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Abstract

Despite remarkable advances in natural lan-
guage processing, developing effective sys-
tems for low-resource languages remains a
formidable challenge, with performance typ-
ically lagging far behind high-resource coun-
terparts due to data scarcity and insufficient
linguistic resources. Cross-lingual knowledge
transfer has emerged as a promising approach
to address this challenge by leveraging re-
sources from high-resource languages. In this
paper, we investigate methods for transferring
linguistic knowledge from high-resource lan-
guages to low-resource languages, where the
number of labeled training instances is in hun-
dreds. We focus on sentence-level and word-
level tasks. We examine three approaches for
cross-lingual knowledge transfer: (a) augmen-
tation in hidden layers, (b) token embedding
transfer through token translation, and (c) a
novel method for sharing token embeddings at
hidden layers using Graph Neural Networks.
Experimental results on sentiment classifica-
tion and NER tasks on low-resource languages
Marathi, Bangla (Bengali) and Malayalam us-
ing high-resource languages Hindi and English
demonstrate that our novel GNN-based ap-
proach significantly outperforms existing meth-
ods, achieving a significant improvement of
20 and 27 percentage points respectively in
macro-F1 score compared to traditional trans-
fer learning baselines such as multilingual and
cross-lingual training. We also present a de-
tailed analysis of the transfer mechanisms and
identify key factors that contribute to success-
ful knowledge transfer in this linguistic context.
Our findings provide valuable insights for de-
veloping NLP systems for other low-resource
languages.

1 Introduction

Cross-lingual knowledge transfer has emerged
as a crucial approach for improving natural lan-
guage processing capabilities across different lan-

guages. Recent advances in Large Language Mod-
els (LLMs) and multilingual model variants have
demonstrated remarkable success in this domain
by jointly training on multiple languages simulta-
neously, enabling zero-shot and few-shot learning
capabilities. These models, such as XLM-R (Con-
neau et al., 2020), mT5 (Xue et al., 2021), and
BLOOM (Scao et al., 2022), learn shared represen-
tations across languages, thereby facilitating knowl-
edge transfer from high-resource to low-resource
languages. The success of these models largely
stems from their ability to leverage massive multi-
lingual corpora and transformer-based architectures
(Vaswani et al., 2017), which effectively capture
cross-lingual patterns and relationships.

However, when dealing with extremely low-
resource scenarios where target languages have
very limited labeled data (e.g., only 100 train-
ing instances), even state-of-the-art multilingual
models struggle (Wu and Dredze, 2020; Downey
et al., 2024; Cassano et al., 2024) to generalize
effectively. While parameter-efficient techniques
like Adapter fine-tuning (Houlsby et al., 2019) and
LoRA (Hu et al., 2022) reduce overfitting by up-
dating fewer parameters, they still underperform in
extreme low-resource settings. Cross-lingual mod-
els like AdaMergeX (Zhao et al., 2025) also fail
to capture sufficient linguistic nuances with min-
imal target language examples. Most languages
worldwide have extremely limited digital resources
- India alone has at least 80 such languages, in-
cluding several of its 22 official languages like Do-
gri, Bodo, and Kashmiri, while languages such as
Saimar, Raji, and Toto have almost zero digital
presence. For practical evaluation in this work,
we use comparatively higher-resource languages
(Marathi, Bangla, Malayalam) as simulated low-
resource scenarios to enable rigorous testing with
sufficient evaluation data.

To address this challenge, we propose a com-
prehensive framework that intelligently transfers



linguistic knowledge from high-resource to low-
resource languages through three complementary
approaches. We name it BhashaSetu after the
words “Bhasha” and “Setu” that mean “language”
and “bridge” respectively in most Indian languages,
highlighting its role in bridging languages.

Our approach is as follows. First, we introduce
Hidden Augmentation Layers (HAL) that create
mixed representations in the hidden space, allow-
ing controlled knowledge transfer while preserving
the target language’s distinctive features. Second,
we develop a token embedding transfer mechanism
that leverages translation-based mappings to initial-
ize low-resource language embeddings effectively.
Finally, we propose a novel Graph-Enhanced Token
Representation (GETR) approach that uses Graph
Neural Networks (Zhou et al., 2020; Kipf and
Welling, 2017; Velickovi¢ et al., 2018) to enable
dynamic knowledge sharing between languages at
the token level, thereby capturing complex cross-
lingual relationships through graph-based message
passing. This work contributes to the growing body
of research in cross-lingual transfer learning while
specifically addressing the challenges of extreme
data scarcity in low-resource languages. In short,
our contributions are:

1. We propose a comprehensive framework,
BhashaSetu, for cross-lingual knowledge
transfer in extremely low-resource scenarios,
comprising three complementary approaches:
hidden augmentation layer (HAL), token em-
bedding transfer (TET), and a novel graph-
enhanced token representation (GETR) with
GNNss (Sec. 3).

2. We conduct extensive experiments across mul-
tiple NLP tasks (sentiment classification and
NER) and language pairs spanning multiple
languages, demonstrating the versatility and
robustness of our approach. Experimental
results on sentiment classification and NER
tasks on low-resource languages Marathi,
Bangla and Malayalam using high-resource
languages Hindi and English demonstrate that
our novel GNN-based approach significantly
outperforms existing methods, achieving 20
and 27 percentage points improvement re-
spectively in macro-F1 score compared to
traditional baselines such multilingual joint
training, LoRA and AdaMergeX while requir-
ing only 100 training instances in the low-
resource language (Sec. 4).

3. We provide systematic analysis of the impact

of various factors on cross-lingual knowledge
transfer, including mixing coefficient, archi-
tectural depth and dataset size ratios between
languages.

2 Related Work

Cross-lingual transfer learning has advanced signif-
icantly with multilingual pre-trained models such
as XLM-R (Conneau et al., 2020), mT5 (Xue et al.,
2021), and PaLLM (Chowdhery et al., 2022). While
effective, these approaches require substantial mul-
tilingual training data, limiting their applicability in
extreme low-resource settings. Recent parameter-
efficient fine-tuning methods like LoRA (Hu et al.,
2022), AdaMergeX (Zhao et al., 2025), and SALT
(Lee et al., 2025) reduce overfitting risks but strug-
gle with extremely limited target data.

Data augmentation techniques in hidden spaces,
including mixup (Zhang et al., 2018; Verma et al.,
2019) and their NLP adaptations (Chen et al.,
2020; Sun et al., 2020), have proven valuable
for low-resource scenarios and are comprehen-
sively surveyed by (Feng et al., 2021). Token-level
transfer approaches like trans-tokenization (Remy
et al., 2024) enable cross-lingual embedding trans-
fer without requiring parallel data, addressing a
critical challenge for low-resource languages.

