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ABSTRACT

Differentially private stochastic gradient descent privatizes model training by
injecting noise into each iteration, where the noise magnitude increases with the
number of model parameters. Recent works suggest that we can reduce the noise
by leveraging public data for private machine learning, by projecting gradients
onto a subspace prescribed by the public data. However, given a choice of public
datasets, it is unclear why certain datasets perform better than others for a particular
private task, or how to identify the best one. We provide a simple metric which
measures a low-dimensional subspace distance between gradients of the public
and private examples. We empirically demonstrate that it is well-correlated with
resulting model utility when using the public and private dataset pair (i.e., trained
model accuracy is monotone in the distance), and thus can be used to select an
appropriate public dataset. We provide theoretical analysis demonstrating that the
excess risk scales with this subspace distance. This distance is easy to compute
and robust to modifications in the setting.

1 INTRODUCTION

Recent work has shown that machine learning (ML) models tend to memorize components of their
training data (Fredrikson et al., 2015), and in fact attackers can often recover training samples from
published models through carefully designed attacks (Carlini et al., 2021; Shokri et al., 2017). This
is a critical privacy issue when models are trained on private data. A popular approach to address
this issue is to adopt Differential Privacy (DP) (Dwork et al., 2006) as a rigorous privacy criterion
that provably limits the amount of information attackers can infer about any single training point.
Differentially private stochastic gradient descent (DPSGD) (Abadi et al., 2016; Song et al., 2013;
Bassily et al., 2014) is one of the most commonly used methods to train a ML model (differentially)
privately. It makes two main modifications to vanilla SGD: 1) clipping per-sample gradients to ensure
a bound on their ℓ2 norms; 2) adding Gaussian noise to the gradient.

One downside of adopting DP in ML is that we need to sacrifice utility of the trained model to
guarantee privacy. Specifically, DPSGD noises the gradient at each step, with noise drawn from a
spherical Gaussian distribution, N

(
0, σ2Ip×p

)
, where p is the model dimension (i.e., the number

of model parameters) and the variance σ2 scales the noise. In order to bound the privacy leakage,
the magnitude of noise introduced in each step must scale with the square root of the number of
parameters p. Consequently, for many large models, the noise introduced may overwhelm the signal
contributed by the original gradients, significantly diminishing the utility.

Several works have proposed methods to improve the utility of private machine learning (Zhou et al.,
2021; Golatkar et al., 2022; Luo et al., 2021; Yu et al., 2021; Kairouz et al., 2021; Nasr et al., 2023;
Ganesh et al., 2023). One fruitful direction uses public data, i.e., data that is not subject to any
privacy constraint. There are primarily two types of approaches that incorporate public data in private
training. The first involves transfer learning, where we pretrain the model on a public dataset and
then (privately) finetune the model on a sensitive dataset for our target task (Luo et al., 2021; Abadi
et al., 2016; Yu et al., 2022; Li et al., 2022c). Another approach is based on pre-conditioning, which
exploits the empirical observation that during training, the stochastic gradients (approximately) stay
in a lower-dimensional subspace of the p-dimensional gradient space. Consequently, some works find
this subspace using the public data, and then project the sensitive gradients to this (public) subspace
before privatization (Zhou et al., 2021; Golatkar et al., 2022; Yu et al., 2021; Kairouz et al., 2021).
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This reduces the magnitude of the introduced noise and generally improves utility over DPSGD
without supplementary data.

However, this raises a number of natural questions. From a scientific perspective: why do some
public datasets work better than others for a particular private task? One may intuitively believe that
public datasets which “look relevant” to the private task would perform best, but this is not a precise
statement, and furthermore (as we will empirically demonstrate) may be misleading or incorrect.
Building on this question, from a pragmatic standpoint, how should one select which public dataset
to use?

Our main contribution addresses both of these questions: we provide a simple metric for measuring
the distance between datasets, and show that it is very well-correlated with model utility when treating
one dataset as private and the other as public.

Table 1: GEP evaluation AUC and corresponding distance in descending order. We use the same
model setting for private training and distance computation. "-" means DP-SGD training without
using any public data. Mean and standard deviation are calculated over 3 runs.

.

AUC Private Dataset Public Dataset Distance
68.93% / 0.05

ChestX-ray14

ChestX-ray14 0.15
67.22% / 0.21 SprXRay 0.32
67.20% / 0.34 CheXpert 0.32
66.61% / 0.04 KagChest 0.36
65.37% / 0.43 Kneeos 0.38
64.76% / 0.16 - -
48.60% / 0.02 CIFAR-100 0.55
Time cost for each distance computation: 12s

We demonstrate its efficacy in both transfer learning and pre-conditioning settings. To summarize our
contributions:

1. We introduce Gradient Subspace Distance (GSD), a metric to quantify the difference
between private and public datasets. GSD is an easily computable quantity that measures
the distance between two datasets.

2. We find GSD is well-correlated with model utility when selecting public datasets in both
pre-conditioning and transfer learning settings. As a representative example, Table 1
shows the utility of a privately trained model using a public dataset increases monotonically
as GSD decreases. Our theoretical analysis demonstrates that the excess risk of Gradient
Embedding Perturbation (GEP) (a private training algorithm that leverages public data for
gradient pre-conditioning) scales with the GSD.

3. We show that GSD is transferable. The ordering of GSD for several choices of public
dataset remains fixed across architectures, both simple (e.g., 2-layer CNN) and complex.
Using these simple architectures as a proxy, we can efficiently compute GSDs which are
still useful for privately training large models.

2 RELATED WORK

Transfer Learning. In the differentially private setting, it is now common to pre-train a model
on public data, and then privately fine-tune on private data. This can result in comparable utility
as in the non-private setting, evidenced for both language models (Yu et al., 2021; 2022; Li et al.,
2022c) and vision tasks (Luo et al., 2021; De et al., 2022; Mehta et al., 2022). In many cases, due
to computational requirements, it may be challenging to pre-train a large model on a public dataset.
Instead, many practitioners will turn to pre-trained weights, which obviate the computational burden,
but give less flexibility to choose an appropriate training dataset. As a result, we use second-phase
pre-training, in which we perform a second phase of pre-training with a modestly-sized public dataset.
This has been proven to be useful in non-private setting (Gururangan et al., 2020).

Pre-conditioning. Empirical evidence and theoretical analysis indicate that while training deep
learning models, gradients tend to live in a lower-dimensional subspace (Gur-Ari et al., 2018; Li et al.,
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2020; 2022b; Golatkar et al., 2022; Kairouz et al., 2020). This has led to methods for private ML
which project the sensitive gradients onto a subspace estimated from the public gradients. By using a
small amount of i.i.d. public data, Zhou et al. (2021) demonstrate that this approach can improve the
accuracy of differentially private stochastic gradient descent in high-privacy regimes and achieve a
dimension-independent error rate. Similarly, Yu et al. (2021) proposed GEP, a method that utilizes
public data to identify the most useful information carried by gradients, and then splits and clips
them separately. Amid et al. (2022) proposed a DP variant of mirror descent that leverages public
data to implicitly learn the geometry of the private gradients. In the first-order approximation, it can
be considered as using public gradients as a regularizer for DP-SGD. Gradient estimation based on
public data can also be used as a preconditioner for adaptive optimizers like RMS-Prop (Li et al.,
2022a).

Domain Adaptation. We aim to quantify the similarity between private and public datasets. One
related area of research is distribution shift, or domain adaptation (Gabrel et al., 2014; Wang &
Deng, 2018; Zhuang et al., 2019; Zhang, 2019; Ben-David et al., 2010; 2006; Wang et al., 2021).
At a high level, research in this area examines the problem of when the distributions of test and
training data differ, which aligns with our goals. However, most work in this area focuses on reducing
the gap between in- and out-of-distribution test errors, where target data is used repeatedly for
accuracy improvement. Most of the work along this line assumes that the target data is also public or
doesn’t consider privacy, and is thus inappropriate for the private learning setting. To the best of our
knowledge, the only work with a similar focus to us is Task2Vec (Achille et al., 2019), which uses
the Fisher information matrix to represent a dataset as a vector, allowing for the measurement of a
distance between two datasets. However, it is not suitable for private learning tasks as our empirical
evaluation shows that Task2Vec fails to accurately rank the utility of public datasets.

