
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GENERATIVE ADVERSARIAL REASONER: ENHANCING
LLM REASONING WITH ADVERSARIAL REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) with explicit reasoning capabilities excel at math-
ematical reasoning yet still commit process errors, such as incorrect calculations,
brittle logic, and superficially plausible but invalid steps. In this paper, we intro-
duce Generative Adversarial Reasoner, an on-policy joint training framework de-
signed to enhance reasoning by co-evolving an LLM reasoner and an LLM-based
discriminator through adversarial reinforcement learning. A compute-efficient re-
view schedule partitions each reasoning chain into logically complete slices of
comparable length, and the discriminator evaluates each slice’s soundness with
concise, structured justifications. Learning couples complementary signals: the
LLM reasoner is rewarded for logically consistent steps that yield correct answers,
while the discriminator earns rewards for correctly detecting errors or distinguish-
ing traces in the reasoning process. This produces dense, well-calibrated, on-
policy step-level rewards that supplement sparse exact-match signals, improving
credit assignment, increasing sample efficiency, and enhancing overall reasoning
quality of LLMs. Across various mathematical benchmarks, the method delivers
consistent gains over strong baselines with standard RL post-training. Specifically,
on AIME24, we improve DeepSeek-R1-Distill-Qwen-7B from 54.0 to 61.3 (+7.3)
and DeepSeek-R1-Distill-Llama-8B from 43.7 to 53.7 (+10.0). The modular dis-
criminator also enables flexible reward shaping for objectives such as teacher dis-
tillation, preference alignment, and mathematical proof-based reasoning.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable mathematical reasoning abilities,
often achieving expert-level performance across diverse benchmarks (Achiam et al., 2023; Dubey
et al., 2024; Shao et al., 2024; DeepSeek-AI, 2025). However, despite extensive training on large-
scale datasets with sophisticated paradigms, these models still suffer from errors in reasoning, such
as incorrect calculations, flawed logic, superficially plausible but invalid arguments, and repetitive
or incoherent reasoning steps. To tackle these challenges, researchers have explored approaches
such as model debate collaboration, in which models debate against each other (Du et al., 2023;
Liang et al., 2023) or with themselves (Kuba et al., 2025a; Liu et al., 2025a), and Process Reward
Models (Lightman et al., 2023; Wang et al., 2023), which aim to identify and mitigate process errors
throughout the reasoning process. These methods provide finer-grained supervision and contribute
to more robust and reliable LLM performance.

Among existing approaches, Process Reward Models (PRMs) have shown strong results on complex
reasoning tasks, largely because they leverage detailed step-level annotations. However, PRMs face
challenges related to annotation costs and data quality (Lightman et al., 2023), as fine-grained labels
are expensive and prone to subjective error, and are sometimes susceptible to over- or under-reward
issues (Wen et al., 2024; Lv et al., 2025). Alternatively, prompt-based methods employ LLMs as
critics for stepwise judgments at a lower cost (Zhang et al., 2024; Gao et al., 2024; Xia et al., 2025).
However, their judgments can sometimes be noisy, inconsistent, and less discriminative.

To bridge this gap, we retain a stepwise critic (referred to as the discriminator) but enable it to co-
evolve with the LLM reasoner through joint training, generating effective step-level signals with
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Figure 1: Pass@1 accuracy on seven mathematical reasoning benchmarks. Our Generative Adversarial
Reasoner (GAR) consistently improves over strong baselines across both Deepseek-R1-Distill-Qwen-7B and
Deepseek-R1-Distill-Llama-8B. GAR achieves gains of +22.9% on AIME24 and +19.5% on AIME25 for the
Llama backbone, as well as +35.3% on LiveMathBench-Hard for Qwen. These results demonstrate the robust-
ness and generality of GAR in enhancing reasoning performance across diverse mathematical tasks (Tab. 1).

lower annotation costs and increased robustness to label noise and reward mis-specification. Con-
cretely, we optimize the LLM reasoner and an LLM-based discriminator together: the discriminator
judges the logical soundness of each intermediate reasoning step and explains its judgment, while
the reasoner learns to produce steps the discriminator consistently endorses for valid logic. This
co-adaptation dynamically aligns the reward signal with the model’s evolving capabilities, reduces
reliance on costly fine-grained annotations, and mitigates miscalibration by continually recalibrat-
ing the discriminator to the reasoner’s step distribution. As a result, we obtain better-calibrated,
on-policy stepwise judgments, thereby enhancing the reasoning capabilities (Fig. 1).

