2021), Tent (Wang et al., 2021), and AdaNPC (Zhang et al., 2023), and (2)
graph TTA methods: GTrans (Jin et al., 2023), SOGA (Mao et al., 2024) and GraphPatcher (Ju et al.,
2023). To ensure a fair comparison, we focus on TTA algorithms in the same setting, which adapt
a pre-trained model to a target graph without re-accessing the source graph. We adopt Empirical
Risk Minimization (ERM) to pre-train the model on the source graph without adaptation. We use
the node classification accuracy on the target graph to evaluate the model performance.

Main Results. The experimental results on the CSBM dataset are shown in Table 1. Under various
shifts, the proposed AdaRC consistently enhances the performance of base TTA methods. Specifi-
cally, compared to directly using the pre-trained model without adaptation (ERM), adopting AdaRC
(ERM+AdaRC) could significantly improve model performance, with up to 24.28% improvements.
Compared with other baseline methods, AdaRC achieves the best performance in most cases, with
up to 21.38% improvements. Besides, since AdaRC is compatible and complementary with the
baseline TTA methods, we also compare the performance of baseline methods with and without
AdaRC. As the results show, AdaRC could further boost the performance of TTA baselines by up to
22.72%.

For real-world datasets, the experimental results are shown in Table 2. Compared with ERM, AdaRC
could significantly improve the model performance by up to 31.95%. Compared with other baseline
methods, AdaRC achieves comparable performance on Twitch-E, and significant improvements on
Syn-Cora, Syn-Products and OGB-Arxiv, with up to 40.61% outperformance. When integrated with
other TTA methods, AdaRC can further enhance the performance by up to 39.31%. The significant
outperformance verifies the effectiveness of the proposed AdaRC.

Additional experiments. In Appendix C.3 and C.4, we demonstrate that AdaRC exhibits robust-
ness against (1) structure shifts of varying levels, and (2) additional adversarial shifts.
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Figure 5: Ablation study on Syn-Products
with different sets of parameters to adapt.
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Figure 6: Convergence of AdaRC on Syn-Cora
with different learning rates η.

5.2 ADARC RESTORES THE REPRESENTATION QUALITY (RQ2)

Besides the superior performance of AdaRC, we are also interested in whether AdaRC successfully
restores the quality of node representations under structure shifts. To explore this, we visualize the
learned node representations on 2-class CSBM graphs in Figure 4. Although the pre-trained model
generates high-quality node representations (Figure 4(a)), node representations degrades dramati-
cally when directly deploying the source model to the target graph without adaptation (Figure 4(b)).
With our proposed PIC loss, AdaRC successfully restores the representation quality with a clear
cluster structure (Figure 4(f)). Moreover, compared to other common surrogate losses (entropy,
pseudo-label), PIC loss results in significantly better representations.

5.3 MORE DISCUSSIONS

Ablation study. While AdaRC adapts only the hop-aggregation parameters γ to improve represen-
tation quality, other strategies exist, such as adapting the MLP parameters θ or both γ and θ together.
As shown in Figure 5, adapting only θ fails to significantly reduce the PIC loss or improve accuracy.
Adapting both γ and θ minimizes the PIC loss but leads to model forgetting, causing an initial accu-
racy increase followed by a decline. In contrast, adapting only γ results in smooth loss convergence
and stable accuracy, demonstrating that AdaRC effectively adapts to structure shifts without forget-
ting source graph information. We also compare our proposed PIC loss to other surrogate losses in
Appendix C.5. Our PIC loss has better performance under four structure shift scenarios.

Hyperparameter sensitivity. AdaRC only introduces two hyperparameters including the learning
rate η and the number of epochs T . In Figure 6, we explore different combinations of them. We
observe that AdaRC converges smoothly in just a few epochs, and the final loss and accuracy are
quite robust to various choices of the learning rate. Additionally, as discussed in Appendix C.6, we
examine the effect of the dimension of hop-aggregation parameters K on AdaRC, and find that it
consistently provides stable accuracy gains across a wide range of K values.

Computational efficiency. We quantify the additional computation time introduced by AdaRC
during the test-time. Compared to the standard inference time, AdaRC only adds an extra 11.9%
in computation time for each epoch of adaptation. In comparison, GTrans and SOGA adds 486%
and 247% in computation time. AdaRC enjoys great efficiency resulting from only updating the
hop-aggregation parameters and efficient loss design. Please refer to Appendix C.7 for more details.

Compatibility to more GNN architectures. Besides GPRGNN, AdaRC is compatible with var-
ious GNN architectures, e.g., JKNet (Xu et al., 2018), APPNP (Klicpera et al., 2019), and GC-
NII (Chen et al., 2020). In Appendix C.9, we test the performance of AdaRC with these networks
on Syn-Cora. AdaRC consistently improves the accuracy.

6 CONCLUSION

In this paper, we explore why generic TTA algorithms perform poorly under structure shifts. The-
oretical analysis reveals that attribute structure shifts on graphs bear distinct impact patterns on the
GNN performance, where the attribute shifts introduce classifier bias while the structure shifts de-
grade the node representation quality. Guided by this insight, we propose AdaRC, a plug-and-play
TTA framework that restores the node representation quality with convergence guarantee. Extensive
experiments consistently and significantly demonstrate the effectiveness of AdaRC.
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A THEORETICAL ANALYSIS

A.1 ILLUSTRATION OF REPRESENTATION DEGRADATION AND CLASSIFIER BIAS

Figure 7: An example of representation degradation and classifier bias. (b) Representation degrada-
tion blurs the boundary between two classes and increases their overlap. (c) Classifier bias translates
the representation and makes the decision boundary sub-optimal.

Figure 7 above visualizes representation degradation and classifier bias.

• Figure 7(c): Under classifier bias, the representations are shifted to the left, making the
decision boundary sub-optimal. However, by refining the decision boundary, the accuracy
can be fully recovered.

• Figure 7(b): Under representation degradation, however, even if we refine the decision
boundary, the accuracy cannot be recovered without changing the node representations.

Moreover, comparing Figure 7 with Figure 10, we can clearly conclude that attribute shifts mainly
introduce classifier bias, while structure shift mainly introduce representation degradation.
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A.2 ILLUSTRATION OF ADAPTING γ

In the end of subsection 3.3, we provide two examples to intuitively illustrate why the hop-
aggregation parameter γ should be adjusted based on the target graph’s degree dT and homophily
hT . To further demonstrate the effect of adapting γ, we visualize these examples:
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(a) Source, hS = 1, dS = 10, S = 10

10 5 0 5 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12 Accuracy: 62%

(b) Target, hT = 0.5, dT = 10, S = 10

4 2 0 2 4
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40 Accuracy: 84%
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(d) Source, hS = 1, dS = 10, S = 10
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Figure 8: Visualization of effect of structure shifts and adaptation of γ.

• Source Graph: We consider a source graph with µ+ = 1, µ− = −1, hS = 1, and dS = 10.
In this case, the optimal featurizer assigns equal weight to the node itself and each of its
neighbors, resulting in the optimal γS = 10. Figure 8(a) and (d) show the distribution of
node representations on the source graph, where the two classes are well-separated.

• Homophily Shift: In Figure 8(b), the degree remains unchanged, but the homophily hT

decreases to 0.5, meaning each node’s neighbors are equally likely to belong to either class.
The neighbors no longer provide reliable information for classification, introducing noise
and reducing accuracy to 62%. However, in Figure 8 (c), after adjusting γT to the optimal
dT (2hT − 1) = 0, the accuracy improves significantly to 84%.