Graph-based cross-lingual methods such as Het-
erogeneous GNNs (Wang et al., 2021) depend on
external semantic parsers and operate solely at the
GNN level, without integrating graph knowledge
into transformer models. Colexification-based mul-
tilingual graphs (Liu et al., 2023) construct graphs
from colexification relations rather than token in-
teractions, and similarly do not infuse graph infor-
mation into transformers. While recent work has
employed graph-based transformers with UCCA
semantic graphs (Wan and Li, 2024), such ap-
proaches require pre-trained semantic parsers that
are typically unavailable for low-resource Indian
languages. In contrast, our GETR method con-
structs token-level graphs directly from training
data and uniquely integrates GNN-based token
interactions within the transformer, enabling dy-
namic, fine-grained cross-lingual knowledge shar-
ing without external linguistic resources.

3 Methodology

This section presents three approaches for cross-
lingual knowledge transfer: (a) augmentation
in hidden layers, (b) token embedding transfer



through translation, and (c) sharing token embed-
dings at hidden layers utilizing graph neural net-
works. Before delving into the technical details of
these approaches, we first formally define the prob-
lem statement for cross-lingual knowledge transfer
in low-resource scenarios.

3.1 Problem Statement

Let us formally define our notation for cross-lingual
knowledge transfer. For a high-resource language,
we denote the dataset of textual instances as Xy =
{z1,2z2,..., 2N, }, Where each x; represents an
individual text instance (e.g., a sentence). The cor-
responding task-specific outputs are represented
as Yo = {y1,y2,...,yn, }, where Ny represents
the total number of instances in the high-resource
dataset, typically in the order of thousands. Simi-
larly, we denote the low-resource language dataset
as X7y, and its corresponding outputs as Y7, where
|IXp| = N < Npy, with N, being extremely
small (approximately 100 instances). This extreme
data scarcity in the low-resource setting presents
the core challenge in our task.

We define the combined dataset as X = {Xy U
Xy}t and Y = {Yy UYp}. Our objective is to
learn a model M : X — Y that maps input text
instances from either or both Xy and Xy, to their
respective outputs, while effectively leveraging the
high-resource language data to compensate for the
limited low-resource samples. The output space
Y can correspond to any encoder-based task, with
two common task variants. The first is for sentence-
level tasks (such as sentiment analysis) where y; €
{0,1,...,¢c — 1}, c being the number of classes.
The second is for sequence-labeling tasks (such
as NER): vi = [viy, Yiy, - - - » Yip ), Where T is the
sequence length and each token-level label y;; €
Viags represents a class (such as an NER tag).

Despite the different output structures, the core
challenge of effective cross-lingual knowledge
transfer remains consistent across tasks, allowing
us to apply the same methodological approaches
with task-specific adaptations. We next describe
the three methods.

3.2 Augmentation in Hidden Layers (HAL)

Hidden layer augmentation has emerged as a preva-
lent technique for generating synthetic training data
in the latent space when working with textual in-
puts (Zhang et al., 2018; Verma et al., 2019). While
this approach has been successfully applied for do-
main adaptation within the same language (Zhang

et al., 2022), its application to cross-lingual knowl-
edge transfer, particularly from high-resource to
low-resource languages, represents a novel direc-
tion. This method is particularly versatile as it can
be applied to any high-resource and low-resource
language pair, regardless of their script similarities
or differences.

Let Eng : X — H denote the encoder compo-
nent of the model M that maps each input text x; to
its final encoded CLS representation h¢Si. We pro-
pose a hidden augmentation mechanism that fuses
knowledge from high-resource and low-resource
languages through a weighted combination in the
latent space. Formally, we generate new training
pairs A; = (h%s, ya,) as follows:

B — o hEES 1 (1— a) - KGES 1)
YA, =

2
(a “YH;t T (1—04) ’ yLi,t)?:1 @
where a € [0,1] is a mixing coefficient that
controls the contribution of each language. This
coefficient can be either fixed through training or
randomly sampled per iteration. yg,,yr, € R
are typically one-hot encoded vectors for sen-
tence tasks with c classes, and for sequence tasks,
YH; 6> YLt € RIPtass| represent the tag distribution
at position .

Empirically, o values between 0.1 and 0.4 yield
optimal results, as they maintain the primary char-
acteristics of the low-resource language while
supplementing it with knowledge from the high-
resource language. Since the augmentation pro-
duces soft labels, we employ KL-divergence loss
(Cui et al., 2023) instead of standard cross-entropy
loss (Zhong et al., 2023) for soft labels and cross-
entropy for hard labels during training. This frame-
work can be further extended by adding multiple
transformer layers above F/j; and performing aug-
mentation at each layer’s CLS output, thus enabling
hierarchical knowledge fusion.

3.3 Token Embedding Transfer through
Translation (TET)

Traditional approaches often initialize token em-
beddings for low-resource languages randomly,
which can lead to suboptimal performance, espe-
cially when training data is scarce. We propose an
initialization strategy that leverages token embed-
dings from a high-resource language through trans-
lation mapping (Remy et al., 2024). This approach



Algorithm 1 Token Embedding Transfer through
Translation (TET)

1: Vi, < Set of unique words from LRL corpus
2: for all w; € Vi do > For each LRL word
wp, < Translate TOHRL (w;)
T < HRLTokenize(wr)
T; <+ LRLTokenize(w;)
Ej, + {GetPretrainedEmbeddings(¢)|t € Tn} >
HRL token embeddings

AR

7 €avg < Mean(E}R)
8 for all¢t; € T; do > For each LRL token
9: P;, < 0 v Initialize projected embeddings set
10 for all w’ € V;, do > Check all LRL words
11: if £, € LRLTokenize(w’) then
12: Piz <_Pt1, U{eavg}
13: end if
14: end for
15: E;[t;] <~ Mean(FP;,) > Final embedding for LRL
token
16: end for
17: end for
18: return F; > Dictionary of LRL token embeddings

provides a more informed starting point for the
embedding matrix of the low-resource language,
enabling effective fine-tuning even with limited
training samples. The core idea is to initialize the
token embeddings of the low-resource language
using the semantic information captured in the pre-
trained embeddings of their translated counterparts
in the high-resource language. While this method
assumes the availability of word-level translations
for the training data of the low-resource language,
it does not require any pre-trained models or large
corpora in the low-resource language. In our exper-
iments, we used pymultidictionary (Pizarro, 2025)
primarily to make our translation process seamless,
faster and automated for the languages in our study,
followed by manual verification of the translations
to ensure accuracy. For extremely low-resource lan-
guages without dictionary support, we recommend
manually translating the limited training vocabu-
lary (which is manageable given the small dataset
size of 100 instances).