However, jointly training the LLM reasoner and its stepwise discriminator introduces several chal-
lenges. First, stepwise analysis over long, intricate reasoning chains during training increases com-
putational cost and system complexity. Second, ensuring the discriminator’s judgments are rigorous
and interpretable requires explicit scoring rubrics and structured rationales. Third, co-evolution can
invite reward hacking: the discriminator may drift toward overly positive judgments, while the LLM
may learn to produce reasoning steps that look plausible but are semantically shallow.

To address the challenges, we propose Generative Adversarial Reasoner (GAR), which incorpo-
rates a compute-efficient review schedule and an adversarial co-training framework. Specifically, we
partition each reasoning chain into logically complete slices of comparable length. The discrimina-
tor evaluates each slice for logical soundness and generates a concise, structured rationale, providing
localized and verifiable feedback on specific reasoning errors. For learning, we jointly update the
LLM reasoner and the discriminator in an adversarial reinforcement learning scheme inspired by
GANs (Goodfellow et al., 2014). The reasoner is rewarded for logically consistent steps that lead to
correct final answers. The discriminator receives two complementary rewards: an alignment reward
for correctly detecting errors in the reasoning, and a discriminative reward for distinguishing the
reasoner’s trajectories from reference rationales. Together, these signals improve sample efficiency,
and deliver calibrated stepwise supervision under a controlled compute budget.

Compared with previous methods, our model offers three key advantages: (i) slice-level evaluation
that simplifies the discriminator’s task and yields localized, interpretable justifications; (ii) on-policy
joint updates that keep rewards aligned with the model’s current behavior and support continued
improvement, with the discriminator evolving to detect subtler errors as the LLM grows stronger;
and (iii) dense step-level rewards that augment sparse exact match grading with continuous signals
based on the fraction of correct steps, improving credit assignment and sample efficiency.

Our experiments show that, even compared to strong baselines (DeepSeek-AI, 2025), we achieve
further improvements across various mathematical reasoning benchmarks, delivering significant
gains over standard RL post-training approaches. For instance, on AIME24, we boost DeepSeek-
R1-Distill-Qwen-7B from 54.0 to 61.3 (+7.3) and DeepSeek-R1-Distill-Llama-8B from 43.7 to 53.7
(+10.0), with comparable training time. These results highlight the consistent and substantial en-
hancements in LLM reasoning with our GAR, achieved within a comparable compute budget.
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2 RELATED WORK

Reinforcement Learning with Process Feedback. Process-level supervision improves reasoning
by evaluating intermediate steps rather than outcomes (Lightman et al., 2023; Uesato et al., 2022;
Ouyang et al., 2022). Beyond costly human PRMs, automatic judges lower labeling cost but in-
troduce noise; methods include Monte-Carlo from final answers, LLM-as-judge, and formulating
reward modeling as next-token prediction to improve stability (Zhang et al., 2025; 2024; Gao et al.,
2024; Xia et al., 2025; Xi et al., 2024). Math verifiers complement PRMs and favor concise, struc-
tured rationales (Cobbe et al., 2021). RL methods such as DeepSeek-R1 (DeepSeek-AI, 2025) and
FastCuRL (Song et al., 2025) encourage behaviors like self-reflection and verification but still rely
on static rewards or fixed critics that drift with the policy. Our approach jointly trains the reasoner
and a discriminator under an on-policy scheme, yielding dense slice-level rewards with a compute-
efficient review schedule and alignment regularization to curb reward hacking, addressing PRM
mis-specification and noisy signals without sacrificing efficiency (Wen et al., 2024; Lv et al., 2025).