• Degree Shift: In Figure 8(e), the homophily remains unchanged, but the degree dT de-
creases to 1. The original γ overemphasizes the neighbors’ representations, placing exces-
sive weight on them, leading to an accuracy drop to 87%. By adjusting γT to the optimal
dT (2hT − 1) = 1 in Figure 8(f), the accuracy improves to 92%.
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A.3 PROOF OF PROPOSITION 3.1 AND COROLLARY 3.2

Proposition 3.1.

Proof. For each node vi ∈ C+, its representation is computed as

zi = xi + γ · 1

di

∑
vj∈N(vi)

xj

The linear combination of Gaussian distribution is still Gaussian. Among the di = |N(vi)| neighbors
of node vi, there are hidi nodes from C+ and (1−hi)di nodes from C−. Therefore, the distribution
of zi is

zi ∼ N
(
(1 + γhi)µ+ + γ(1− hi)µ−,

(
1 +

γ2

di

)
I

)
Similarly, for each node vi ∈ C−, the distribution of zi is

zi ∼ N
(
(1 + γhi)µ− + γ(1− hi)µ+,

(
1 +

γ2

di

)
I

)

Remark A.1. When γ → ∞, this proposition matches with the results in (Ma et al., 2022).2

Corollary 3.2.

Proof. Given µ+ = µ,µ− = −µ and di = d, hi = h,∀i, we have

zi ∼ N
(
(1 + γ(2h− 1))yiµ,

(
1 +

γ2

d

)
I

)
where yi ∈ {±1} is the label of node vi. Given two multivariate Gaussian distributions with identi-
cal isotropic covariance matrix, the optimal decision boundary that maximize the expected accuracy
is the perpendicular bisector of the line segment connecting two distribution means, i.e.,

{z : ∥z − (1 + γ(2h− 1))µ∥2 = ∥z − (1 + γ(2h− 1))(−µ)∥2} =
{
z : z⊤µ = 0

}
The corresponding classifier is:

w = sign(1 + γ(2h− 1)) · µ

∥µ∥2
, b = 0 (10)

To compute the expected accuracy for classification, we consider the distribution of z⊤
i w + b.

z⊤
i w + b ∼ N

(
|1 + γ(2h− 1)| · yi · ∥µ∥2, 1 +

γ2

d

)
(11)

We scale it to unit identity variance,√
d

d+ γ2
· (z⊤

i w + b) ∼ N

(√
d

d+ γ2
· |1 + γ(2h− 1)| · yi · ∥µ∥2, 1

)
Therefore, the expected accuracy is

Acc = Φ

(√
d

d+ γ2
· |1 + γ(2h− 1)| · ∥µ∥2

)
(12)

where Φ is the CDF of the standard normal distribution.

2Notice that our notation is slightly different: we use the covariance matrix while they use the square root
of it in the multivariate Gaussian distribution.
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A.4 PROOF OF PROPOSITION 3.3

Proof. We can reuse the results in Corollary 3.2 by setting µ+ = µ + ∆µ and µ− = −µ + ∆µ.
For each node vi, we have

zi ∼ N
(
(1 + γ(2h− 1))yiµ+ (1 + γ)∆µ,

(
1 +

γ2

d

)
I

)
Given the classifier in Corollary 3.2, we have√

d

d+ γ2
· (z⊤

i w + b)

∼



N
(√

d
d+γ2 · |1 + γ(2h− 1)| · ∥µ∥2+√

d
d+γ2 · sign(1 + γ(2h− 1)) · (1 + γ) · cos sim(µ,∆µ)∥∆µ∥2, 1

)
, ∀vi ∈ C+

N
(
−
√

d
d+γ2 · |1 + γ(2h− 1)| · ∥µ∥2+√

d
d+γ2 · sign(1 + γ(2h− 1)) · (1 + γ) · cos sim(µ,∆µ)∥∆µ∥2, 1

)
, ∀vi ∈ C−

where cos sim(µ,∆µ) = µ⊤∆µ
∥µ∥2·∥∆µ∥2

. On the target graph, the expected accuracy is

AccT =
1

2
Φ

(√
d

d+ γ2
· |1 + γ(2h− 1)| · ∥µ∥2 +

√
d

d+ γ2
· |1 + γ| · cos sim(µ,∆µ)∥∆µ∥2

)
+

1

2
Φ

(√
d

d+ γ2
· |1 + γ(2h− 1)| · ∥µ∥2 −

√
d

d+ γ2
· |1 + γ| · cos sim(µ,∆µ)∥∆µ∥2

)
where Φ is the CDF of standard normal distribution. In order to compare the accuracy with the one
in Corollary 3.2, we use Taylor expansion with Lagrange remainder. Let x0 =

√
d

d+γ2 · |1+γ(2h−

1)| · ∥µ∥2 and ∆x = x − x0 =
√

d
d+γ2 · |1 + γ| · cos sim(µ,∆µ)∥∆µ∥2. The Taylor series of

Φ(x) at x = x0 is:

Φ(x) = Φ(x0) + φ(x0)∆x+
φ′(x0 + λ∆x)

2
(∆x)2, ∃λ ∈ (0, 1)

where φ(x) = Φ′(x) = 1√
2π

e−
1
2x

2

is the PDF of standard normal distribution and φ′(c) = Φ′′(x)

is the derivative of φ(x). Therefore, the accuracy gap is:

AccS − AccT = Φ(x)− 1

2
Φ(x+∆x)− 1

2
Φ(x−∆x)

= −φ′(x0 + λ1∆x) + φ′(x0 − λ2∆x)

4
· (∆x)2, ∃λ1, λ2 ∈ (0, 1)

We finally give lower and upper bound of −φ′(x0+λ1∆x)+φ′(x0−λ2∆x)
4 . Given ∥∆µ∥2 ≤

|1+γ(2h−1)|
|1+γ| ∥µ∥2, we have 0 ≤ ∆x ≤ x0 and thus 0 < x0 − λ2∆x < x0 + λ1∆x < 2x0.

When 0 < x < ∞, we have − 1√
2πe

≤ φ′(x) < 0. Therefore we can give an upper bound of the
constant:

−φ′(x0 + λ1∆x) + φ′(x0 − λ2∆x)

4
≤ 1

2
√
2πe

and also a lower bound

−φ′(x0 + λ1∆x) + φ′(x0 − λ2∆x)

4
≥ −φ′(x0 + λ1∆x)

4
≥ −max{φ′(x0), φ

′(2x0)}
4

> 0

Therefore, we have

AccS − AccT = Θ((∆x)2) = Θ(∥∆µ∥22)
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We finally derive representation degradation and classifier bias. On the target graph, the optimal
classifier is,

w = sign(1 + γ(2h− 1)) · µ

∥µ∥2
, b = − sign(1 + γ(2h− 1)) · (1 + γ) · cos sim(µ,∆µ)∥∆µ∥2

In this case, the distribution of z⊤
i w + b will be identical to Eq. (11), and the accuracy will be

identical to Eq. (12). It indicates that the representation degradation is ∆f = 0, and ∆g = (AccS −
AccT )−∆f = Θ(∥∆µ∥22).
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A.5 PROOF OF PROPOSITION 3.4

Proof. Without loss of generality, we consider a case with γ > 0, 1
2 < hT < hS ≤ 1 and 1 ≤ dT <

dS ≤ N . In this case, decreases in both homophily and degree will lead to decreases in accuracy.
Notice that our proposition can also be easily generalized to heterophilic setting.