Algorithm 1 details our systematic process
for transferring token embeddings from a high-
resource language (e.g., English) to a low-resource
language (e.g., Marathi). To illustrate this process,
consider transferring embeddings for the Marathi
word "antarbhasika" meaning "cross-lingual” in
English. The word would be translated to En-
glish as "cross-lingual", which might be tokenized
as "cross" + "lingual" in English. The word,
"antarbhasika" would be tokenized in Marathi, po-
tentially splitting it into subword tokens like "antar"
+ "bhasika". The pre-trained embeddings for these

Figure 1: Graphical representation of tokens of two
sentences in a batch: “The movie was good” and “I was
impressed with the movie”.

English tokens are retrieved and averaged. For each
Marathi token, we collect all instances where it ap-
pears across different words in the Marathi corpus.
For example, the token "bhasika" might also ap-
pear in words like "bahubhasika" (meaning "multi-
lingual"). Finally, we average all corresponding
English embedding projections to create the final
embedding for each Marathi token. While we show
transliterated examples here for clarity, in our ac-
tual experiments we used the original scripts for all
languages.

3.4 Graph-Enhanced Token Representation
for Cross-lingual Learning (GETR)

We propose a novel approach leveraging Graph
Neural Networks (GNN) (Zhou et al., 2020) to
enable dynamic knowledge sharing between high-
resource and low-resource languages at the token
level. For each batch of mixed-language inputs,
we construct an undirected graph G = (T, C),
where T' = {t1,t2,...,vn, } represents the set of
N unique tokens in batch k. The edge set C' cap-
tures sequential relationships between tokens, de-
fined as C' C {tij, ti(j+1)|tij> ti(j+1) S T}, where
tokens %;1, t;2, . . . t;; form sentence s;.

To illustrate the mechanism, consider two sen-
tences: "The movie was good" from a high-
resource language and "I was impressed with the
movie" from a low-resource language. As shown
in Figure 1, tokens are represented as nodes with
edges connecting consecutive tokens within each
sentence. When computing the representation for
shared tokens (e.g., "was"), the model incorporates
contextual information from both language environ-
ments. This allows the CLS embedding of the low-
resource sentence to benefit from the high-resource
language’s token representations through neighbor-
hood aggregation.

Given the encoder output H € RE*5*D (where
B, S, and D denote batch size, sequence length,
and embedding dimension respectively), we re-
shape it to H' € RY*P (L = BS) for GNN pro-
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Figure 2: BERT encoder architecture incorporating the
GNN layer for cross-lingual knowledge transfer.
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cessing. We employ either GCN (Kipf and Welling,
2017) or GAT (Velickovi¢ et al., 2018) layers with
an adjacency matrix A € {0, 1}*” that captures
token relationships such as A;; = 1if /; and [;
are consecutive tokens in a sentence. Notably, we
construct A using the flattened dimension L rather
than unique tokens, allowing for token repetition
which makes the array multiplication simpler and
straight-forward. The GNN output is then reshaped
to generate query Q and key K matrices for the
subsequent transformer layer, while the value V
matrix maintains its original computation path:

H’ = Reshape(H) € RF*P

o = GNN(H)

Hg = Reshape(Hg) € RE*5P (3)
Q=Hg x Wq
K=Hg x Wy

where W € RP*D' Wy € RP*DP" are query
and key weight matrices respectively. The subse-
quent transformer operations remain unchanged,
following the standard sequence of cross-attention,
feed-forward networks, layer normalization, and
residual connections.

V=HxW, “)

where W, € RP*D" is the value weight matrix.
Once Q, K and V are computed, the rest of the
transformer encoder (Vaswani et al., 2017) block
is unchanged, i.e., cross-attention block followed
by feed-forward, layer normalization and residual
connection. Figure 2 illustrates our modified BERT
architecture with GNN layers (gray shaded area).
Multiple GNN layers can be stacked sequentially
to enable deeper cross-lingual knowledge transfer.
Strategic Batch Formation for Graph Construc-
tion: We propose a batch formation strategy

that balances high-resource and low-resource in-
stances while maximizing token overlap between
languages. For every batch of size B, we ensure
exactly B/2 instances from each language domain.
Our construction alternates between low-resource
and high-resource anchors: we first select a random
low-resource instance, then add (n/2 — 1) neigh-
bors from low-resource language and n/2 from
high-resource language based on maximum token
overlap. These n instances are removed from the
available pool to prevent repetition within an epoch.
We then select a high-resource anchor and repeat
the process, and continue this alternation until the
batch is filled.

To improve robustness, 70% of the batches fol-
low this strategic formation while the remaining
30% maintain an equal language distribution that
selects instances randomly. This prevents over-
reliance on specific token patterns while preserving
structured knowledge transfer. The process contin-
ues across epochs until all low-resource instances
are utilized.

During inference, we apply the same principle
using training data to form neighborhoods for test
instances based on token overlap. This balanced
batch construction creates our token interaction
graph G = (T, '), enabling effective cross-lingual
token relationships without requiring pre-trained
resources for the low-resource language.

When the script is not shared, the edge between
the nodes (words) is established if both the words
convey the same meaning. In this way, connection
is established between languages. For translation,
we have used a combination of pymultidictionary
(Pizarro, 2025) and manual effort similar to TET.

4 Experiments and Results

4.1 Dataset

Our experiments evaluate cross-lingual knowledge
transfer across multiple languages and tasks. For
sentiment classification, we employ two high-
resource languages: Hindi (Yadav, 2023; Sawant,
2023) and English (Akanksha, 2023), each with
12,000 labeled instances. We use two low-resource
target languages: Marathi (Pingle et al., 2023),
which shares the Devanagari script with Hindi, and
Bangla (Bengali) (Sazzed and Jayarathna, 2019),
a language close to Hindi but with its own script.
All sentiment classification datasets contain binary
labels (positive and negative) with balanced class
distributions.



The original Marathi dataset contained 12,113
training and 1,000 test instances. To simulate an
extreme low-resource scenario, we created three
distinct splits: a training set of 100 instances ran-
domly sampled from the original training set, a
validation set of 1,500 instances also from the orig-
inal training set, and a test set of 2,000 instances
by combining the original 1,000 test instances with
1,000 additional samples from the training set. We
deliberately increased the test set size to evaluate
robustness. Similarly, for Bengali, we created non-
overlapping splits of 100 training, 1,500 validation,
and 2,000 test instances. Throughout our experi-
ments, we maintain the strict constraint that no pre-
trained models or significant linguistic resources
are available for the low-resource languages.

For Named Entity Recognition, we maintain En-
glish and Hindi as high-resource languages, with
the English NER dataset (Jain, 2022) comprising
12,000 training instances (17 unique entity tags)
and the Hindi dataset (Murthy et al., 2022) con-
taining 12,084 training instances (13 unique entity
tags). We apply our methods to two low-resource
target languages: Marathi (Patil et al., 2022) with
100 training instances, 1,500 validation and 2,000
test instances (14 unique entity tags), and Malay-
alam (Mhaske et al., 2022) (that uses a completely
different script from both Hindi and English) with
100 training instances, 1,500 validation instances,
and 2,000 test instances (7 unique entity tags).