Choosing Proper Public Data For Private ML. Perhaps the most comparable work is the inde-
pendent and concurrent work of Yu et al. (2023), as both aim to select the best public data for private
machine learning. Yu et al. (2023) propose a private learning framework that uses private dataset se-
lection to choose a subset of the pre-training dataset. While our goals are similar, there are differences
in our methods and use cases. Our work focuses on scenarios with limited amounts of public data. In
contrast, Yu et al. (2023) focuses on first-phase pretraining with large-scale datasets (see Figure 2).
However, this is only applicable for organizations with large computational resources, who can afford
to pretrain such large models. In contrast, we believe most practitioners and researchers (ourselves
included) are much more compute-constrained, and will rely upon already pre-trained models, with
little control over the first-phase pretraining set. This is the focus of our work. Finally, their method
requires training a full-sized DP model, whereas our method can be executed in less than a minute.

3 PRELIMINARIES

Notation. We use p to denote the model dimension, i.e., the number of parameters in the model. k
is a parameter we will use to denote the dimension of the lower-dimensional space we choose. m
refers to the number of examples in a batch. We use superscripts and subscripts interchangeably to
denote private or public data, like xpriv , V pub.

Definition 1 (Differential Privacy (Dwork et al., 2006)). A randomized algorithm A is (ϵ, δ)-
differential private if for any pair of datasets D, D’ that differ in exactly one data point and for all
subsets E of outputs, we have:

Pr[A(D) ∈ E] ≤ eϵ Pr[A(D′) ∈ E] + δ.

Definition 2 (Projection Metric (Ham & Lee, 2008; Edelman et al., 1998)). The projection
metric between two k-dimensional subspaces V1, V2 is defined as:

d (V1, V2) =

(
k∑

i=1

sin2 θi

)1/2

=

(
k −

k∑
i=1

cos2 θi

)1/2

where the θi’s are the principal angles (see Appendix A) between V1 and V2.

Gradient Embedding Perturbation (GEP). Our theoretical analysis is based on GEP (Yu et al.,
2021), a private learning algorithm that leverages public data for gradient preconditioning. We note
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that GEP is the leading approach among private ML algorithms that use public data for precondi-
tioning, and produces state-of-the-art results. Hence, for preconditioning-based methods, we focus
entirely on GEP. Here we briefly introduce their algorithm. GEP involves three steps: 1) it computes a
set of the orthonormal basis for the lower-dimensional subspace; 2) GEP projects the private gradients
to the subspace derived from step 1, thus dividing the private gradients into two parts: embedding
gradients that contain most of the information carried by the gradient, and the remainder are called
residual gradients; 3) GEP clips two parts of the gradients separately and perturbs them to achieve
differential privacy. The full algorithm is in Appendix A.

4 GRADIENT SUBSPACE DISTANCE

Suppose we have a task that consists of a private dataset Xpriv and a differentially private learning
algorithm A that can leverage public data to improve model utility. We have a collection of potential
choices of public dataset [Xpub

1 , Xpub
2 , · · · ]. We would like a metric that, when computed for a public

dataset Xpub, is well-correlated with utility when Xpub is used as the public dataset with algorithm A
on private task Xpriv . This serves two purposes: first, it gives a quantitative metric that can formalize
dataset similarity and suitability for use as a public dataset. Second, it may be useful in actually
selecting a public dataset for use for a particular private task, which is a critical hyperparameter.

Algorithm 1 Gradient Subspace Distance (GSD)

Input: Private examples xpriv , public examples xpub, loss function L, model weights w0, dimen-
sion k
Output: Distance between two image datasets d

1: // Compute per-sample gradient matrix for private and public
examples

2: Gpriv = ∇L(w0, xpriv)
3: Gpub = ∇L(w0, xpub)
4: // Compute top-k subspace of the gradient matrix
5: Upriv, Spriv, V priv ← SVD(Gpriv)
6: Upub, Spub, V pub ← SVD(Gpub)
7: // Compute the distance between two subspaces
8: d = ProjectionMetric(V priv

k , V pub
k )

We present the pseudo-code of our algorithm, Gradient Subspace Distance (GSD) in Algorithm 1.
At a high level, our method involves the following two steps: finding the gradient subspace of the
public and private data examples, and computing their gradient subspace distance. The algorithm uses
the same model A and a batch of randomly labeled data examples from private and public datasets.
Following standard DPSGD, the algorithm will first compute and store per-example gradients from
each data example, that is Gpriv, Gpub ∈ Rm×p. Then it computes the top-k singular vectors of
both the private and public gradient matrix by performing singular value decomposition (SVD).
Finally we use projection metric to derive the subspace distance d by taking the right singular vectors
V pub
k , V priv

k from the previous step.

GSD is naturally suited to the aforementioned pre-conditioning methods. In each iteration, these
methods project the private gradients to a low-dimensional subspace, which ideally contains most of
the signal of the gradients (In Appendix D.2, we empirically reconfirm that using the top subspace of
the gradients themselves contains most of their signal). Since repeatedly selecting the top subspace
of the gradients themselves is not a privacy-preserving operation, we instead choose a public dataset
to use as a proxy. Thus intuitively, a public dataset with a “similar top subspace” should be suitable.
This is what GSD tries to capture, and the best dataset should be the one with minimum GSD.

However, following this intuition only gets us so far: taking it literally would measure distances
between the public and private datasets at each step throughout the training process, an impractical
procedure that would introduce significant overhead. Remarkably, we instead find that a simple
alternative is effective: compute the distance only once at initialization (Section 4.2). This requires
only a single minibatch of each dataset, and as we show in our experiments, is surprisingly robust
to changes in model architecture (Section 6.3). Most importantly, we show that it is also effective
for transfer learning settings (Section 6.2), where subspace projections are not used at all, thus
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demonstrating that GSD more generally captures dataset similarity and fitness-for-use of public
datasets.

4.1 EXCESS RISK SCALES WITH GSD

In this section, we theoretically prove that the excess risk of a pre-conditioning public-data-assist
private machine learning algorithm, e.g., GEP (Yu et al., 2021), is bounded by Gradient Subspace
Distance (GSD) under standard statistical learning assumptions. We first show that the reconstruction
error ∥Gpriv −GprivV

pub
k V pub⊤

k ∥2 is bounded by GSD. Then we show that the convergence bound
of excess risk is determined by the reconstruction error.

Lemma 4.1. For GEP, let Gpriv, V pub
k , V priv

k be the gradient matrix and top-k gradient sub-
space from public or private examples at step t, respectively. Then we have the spectral norm of
reconstruction error

∥R∥2 ≤
√
2s1,tGSD(V priv

k , V pub
k ) + sk+1,t (1)

where R = Gpriv −GprivV
pub
k V pub⊤

k is the reconstruction error of private gradient matrix Gpriv

using public examples, s1,t ≥ ... ≥ sk,t ≥ ... are the singular values of Gpriv, GSD(V priv
k , V pub

k )
is the gradient subspace distance given by our algorithm.

Lemma 4.1 indicates that the reconstruction error of the private gradient matrix using public examples
at step t is bounded by GSD, the subspace distance between the public and private gradient subspaces.
A larger GSD may yield a larger reconstruction error at each step. Proof of this lemma can be found
in Appendix E.
Theorem 4.2. Assume that the loss L(w) = 1

n

∑n
i=1 ℓ (w, zi) is 1-Lipschitz, convex, and β-smooth.

Let w∗ = argminw∈WL(w). The excess risk of GEP obeys

E[L(w)]− L (w∗) ≤ O

(√
k log(1/δ)

nϵ

)
+O

(√
p log(1/δ)

nϵ
d

)
(2)

where GEP is (ϵ, δ)-DP (see Appendix A). Here we set η = 1
β , T = nβϵ√

p , w = 1
T

∑T
t=1 wt,

d = 1
T

∑T
t=1 d

2
t , dt =

√
2s1,tGSD+ sk+1,t, and GSD, s are the gradient subspace distance and

singular values of the gradient matrix at step t.