We can reuse the results in Corollary 3.2. Given 1
2 < hT < hS , we have sign(1 + γ(2hS − 1)) =

sign(1+ γ(2hT − 1)), and thus the optimal classifier we derived in Eq. (10) remains optimal on the
target graph. Therefore, we have ∆g = 0, which means that the accuracy gap solely comes from
the representation degradation. To calculate the accuracy gap, we consider the accuracy score as a
function of degree d and homophily h,

F

([
d
h

])
= Φ

(√
d

d+ γ2
· |1 + γ(2h− 1)| · ∥µ∥2

)
Its first order derivative is

∂F

∂d
=

γ2

2d
1
2 (d+ γ2)

3
2

· |1 + γ(2h− 1)| · ∥µ∥2 · φ

(√
d

d+ γ2
· |1 + γ(2h− 1)| · ∥µ∥2

)
∂F

∂h
=

√
d

d+ γ2
· 2γ · ∥µ∥2 · φ

(√
d

d+ γ2
· |1 + γ(2h− 1)| · ∥µ∥2

)
Both partial derivatives have lower and upper bounds, in the range of h ∈ [ 12 , 1], d ∈ [1, N ]:

∂F

∂d
≤ γ2

2(1 + γ2)
3
2

· (1 + γ) · ∥µ∥2 ·
1√
2π

∂F

∂d
≥ γ2

2N
1
2 (N + γ2)

3
2

· ∥µ∥2 ·
1√
2π

∂F

∂h
≤ 2γ · ∥µ∥2 ·

1√
2π

∂F

∂h
≥
√

1

1 + γ2
· 2γ · ∥µ∥2 ·

1√
2π

Finally, to compare AccS and AccT , we consider the Taylor expansion of F at
[
dS
hS

]
:

F

([
dT
hT

])
= F

([
dS −∆d
hS −∆h

])
= F

([
dS
hS

])
−∇F

([
dS − λ∆d
hS − λ∆h

])⊤ [
∆d
∆h

]
, ∃λ ∈ (0, 1)

Therefore,

AccS − AccT = F

([
dS
hS

])
− F

([
dT
hT

])
= Θ(∆d+∆h)

and also ∆f = (AccS − AccT )−∆g = Θ(∆d+∆h).
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A.6 PROOF OF PROPOSITION 3.5

In this part, instead of treating γ as fixed hyperparameter (as in Proposition 3.3 and 3.4), we now
consider γ as a trainable parameter that can be optimizer on both source and target graphs. We first
derive the optimal γ for a graph in Lemma A.2

Lemma A.2. When training a single-layer GCN on a graph generated from CSBM(µ,−µ, d, h),
the optimal γ that maximized the expected accuracy is d(2h− 1).

Proof. In Corollary 3.2, we have proved that with the optimal classifier, the accuracy is

Acc = Φ

(√
d

d+ γ2
· |1 + γ(2h− 1)| · ∥µ∥2

)
We then optimize γ to reach the highest accuracy. Since Φ(x) is monotonely increasing, we only
need to find the γ that maximize F (γ) = d

d+γ2 (1 + γ(2h− 1))2. Taking derivatives,

F ′(γ) =
d · 2(1 + γ(2h− 1)) · (2h− 1) · (d+ γ2)− d(1 + γ(2h− 1))2 · 2γ

(d+ γ2)2

=
2d · [1 + γ(2h− 1)] · [(2h− 1)d− γ]

(d+ γ2)2
< 0, γ ∈ (−∞,− 1

2h−1 )

> 0, γ ∈ (− 1
2h−1 , (2h− 1)d)

< 0, γ ∈ ((2h− 1)d,+∞)

Therefore, F (γ) can only take maximal at γ = (2h − 1)d or γ → −∞. We find that
limγ→−∞ F (γ) = (2h − 1)2d and F ((2h − 1)d) = 1 + (2h − 1)2d > (2h − 1)2d. There-
fore, the optimal γ that maximize the accuracy is γ = (2h − 1)d, and the corresponding accuracy
is

Acc = Φ
(√

1 + (2h− 1)2d · ∥µ∥2
)

Proposition 3.5.

Proof. As shown in Lemma A.2, by adapting γ, the target accuracy can be improved from

Φ

(√
dT

dT + γ2
S

· |1 + γS(2hT − 1)| · ∥µ∥2

)
to

Φ

(√
dT

dT + γ2
T

· |1 + γT (2hT − 1)| · ∥µ∥2

)
= Φ

(√
1 + (2hT − 1)2dT · ∥µ∥2

)
We know quantify this improvement. Let F (γ) = Φ

(√
dT

dT+γ2 · |1 + γ(2hT − 1)| · ∥µ∥2
)

, since
γT is optimal on the target graph, we have F ′(γT ) = 0 and F ′′(γT ) < 0. Therefore, we have

Φ
(√

1 + (2hT − 1)2dT · ∥µ∥2
)
− Φ

(√
dT

dT + γ2
S

· |1 + γS(2hT − 1)| · ∥µ∥2

)
= Θ((γT − γS)

2)

Moreover, given γS and γT are optimal on source graph and target graph, respectively, we have
γS = 2(hS − 1)dS and γT = 2(hT − 1)dT , thereforem |γT − γS | = Θ(∆h+∆d). Therefore, the
accuracy improvement is Θ((∆h)2 + (∆d)2).
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A.7 GENERALIZATION TO MULTI-HOP GCNS

So far, our theoretical analysis has focused on single-layer GCNs and CSBM graphs, where ho-
mophily and degree are used to parameterize structure shifts in one-hop neighborhoods. In this
section, we extend our analysis to more general multi-hop scenarios.

For a graph G and a node vi on the graph, we define its k-hop neighbors as follows:

N(k)
i =

{
{vi}, if k = 0

{u : shortest distance(u, vi) = k}, if k ≥ 1
(13)

We further define

d(k) =
1

N
d
(k)
i , where d

(k)
i =

∣∣∣N(k)
i

∣∣∣ (14)

h(k) =
1

N
h
(k)
i , where h

(k)
i =

|{u ∈ N(k)
i : yu = yvi}|
d
(k)
i

(15)

For k = 1, N(1)
i corresponds to the standard definition of node neighbors, and d

(1)
i and h

(1)
i align

with node degree and homophily as defined in the main text. For k ≥ 2, d(k)i and h
(k)
i capture more

complex structure shifts in the egograph of vi. For example:

• If the 2-hop egograph of vi only contains d + 1 nodes and all nodes are fully-connected
(clustering coefficient is 1), then d

(2)
i = 0.

• If the 2-hop egograph of vi is a tree (clustering coefficient is 0) and each 1-hop neighbor of
vi has degree d, then d

(2)
i = d · (d− 1).

This formulation allows us to model higher-order graph metrics, such as cluster coefficients, en-
abling the analysis of more intricate structure shifts.

Inspired by methods like MixHop [1] and GPRGNN [2], we consider a K-hop GCN with a featurizer
defined as:

zi =

K∑
k=1

γk · 1

d
(k)
i

∑
vj∈N(k)(vi)

xj (16)

and the linear classifier is still z⊤
i w + b.