4.2 Implementation Details

Following our strict low-resource assumption, we
first trained a tinyBERT (Jiao et al., 2019) model
from scratch using only 100 instances of each low-
resource language, including training new tokeniz-
ers. We established several baselines for compari-
son: (1) Joint Training (JT), which trains on high
and low resource languages simultaneously, simi-
lar to multilingual models; (2) JT-HRLAdapLRL,
which sequentially fine-tunes on high-resource
data followed by adapter-based fine-tuning on low-
resource data; (3) XLMFT-HRLAdapLRL, which
applies the same sequential approach but starts
from XLM-R (Conneau et al., 2020); (4) LoRA
(Hu et al., 2022), which updates low-rank decom-
position matrices instead of full weights; and (5)
AdaMergeX (Zhao et al., 2025), which combines
multiple adaptation methods. For adapter fine-
tuning, we used a reduction factor of 16, increas-
ing total parameters by only 1%. For LoRA and
AdaMergeX, we followed the recommended param-

eter settings for encoder tasks from their original
papers.

For our high-resource languages, we utilized
13cube-pune/hindi-albert (Joshi, 2022) for
Hindi and albert/albert-base-v2 (Lan et al.,
2019) for English across both tasks. All ex-
periments were conducted on an Amazon EC2
p4de.24xlarge instance with 8 NVIDIA A100
GPUs (80 GB each), using batch sizes of 128 for
most approaches (8 for scratch training due to low
number of data points, and 120 for GETR meth-
ods to accommodate graph construction using 9
neighbors per instance). We employed AdamW
with learning rates between 3e-5 and 3e-7 for pre-
trained models, and 3e-4 for scratch training with
TET. Models were trained for 50 epochs with best
checkpoints selected via validation loss.

For a fairer comparison between methods, we
carefully balanced parameter counts across all mod-
els. Since GETR adds additional GNN layers to
the architecture, we removed transformer layers
from the pre-trained model to maintain compara-
ble model size. For example, in GETR-GAT, we
removed the last 3 transformer encoder layers and
added 2 GAT layers, resulting in a parameter count
(237,558,024) nearly identical to the Joint Training
model (237,557,762). All experiments used the
original scripts of the respective languages rather
than transliteration. For baseline models, HAL,
and GETR approaches, we leveraged pre-trained
tokenizers from high-resource languages, augment-
ing them with new tokens from low-resource lan-
guages. These newly added tokens were randomly
initialized, allowing the model to learn appropriate
representations during training

All reported results are evaluated on test sets
carefully selected to ensure no overlap with train-
ing data (Table 1). As expected, with such limited
data and no pre-trained knowledge, Scratch Train-
ing models failed to learn meaningful patterns, de-
faulting to macro-F1 scores of 0.33 and 0.03 for
sentiment classification and NER respectively.

4.3 Results on Sentiment Classification Task

Using English as the high-resource language, the
baseline models achieve macro-F1 scores ranging
from 0.53 to 0.55 for Marathi, with AdaMergeX
performing best among them. Our proposed HAL
method with o = 0.2 and two layers shows im-
provement (0.63 with TET), but the GETR-GAT
approaches demonstrate substantially greater gains,
with GETR-GAT+HAL achieving the best perfor-



mance (0.75 macro-F1), representing a 20 percent-
age point improvement over the best baseline. For
Bangla as the low-resource language, baseline mod-
els achieve macro-F1 scores of 0.63, while GETR-
GAT+HALATET delivers the best performance at
0.75, a 12 percentage point improvement.

With Hindi as the high-resource language, base-
line performance improves significantly (up to
0.76 for AdaMergeX with Marathi), highlighting
the benefit of script similarity. When Hindi is
used as HRL and Marathi as LRL, TET is not
required as they share the Devanagari script, en-
suring that Marathi tokens already have pre-trained
embeddings from the Hindi model. This explains
the absence of TET-based results for this lan-
guage pair in Table 1. Our HAL approach further
boosts performance (0.80 macro-F1), while GETR-
GAT+HAL achieves the highest score for Marathi
(0.87 macro-F1), an 11 percentage point improve-
ment over the best baseline. For Hindi-Bangla,
GETR-GAT+HAL+TET reaches 0.81 macro-F1,
outperforming the best baseline (AdaMergeX at
0.69) by 12 percentage points.

4.4 Results on NER Task

We extended our evaluation to Named Entity
Recognition using test sets of approximately 2,000
instances for both Malayalam and Marathi. For
Malayalam, the baseline models achieve macro-
F1 scores between 0.26 and 0.28 with English
as the high-resource language, while GETR-
GAT+HAL+TET delivers 0.52, a substantial 24
percentage point improvement over the best base-
line. With Hindi as the high-resource language,
baseline models achieve similar scores (up to 0.28),
while GETR-GAT+HAL+TET reaches 0.55, a 27
percentage point improvement. For Marathi NER,
the pattern continues with GETR-GAT variants
achieving macro-F1 scores of 0.40 with English
(11 percentage points above the best baseline) and
0.44 with Hindi (6 percentage points above the best
baseline HAL at 0.38).

These consistent improvements across different
tasks and language families (Indo-Aryan and Dra-
vidian) demonstrate that our GETR approach ef-
fectively transfers knowledge regardless of task
type or target language. GETR’s superior perfor-
mance can be attributed to its ability to create dy-
namic, contextualized connections between tokens
across languages, enabling more effective knowl-
edge transfer at a granular level. Unlike static ap-
proaches, GETR allows low-resource language to-

kens to directly incorporate relevant semantic in-
formation from high-resource contexts through the
graph structure, creating richer representations that
better capture cross-lingual patterns. This transfer
mechanism operates efficiently through the trans-
former’s multi-head attention, where Q and K ma-
trices capture the graph-based knowledge of tokens
while preserving the original value computations,
allowing cross-lingual information to propagate
throughout the network. We measured inference
time on an AWS p3.2xlarge instance across mul-
tiple datasets and found that our most complex
GETR-GAT model (0.0101s + 0.00001) with a
neighbour size of 10 is only 6.31% slower than
the Joint Training baseline (0.0095s + 0.00001).
We also observed that when using more complex
approaches like HAL or GETR, TET’s contribution
diminishes.

We implemented additional baselines including
HAL-LRL (augmentation within low-resource lan-
guage only) and other three XLM-R finetuning vari-
ants, all performing comparably to Joint Training.
We also evaluated GETR-GCN, but GETR-GAT
consistently outperformed it due to GAT’s adap-
tive edge weighting versus GCN’s equal weighting
of connections. Complete results for these experi-
ments appear in Table 3 (appendix).