Self-Play, Multi-Agent, and Game-Theoretic Training. Self-play is a unifying mechanism: ad-
versarial dynamics induce curricula, enabling iterative improvement from self-generated data with
evolving critics (Chen et al., 2024; Yuan et al., 2024; Chen et al., 2025), while robustness-oriented
variants such as SPAG instantiate these dynamics via adversarial word games (Cheng et al., 2024).
Extending to the zero-data regime, recent work replaces external traces with task-space exploration
and language self-play (Zhao et al., 2025; Kuba et al., 2025a) A complementary line recasts the
adversary as agents whose discourse provides training signals, with debate-style setups improving
factuality and robustness (Du et al., 2023; Liang et al., 2023) To scale these dynamics, fully online
multi-agent RL systems implement distributed actor–learner frameworks with role-conditioned ad-
vantages to sustain open-ended curricula transferable to math and science, while Parallel-R1 specif-
ically targets parallel thinking (Liu et al., 2025b; Wan et al., 2025; Liu et al., 2025a; Zheng et al.,
2025). Distinct from these, we embed adversarial dynamics inside training by co-evolving the critic
with the policy to deliver fine-grained, on-policy credit assignment, consistent with recent insights
on exploration and entropy for reasoning RL (Cui et al., 2025; Cheng et al., 2025; Wang et al., 2025).

Thinking Scaffolds and Curriculum Learning. Reasoning can be scaffolded via distilled tem-
plates, uncertainty-aware planning, and staged curricula to stabilize early steps and diversify so-
lution paths (Yang et al., 2024; Hu et al., 2024; Zheng et al., 2025). Building on this, game-
theoretic formulations treat reasoning as an interactive, multi-round protocol; Game-of-Thought
shows that such interaction improves robustness and information seeking (Kempinski et al., 2025).
Complementing these macro-level curricula, verifier-guided scaffolds such as Math-Shepherd pro-
vide lightweight stepwise signals without human labels, reinforcing intermediate decisions at low
supervision costs (Wang et al., 2023). Our method internalizes game theory into a discriminator
and couples it with compute-efficient slice-level evaluation, providing dense, calibrated, on-policy
rewards that improve mathematical reasoning and code generation within a unified framework.

3 GAR: GENERATIVE ADVERSARIAL REASONER

We propose a modular formulation for GAR consisting of two components: a Reasoner, denoted
Mr, which is a general-purpose LLM that generates reasoning processes and final answers based
on user input; and a Discriminator, denoted Md, which evaluates the outputs of Mr slice by slice.
The two models are jointly trained via reinforcement learning. We provide detailed descriptions of
each model and the training procedure below.

Reasoner. The reasoner is implemented as an LLM that generates intermediate reasoning and final
answers. In principle, any model capable of step-by-step reasoning can serve as the reasoner. In
this work, to demonstrate the effectiveness of our approach, we instantiate the reasoner with several
state-of-the-art, open-source reasoning models (namely, variants of the official DeepSeek-R1-Distill
models (DeepSeek-AI, 2025)), and show that our framework further improves their performance.

Discriminator. The discriminator evaluates the quality and correctness of the reasoning process,
assigning a reward signal to each generated response. In our implementation, it is instantiated as a
smaller, pre-trained variant of the reasoner.

However, holistic evaluation of the entire reasoning trace with the discriminator often fails to yield
reliable results. We hypothesize that lengthy and complex reasoning chains, which may span thou-
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Question: What is the ratio of the area inside the in circle to the area of the hexagon?

Reasoner

Final answer is π/(2√3)

Reasoning process:
Slice 1, Slice 2, Slice 3 ...

Match Reward

Discriminator

Correctness of Slice 𝑖:

The reasoning in Slice 𝑖 
correctly notes that… YES.