We denote γ = [γ0, · · · , γK ]⊤, and similarly,

d = [d(0), · · · , d(K)]⊤, di = [d
(0)
i , · · · , d(K)

i ]⊤, (17)

h = [h(0), · · · , h(K)]⊤, hi = [h
(0)
i , · · · , h(K)

i ]⊤. (18)
Proposition A.3. For graphs with two classes C+ and C−, and node attributes xi ∼ N (µi, I) for
each node vi, where µi = µ+ for vi ∈ C+ and µi = µ− for vi ∈ C−, the node representation zi
of node vi ∈ C+ generated by a K-hop GCN follows a Gaussian distribution of

zi ∼ N
(
(γ⊤hi) · µ+ + (γ⊤(1− hi)) · µ−, (γ

⊤ diag(di)
−1γ) · I

)
. (19)

When µ+ = µ, µ− = −µ, and all nodes have the same di and hi, the classifier maximizes the
expected accuracy when w = sign(γ⊤(2h − 1)) · µ

∥µ∥2
and b = 0. It gives a linear decision

boundary of {z : z⊤w = 0} and the expected accuracy

Acc = Φ

(√
(γ⊤(2h− 1))2

γ⊤ diag(di)−1γ
· ∥µ∥2

)
, (20)

where Φ is the CDF of the standard normal distribution.

Proposition A.3 has the same form as Propositions 3.1 and 3.2 in the main text, which are derived
for single-layer GCNs and CSBM graphs. Based on this proposition, we can similarly derive con-
clusions analogous to Propositions 3.3 and 3.4 in the main text.

Finally, we show that the optimal γ should still be adapted based on d and h, reinforcing the theo-
retical insights provided earlier.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Lemma A.4. Under the same setting as Proposition A.3, the optimal γ that maximized the expected
accuracy is given by

γ ∝ diag(d)(2h− 1) = d⊙ (2h− 1), (21)

where ⊙ is the element-wise multiplication. When γ0 = 1, this yields:

γk = d(k)(2h(k) − 1),∀k = 1, · · · ,K, (22)

which directly recovers the conclusion of Proposition 3.5 from the main text.

Proof. We aim to find γ that maximize the accuracy, equivalently, we optimize the following objec-
tive,

γ∗ = argmax
γ

γ⊤(2h− 1)(2h− 1)⊤γ

γ⊤ diag(d)−1γ
. (23)

Let θ = diag(d)−
1
2γ, we solve

θ∗ = argmax
θ

θ⊤ diag(d)
1
2 (2h− 1)(2h− 1)⊤ diag(d)

1
2 θ

θ⊤θ
. (24)

Therefore, θ∗ is the first eigenvector of diag(d)
1
2 (2h − 1)(2h − 1)⊤ diag(d)

1
2 , which is θ∗ ∝

diag(d)
1
2 (2h− 1), and therefore γ∗ ∝ diag(d)(2h− 1) = d⊙ (2h− 1).

When γ∗
0 = 1, since d(0) = 1, h(0) = 1, we have γ∗ = d⊙ (2h− 1).
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A.8 PIC LOSS DECOMPOSITION

Notice that µc =
∑N

i=1 Ŷi,czi∑N
i=1 Ŷi,c

,∀c = 1, · · · , C.

σ2 =

N∑
i=1

∥zi − µ∗∥22

=

N∑
i=1

C∑
c=1

Ŷi,c∥zi − µ∗∥22

=

N∑
i=1

C∑
c=1

Ŷi,c∥zi − µc + µc − µ∗∥22

=

N∑
i=1

C∑
c=1

Ŷi,c∥zi − µc∥22 + 2

N∑
i=1

C∑
c=1

Ŷi,c(zi − µc)
⊤(µc − µ∗) +

N∑
i=1

C∑
c=1

Ŷi,c∥µc − µ∗∥22

=

N∑
i=1

C∑
c=1

Ŷi,c∥zi − µc∥22 +
N∑
i=1

C∑
c=1

Ŷi,c∥µc − µ∗∥22

= σ2
intra + σ2

inter
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B CONVERGENCE ANALYSIS

B.1 CONVERGENCE OF ADARC

In this section, we give a convergence analysis of our AdaRC framework. For the clarity of theoret-
ical derivation, we first introduce the notation used in our proof.

• z = vec(Z) ∈ RND is the vectorization of node representations, where Z ∈ RN×D is the
original node representation matrix, N is the number of nodes, and D is the dimensionality
of representations.

• ŷ = vec(Ŷ ) ∈ RNC is the vectorization of predictions, where Ŷ ∈ RN×C is the original
prediction of baseline TTA algorithm, given input Z, and C is the number of classes.

• h = vec(H) ∈ RND is the vectorization of H , where H = MLP(X) ∈ RN×D is the
(0-hop) node representations before propagation.

• M = [vec(H), vec(ÃH), · · · , vec(ÃKH)] ∈ RND×(K+1) is the stack of 0-hop, 1-hop
to K-hop representations.

• γ ∈ RK+1 is the hop-aggregation parameters for 0-hop, 1-hop to K-hop representations.
Notice that Mγ = z.

𝛾 𝑧
𝑀

𝑧!!"

𝑧#$%

𝑦%
BaseTTA

                 ℓ 𝑦%, 𝑧#$% = ℒ 𝑧

co
py

copy

stop-grad
×

Figure 9: Computation graph of AdaRC

Figure 9 gives a computation graph of AdaRC.

• In the forward propagation, the node representation z is copied into two copies, one (zTTA)
is used as the input of BaseTTA to obtain predictions ŷ, and the other (zPIC) is used to
calculate the PIC loss.

• In the backward propagation, since some baseline TTA algorithms do not support the eval-
uation of gradient, we do not compute the gradient through zTTA, and only compute the
gradient through zfeat. This introduces small estimation errors in the gradient, and thus
introduces the challenge of convergence.

• We use

∇zL(z) =
∂L(z)
∂z

=
∂ŷ

∂zTTA

∂ℓ(ŷ, zPIC)

∂ŷ
+

∂ℓ(ŷ, zPIC)

∂zPIC

to represent the “true” gradient of that consider the effects of both zTTA and zPIC.
• Meanwhile, we use

∇zPICℓ(ŷ, zPIC) =
∂ℓ(ŷ, zPIC)

∂zPIC

to represent the update direction of AdaRC.

Clearly, the convergence of AdaRC depends on the property of the baseline TTA algorithm
BaseTTA. In the worst scenario, when the BaseTTA is unreliable and makes completely differ-
ent predictions in each epoch, the convergence of AdaRC could be challenging. However, in the
more general case with mild assumptions on the loss function and baseline TTA algorithm, we show
that AdaRC can guarantee to converge. We start our proof by introducing assumptions.
Assumption B.1 (Lipschitz and differentiable baseline TTA algorithm). The baseline TTA algo-
rithm BaseTTA : RND → RND is differentiable and L1-Lipschitz on Z , i.e., there exists a constant
L1, s.t., for any z1, z2 ∈ Z , where Z ⊂ RND is the range of node representations,

∥BaseTTA(z1)− BaseTTA(z2)∥2 ≤ L1 · ∥z1 − z2∥2
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Assumption B.2 (Lipschitz and differentiable loss function). The loss function ℓ(ŷ, zPIC) : RND ×
RND → R is differentiable and L2-Lipschitz on Y , i.e., there exists a constant L2, s.t., for any
ŷ1, ŷ2 ∈ Y , where Y ⊂ RND is the range of node predictions,