Theorem 4.2 shows that the excess risk is affected by the GSD at each step. A larger GSD will result
in a larger excess risk, which is often evaluated by the error rate in the experiments. Proof of this
theorem can be found in Appendix E.

(a) Distance in 1 Epoch (b) Distance over 100 Epoch

Figure 1: The trend of distance during the process of training a ResNet20 model on CIFAR-10 using
vanilla SGD. We follow a standard SGD training procedure and compute the distance between the
current private batch and public examples at each iteration.

4.2 ORDERING OF GSD IS PRESERVED OVER TRAINING

Theorem 4.2 shows that the excess risk, measured by the error on the test set, can be predicted by
GSD, assuming that we have fresh private examples at each step. However, this will cause significant
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privacy leakage and computational overhead if we repeatedly compute this distance using the whole
private dataset.

We empirically measure the GSD for each of the public datasets throughout the training process, as
shown in Figure 1. This demonstrates that the relative ordering of the distances is preserved at almost
all times. As a result, it suffices to compute each of the GSDs only once at initialization, requiring
only one batch of examples from the private dataset and one pass through the model, incurring
minimal data exposure and computational overhead. We can then select the dataset with the smallest
GSD for use as our public dataset.

5 SECOND-PHASE PRE-TRAINING

The standard method of private transfer learning consists of two phases: pre-training on a public
dataset and fine-tuning on a private task. However, with large training sets and models, the com-
putational burden of pre-training is prohibitive for most practitioners. Consequently, it is common
to instead use pre-trained weights (obtained through pre-training on a fixed dataset) rather than run
pre-training on a public dataset of choice. While this is computationally convenient, it limits the
choice of pre-training datasets, and thus limits the accuracy in downstream fine-tuning.

f(W0;x)
Xpub,1

−−−−→ f(WPT ;x)︸ ︷︷ ︸
Load pre-trained weights

Xpub,2−−−−→
θ

f(WPT , θ0;x)︸ ︷︷ ︸
Second-phase pre-training

Xpriv−−−−→ f(WPT , θ̂;x)︸ ︷︷ ︸
Private fine-tuning

Figure 2: Second-phase pre-training pipeline. We first choose a large model and download its
pre-trained weights. Then we use an appropriate parameter-efficient fine-tuning mechanism and get
trainable parameters θ. We train θ on a public dataset and get θ0, called second-phase pre-training.
Finally, we pass θ0 as the initial weights for private fine-tuning on the target task.

To alleviate this issue, we consider second-phase pre-training, in which a set of pre-trained weights
are pre-trained on a second public dataset. We can then (privately) fine-tune the model on a sensitive
dataset for the downstream task of interest. While this paradigm has previously been considered in the
non-private setting Gururangan et al. (2020), to the best of our knowledge, we are the first to explore
second phase pre-training in the differentially private setting. Pre-trained models may be significantly
out of distribution with respect to the downstream task. Due to the noise introduced, the ability to
adapt during fine-tuning may be diminished under differential privacy. Thus, the additional public
data may be valuable for reducing the distribution shift. Second-phase pre-training is illustrated in
Figure 2.

5.1 SECOND-PHASE PRE-TRAINING STEP BY STEP

Now we formally define second-phase pre-training. Suppose f(Wpt;x) where Wpt denotes pre-
trained weights and x is input. To do second-phase pre-training, we first use a parameter-efficient
fine-tuning mechanism and create new trainable parameters. Then we train these parameters on some
public datasets. This step can be described by:

f2pt (Wpt, θ;xpub)→ θ0 (3)

where xpub are the public datasets and θ are the new trainable parameters, which are of far lower
dimensionality than W. We get the parameter vector θ0 after this second-phase pre-training step.
Finally, we initialize θ = θ0 and privately fine-tune it by running DPSGD on the private task:

fft (Wpt, θ0;xpriv)→ θ̂ (4)

Our experiments show that second-phase pre-training can give additional accuracy improvements,
even when we only have a small number of public data examples. Furthermore, our distance
measurement GSD remains a good indicator for choosing good public data for the second phase
pre-training.

5.2 PARAMETER EFFICIENCY IN PRIVATE FINE-TUNING

In both private and non-private settings, approaches frequently depart from the default of fine-tuning
all model weights. For example, one can freeze parameters and fine-tune only specific layers, or
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introduce new parameters entirely. The resulting number of tunable parameters is almost always
chosen to be smaller than during pre-training, leading to parameter efficient methods. This can
be beneficial in terms of portability and resource requirements, and the fine-tuned model utility
frequently matches or compares favorably to full fine-tuning. Parameter efficiency may be further
advantageous in the differentially private setting, as it reduces the magnitude of noise one must
introduce (though findings on the downstream impact on utility remain inconclusive). In the settings
we consider, we will empirically find that parameter-efficient methods result in better utility.

In general, there are two ways of parameter-efficient fine-tuning. One approach is to select a subset
of layers or parameters for fine-tuning. For instance, Bu et al. (2022) proposed fine-tuning only the
bias terms of a model, which is both computationally and parameter-efficient while retaining similar
accuracy compared to other methods. Another study by Cattan et al. (2022) found that fine-tuning the
first and last layers of a model consistently improves its accuracy. The other approach is to freeze all
existing parameters and add new trainable parameters during fine-tuning. Some examples include
Adapter (Houlsby et al., 2019), Compacter (Mahabadi et al., 2021) and LoRA (Hu et al., 2022). Yu
et al. (2022); Li et al. (2022c) demonstrated that private fine-tuning using parameter-efficient methods
on large language models can be both computationally efficient and accurate.

6 EXPERIMENTS

We explore the predictive power of GSD in both pre-conditioning and transfer learning settings.
Specifically, we use GSD to choose a public dataset for GEP (Yu et al., 2021) and DP Mirror
Descent (Amid et al., 2022)(representative of pre-conditioning methods) and second-phase pre-
training (representative of transfer learning settings). We use a variety of datasets, including Fashion
MNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011), and CIFAR-10 (Krizhevsky et al., 2009),
as three canonical vision tasks. Based on the recommendations of Tramèr et al. (2022), we also
evaluate our methods on datasets closer to privacy-sensitive applications. In particular, we also
work with two medical image dataset: ChestX-ray14 (Wang et al., 2017) and HAM10000 (Tschandl,
2018). A variety of datasets are chosen as public data respectively. We evaluate our algorithms
using both CNN-based (e.g., ResNet152 (He et al., 2016), DenseNet121 (Huang et al., 2017)) and
Transformer-based (ViTs (Dosovitskiy et al., 2020)) architectures. A variety of parameter-efficient
fine-tuning mechanisms are considered, including freezing layers and LoRA (Hu et al., 2022). Further
details on our experimental setup appear in Appendix B.

We compute GSD non-privately using Algorithm 1, for two reasons. First, as discussed in Section 4,
the privacy leakage due to hyperparameter selection is considered to be minimal and often disregarded
in private ML. We thus treat selection via GSD similarly. Indeed, we experimentally validate that
GSD has minimal impact on privacy using membership inference attacks in Section D.1. Second,
beyond being a tool for public dataset selection, it is interesting in its own right to understand which
metrics determine dataset utility in transfer settings.

Ideally, we would like our distance measure GSD to be model agnostic: it should depend only the
two datasets, not on any particular model. This is not the case, since, as stated, our algorithms take
gradients of the two datasets on the model of interest. However, we show that GSD is highly robust
to changes in model architecture. We evaluate GSD on a 2-layer CNN (which we call a “probe
network”), and show that relative ordering of GSDs is preserved, even though the architecture is far
simpler than the models of interest.

We also compare our algorithm with Task2Vec (Achille et al., 2019), which has a similar goal as GSD.
At a high level, Task2Vec represents a task (i.e., dataset) by transforming it into a vector so that the
similarity between different datasets can be prescribed by the distance between two vectors. Although
experiments show that Task2Vec matches taxonomic relations for datasets like iNaturalist (Horn et al.,
2018), our empirical evaluation shows that it is outperformed by GSD in the differentially private
setting.