To evaluate the robustness of our approach
and demonstrate its advantage over baseline
methods, we compared BhashaSetu (our best-
performing GETR-GAT+HAL configuration) with
AdaMergeX (Zhao et al., 2025) across varying
dataset sizes for NER with Hindi as HRL and
Marathi as LRL (Table 2). The results reveal
two critical insights. First, with extremely limited
low-resource data (10-50 instances), AdaMergeX
achieves modest performance (0.05-0.17 F1), while
BhashaSetu demonstrates substantially better re-
sults even with minimal data, achieving 0.11 F1
with just 10 LRL instances and 0.34 F1 with 50
instances—representing a 17 percentage points im-
provement over AdaMergeX at these data scales.
The fixed HRL size (12,000) experiment shows
BhashaSetu’s consistent advantage across all LRL
sizes, with improvements of 9-17 percentage points,
though the relative gap narrows as low-resource
data increases.

The second exepriment, keeping LRL fixed at
100 instances while varying HRL size, reveals
that AdaMergeX’s performance degrades dramat-
ically with decreasing HRL data (from 0.35 F1
with 12,000 instances to just 0.04 F1 with 500 in-
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0.33 £0.000 (p <0.001)

0.03 £0.073 (p<0.001)

0.03 £0.073 (p<0.001)

English

Joint Training

Adapter Finetuning
XLMFT-HRLAdapLRL
LoRA

AdaMergeX

HAL

HAL + TET
GETR-GAT
GETR-GAT + TET
GETR-GAT + HAL

GETR-GAT + HAL + TET

0.53 £0.002 (p < 0.001)
0.53 +0.001 (p<0.001)
0.53 £0.001 (p < 0.001)
0.54 +0.001 (p<0.001)
0.55 +0.001 (p<0.001)
0.60 £0.001 (p<0.001)
0.63 +0.001 (p<0.001)
0.73 £0.001 (p<0.001)
0.74 +0.001 (p<0.001)
0.75 £0.001 (-)

0.74 £0.001 (p<0.001)

0.63 £0.001 (p<0.001)
0.63 £0.002 (p < 0.001)
0.63 £0.002 (p < 0.001)
0.63 £0.001 (p<0.001)
0.63 £0.001 (p<0.001)
0.64 £0.001 (p<0.001)
0.65 £0.003 (p < 0.001)
0.72 £0.001 (p<0.001)
0.73 £0.002 (p<0.001)
0.74 £0.001 (p<0.001)
0.75 £0.001 ()

0.29 £0.001 (p<0.001)
0.29 £0.001 (p<0.001)
0.29 £0.002 (p<0.001)
0.29 £0.001 (p<0.001)
0.29 £0.001 (p<0.001)
0.32 £0.001 (p<0.001)
0.33 £0.001 (p<0.001)
0.40 +0.001 (p=0.091)
0.40 £0.001 (p=0.114)
0.40 £0.001 (p=0.471)
0.40 £0.001 (-)

0.26 £0.002 (p < 0.001)
0.26 £0.001 (p<0.001)
0.26 £0.001 (p<0.001)
0.27 £0.001 (p<0.001)
0.28 -£0.002 (p < 0.001)
0.30 -£0.003 (p < 0.001)
0.31 £0.002 (p < 0.001)
0.46 £0.001 (p<0.001)
0.47 £0.003 (p<0.001)
0.51 £0.002 (p < 0.001)
0.52 £0.001 ()

Hindi

Joint Training

Adapter Finetuning
XLMFT-HRLAdapLRL
LoRA

AdaMergeX

HAL

HAL + TET
GETR-GAT
GETR-GAT + TET
GETR-GAT + HAL

GETR-GAT + HAL + TET

0.75 £0.004 (p < 0.001)
0.74 £0.002 (p<0.001)
0.74 £0.002 (p<0.001)
0.75 £0.001 (p<0.001)
0.76 £0.001 (p<0.001)
0.80 £0.005 (p<0.001)

0.85 £0.001 (p<0.001)

0.87 £0.001 (-)

0.67 +0.003 (p < 0.001)
0.67 £0.002 (p < 0.001)
0.67 £0.002 (p<0.001)
0.68 £0.001 (p<0.001)
0.69 £0.001 (p < 0.001)
0.72 +0.004 (p < 0.001)
0.73 £0.002 (p < 0.001)
0.79 £0.002 (p < 0.001)
0.80 £0.001 (p < 0.001)
0.80 -£0.003 (p < 0.001)
0.81 £0.002 ()

0.35 £0.002 (p<0.001)
0.34 £0.003 (p<0.001)
0.34 £0.002 (p<0.001)
0.35 £0.002 (p<0.001)
0.36 £0.001 (p<0.001)
0.38 £0.001 (p<0.001)

0.44 £0.001 (p=0.366)

0.44 £0.001 (-)

0.28 +0.002 (p < 0.001)
0.28 -£0.002 (p < 0.001)
0.28 -£0.002 (p < 0.001)
0.28 0.001 (p < 0.001)
0.28 -£0.001 (p<0.001)
0.32 +0.003 (p < 0.001)
0.32 £0.002 (p < 0.001)
0.48 £0.001 (p<0.001)
0.49 £0.003 (p < 0.001)
0.53 £0.002 (p < 0.001)
0.55 £0.001 ()

Table 1: Performance (Macro-F1 score) comparison of different training approaches on sentiment classification and
NER datasets when Hindi and English are considered as HRL and Marathi, Bangla and Malayalam as LRL. Values
in parentheses are p-values from paired t-tests comparing each method against the best-performing approach for
each HRL-LRL-task combination. The mean and standard deviation numbers are reported based on 5 independent

runs.

LRL Size HRL Size Macro F1
AdaMergeX BhashaSetu
10 12000 0.05 £ 0.001 0.11 £ 0.001
50 12000 0.17 £0.002 0.34 £ 0.002
100 12000 0.35£0.001 0.44 £ 0.003
500 12000 0.39 £+0.001  0.49 + 0.002
1000 12000 0.42 £0.002 0.52 £ 0.001
5000 12000 0.55£0.002 0.64 £ 0.003
10000 12000 0.71+£0.003 0.79 +0.002
100 12000 0.35+0.001 0.44 +0.003
100 5000 0.224+0.002 0.41 £ 0.002
100 1000 0.11+0.028 0.25 4+ 0.032
100 500 0.04£0.025 0.10£0.023

Table 2: NER performance comparison based on Macro-
F1 between AdaMergeX and our approach (BhashaSetu)
with Hindi as high-resource and Marathi as low-resource
language under varying dataset sizes.

stances). While BhashaSetu also shows decreased
performance with less HRL data, it maintains sub-
stantially better results (0.10 F1 even with just
500 HRL instances) and demonstrates greater re-
silience to HRL data reduction. These results
highlight both BhashaSetu’s effectiveness at en-
abling cross-lingual knowledge transfer and its su-
perior ability to leverage limited high-resource data
compared to AdaMergeX. Our additional experi-
ments on sentiment classification (details in Tables
6 and 7 in appendix) reinforce these findings, with

BhashaSetu outperforming AdaMergeX by 14-28
percentage points for Hindi-Bangla and 12-27 per-
centage points for English-Bangla pairs across var-
ious dataset sizes.