∥ℓ(ŷ1, zPIC)− ℓ(ŷ2, zPIC)∥2 ≤ L2 · ∥ŷ1 − ŷ2∥2
Remark B.3. Assumption B.1 indicates that small changes in the input of TTA algorithm will not
cause large change in its output, while Assumption B.2 indicates that small changes in the predic-
tion will not significantly change the loss. These assumptions describe the robustness of the TTA
algorithm and loss function. We verify in Lemma B.9 that standard linear layer followed by softmax
activation satisfies these assumption.
Definition B.4 (β-smoothness). A function f : Rd → R is β-smooth if for all x,y ∈ Rd,

∥∇f(x)−∇f(y)∥2 ≤ β∥x− y∥2
equivalently, for all x,y ∈ Rd,

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
β

2
∥x− y∥22

Assumption B.5 (Smooth loss function). The loss function L(z) : RND → R is β-smooth to z.
Remark B.6. Assumption B.5 is a common assumption in the analysis of convergence (Bubeck,
2015).
Lemma B.7 (Convergence of noisy SGD on smooth loss). For any non-negative L-smooth loss
function L(w) with parameters w, conducting SGD with noisy gradient ĝ(w) and step size η = 1

L .
If the gradient estimation error ∥ĝ(w)−∇L(w)∥22 ≤ ∆2 for all w, then for any weight initialization
w(0), after T steps,

1

T

T−1∑
t=0

∥∥∥∇L(w(t))
∥∥∥2
2
≤ 2

L

T
L(w(0)) + ∆2

Proof. For any w(t),

L(w(t+1)) ≤ L(w(t)) +∇L(w(t))⊤(w(t+1) −w(t)) +
L

2

∥∥∥w(t+1) −w(t)
∥∥∥2
2

(L-smoothness)

= L(w(t)) +∇L(w(t))⊤
[
−η
(
ĝ(w(t))−∇L(w(t)) +∇L(w(t))

)]
+

L

2

∥∥∥−η
(
ĝ(w(t))−∇L(w(t)) +∇L(w(t))

)∥∥∥2
2

= L(w(t)) +

(
Lη2

2
− η

)∥∥∥∇L(w(t))
∥∥∥2
2
+
(
Lη2 − η

)
∇L(w(t))⊤

(
ĝ(w(t))−∇L(w(t))

)
+

Lη2

2

∥∥∥ĝ(w(t))−∇L(w(t))
∥∥∥2
2

= L(w(t))− 1

2L

∥∥∥∇L(w(t))
∥∥∥2
2
+

1

2L

∥∥∥ĝ(w(t))−∇L(w(t))
∥∥∥2
2

(η = 1
L )

Equivalently,∥∥∥∇L(w(t))
∥∥∥2
2
≤ 2L

(
L(w(t))− L(w(t+1))

)
+
∥∥∥ĝ(w(t))−∇L(w(t))

∥∥∥2
2

Average over t = 0, · · · , T − 1, we get

1

T

T−1∑
t=0

∥∥∥∇L(w(t))
∥∥∥2
2
≤ 2

L

T

(
L(w(0))− L(w(T ))

)
+

1

T

T−1∑
t=0

∥∥∥ĝ(w(t))−∇L(w(t))
∥∥∥2
2

≤ 2
L

T
L(w(0)) +

1

T

T−1∑
t=0

∥∥∥ĝ(w(t))−∇L(w(t))
∥∥∥2
2

≤ 2
L

T
L(w(0)) + ∆2
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Lemma B.7 gives a general convergence guarantee of noisy gradient descent on smooth functions.
Next, in Theorem B.8, we give the convergence analysis of AdaRC.
Theorem B.8 (Convergence of AdaRC). With Assumption B.1, B.2 and B.5 held, if we start with
γ(0) and conduct T steps of gradient descent with ∇zPICℓ(ŷ, zPIC), and step size 1

β∥M∥2
2

, we have

1

T

T−1∑
t=0

∥∥∥∇γL(γ(t))
∥∥∥2
2
≤ 2

β∥M∥22
T

L(γ(0)) + L2
1L

2
2∥M∥22

Proof. We first give an upper bound of the gradient estimation error

∥∇zPICℓ(ŷ, zPIC)−∇zℓ(ŷ, zPIC)∥2 = ∥∇zTTAℓ(ŷ, zPIC)∥2

=

∥∥∥∥ ∂ŷ

∂zTTA

∂ℓ(ŷ, zPIC)

∂ŷ

∥∥∥∥
2

≤
∥∥∥∥ ∂ŷ

∂zTTA

∥∥∥∥
2

·
∥∥∥∥∂ℓ(ŷ, zPIC)

∂ŷ

∥∥∥∥
2

≤ L1 · L2 (Assumption B.1, B.2)

Therefore, the gradient estimation error can be bounded by L1 · L2 · ∥M∥2.

Meanwhile, since the loss function is β-smooth w.r.t. z, it is β · ∥M∥22-smooth to γ since

∥∇γL(γ1)−∇γL(γ2)∥2 = ∥M⊤(∇z1L(γ1)−∇z2L(γ2))∥2
≤ ∥M∥2 · β · ∥z1 − z2∥2
≤ ∥M∥22 · β · ∥γ1 − γ2∥2

Finally, by Lemma B.7, we have

1

T

T−1∑
t=0

∥∥∥∇γL(γ(t))
∥∥∥2
2
≤ 2

β∥M∥22
T

L(γ(0)) + L2
1L

2
2∥M∥22
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B.2 EXAMPLE: LINEAR LAYER FOLLOWED BY SOFTMAX

Lemma B.9. When using a linear layer followed by a softmax as the BaseTTA, the function
ℓ(ŷ, zPIC), as a function of zTTA, is (2∥W ∥2)-Lipschitz, where W is the weights for the linear
layer.

Proof. We manually derive the gradient of ℓ(ŷ, zPIC) w.r.t. zTTA. Denote a ∈ RNC as the out-
put of the linear layer, ai as the linear layer output for the i-th node, and aic as its c-th element
(corresponding to label c). We have:

∂ℓ

∂aic
=

C∑
c′=1

∂Ŷi,c′

∂aic
· ∂ℓ

∂Ŷi,c′

= (Ŷi,c − Ŷ 2
i,c)

∥zi − µc∥22∑N
i=1 ∥zi − µ∗∥22

+
∑
c′ ̸=c

(−Ŷi,cŶi,c′)
∥zi − µc′∥22∑N
i=1 ∥zi − µ∗∥22

=
Ŷi,c∥zi − µc∥22∑N
i=1 ∥zi − µ∗∥22

− Ŷi,c

∑C
c′=1 Ŷi,c′∥zi − µc′∥22∑N

i=1 ∥zi − µ∗∥22
Therefore, as vector representation:∥∥∥∥ ∂ℓ∂a

∥∥∥∥
2

≤

∥∥∥∥∥∥
[

Ŷi,c∥zi − µc∥22∑N
i=1 ∥zi − µ∗∥22

]
i,c

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
[
Ŷi,c

∑C
c′=1 Ŷi,c′∥zi − µc′∥22∑N

i=1 ∥zi − µ∗∥22

]
i,c

∥∥∥∥∥∥
2

≤
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[

Ŷi,c∥zi − µc∥22∑N
i=1 ∥zi − µ∗∥22

]
i,c

∥∥∥∥∥∥
1

+
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[
Ŷi,c

∑C
c′=1 Ŷi,c′∥zi − µc′∥22∑N

i=1 ∥zi − µ∗∥22

]
i,c

∥∥∥∥∥∥
1

=

∑N
i=1

∑C
c=1 Ŷi,c∥zi − µc∥22∑N

i=1 ∥zi − µ∗∥22
+

N∑
i=1

C∑
c=1

Ŷi,c

∑C
c′=1 Ŷi,c′∥zi − µc′∥22∑N

i=1 ∥zi − µ∗∥22

=

∑N
i=1

∑C
c=1 Ŷi,c∥zi − µc∥22∑N

i=1 ∥zi − µ∗∥22
+

∑N
i=1

∑C
c′=1 Ŷi,c′∥zi − µc′∥22∑N
i=1 ∥zi − µ∗∥22

= 2 · σintra2

σ2

≤ 2

Notice that although the computation of µc also uses Ŷi,c,

∂ℓ

∂µc
=

2

σ2

N∑
i=1

Ŷi,c(µc − zi) = 0

So there are no back propagating gradients through ℓ → µc → Ŷi,c.