6.1 RESULTS FOR PRE-CONDITIONING

We compute GSD and evaluate using GEP for the chosen datasets. The evaluation results are in
Table 2. We find that, across a very wide range of different (and non-cherry-picked) private and
public datasets, final accuracy is monotone as GSD decreases. Unexpectedly, we find that GSD
between CIFAR-10 and CIFAR-100 is less than between CIFAR-10 and CIFAR-10. Nonetheless,
this is predictive of final performance, where we see using CIFAR-100 as a public dataset is better
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than CIFAR-10, despite the fact that the private dataset is also CIFAR-10. In particular, this supports
our use of a rigorous metric to predict dataset suitability rather than going off intuition (which this
example shows can be incorrect).

Table 2: GEP evaluation accuracy and corresponding distance in descending order. We use the same
model for private training and GSD computation. "-" means DP-SGD without public data.

.

Accuracy Private Dataset Public Dataset Distance
58.63%

CIFAR-10

CIFAR-100 0.20
57.64% CIFAR-10 0.24
56.75% SVHN 0.28
52.16% - -
91.32%

SVHN

SVHN 0.25
89.29% CIFAR-100 0.31
89.08% MNIST-M 0.39
83.21% - -
85.25%

FMNIST

FMNIST 0.34
84.54% FLOWER 0.43
83.91% MNIST 0.50
79.77% - -

For ChestX-ray14, we use AUC instead of prediction accuracy because of high class imbalance. The
evaluation results are given in Table 1. Once again, lower GSD implies higher model utility. We
see that ChestX-ray14 is the best public dataset, but the second best is another chest x-ray dataset.
Furthermore, using a significantly different dataset (CIFAR-100) as the public dataset results in worse
utility than using no public dataset at all.

We include further experiments in the appendix: 1) evaluation on DP Mirror Descent, in Appendix
D.3; and 2) combining multiple public datasets, in Appendix D.7.

6.2 RESULTS FOR SECOND-PHASE PRE-TRAINING

We compute the GSD and evaluate using second-phase pre-training for the chosen datasets. The
evaluation results are given in Table 3. As before, we consistently find that smaller GSD leads to
larger utility. Like ChestX-ray14, HAM10000 is highly imbalanced, so we again use AUC. However,
unlike ChestX-ray14, which contains roughly 100,000 images, HAM10000 is relatively small (only
10,000 skin lesion images). We assume that we can only collect 300 images from it and treat them as
public. As shown in Table 3, even this small public dataset can boost the utility through second-phase
pre-training. While even the worst public dataset does not dramatically hurt utility (in contrast to the
pre-conditioning setting), GSD can still be a good indicator of the utility of public datasets. Similar
results apply when we evaluate second-phase pre-training and GSD on ChestX-ray14 using ViTs, as
shown in Appendix D.4.

Table 3: Second-Phase evaluation results and corresponding distance in descending order. We use
DenseNet121 and choose two convolutional layers and the last layer for second-phase pre-training
and private fine-tuning. Detailed settings can be found in Appendix B. We use the same model setting
for private training and distance computation. "-" means DP-SGD training.

.

AUC Private Dataset Public Dataset Distance
87.06%

HAM10000

HAM10000 0.50
85.53% KagSkin 0.68
85.40% - -
84.92% CIFAR-100 0.73
84.88% KagChest 0.73

6.3 TRANSFERABILITY: SIMPLE MODELS REMAIN PREDICTIVE

Our empirical evaluation suggests that GSD is transferable over different architectures. In previous
experiments, we used the same model architecture for both GSD and the (private) learning algorithm.
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We find that the relative GSD ordering of different public datasets is robust across different architec-
tures. For example, GSD(ChestX-ray14, KagChest) is consistently smaller than GSD(ChestX-ray14,
CIFAR-100), no matter what model architecture or parameter-efficient fine-tuning mechanism we
choose. Inspired by this finding, we measure GSD with a very simple CNN, which we call a “probe
network.” It consists of two convolutional layers and one linear layer, with roughly 30,000 parameters.
Evaluation results are given in Appendix D.5. They demonstrate that even using a simple CNN,
GSD can still derive accurate distance measurement with regard to the utility of public data for
private learning tasks. The similarity described by GSD is thus robust against the choice of model
architecture.

6.4 TASK2VEC MAY GIVE WRONG PREDICTIONS

Result. We evaluate the similarity between each public-private dataset pair using Task2Vec Achille
et al. (2019). Task2Vec gives similarity results of mixed quality: to highlight one notable failure
case, we consider the ChestX-ray14 private dataset in Table 4. The closest dataset is itself. However,
following this, CIFAR-100 is as close as KagChest, while it is qualitatively very different from
ChestX-ray14 and provides low utility when used as the public dataset. In contrast, GSD orders the
quality of these datasets in a manner consistent with their quality. We find similar discrepancies for
HAM10000, results are given in the Appendix D.6.

Table 4: Results for GSD vs. Task2Vec. We evaluate ChestX-ray14 using GEP and compute the
distance using Task2Vec and GSD. As suggested by Task2Vec, CIFAR-100 should be as close to
ChestX-ray14 as KagChest, while it actually provides low utility.

AUC Task2Vec GSD
ChestX-ray14 69.02% 0.052 0.15
KagChest 66.62% 0.16 0.36
- 64.90% - -
CIFAR-100 48.80% 0.16 0.55

7 LIMITATIONS AND DISCUSSIONS

We note that, as stated, GSD is not differentially private, as it interacts with the unprotected gradients
of the private data. For our scientific question, exploring which public datasets perform well for a
particular private task, this is inconsequential. For the algorithmic problem of actually selecting a
public dataset for use, one may fear that choosing a public dataset based on GSD may leak sensitive
information about the private dataset. However, we remind that the selection of a public dataset
is a hyperparameter: in essentially all work on private ML, hyperparameter tuning is performed
non-privately, since the privacy impact is considered to be minimal (Papernot & Steinke, 2022;
Mohapatra et al., 2022). Thus, for the purpose of our scientific exploration and to be comparable with
the majority of the private ML literature, our experiments are performed with non-private computation
of GSD. However, we nonetheless discuss differentially private methods for GSD computation in
Appendix C. Furthermore, in Appendix D.1, we empirically evaluate the privacy leakage of GSD
under a number of membership inference attacks, and even with very strong assumptions on the
attacker, they are unable to mount effective attacks. We leave the development of a practical method
with rigorous DP guarantees for future work.

8 CONCLUSION

A recent line of work explores the power of public data in private machine learning. However,
we do not yet have a good understanding of which public datasets are more or less effective for a
particular private task, and thus how to select them. We propose a new distance GSD, and empirically
demonstrate that lower GSD of a public dataset is strongly predictive of higher downstream utility.
Our algorithms require minimal data and are computationally efficient. Additionally, transferability
of GSD demonstrates that it is generally model agnostic, allowing one to decouple the public dataset
selection and private learning. We further demonstrate that GSD is effective for predicting utility
in settings involving both pre-conditioning and second-phase pre-training, and that GSD compares
favorably to other measures of dataset distance.
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A MISSING PRELIMINARIES

Definition 3 (Principal Angles (Golub & Loan, 1996)). Let V1 and V2 be two orthonormal
matrices of Rp×k. The principal angles 0 ≤ θ1 ≤ · · · ≤ θk ≤ π/2 between two subspaces span(V1)
and span(V2), are defined recursively by

cos θk = max
uk∈span(V1)

max
vk∈span(V2)

u′
kvk, subject to

u′
kuk = 1,v′

kvk = 1,u′
kui = 0,v′

kvi = 0, i = 1, ..., k − 1

That is, the first principal angle θ1 is the smallest angle between all pairs of unit vectors over two
subspaces, the second θ2 is the second smallest angle, and the rest are similarly defined.

Definition 4 ((ρ, η)-close). A randomized algorithm A(.) that outputs an approximate distance
between to subspaces span(V1) and span(V2), d̂ (V1, V2), is an (ρ, η)-close approximation to the true
subspace distance d (V1, V2), if they satisfy:

Pr
[
|d̂ (V1, V2)− d (V1, V2) | ≤ ρ

]
≥ 1− η.