5 Conclusions

In this paper, we addressed the challenge of cross-
lingual knowledge transfer for low-resource sce-
narios. We proposed three approaches: HAL, TET,
and a novel GETR mechanism. Experimental re-
sults demonstrate that while traditional multilingual
and cross-lingual models struggle with extreme
data scarcity, our proposed approaches effectively
leverage knowledge from high-resource languages.

Future work includes exploring self-supervised
pre-training strategies specific to low-resource
languages, more efficient graph construction al-
gorithms, memory-optimized implementations of
graph neural networks, and cross-lingual transfer
for a wider range of tasks and language pairs.
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Limitations

While our proposed approaches demonstrate strong
performance across different tasks and language
pairs, we acknowledge certain aspects that present
opportunities for future research. Our experiments
primarily focus on Indian languages from both
Indo-Aryan and Dravidian families, which could
be extended to typologically more distant language
pairs with different word orders or morphological
systems in future work.

Although BhashaSetu is effective with minimal
low-resource data (100 instances), we observe that
transfer performance correlates with high-resource
language data availability, a common pattern in
transfer learning approaches. This relationship be-
tween source data volume and transfer effective-
ness presents an interesting direction for develop-
ing more data-efficient transfer techniques.

The Token Embedding Transfer approach ben-
efits from word-level translation capabilities be-
tween language pairs. While such resources ex-
ist for many language combinations, future work
could explore unsupervised methods for establish-
ing cross-lingual correspondences when traditional
bilingual dictionaries are unavailable.

Our Graph-Enhanced Token Representation ap-
proach introduces additional computational com-
plexity during training and inference due to graph
construction operations and GNN computations
compared to simpler methods. However, this com-
putational investment delivers substantially im-
proved performance (21-27 percentage points gain
in F1 scores), representing a favorable trade-off in
many practical scenarios. Future implementations
could explore optimization techniques to reduce
this overhead.

Finally, while we demonstrate effectiveness on
classification tasks (sentiment analysis and NER),
extending these approaches to generative tasks in-
volving neural machine translation or summary
generation represents a promising direction for fu-
ture research. This would further validate the ver-
satility of our framework across the broader NLP
task spectrum.

Ethics Statement

This research aims to promote linguistic inclusiv-
ity by addressing the technological disparity be-
tween high-resource and low-resource languages.
We acknowledge that NLP capabilities have pre-
dominantly benefited widely-spoken languages, po-

tentially exacerbating digital divides along linguis-
tic lines. All datasets used in our experiments are
publicly available with appropriate citations, and
we did not collect or annotate new data that might
introduce privacy concerns.

We recognize that transfer learning approaches
may inadvertently propagate biases from source
to target languages; however, our work takes a
step toward mitigating representation disparities
by enabling better performance with minimal la-
beled data in low-resource languages. Due to the
focus on extremely low-resource settings (approxi-
mately 100 training instances), the computational
requirements for target language adaptation were
substantially lower than those typically needed for
high-resource language model development, reduc-
ing the environmental impact compared to training
large language models from scratch. While the
GETR approaches do introduce additional compu-
tational overhead during the knowledge transfer
process, the overall resource consumption remains
modest relative to pre-training large multilingual
models. This efficiency is particularly beneficial for
researchers and practitioners with limited computa-
tional resources working on low-resource language
technologies.

While we focused on Indian languages in this
study, we believe that similar approaches could
benefit other low-resource languages globally, con-
tributing to more equitable language technology
development. We emphasize that the performance
improvements demonstrated should be considered
within the context of the limitations described in
our paper, and that practical applications would
require careful consideration of cultural and lin-
guistic nuances specific to each target community.
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A Appendix
A.l1 HAL

Figure 3 illustrates our modified architecture in-
corporating the hidden augmentation layer. The
framework can be further extended by adding mul-
tiple transformer layers above Ej; and performing
augmentation at each layer’s CLS output, thus en-
abling hierarchical knowledge fusion.

A.2 Results on Sentiment Classification Task
and NER

We extensively evaluated our approach against mul-
tiple baselines, including parameter-efficient fine-
tuning methods and XLM-R variants. For XL.M-
R, we tested: (1) XLMFT-LRL: fine-tuning only
on low-resource data; (2) XLMFT-HRLRL.: joint
fine-tuning on both language datasets; (3) XLMFT-
HRL2LRL: sequential fine-tuning on high-resource
followed by low-resource data; and (4) XLMFT-
HRLAdapLRL: fine-tuning on high-resource data
followed by adapter-based fine-tuning on low-
resource data with frozen base weights. Addi-
tionally, we evaluated LoRA and AdaMergeX
as parameter-efficient alternatives, and HAL-LRL
which applies augmentation only within the low-
resource language. Our results show XLM-R vari-
ants perform comparably to Joint Training across
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Figure 3: Architecture incorporating the Hidden Aug-
mentation Layer (HRL and LRL inputs are high- and
low-resource language inputs respectively)

all configurations, while HAL-LRL shows no im-
provement over Joint Training due to limited aug-
mentation diversity in the extremely small low-
resource dataset.

To understand the impact of mixing coefficient
« in Hidden Augmentation Layer (HAL), we con-
ducted experiments with different v values ranging
from 0.1 to 0.8 (Table 4). For both English and
Hindi as high-resource languages, a=0.2 yields the
best performance, achieving accuracy/F1 scores of
0.610/0.590 and 0.860/0.860 respectively. The per-
formance gradually degrades as « increases, with
a more pronounced decline after «=0.5. This sug-
gests that while knowledge from the high-resource
language provides useful linguistic patterns and
semantic structures, excessive reliance on it di-
minishes the model’s ability to capture the unique
characteristics and nuances of the low-resource lan-
guage. The optimal performance at a=0.2 indi-
cates that a balanced approach, where the model
primarily learns from the low-resource language
while leveraging complementary features from the
high-resource language, is most effectives Motably,
even with declining performance at highes « val-
ues, the model maintains reasonable peitormance
(minimum accuracy of 0.590 for Englishiand 0.830
for Hindi as HRL), indicating the robustaess of the
HAL approach across different mixing ratios.