Finally, because for each node vi, ai = W⊤zTTA,i, we have∥∥∥∥ ∂ℓ

∂zTTA

∥∥∥∥
2

≤ ∥W ∥2 ·
∥∥∥∥ ∂ℓ∂a

∥∥∥∥
2

= 2∥W ∥2

Remark B.10. Lemma B.9 verifies assumption B.1 and B.2: L1 · L2 = 2∥W ∥2. It also reveals the
benefit of using soft-predictions instead of hard-predictions. Hard predictions can be seen as scaling
up W . In this case, the Lipschitz constant will be much larger or even unbounded, which impedes
the convergence of AdaRC.
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C ADDITIONAL EXPERIMENTS

C.1 EFFECT OF ATTRIBUTE SHIFTS AND STRUCTURE SHIFTS

We empirically verify that attribute shifts and structure shifts impact the GNN’s accuracy on target
graph in different ways. We use t-SNE to visualize the node representations on CSBM dataset
under attribute shifts and structure shifts (homophily shifts). As shown in Figure 10, under attribute
shift (c), although the node representations are shifted from the source graph, two classes are still
mostly discriminative, which is similar to the case without distribution shifts (c). However, under
homophily shift (d), the node representations for two classes mix together. These results match with
our theoretical analysis in Propositions 3.3 and 3.4.

Figure 10: t-SNE visualization of node representations on CSBM dataset.

C.2 ROBUSTNESS TO NOISY PREDICTION

In AdaRC, representation quality and prediction accuracy mutually reinforce each other throughout
the adaptation process. A natural question arises: if the model’s predictions contain significant noise
before adaptation, can AdaRC still be effective? To address this, we conducted an empirical study on
the CSBM dataset with severe homophily shift. We visualize the logits distribution for two classes
of nodes in Figure 11.

• Before adaptation, the predictions exhibit significant noise, with substantial overlap in the
logits of two classes.

• However, as adaptation progresses, AdaRC is still able to gradually refine the node repre-
sentations and improve accuracy.
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Figure 11: AdaRC improves accuracy even when the initial predictions are highly noisy
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C.3 DIFFERENT LEVELS OF STRUCTURE SHIFT

In the main text, we evaluated the performance of AdaRC under both homophily and degree shifts.
In this section, we extend our evaluation by testing AdaRC across varying degrees of these structure
shifts. For each scenario (e.g., homophily: homo → hetero, hetero → homo, and degree: high →
low, low → high), we manipulate either the homophily or degree of the source graph while keeping
the target graph fixed, thereby creating different levels of homophily or degree shifts. The larger the
discrepancy between the source and target graphs in terms of homophily or degree, the greater the
level of structure shift. For instance, a shift from 0.6 → 0.2 indicates training a model on a source
graph with homophily 0.6 and evaluating it on a target graph with homophily 0.2. By comparison, a
shift from 0.8 → 0.2 represents a more substantial homophily shift.

The results of our experiments are summarized in Tables 3 and 4. Across all four settings, as the
magnitude of the structure shift increases, the performance of GNNs trained using ERM declines
significantly. However, under all settings, AdaRC consistently improves model performance. For
example, in the homo → hetero setting, when the homophily gap increases from 0.4 (0.6 - 0.2) to
0.6 (0.8 - 0.2), the accuracy of ERM-trained models decreases by over 16%, while the accuracy of
models trained with AdaRC declines by less than 2%. This demonstrates that AdaRC effectively
mitigates the negative impact of structure shifts on GNNs.

Table 3: Accuracy (mean ± s.d. %) on CSBM under different levels of homophily shift

Method homo → hetero hetero → homo

0.4 → 0.2 0.6 → 0.2 0.8 → 0.2 0.2 → 0.8 0.4 → 0.8 0.6 → 0.8

ERM 90.05 ± 0.15 82.51 ± 0.28 73.62 ± 0.44 76.72 ± 0.89 83.55 ± 0.50 89.34 ± 0.03
+ AdaRC 90.79 ± 0.17 89.55 ± 0.21 89.71 ± 0.27 90.68 ± 0.26 90.59 ± 0.24 91.14 ± 0.17

Table 4: Accuracy (mean ± s.d. %) on CSBM under different levels of degree shift

Method high → low low → high

5 → 2 10 → 2 20 → 2 2 → 20 5 → 20 10 → 20

ERM 88.67 ± 0.13 86.47 ± 0.38 85.55 ± 0.12 93.43 ± 0.37 95.35 ± 0.84 97.31 ± 0.36
+ AdaRC 88.78 ± 0.13 88.55 ± 0.44 88.10 ± 0.21 97.01 ± 1.00 97.24 ± 1.11 97.89 ± 0.25

C.4 ROBUSTNESS TO ADDITIONAL ADVERSARIAL SHIFT

While AdaRC primarily targets natural structure shifts, inspired by (Jin et al., 2023), we test the ro-
bustness of AdaRC against adversarial attacks by applying the PR-BCD attack (Geisler et al., 2021)
on the target graph in our Syn-Cora experiments, varying the perturbation rate from 5% to 20%.
The results are shown in Table 5. We found that while the accuracy of ERM dropped by 20.2%,
the performance of AdaRC only decreased by 2.3%. This suggests that our algorithm has some
robustness to adversarial attacks, possibly due to the overlap between adversarial attacks and struc-
ture shifts. Specifically, we observed a decrease in homophily in the target graph under adversarial
attack, indicating a similarity to structure shifts.

Table 5: Accuracy (%) on Syn-Cora with additional adversarial shift

Perturbation rate No attack 5% 10% 15% 20%

ERM 65.67 60.00 55.25 50.22 45.47
+ AdaRC 78.96 78.43 78.17 77.21 76.61

Homophily 0.2052 0.1923 0.1800 0.1690 0.1658
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C.5 ABLATION STUDY WITH DIFFERENT LOSS FUNCTIONS

We compare our proposed PIC loss with two existing surrogate losses: entropy (Wang et al., 2021)
and pseudo-label (Liang et al., 2020). While PIC loss use the ratio form of σ2

intra and σ2
inter, we also

compare it with a difference form σ2
intra − σ2

inter, which also encourage larger σ2
inter and smaller σ2

intra.
The results are shown in Table 6: Our PIC loss has better performance under four structure shift
scenarios.

Table 6: Accuracy (mean ± s.d. %) on CSBM with different losses.