Gradient Embedding Perturbation (GEP). Our theoretical analysis is based on GEP, the state-of-
the-art private learning algorithm that leverages public data. Here we briefly introduce their algorithm.
GEP involves three steps: 1) it computes a set of the orthonormal basis for the lower-dimensional
subspace; 2) GEP projects the private gradients to the subspace derived from step 1, thus dividing the
private gradients into two parts: embedding gradients that contain most of the information carried by
the gradient, and the remainder are called residual gradients; 3) GEP clips two parts of the gradients
separately and perturbs them to achieve differential privacy.

Algorithm 2 Gradient Embedding Perturbation (GEP)

Input: Private dataset Xpriv , public examples xpub, loss function L, model weights θ0, dimension
k, learning rate η, number of iterations T , noise multiplier σ1, σ2, clip norm S1, S2

Output: Differentially private model θT
1: For t = 1 to T
2: Compute per-sample gradient matrix Gpriv

t and public gradient matrix Gpub
t

3: // Compute an orthonormal basis for the public subspace
4: Initialize V pub

k ∈ Rk×p randomly.
5: For i = 1 to Tpower

6: Compute A = Gpub
t V pub⊤

k and V pub
k = A⊤V pub⊤

k

7: Orthogonalize V pub
k and normalize row vectors.

8: EndFor
9: Delete Gpub

t to free memory.
10: // Project the private gradients onto public subspace
11: Compute gradient embedding Wt = Gpriv

t V pub⊤
k,t and clip its rows with S1 to obtain Ŵ .

12: Compute residual gradients Rt = Gpriv
t −WtV

pub
k,t and clip its rows with S2 to obtain R̂.

13: // Perturb gradient embedding and residual gradient separately
14: Perturb embedding with noise z

(1)
t ∼ N

(
0, σ2

1Ik×k

)
: wt :=sum over rows of Ŵt, ŵt :=

wt + z
(1)
t

15: Perturb residual gradient with noise z
(2)
t ∼ N

(
0, σ2

2Ik×k

)
: rt :=sum over rows of R̂t, r̂t :=

rt + z
(2)
t

16: v̂t := (ŵ⊤
t V

pub
k + r̂t)/n

17: // Update weights
18: θt+1 = θt − ηv̂t
19: EndFor
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B EXPERIMENTS SETTING

Model Architecture. As to pre-conditioning experiments, for Fashion MNIST, we use a simple
convolutional neural network with around 26000 parameters as in Table 5a. For SVHN and CIFAR-
10, we use ResNet20 which contains roughly 260,000 parameters. Batch normalization layers are
replaced by group normalization layers for different private training, aligning with GEP settings. For
ChestX-ray14, we use ResNet152 which has been pretrained on ImageNet1k, a subset of the full
ImageNet Deng et al. (2009) dataset. We privately fine-tune its classification layer, which contains
around 28,000 parameters. We use the same model architecture for subspace distance computation
and GEP private training. As to second-phase experiments, we evaluate ChestX-ray14, HAM10000
on ResNet152, DenseNet121, and ViT using various parameter-efficient fine-tuning techniques, we
list them in Table 6. We use a simple 2-layer CNN for the probe network, shown in Table 5b.

Table 5: Self-designed model architectures.

.
(a) Model architecture for Fashion MNIST.

Layer Parameters
Conv2d 16 filters of 8x8, stride=2

Maxpooling2d stride=2
Conv2d 32 filters 4x4, stride=2
Linear 32 units

Softmax 10 units

(b) Model architecture for Probe Network.

Layer Parameters
Conv2d 64 filters of 8x8, stride=5

Maxpooling2d stride=2
Conv2d 16 filters 4x4, stride=3

Maxpooling2d stride=2
Linear 144 units

Sigmoid num_classes

Table 6: Parameter-efficient fine-tuning mechanisms for different models.

.

Model Fine-tuning mechanism
ResNet152 fc + layer3.32.conv1.weight

DenseNet121
classifier

+ features.denseblock3.denselayer23.conv1.weight
+ features.denseblock3.denselayer24.conv1.weight

ViT LoRA (α = 8, r = 8)

Dataset Choice. CIFAR-10, SVHN and Fashion MNIST are commonly used for evaluation pur-
poses in Computer Vision. For all the evaluations in Table 2, we use the first 2000 images in the test
set as public images. For medical datasets, ChestX-ray14 consists of frontal view X-ray images with
14 different classes of lung disease. In our evaluation, there are 78,466 training examples and 20433
testing examples in ChestX-ray14. HAM10000 is composed of 10,000 dermatoscopic images of
pigmented lesions. Our choices of public datasets for the four private datasets are described in Table
7. Among them, MNIST-M Ganin et al. (2016) consists of MNIST digits placed on randomly selected
backgrounds taken from color photos in the BSDS500 dataset. FLOWER Nilsback & Zisserman
(2008) consists of 102 flower categories. KagChest Kermany et al. (2018) imagees were selected
from retrospective cohorts of pediatric patients of one to five years old from Guangzhou Women
and Children’s Medical Center, Guangzhou. It is easy to be obtained from Kaggle so we name it
KagChest. SprXRay is another public chest x-ray dataset designed to help predict the age and gender
of the patient based on the X-Ray image de Aguiar Kuriki et al. (2023). Kneeos is a dataset Ahmed &
Mstafa (2022) that includes X-ray images of knees, which can be used for detecting knee joint issues
and grading the severity of knee osteoarthritis using the Kellgren-Lawrence (KL) scale. CheXpert
Irvin et al. (2019) is another chest x-ray dataset by Stanford. Similarly for the KagSkin Fanconi
(2019), which images of benign skin moles and malignant skin moles. We split the first 300 (for
ChestX-ray14, this number is 2000) images in the testset and take them as public. The next 300
(again, for ChestX-ray14, this number is 2000) images are the chose private examples.

Hyperparameter Setting. We use ϵ = 2 and δ = 1e − 5 for all the evaluations. For distance
computation, we choose k = 16. We follow the hyperparameter setting in the GEP paper for
evaluation. In the GEP paper, they didn’t evaluate GEP on the ChestX-ray14 dataset. In our
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Table 7: Choices of public dataset for private dataset. The four datasets in the first row are private
datasets. The datasets listed in the first columns are choices of public datasets. ’X’ means we choose
the two corresponding datasets as a pair of private/public dataset.

.

CIFAR-10 SVHN Fashion MNIST ChestX-ray14 HAM10000
CIFAR-10 X

CIFAR-100 X X X X
SVHN X X

MNIST-M X
Fashion MNIST X

FLOWER X
MNIST X

ChestX-ray14 X
KagChest X X

HAM10000 X
KagSkin X
SprXRay X
CheXpert X
Kneeos X

evaluation, we choose k = 100 and clip norms are 3 and 1 for original and residual gradients,
respectively. The learning rate for the SGD optimizer is set to 0.05. All other hyperparameters are
set as default. For second-phase pre-training, we use those public examples to perform supervised
learning on trainable parameters. We use Adam optimizer and set η = 3e− 3 for Transformer-based
models and η = 5e− 5 for CNN-based models. For private fine-tuning, we use SGD optimizer and
set η = 0.8 and clip norm = 0.1.

Compute. Experiments are conducted on a Linux cloud server with one NVIDIA A100 GPU.

C PRIVATE DISTANCE MEASUREMENT

While Algorithm 1 has relatively low data exposure (requiring only a single batch of private examples),
it is not differentially private. In this section, we give a general algorithm that computes GSD
differentially privately: Differentially Private Gradient Subspace Distance (DP-GSD, Algorithm 3).
As GSD needs top-k singular vectors from private examples, we derive these singular vectors in a
differentially private manner, and the rest of the algorithm remains DP because of post-processing.