We analyzed the impact of HAL depibiy vary-
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ing the number of layers from 1 to 6 (Table 5).
For both English and Hindi as high-resource lan-
guages, 2 HAL layers yield optimal performance
(accuracy/F1: 0.610/0.590 and 0.860/0.860 respec-
tively), with secondary peaks at depth 4 for English
(0.598/0.582) and depth 5 for Hindi (0.848/0.845),
suggesting that while multiple HAL layers aid in
knowledge transfer, excessive depth might lead to
over-abstraction of features. Similarly, for both
GETR-GCN and GETR-GAT approaches, three
GNN layers demonstrated the best performance on
the test set metrics, indicating an optimal depth for
graph-based token interaction.

We extended our robustness evaluation to senti-
ment classification with Bangla as the low-resource
language, testing both Hindi and English as high-
resource languages (Table 6). The results reveal
consistent advantages for BhashaSetu across all
data configurations. With minimal low-resource
data (10 instances), Joint Training achieves only
0.33 macro-F1 for both HRLs, while BhashaSetu
reaches 0.61 with Hindi and 0.60 with English—an
approximately 85% improvement. This advantage
persists across all LRL sizes, though the gap nar-
rows as training data increases. Hindi consistently
outperforms English as the high-resource language,
with BhashaSetu reaching 0.94 F1 using Hindi ver-
sus 0.89 F1 using English at 8,000 LRL instances.

The fixed LRL experiments (100 instances) with
varying HRL size reveal BhashaSetu’s remarkable
resilience to limited high-resource data. With just
500 HRL instances, BhashaSetu maintains 0.62 F1
(Hindi) and 0.57 F1 (English), while Joint Training
drops to 0.43 and 0.41 respectively. Most impres-
sively, BhashaSetu with just 1,000 Hindi instances
(0.73 F1) outperforms Joint Training with the full
12,000 instances (0.67 F1). These results demon-
strate BhashaSetu’s exceptional data efficiency in
leveraging limited resources for cross-lingual trans-
fer and confirm its effectiveness across both NER
and sentiment classification tasks, regardless of the
specific high-resource language used.

To evaluate the robustness of our approach on
sentiment classification, we conducted extensive
experiments varying dataset sizes with both Hindi
and English as high-resource languages for Bangla
(Table’6). With Hindi as HRL, BhashaSetu demon-
strates ‘remarkable effectiveness, achieving 0.61
macro-F1 with just 10 LRL instances compared
to Joint/Training’s 0.33—an improvement of 28
percentage points. This advantage persists as LRL
size increases, maintaining improvements of 12-



HRL Method Semantic Classification NER
Marathi as LRL  Banglaas LRL Marathi as LRL Malayalam as LRL
- Scratch Training 0.33 + 0.000 0.33 4+ 0.000 0.03 + 0.073 0.03 + 0.073
Joint Training 0.53 £ 0.002 0.63 £ 0.001 0.29 + 0.001 0.26 + 0.002
Adapter Finetuning 0.53 +0.001 0.63 4 0.002 0.29 £ 0.001 0.26 £ 0.001
XLMFT-LRL 0.49 £+ 0.002 0.60 & 0.004 0.27 £ 0.005 0.23 + 0.003
XLMFT-HRLRL 0.53 4+ 0.002 0.63 + 0.001 0.29 £ 0.001 0.26 £+ 0.001
XLMFT-HRL2LRL 0.52 +0.002 0.63 &+ 0.004 0.28 + 0.003 0.24 + 0.003
XLMFT-HRLAdapLRL 0.53 £ 0.001 0.63 £ 0.002 0.29 £ 0.002 0.26 £ 0.001
LoRA 0.54 £ 0.001 0.63 £ 0.001 0.29 £ 0.001 0.27 £+ 0.001
AdaMergeX 0.55 £ 0.001 0.63 £ 0.001 0.29 £ 0.001 0.28 £ 0.002
HAL-LRL 0.52 £ 0.002 0.63 £ 0.001 0.29 4+ 0.001 0.26 £ 0.001
English HAL 0.60 £ 0.001 0.64 £ 0.001 0.32 £ 0.001 0.30 £ 0.003
HAL + TET 0.63 £+ 0.001 0.65 £ 0.003 0.33 £ 0.001 0.31 £ 0.002
GETR-GCN 0.69 £ 0.002 0.68 £ 0.001 0.36 £ 0.001 0.37 £ 0.001
GETR-GCN + TET 0.68 + 0.001 0.69 + 0.003 0.36 £ 0.001 0.37 £ 0.002
GETR-GCN + HAL 0.70 + 0.001 0.70 & 0.002 0.39 £ 0.001 0.43 + 0.003
GETR-GCN + HAL + TET 0.70 4 0.002 0.70 + 0.001 0.39 £ 0.001 0.43 + 0.002
GETR-GAT 0.73 + 0.001 0.72 + 0.001 0.40 £ 0.001 0.46 £ 0.001
GETR-GAT + TET 0.74 + 0.001 0.73 + 0.002 0.40 £ 0.001 0.47 + 0.003
GETR-GAT + HAL 0.75 £ 0.001 0.74 £ 0.001 0.40 £ 0.001 0.51 £+ 0.002
GETR-GAT + HAL + TET 0.74 £ 0.001 0.75 £ 0.001 0.40 £ 0.001 0.52 £+ 0.001
Joint Training 0.75 + 0.004 0.67 + 0.003 0.35 £ 0.002 0.28 + 0.002
Adapter Finetuning 0.74 + 0.002 0.67 £+ 0.002 0.34 + 0.003 0.28 + 0.002
XLMFT-LRL 0.71 + 0.003 0.62 + 0.005 0.30 £ 0.004 0.26 + 0.004
XLMFT-HRLRL 0.75 £ 0.001 0.67 £ 0.001 0.34 4+ 0.001 0.28 £ 0.001
XLMFT-HRL2LRL 0.75 £ 0.003 0.67 £ 0.004 0.34 £+ 0.004 0.27 £+ 0.001
XLMFT-HRLAdapLRL 0.74 £ 0.002 0.67 £ 0.002 0.34 £+ 0.003 0.28 £ 0.002
LoRA 0.75 £ 0.001 0.68 £+ 0.001 0.35 £ 0.002 0.28 + 0.001
AdaMergeX 0.76 £ 0.001 0.69 £ 0.001 0.36 £ 0.001 0.28 + 0.001
HAL-LRL 0.75 + 0.003 0.67 & 0.002 0.35 £ 0.001 0.27 £ 0.001
Hindi HAL 0.80 =+ 0.005 0.72 4+ 0.004 0.38 £ 0.001 0.32 + 0.003
HAL + TET - 0.73 4+ 0.002 - 0.32 + 0.002
GETR-GCN 0.82 + 0.001 0.75 + 0.001 0.42 + 0.002 0.38 £ 0.001
GETR-GCN + TET - 0.75 4+ 0.002 - 0.38 + 0.002
GETR-GCN + HAL 0.83 £ 0.002 0.76 £ 0.001 0.43 £+ 0.001 0.44 £ 0.003
GETR-GCN + HAL + TET - 0.76 £ 0.002 - 0.44 £+ 0.002
GETR-GAT 0.85 £ 0.001 0.79 £ 0.002 0.44 £+ 0.001 0.48 £+ 0.001
GETR-GAT + TET - 0.80 £ 0.001 - 0.49 £+ 0.003
GETR-GAT + HAL 0.87 £+ 0.001 0.80 £ 0.003 0.44 + 0.001 0.53 £ 0.002
GETR-GAT + HAL + TET - 0.81 £ 0.002 - 0.55 + 0.001

Table 3: Performance (Macro-F1 score) comparison of different training approaches on sentiment classification and
NER datasets when Hindi and English are considered as HRL and Marathi, Bangla and Malayalam as LRL. The
mean and standard deviation numbers are reported based on 5 independent runs.