Loss Homophily shift Degree shift

homo → hetero hetero → homo high → low low → high

(None) 73.62 ± 0.44 76.72 ± 0.89 86.47 ± 0.38 92.92 ± 0.43
Entropy 75.89 ± 0.68 89.98 ± 0.23 86.81 ± 0.34 93.75 ± 0.72
PseudoLabel 77.29 ± 3.04 89.44 ± 0.22 86.72 ± 0.31 93.68 ± 0.69
σ2

intra − σ2
inter 76.10 ± 0.43 72.43 ± 0.65 82.56 ± 0.99 92.92 ± 0.44

PIC (Ours) 89.71 ± 0.27 90.68 ± 0.26 88.55 ± 0.44 93.78 ± 0.74

C.6 HYPERPARAMETER SENSITIVITY WITH DIFFERENT NUMBER OF GPR STEPS K

Although the AdaRC does not involve any hyperparameters other than the learning rate η and num-
ber of adaptation rounds T , it may be combined with GNN models with different dimension of γ.
Therefore in this part, we combine AdaRC with GPRGNN models using different K, i.e., the num-
ber of GPR steps, to test the robustness to different hyperparameter selection of the GNN model.
Specifically, we tried values of K ranging from 3 to 15 on Syn-Cora and Syn-Products datasets. No-
tice that in our experiments in 5.1, we use K = 9. As shown in Table 7, AdaRC remains effective
under a wide range of K.

Table 7: Hyperparameter sensitivity of K

Dataset Method K

3 5 7 9 11 13 15

Syn-Cora ERM 64.18 ± 0.72 65.69 ± 0.88 66.01 ± 0.89 65.67 ± 0.35 65.36 ± 0.66 64.47 ± 1.54 64.91 ± 0.97
+ AdaRC 81.35 ± 0.64 80.13 ± 0.59 79.50 ± 0.72 78.96 ± 1.08 78.42 ± 0.85 78.60 ± 0.81 77.92 ± 0.87

Syn-Products ERM 42.69 ± 1.03 41.86 ± 2.11 39.71 ± 2.75 37.52 ± 2.93 35.06 ± 2.27 33.17 ± 2.38 35.57 ± 0.55
+ AdaRC 72.09 ± 0.50 71.42 ± 0.65 70.58 ± 1.01 69.69 ± 1.06 69.48 ± 1.16 69.35 ± 0.66 69.72 ± 0.70

C.7 COMPUTATION TIME

Due to the need to adapt hop-aggregation parameters γ, AdaRC inevitably introduces additional
computation costs, which vary depending on the chosen model, target graph, and base TTA algo-
rithm. We documented the computation times for each component of ERM + AdaRC and T3A +
AdaRC in our CSBM experiments:

• Initial inference involves the time required for the model’s first prediction on the target
graph, including the computation of 0-hop to K-hop representations {H(0), · · · ,H(K)},
their aggregation into Z =

∑K
k=0 γkH

(k), and prediction using a linear layer classi-
fier. This is also the time required for a direct prediction without any adaptation.
{H(0), · · · ,H(K)} is cached in the initial inference.

• Adaptation (for each epoch) accounts for the time required for each step of adaptation after
the initial inference, and includes four stages:

– Forward pass involves calculation of Z using the current γ and cached
{H(0), · · · ,H(K)}, and prediction using the linear layer classifier (or with T3A al-
gorithm). Since AdaRC only updates γ, {H(0), · · · ,H(K)} can be cached without
recomputation in each epoch. Note that other TTA algorithms could also adopt the
same or similar caching strategies.

– Computing PIC loss involves calculating PIC loss using node representations Z and
the predictions Ŷ .
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– Back propagation computes the gradients with respect to γ. Similarly, as only γ is
updated, there is no need for full GNN back propagation.

– Updating parameters, i.e., γ, with the computed gradients.

Table 8: Computation time on CSBM

Method Stage Computation time (ms) Additional computation time

- Initial Inference 27.687 ± 0.413 -

GTrans Adaptation (for each epoch) 134.457 ± 2.478 485.63%

SOGA Adaptation (for each epoch) 68.500 ± 13.354 247.41%

ERM + AdaRC

Adaptation (for each epoch) 3.292 ± 0.254 11.89%
- Forward pass 1.224 ± 0.131 4.42%
- Computing PIC loss 0.765 ± 0.019 2.76%
- Back-propagation 1.189 ± 0.131 4.30%
- Updating parameter 0.113 ± 0.001 0.41%

T3A + AdaRC

Adaptation (for each epoch) 6.496 ± 0.333 23.46%
- Forward pass 4.464 ± 0.248 16.12%
- Computing PIC loss 0.743 ± 0.011 2.68%
- Back-propagation 1.174 ± 0.167 4.24%
- Updating parameter 0.115 ± 0.004 0.41%

We provide the computation time for each stage in Table 8 above. While the initial inference time
is 27.689 ms, each epoch of adaptation only introduce 3.292 ms (6.496 ms) additional computation
time when combined with ERM (T3A), which is only 11.89% (23.46%) of the initial inference. This
superior efficiency comes from (1) AdaRC only updating the hop-aggregation parameters and (2)
the linear complexity of our PIC loss.

We also compare the computation time of AdaRC with other graph TTA algorithms. A significant
disparity is observed: while the computation time for each step of adaptation in other graph TTA
algorithms is several times that of inference, the adaptation time of our algorithm is merely 1/9 (1/4)
of the inference time, making it almost negligible in comparison.

C.8 SCALABILITY

In the end of Section 4, we show the computational complexity of AdaRC is linear to the num-
ber of nodes. To further validate this, we have conducted experiments on graphs of varying sizes
from 1 million to 10 million nodes, and record the computation time for each epoch of adaptation.
The results confirm that the computation time for AdaRC indeed scales linearly with graph size,
demonstrating its efficiency even for very large graphs.
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Figure 12: Scalability of AdaRC
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C.9 MORE ARCHITECTURES

Besides GPRGNN (Chien et al., 2021), our proposed AdaRC framework can also be integrated to
more GNN architectures. We conduct experiments on Syn-cora dataset with three additional GNNs:
APPNP (Klicpera et al., 2019), JKNet (Xu et al., 2018), and GCNII (Chen et al., 2020).

• For APPNP, we adapt the teleport probability α.
• For JKNet, we use weighted average as the layer aggregation, and adapt the weights for

each intermediate representations.
• For GCNII, we adapt the hyperparameter αl for each layer.

Notice that Tent can only be applied to models with batch normalization layers, which are not
included for JKNet in GCNII in our implementation.

Table 9: Accuracy (mean ± s.d.) on Syn-Cora with different GNN architectures

Method GPRGNN APPNP JKNet GCNII

ERM 65.67 ± 0.35 70.24 ± 0.88 47.87 ± 0.90 67.95 ± 1.33
+ AdaRC 78.96 ± 1.08 80.63 ± 0.35 51.57 ± 2.09 74.33 ± 0.45

T3A 68.25 ± 1.10 70.98 ± 0.86 47.93 ± 0.85 68.20 ± 1.31
+ AdaRC 78.40 ± 1.04 80.70 ± 0.38 51.84 ± 1.87 74.96 ± 0.23

Tent 66.26 ± 0.38 70.15 ± 1.08 - -
+ AdaRC 78.87 ± 1.07 80.72 ± 0.18 - -

AdaNPC 67.34 ± 0.76 70.53 ± 0.76 47.93 ± 0.77 68.39 ± 1.18
+ AdaRC 77.45 ± 0.62 80.11 ± 0.61 48.32 ± 0.69 74.44 ± 0.35

GTrans 68.60 ± 0.32 73.50 ± 0.62 51.38 ± 0.58 74.08 ± 1.26
+ AdaRC 83.49 ± 0.78 85.17 ± 0.43 53.76 ± 2.26 80.50 ± 0.40

SOGA 67.16 ± 0.72 78.62 ± 0.48 47.96 ± 0.55 66.87 ± 1.50
+ AdaRC 79.03 ± 1.10 80.88 ± 0.56 52.05 ± 1.64 74.39 ± 0.29

GraphPatcher 63.01 ± 2.29 57.49 ± 1.83 45.38 ± 1.00 67.05 ± 1.54
+ AdaRC 80.99 ± 0.50 81.38 ± 0.88 46.78 ± 1.71 74.46 ± 0.50

The result are shown in Table 9 above. Although different GNN architectures result in different per-
formance on the target graph, AdaRC can consistently improve the accuracy. It shows that AdaRC
is compatible with a wide range of GNN architectures.
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D REPRODUCIBILITY

In this section, we provide details on the datasets, model architecture, and experiment pipelines.