Algorithm 3 Differentially Private Gradient Subspace Distance (DP-GSD)

Input: m private examples xpriv, m public examples xpub, loss function L, model weights w0,
dimension k, privacy parameter ϵ, δ, clip norm c
Output: Distance between two image datasets d

1: // Compute per-sample gradient matrix for private and public
examples

2: Gpriv = ∇L(w0, xpriv)
3: Gpub = ∇L(w0, xpub)
4: // Privately compute top-k subspace of the private gradient

matrix
5: Clip per-row: Gpriv = Clip(Gpriv, c)

6: Compute V priv
k ← DPPCA(Gpriv, k, ϵ, δ)

7: // Compute top-k subspace of the public gradient matrix
8: Upub, Spub, V pub ← SVD(Gpub)
9: // Compute the distance between two subspaces

10: d = ProjectionMetric(V priv
k , V pub

k )

At a high level, DP-GSD makes one adaptation to GSD: we compute top-k subspace of the private per-
sample gradient matrix in a differentially private manner. DPPCA in line 6 of Algorithm 3 can be
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any Differentially Private Principal Component Analysis (DPPCA), e.g., input perturbation Chaudhuri
et al. (2013), subspace perturbation Dwork et al. (2014), exponential mechanism Chaudhuri et al.
(2013) and stochastic methods Liu et al. (2022).

We give a theoretical analysis of the privacy and utility guarantee of DP-GSD based on the implemen-
tation of DPPCA Chaudhuri et al. (2013), given in Algorithm 4.

Algorithm 4 Differentially Private Principal Component Analysis (DPPCA)

Input: m× p data matrix X , dimension k, privacy parameter ϵ
Output: V̂k: Top-k subspace of X

1: Set A = 1
mX⊤X

2: Sample V̂k = BMF
(
mϵ
2 A

)
To achieve DP, DPPCA randomly samples a k-dimensional distribution from the matrix Bingham
distribution, which has the following density function:

f(V |A, k, p) =
1

1F1

(
1
2k,

1
2p,A

) exp (tr (V TAV
))

(5)

where V is the p× k subspace and 1F1

(
1
2k,

1
2p,A

)
is a normalization factor. We use BMF(V ) in

Algorithm 4 to denote this distribution. Thus, we have the following privacy and utility guarantees
(proofs in Appendix E):
Theorem C.1. (Privacy Guarantee) Let Algorithm 4 be an implementation of DPPCA in DP-GSD,
then DP-GSD is ϵ/c2-differentially priate.
Theorem C.2. (Utility Guarantee) Let Algorithm 4 be an implementation of DPPCA in DP-GSD,
then for k = 1, the distance given by DP-GSD, d̂(V priv

k , V pub
k ) is (ρ, η)-close to the distance given

by GSD, d(V priv
k , V pub

k ), if we have

m >
pc2

ϵα(1−
√
1− ρ2)

(
4
log(1/η)

p
+ 2 log

8λ1

ρ2α

)
(6)

where λ1 is the top eigenvalue, α = λ1 − λ2 is the eigen-gap, p is the model dimension, c is clip
norm and ϵ is the privacy parameter.

D MORE EXPERIMENTS

D.1 MEMBERSHIP INFERENCE ATTACK: CANNOT INFER ANYTHING

Like other hyperparameter searches, GSD should be used locally and only the best public dataset
will be reported (e.g. CIFAR-100 for private CIFAR-10). To claim that this won’t reveal sensitive
information too much when we use a batch of private data for computing GSD, we evaluate it under
membership inference attacks. We choose a well-studied membership inference attack introduced in
Nasr et al. (2019) under white box setting and use Adversarial Robustness Toolbox (ART) (Nicolae
et al., 2018), a Python library for ML under black box setting.

Based on the recommendations of Nasr et al. (2019), we have the following assumption one the
adversary: White-box & Black-box, Stand-alone, Passive and Supervised:

• Black-box refers to the situation where the attacker can only obtain the output. White-box
means the attacker can access the full model: intermediate computations, gradients, etc.

• Stand-alone means that GSD is computed in a centralized manner.
• Passive means that the attacker can observe the computation. The attacker cannot be part of

the computation in the federated learning setting.
• Supervised: we assume that the attacker knows some of the examples in the private dataset.

Note that this is a very strong (even unrealistic) assumption for the attacker. We did this
evaluation to illustrate that even though the attacker have such knowledge, the attacker still
cannot infer if a new example is in the private data selected for GSD or not.
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The white-box membership inference attack, introduced by Nasr et al. (2019), makes use of the
information from loss values, gradients, hidden layer activations, etc. They combine these information
and supervisely train a binary classifier to tell if a particular image (xi, yi) is in xpriv or not. Without
having access to the model, the black-box attack of Nicolae et al. (2018) trains a binary classifier on
the images in a supervised manner.

Experiment Setting. Let’s say based on the result by GSD: "CIFAR-100 is the best dataset for
CIFAR-10" (see Table 2), the adversary wants to figure out if a particular image (xi, yi) is used in
GSD computation or not (i.e. infer whether (xi, yi) in xpriv. Under white-box setting, we assume
that the adversary knows the model we use, i.e. Resnet20. More importantly, we assume that the
adversary has already known that n numbers of images we used in xpriv . Since the adversary knows
that CIFAR-10 is the private dataset, we also assume that the adversary has access to all the CIFAR-10
datasets. (still, this is a strong and even unrealistic assumption for the adversary in practice) That
is, the adversary has access to all the images in CIFAR-10 and knows n of them are the images we
used in xpriv. The adversary wants to know which of the rest of them are in xpriv. The test set is
composed of the rest of the images in xpriv and a same amount of images that are not in xpriv .

Table 8: Attack success rate of white-box membership inference attack. Note that |xpriv| = 2000.

.

n=1000 n=1800
No GSD values
Use gradients 50% 50%
Use hidden layer activations 50% 50%
Add GSD values
Use gradients 50.25% 50.31%
Use hidden layer activations 50.05% 50.06%

Evaluation results on white-box membership inference attack are given in Table 8. Since GSD
computation doesn’t require training the model, the model doesn’t contain any information about
the dataset, i.e., CIFAR-10, even when the adversary knows 1800 images in xpriv, still cannot infer
whether a new image (xi, yi) is in xpriv or not. Observing these results, we give an even stronger
assumption on the adversary: the adversary also knows the public datasets we use, i.e. CIFAR-100
and SVHN (see Table 2), and knows exactly which batch we are using. Based on the suggestions of
Nasr et al. (2019), we add extra information as follows: the adversary uses those datasets to compute
GSD, observes it T times, and adds these GSD values to the binary classifier. But still, the inference
is as good as a random guess.

We also evaluate GSD under a black-box membership inference attack, provided by Nicolae et al.
(2018). They train a shallow network as a binary classifier in a supervised manner. Results are
given in Table 9. Starting the attack with pure images instead of extracting gradients, hidden layer
activations seem to have a better attack success rate. But still, this poor attack success rate indicates
that GSD can hardly cause privacy leakage.

Table 9: Attack success rate of black-box membership inference attack. Note that |xpriv| = 2000.

. n=1000 n=1800
Attack Success Rate 51.65% 52.19%

D.2 GRADIENTS ARE IN A LOWER-DIMENSIONAL SUBSPACE.

We evaluate the empirical observation that the stochastic gradients stay in a lower-dimensional
subspace during the training procedure of a deep learning model (Gur-Ari et al., 2018; Li et al., 2020),
as shown in Figure 3. Results show that only a tiny fraction of singular values are enormous. At
the same time, the rest are close to 0, meaning that most of the gradients lie in a lower-dimensional
subspace, corresponding to the top singular vectors.
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(a) CIFAR-10 (b) ChestX-ray14

Figure 3: Top 500 singular values in the training procedure using vanilla SGD. Model architectures
are in the Appendix B. Only a small fraction of singular values are extremely large while the rest are
close to 0, meaning that most of the gradients lie in a lower-dimensional subspace, which corresponds
to the top singular vectors.

.

D.3 MORE PRE-CONDITIONING EVALUATION.

Other than GEP, we also evaluate our method over DP Mirror Descent (Amid et al., 2022), another
approach that leverages public data as a preconditioner. We give a short introduction to their algorithm
in the Related Work Section 2. Following the evaluation setting in GEP, we have the following
experiment results on the ChestX-ray14 dataset (Table 10).