21 percentage points up to 8,000 instances (the
maximum available in our Bangla dataset), where
BhashaSetu achieves 0.94 macro-F1 compared to
Joint Training’s 0.82.

Similar patterns emerge with English as HRL,
though with slightly lower absolute performance
due to script differences. BhashaSetu achieves 0.60
macro-F1 with 10 LRL instances (27 percentage
points over Joint Training) and maintains substan-
tial improvements through 8,000 instances (0.89 vs
0.78 macro-F1). The fixed LRL experiments (100
instances) reveal BhashaSetu’s superior resilience
to HRL data reduction: with Hindi, performance
drops from 0.81 to 0.62 macro-F1 as HRL size
decreases from 12,000 to 500, while Joint Train-
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ing falls more sharply from 0.67 to 0.43. English
shows similar trends, with BhashaSetu maintain-
ing better performance (0.75 to 0.57) compared
to Joint Training’s steeper decline (0.63 to 0.41).
These results demonstrate BhashaSetu’s effective-
ness across different data regimes and language
pairs, with particularly strong performance when
languages share scripts.



Table 4: Performance comparison of HAL approach  Table 6: Sentiment Classification performance compar-
with different high-resource languages and varying «  ison based on Macro-F1 between Joint Training (JT)
values. HRL: High Resource Language, LRL: Low  and our approach (BhashaSetu) with Hindi and English
Resource Language as high-resource and Bangla as low-resource language
under varying dataset sizes.

HRL LRL o Metrics HRL HRL Size LRL Size Macro F1+JT Macro F1 + BhashaSetu
Accuracy F1 Fixed HRL Size, Varying LRL Size
0.1 0.60220.004 0.582+0.005 Hindi 12000 10 0.33+0.001 0.61 =+ 0.001
0.2 0.610+0.004 0.590+0.005 Hindi 12000 50  0.5140.002 0.72 4 0.002
0.3 0.605+0.003 0.5784+0.004 Hindi 12000 100 0.67 = 0.001 0.81 = 0.003
. . 0.4 0.598+0.004 0.571+0.005 Hindi 12000 500  0.69 £ 0.001 0.83 +0.002
English | Marathi  \'s ('co- /00 0565+0.004 Hindi 12000 1000 0.73 £ 0.002 0.87 £ 0.001
0'6 0‘59%[0'004 0.558i0.005 Hindi 12000 5000  0.79 +0.002 0.92 £ 0.003
0'7 0‘591i0.005 0'55%[0'004 Hindi 12000 8000  0.82 =+ 0.003 0.94 =+ 0.002
0.8 0'59(&0'004 0'55(&0'005 English 12000 10 0.3340.001 0.60 = 0.001
. ’ . . : English 12000 50 0.49 +0.002 0.68 + 0.002
0.1 0.85240.004 0.848+0.005 English 12000 100 0.63 +0.001 0.75 + 0.003
0.2 0.860+0.003 0.860+0.005 English 12000 500 0.65 + 0.001 0.78 4+ 0.002
English 12000 1000 0.69 = 0.002 0.81 = 0.001
8i gggigggg ggjgigggg English 12000 5000  0.74 4 0.002 0.87 + 0.003
indi i - : : : : English 12000 8000  0.78 + 0.003 0.89 =+ 0.002
Hindi | Marathi s (93810004 0.835-0.004 e : T :
06  0.8344+0.005  0.832:0.005 Fixed LRL. Size, Varying HRL Size
0.7 0.832+0.004 0.8314+0.004 Hindi 12000 100 0.67 4 0.001 0.81 +0.003
0.8 0.83040.005 0.83040.005 Hindi 5000 100 0.61 4 0.002 0.76 + 0.002
. . . . . Hindi 1000 100 0.52+0.023 0.73 +0.003
Hindi 500 100 0.43 40.022 0.62 = 0.006
English 12000 100 0.63 4 0.001 0.75 & 0.003
English 5000 100 0.55 4 0.002 0.71 £ 0.002
English 1000 100 0.50 +0.023 0.65 + 0.003
English 500 100 0.41 £ 0.022 0.57 & 0.006

Table 5: Impact of HAL depth on model performance.
HRL: High Resource Language, LRL: Low Resource

Language
Table 7: NER performance comparison based on Macro-
— Y HAL Metrics F1 between AdaMergeX and our approach (BhashaSetu)
Depth Accuracy F1 with English as high-resource and Marathi as low-
1 0.59240.004  0.57520.005 resource language under varying dataset sizes.
2 0.610+0.004 0.590+0.005 LRL Size HRL Size Macro F1 + AdaMergeX Macro F1 + BhashaSetu
Eng]ish Marathi 3 0'§88i0'003 0'562i0'00§ Fixed HRL Size, Varying LRL Size
4 0‘°9§ﬂ)‘004 0.582:+0.005 10 12000 0.02 £ 0.001 0.11 £ 0.001
5 0.575£0.005  0.545+0.004 50 12000 0.13 £ 0.002 0.34 % 0.002
6 0.57040.004 0.54040.005 100 12000 0.29 £ 0.001 0.40 + 0.003
500 12000 0.34 4 0.001 0.46 % 0.002
1 0.8424+0.004  0.838+0.005 1000 12000 0.39 + 0.002 0.49 + 0.001
2 0.860+0.003 0.860+-0.005 5000 12000 0.51 4 0.002 0.57 4 0.002
3 0.83540.004 0.83240.004 10000 12000 0.64 +0.001 0.73 +0.001
Hindi Marathi ' ' ' ' X ; — 5
4 0.825+0.005 0.8184+0.005 Fixed LRL Size, Varying HRL Size
5  0.84840.004  0.84540.004 100 12000 0.29 4 0.001 0.40 4 0.003
100 5000 0.18 % 0.002 0.34 4 0.002
6 0-81040.005 0.800+£0.005 100 1000 0.07 £ 0.025 0.20 + 0.034
100 500 0.03 4 0.022 0.07 4 0.031
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