D.1 DATASETS

We provide more details on the datasets used in the paper, including CSBM synthetic dataset and
real-world datasets (Syn-Cora (Zhu et al., 2020), Syn-Products (Zhu et al., 2020), Twitch-E (Rozem-
berczki et al., 2021), and OGB-Arxiv (Hu et al., 2020)).

• CSBM (Deshpande et al., 2018). We use N = 5, 000 nodes on both source and target graph with
D = 2, 000 features. Let µ+ = 0.03√

D
· 1D, µ− = − 0.03√

D
· 1D, and ∆µ = 0.02√

D
· 1D.

– For homo ↔ hetero, we conduct TTA between CSBM(µ+,µ−, d = 5, h = 0.8) and
CSBM(µ+,µ−, d = 5, h = 0.2).

– For low ↔ high, we conduct TTA between CSBM(µ+,µ−, d = 2, h = 0.8) and
CSBM(µ+,µ−, d = 10, h = 0.8).

– When there are additional attribute shift, we use µ+,µ− on the source graph, and replace them
with µ+ +∆µ,µ− +∆µ on the target graph.

• Syn-Cora (Zhu et al., 2020) and Syn-Products (Zhu et al., 2020) are widely used datasets to eval-
uate model’s capability in handling homophly and heterophily. The Syn-Cora dataset is generated
with various heterophily ratios based on modified preferential attachment process. Starting from
an empty initial graph, new nodes are sequentially added into the graph to ensure the desired
heterophily ratio. Node features are further generated by sampling node features from the corre-
sponding class in the real-world Cora dataset. Syn-Products is generated in a similar way. For
both dataset, we use h = 0.8 as the source graph and h = 0.2 as the target graph. We use
non-overlapping train-test split over nodes on Syn-Cora to avoid label leakage.

• Twitch-E (Rozemberczki et al., 2021) is a set of social networks, where nodes are Twitch users,
and edges indicate friendships. Node attributes are the games liked, location and streaming habits
of the user. We use ‘DE’ as the source graph and ‘ENGB’ as the target graph. We randomly drop
a subset of homophily edges on the target graph to inject degree shift and homophily shift.

• OGB-Arxiv (Hu et al., 2020) is a paper citation network of ARXIV papers, where nodes are
ARXIV papers and edges are citations between these papers. Node attributes indicate the subject
of each paper. We use a subgraph consisting of papers from 1950 to 2011 as the source graph,
2011 to 2014 as the validation graph, and 2014 to 2020 as the target graph. Similarly, we randomly
drop a subset of homophily edges on the target graph to inject degree shift and homophily shift.

Table 10: Statistics of datasets used in our experments

Dataset Partition #Nodes #Edges #Features #Classes Avg. degree d Node homophily h

Syn-Cora
source

1,490 2,968 1,433 5 3.98
0.8

validation 0.4
target 0.2

Syn-Products
source

10,000 59,648 100 10 11.93
0.8

validation 0.4
target 0.2

Twitch-E
source 9,498 76,569

3,170 2
16.12 0.529

validation 4,648 15,588 6.71 0.183
target 7,126 9,802 2.75 0.139

OGB-Arxiv
source 17,401 15,830

128 40
1.82 0.383

validation 41,125 18,436 0.90 0.088
target 169,343 251,410 2.97 0.130
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D.2 MODEL ARCHITECTURE

• For CSBM, Syn-Cora, Syn-Products, we use GPRGNN with K = 9. The featurizer is a linear
layer, followed by a batchnorm layer, and then the GPR module. The classifier is a linear layer.
The dimension for representation is 32.

• For Twitch-E and OGB-Arxiv, we use GPRGNN with K = 5. The dimension for representation
is 8 and 128, respectively.

• More architectures. For APPNP, we use similar structure as the GPRGNN, while we adapt the
α for the personalized pagerank module. For JKNet, we use 2 layers with 32-dimension hidden
representation. We adapt the combination layer. For GCNII, we use 4 layers with 32-dimension
hidden representation, and adapt the αℓ for each layer.

D.3 COMPUTE RESOURCES

We use single Nvidia Tesla V100 with 32GB memory. However, for the majority of our experiments,
the memory usage should not exceed 8GB. We switch to Intel(R) Xeon(R) Gold 6240R CPU @
2.40GHz when recording the computation time.
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E MORE DISCUSSION

E.1 ADDITIONAL RELATED WORKS

Graph out-of-distribution generalization (graph OOD) aims to train a GNN model on the
source graph that performs well on the target graph with unknown distribution shifts (Li et al.,
2022a). Existing graph OOD methods improve the model generalization by manipulating the source
graph (Park et al., 2021; Wu et al., 2022), designing disentangled (Ma et al., 2019; Yang et al.,
2020) or casuality-based (Li et al., 2023; Fan et al., 2024) models, and exploiting various learning
strategies (Li et al., 2022b; Zhu et al., 2021b). However, graph OOD methods focus on learning
a universal model on source and target graphs, while not addressing model adaption to a specific
target graph.

Homophily and heterophily. Most GNN models follow the homophily assumption that neigh-
boring nodes tend to share similar labels (Kipf & Welling, 2017; Velickovic et al., 2017). Various
message-passing (Wang & Zhang, 2022; Zhu et al., 2021a) and aggregation (Chien et al., 2021; Bo
et al., 2021; Zhu et al., 2020; Xu et al., 2018) paradigms have been proposed to extend GNN models
to heterophilic graphs. These GNN structures often embrace additional parameters, e.g., the aggre-
gation weights for GPRGNN (Chien et al., 2021) and H2GCN (Zhu et al., 2020), to handle both
homophilic and heterophilic graphs. Such parameters provide the flexibility we need to adapt mod-
els to shifted graphs. However, these methods focus on the model design to handle either homophilic
or heterophilic graph, without considering distribution shifts.

E.2 LIMITATIONS

Assumption on source model. Since we mainly focus on the challenge of distribution shifts.
Our proposed algorithm assumes that the source model should be able to learn class-clustered rep-
resentations on the source graph, and should generalize well when there are no distribution shifts.
In applications with extremely low signal-to-noise ratio, our algorithm’s improvement in accuracy
might not be guaranteed. However, we would like to point out that this is a challenge faced by
almost all TTA algorithms (Zhao et al., 2023).

Computational efficiency and scalability. Our proposed algorithm introduce additional computa-
tional overhead during testing. However, we quantify the additional computation time: it is minimal
compared to the GNN inference time. Also, AdaRC is much more efficient that other graph TTA
methods.

E.3 BROADER IMPACTS

Our paper is foundational research related to test-time adaptation on graph data. It focus on node
classification as an existing task. We believe that there are no additional societal consequence that
must be specifically highlighted here.
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