Table 10: DP Mirror Descent evaluation AUC and corresponding distance in descending order. We
use the same model setting for private training and distance computation. "-" means DP-SGD training
without using any public data.

.

AUC Private Dataset Public Dataset Distance
66.83%

ChestX-ray14

ChestX-ray14 0.15
65.79% SprXRay 0.32
65.70% CheXpert 0.32
64.92% KagChest 0.36
64.76% - -
50.21% CIFAR-100 0.55

The order of the public datasets is still preserved except for the fact that GEP works slightly better
than DP Mirror Descent on larger datasets like ChestX-ray14.
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D.4 MORE SECOND-PHASE PRE-TRAINING EVALUATION.

We evaluate second-phase pre-training and GSD on ChestX-ray14 and HAM10000 using ResNet152,
DenseNet121, and ViT. Aside from the results we presented, we show the rest of the results here.

Table 11: Second-Phase evaluation results and corresponding distance on ChestX-ray14 in descending
order. Detailed settings can be found in Appendix B. We use the same model setting for private
training and distance computation. "-" means vanilla DP-SGD training.

(a) ResNet152

AUC Private Dataset Public Dataset Distance
67.48%

ChestX-ray14

ChestX-ray14 0.31
67.27% KagChest 0.34
66.82% - -
66.57% CIFAR-100 0.39

(b) DenseNet121

AUC Private Dataset Public Dataset Distance
67.53%

ChestX-ray14

ChestX-ray14 0.33
67.47% - -
67.40% KagChest 0.37
67.28% CIFAR-100 0.40

Table 12: Second-Phase evaluation results and corresponding distance in descending order. We
use ViT and LoRA fine-tuning. We use the same model setting for private training and distance
computation. Detailed settings can be found in Appendix B. "-" means DP-SGD training.

.

AUC Private Dataset Public Dataset Distance
72.99%

ChestX-ray14

ChestX-ray14 0.44
71.86% KagChest 0.59
70.93% - -
70.84% CIFAR-100 0.98

Table 13: Second-Phase evaluation results and corresponding distance on HAM10000 in descending
order. Detailed settings can be found in Appendix B. We use the same model setting for private
training and distance computation. "-" means vanilla DP-SGD training.

(a) ResNet152

AUC Private Dataset Public Dataset Distance
86.83%

HAM10000

HAM10000 0.48
85.95% KagSkin 0.65
85.55% - -
85.49% CIFAR-100 0.70
85.41% KagChest 0.70

(b) ViT

AUC Private Dataset Public Dataset Distance
84.94%

HAM10000

HAM10000 0.50
81.23% KagSkin 0.76
78.65% KagChest 0.93
77.07% CIFAR-100 0.97
73.67% - -
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D.5 TRANSFERABILITY: SIMPLE MODELS REMAIN PREDICTIVE

GSD is transferable across different architectures and the relative GSD ordering of public datasets
remains consistent. We present the results in Table 14.

Table 14: Transferability evaluation results. The left-most column denotes each pair of private-public
datasets, e.g. (Xray, Xray) means we take ChestX-ray14 as a private dataset, split part of its testset
and take those images as public. Detailed settings can be found in Appendix B. The first row denotes
different model architectures. "Probe" is a simple CNN with around 30,000 parameters. ResNet152∗
and ResNet152∗∗ use different parameter-efficient fine-tuning settings. We use the same model for
each Distance-Accuracy. The results show that this distance given by GSD is generally robust across
different algorithms (pre-conditioning or second-phase pre-training) and different model architectures
(from simple Probe to ViT). A smaller distance indicates that this public dataset is more similar to the
private one, thus leveraging this public dataset for private learning will result in better accuracy.

Probe ResNet152∗ ResNet152∗∗ DenseNet121 ViT
Task Pre-conditioning Second-phase Second-phase Second-phase

Distance | Accuracy
(Xray, Xray) 0.39 0.15 | 69.02% 0.31 | 67.48% 0.33 | 67.53% 0.44 | 72.99%
(Xray, Chest) 0.52 0.36 | 66.62% 0.34 | 67.27% 0.37 | 67.40% 0.59 | 71.86%

(Xray, CIFAR) 0.58 0.55 | 48.80% 0.39 | 66.57% 0.40 | 67.28% 0.98 | 70.84%
(HAM, HAM) 0.42 - 0.48 | 86.83% 0.50 | 87.06% 0.50 | 84.94%
(HAM, Skin) 0.55 - 0.65 | 85.95% 0.68 | 85.53% 0.76 | 81.23%

(HAM, CIFAR) 0.67 - 0.70 | 85.49% 0.73 | 84.92% 0.97 | 77.07%
(HAM, Chest) 0.76 - 0.70 | 85.41% 0.73 | 84.88% 0.93 | 78.65%
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D.6 MORE VS. TASK2VEC.

We evaluate the similarity between each public-private dataset pair using Task2Vec. The results on
HAM10000 public dataset are presented here using cluster map in Figure 4. The closest datasets are
itself, and the HAM10000 public dataset. However, following this, the closest dataset is KagChest,
which is qualitatively very different from HAM10000 (chest x-rays versus skin lesions) and provides
low utility when used as the public dataset (see Table 14). In particular, KagSkin (another skin
disease dataset) is qualitatively closer to HAM10000 and provides higher utility when used as a
public dataset, yet Task2Vec assigns it a greater distance than KagChest. In contrast, GSD orders the
quality of these datasets in a manner consistent with their quality.

(a) Clustermap given by Task2Vec (b) Clustermap given by GSD

Figure 4: Clustermaps given by Task2Vec (left) and GSD(right) for HAM10000 and corresponding
public datasets. The lines on the top and the left denote the similarity of a pair of datasets. The
numbers in the grid are the similarity distance for a pair of datasets. Although Task2Vec gives
the correct prediction for (HAMpublic, HAMprivate) pair, it incorrectly predicts the second-close
similarity, where it believes KagChest is the second-close dataset for HAM10000, while they should
be totally irrelevant.
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D.7 COMBINATIONS OF DATASETS BETTER THAN ONE: GENERALLY BUT NOT NECESSARILY
TRUE

While some studies point out that pre-training on multiple diverse datasets can lead to better perfor-
mance on downstream NLP tasks compared to pre-training on a single dataset (Brown et al., 2020),
our experiment results show that under small amount of accessible public data assumption, this
conclusion is generally but not necessarily true, as shown in Table 15.

Table 15: GEP evaluation AUC and corresponding distance in descending order. We use the same
model setting for private training and distance computation. "-" means DP-SGD training without
using any public data.

.

AUC Private Dataset Public Dataset Distance
69.02%

ChestX-ray14

ChestX-ray14 0.15
67.83% SprXRay + CheXpert 0.30
67.31% SprXRay 0.32
67.29% CheXpert 0.32
67.12% CheXpert + CIFAR-100 0.33
66.62% KagChest 0.36
65.26% Kneeos 0.38
64.90% - -
48.80% CIFAR-100 0.55

Using SprXRay or CheXpert as public datasets for private learning can result in higher accuracy
compared to the DP-SGD baseline. Combining these datasets can further improve accuracy. However,
if a "bad" public dataset like CIFAR-100 is combined with ChestX-ray14, it can negatively impact
the overall performance.

E MISSING PROOFS

In this section, we present proofs for Section 4.1.

Lemma 4.1 (Reconstruction Error). For GEP, let Gpriv , V pub
k , V priv

k be the gradient matrix and
top-k gradient subspace from public or private examples at step t, respectively. Then we have the
spectral norm of reconstruction error

∥R∥2 ≤
√
2s1,tGSD(V priv

k , V pub
k ) + sk+1,t (7)

where R = Gpriv −GprivV
pub
k V pub⊤

k is the reconstruction error of private gradient matrix Gpriv

using public examples, s1,t ≥ ... ≥ sk,t ≥ ... are the singular values of Gpriv, GSD(V priv
k , V pub

k )
is the gradient subspace distance given by our algorithm.

Proof. We have

R = Gpriv −GprivΠ
pub
k

= Gpriv −GprivΠ
priv
k +GprivΠ

priv
k −GprivΠ

pub
k

(8)

⇒ ∥R∥2 −
∥∥∥Gpriv(Π

pub
k −Πpriv

k )
∥∥∥
2
≤
∥∥∥Gpriv

(
I−Πpriv

k

)∥∥∥
2

(9)

⇒ ∥R∥2 ≤
∥∥∥Gpriv(Π

pub
k −Πpriv

k )
∥∥∥
2︸ ︷︷ ︸

D1

+
∥∥∥Gpriv

(
I−Πpriv

k

)∥∥∥
2︸ ︷︷ ︸

D2

(10)

where Πpub
k = V pub

k V pub⊤
k denotes the orthogal projection to the subspace of span(V pub

k ), Πpriv
k =

V priv
k V priv⊤

k denotes the orthogal projection to the subspace of span(V priv
k ).

For D2, recall that the Eckart–Young–Mirsky theorem (Eckart & Young, 1936) shows that the best
rank-k approximation of Gpriv is given by its top-k reconstruction using SVD. Therefore, we have

25



Under review as a conference paper at ICLR 2024

D2 =
∥∥∥Gpriv

(
I−Πpriv

k

)∥∥∥
2

=

∥∥∥∥∥
p∑

i=1

siuiv
⊤
i −

k∑
i=1

siuiv
⊤
i

∥∥∥∥∥
2

=

∥∥∥∥∥
p∑

i=k+1

siuiv
⊤
i

∥∥∥∥∥
2

= sk+1

(11)

For D1, the definition of projection metric (Definition 3) shows that

GSD2(V priv
k , V pub

k ) = k − (cos2 θ1 + ...+ cos2 θk)

(a)
= k − Tr

(
V priv⊤
k V priv

k V pub⊤
k V pub

k

)
(b)
=

1

2

∥∥∥Πpub
k −Πpriv

k

∥∥∥2
F

(12)

(a) and (b) hold according to Equation 5.4 of Conway et al. (2002).

Therefore, we have
D1 =

∥∥∥Gpriv(Π
pub
k −Πpriv

k )
∥∥∥
2

≤ ∥Gpriv∥2
∥∥∥Πpub

k −Πpriv
k

∥∥∥
2

≤ s1

∥∥∥Πpub
k −Πpriv

k

∥∥∥
F

=
√
2s1GSD(V priv

k , V pub
k )

(13)

Combining D1 and D2, we have

∥R∥2 ≤
∥∥∥Gpriv(Π

pub
k −Πpriv

k )
∥∥∥
2
+
∥∥∥Gpriv

(
I−Πpriv

k

)∥∥∥
2

≤
√
2s1,tGSD(V priv

k , V pub
k ) + sk+1,t

(14)

Thus we know that GSD bounds the reconstruction error at step t.

Theorem 4.2 (Excess Risk). Assume that the loss L(w) = 1
n

∑n
i=1 ℓ (w, zi) is 1-Lipschitz, convex,

and β-smooth. Let w∗ = argminw∈WL(w). The excess risk of GEP obeys

E[L(w)]− L (w∗) ≤ O

(√
k log(1/δ)

nϵ

)
+O

(√
p log(1/δ)

nϵ
d

)
(15)

where GEP is (ϵ, δ)-DP (see Appendix A). Here we set η = 1
β , T = nβϵ√

p , w = 1
T

∑T
t=1 wt,

d = 1
T

∑T
t=1 d

2
t , dt =

√
2s1,tGSD + sk+1,t, and GSD, s are the gradient subspace distance and

singular values of the gradient matrix at step t.

Proof. Theorem 3.3 of Yu et al. (2021) (see Appendix A) shows that the excess risk of GEP obeys

E[L(w)]− L (w∗) ≤ O

(√
k log(1/δ)

nϵ

)
+O

(
r
√
p log(1/δ)

nϵ

)
(16)

where r = 1
T

∑T−1
t=0 r2t and rt = ∥Gpriv −GprivV

pub
k V pub⊤

k ∥2 is the reconstruction error at step t.

From Lemma 4.1 we know that rt ≤ dt at each step t, thus completing the proof.

Lemma E.1. (Theorem 6 of Chaudhuri et al. (2013)) DPPCA (Algorthim 4) is ϵ-differentially
private.
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Theorem C.1 (Privacy Guarentee). Let Algorithm 4 be an implementation of DPPCA in
DP-GSD, then DP-GSD is ϵ/c2-differentially priate.

Proof. Let xpriv be m private examples. Gpriv = Clip(∇L(w0, xpriv), c) ∈ Rm×p is per-sample
gradient matrix and A = 1

mGprivG
⊤
priv. We sample top-k eigenvectors from the matrix Bingham

distribution (Chikuse, 2003):

f(V |A, k, p) =
1

1F1

(
1
2k,

1
2p,A

) exp (tr (V TAV
))

(17)

with A = mϵ
2c2A. We show that this is the exponential mechanism applied to the score function

q(V ;x) = mvTAv.

Consider the neighboring data X ′
priv = [x1, ..., x

′
i, ..., xm] that differ from Xpriv with one data

example x′
i. Let G′

priv = Clip(∇L(w0, x
′
priv), c) and A′ = 1

mG
′⊤
privG

′
priv . We have

∆q = max
∣∣mvTAv −mvTA′v

∣∣ ≤ ∣∣∣vT (gigTi − g′ig
′⊤
i )v

∣∣∣
≤
∥∥vT gi|∥2 − ∥vT g′i∥2∣∣

≤
∥∥vT∇L(w0, xi)|∥2 − ∥vT∇L(w0, x

′
i)∥2

∣∣
≤ c2

(18)

Therefore, from E.1, we know that DPPCA in DP-GSD (Algorithm 3) is ϵ/c2-differentially private.
Thus, DP-GSD is ϵ/c2-differentially private because of post-processing.

Lemma E.2. (Theorem 7 of Chaudhuri et al. (2013)) Let k = 1, the private gradient subspace
V priv
k in GSD and the private gradient subspace V̂ priv

k from Algorithm 4 satisfy

Pr
(∣∣∣〈V priv

k , V̂ priv
k

〉∣∣∣ > ρ
)
≥ 1− η (19)

if we have

m >
p

ϵα(1− ρ)

(
4
log(1/η)

p
+ 2 log

8λ1

(1− ρ2)α

)
(20)

where λ1 is the top eigenvalue, α = λ1 − λ2 is the eigen-gap, p is the model dimension and ϵ is the
privacy parameter.

Theorem C.2 (Utility Guarantee) Let Algorithm 4 be an implementation of DPPCA in DP-
GSD, then for k = 1, the distance given by DP-GSD, d̂(V priv

k , V pub
k ) is (ρ, η)-close to the distance

given by GSD, d(V priv
k , V pub

k ), if we have

m >
pc2

ϵα(1−
√
1− ρ2)

(
4
log(1/η)

p
+ 2 log

8λ1

ρ2α

)
(21)

where λ1 is the top eigenvalue, α = λ1 − λ2 is the eigen-gap, p is the model dimension, c is clip
norm and ϵ is the privacy parameter.

Proof. Let V priv
k be the private gradient subspace in GSD and V̂ priv

k be the private gradient subspace
in DP-GSD, d(V priv

k , V̂ priv
k ) be the projection metric distance between two subspaces. From Lemma

E.2, we have

Pr
(∣∣∣〈V priv

k , V̂ priv
k

〉∣∣∣ > µ
)
= Pr

(
d(V priv

k , V̂ priv
k ) ≤

√
1− ρ2

)
≥ 1− η

(a)−−→ Pr
(∣∣∣d̂(V priv

k , V pub
k )− d(V priv

k , V pub
k )

∣∣∣ ≤√1− µ2
)
≥ 1− η

(22)

(a) holds because of the triangle inequality of projection metric (Ham & Lee, 2008). Substituting√
1− µ2 with ρ, we have d̂(V priv

k , V pub
k ) is (ρ, η)-close to d(V priv

k , V pub
k ).
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