Slice Reward

Reference / generated:

Ref. 𝑖:   Given 𝑛 …
Slice 𝑖: The reasoning …

Alignment Reward Disc. Reward

Figure 2: GAR architecture. GAR is a reinforcement learning framework that jointly trains an
LLM reasoner and a slice-level discriminator to improve reasoning accuracy and explainability.
Unlike standard RL for LLMs, which computes reward signals mainly based on final answers, GAR
leverages a discriminator to provide dense, slice-level rewards that evaluate the reasoning process
at each intermediate step. More importantly, the discriminator is continuously co-evolved with the
LLM reasoner, ensuring the reward signal remains aligned with the model’s current behavior and
enabling sustained improvement and refinement of reasoning.

sands of tokens, are difficult for language models to process and evaluate faithfully, hindering precise
localization of reasoning errors. To mitigate this, we partition the generated reasoning into shorter,
logically coherent slices, balancing slice length and semantic completeness. Specifically, we seg-
ment the reasoning trajectory based on delimiters, then merge adjacent segments until a clear new
semantic beginning is identified or a predefined token length L = 320 is reached. For each slice i,
the discriminator assigns a binary slice reward rsi ∈ {0, 1} to evaluate its reasoning quality, where
rsi = 1 indicates that the slice is logically sound. The overall reward is then computed as the mean
of all slice-level scores: Rs = 1

n

∑n
i=1 r

s
i .

This slice-level reward mechanism offers two main advantages. First, it improves reliability: assess-
ing the correctness and internal consistency of short slices is substantially easier and more accurate
than evaluating a lengthy reasoning chain in its entirety. Second, it provides a denser and more in-
formative training signal than simple answer matching: rather than a single binary label on the final
answer, it scores the reasoning trajectory at the slice level and aggregates these scores into a fine-
grained reward. Consequently, even when all final answers are wrong, the model can differentiate
and reinforce better reasoning paths during RL training, improving sample efficiency and mitigating
the problem of reward sparsity.

Reward Functions. As illustrated in Fig. 2, we jointly train the reasoner and the discriminator. For
the reasoner, we use Group Relative Policy Optimization (GRPO) (Shao et al., 2024) with a reward
that linearly combines (i) an exact-match term Rm ∈ {0, 1}, which compares the final answer to
the ground truth, and (ii) the continuous reward Rs ∈ [0, 1] from the discriminator (the mean of
the slice-level scores). The overall reasoner reward is defined as Rrea = λ1R

m + λ2R
s, where

λ1, λ2 ≥ 0 are hyperparameters that weight the two components.

For the discriminator, we maximize two terms: a discriminator reward Rd and an alignment reward
Ra. The discriminator reward Rd follows the standard GAN objective (Goodfellow et al., 2014):

Rd = Ex∼pref [logMd(x)] + Ex∼pgen [log(1−Md(x))]

where Md(x) represents the discriminator’s estimated probability that slice x is real, and pref, pgen
denote the distributions of reference reasoning slices and model-generated reasoning slices, respec-
tively. The alignment reward Ra quantifies the mean agreement between the discriminator’s slice-
level scores rs and the correctness of the final answer produced by the entire reasoning sequence.
Under the hypothesis that correct answers are more likely to be supported by logically sound reason-
ing, this term encourages consistency between slice-level evaluation and answer-level correctness.
The total discriminator reward is given by Rdis = λ3R

d + λ4R
a, where λ3, λ4 ≥ 0 control the

relative contributions. This joint training encourages the discriminator to provide calibrated, task-
aligned feedback while the reasoner improves both reasoning quality and answer accuracy.

Training Procedure. For each batch of questions, the reasoner generates both answers and detailed
reasoning steps, which we segment into multiple slices. We then mix these generated slices with an
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equal number of reference slices to form a balanced set and train the discriminator to distinguish
between them. The discriminator scores each slice; these scores provide the slice reward Rs for
the reasoner and contribute to the discriminator’s own objectives (Rd and Ra). We jointly update
both models with their respective objectives and iterate, yielding improvements in reasoning quality,
answer accuracy, and the discriminator’s evaluation accuracy.

In addition, it is known that generating the reasoning process enhances LLMs’ capabilities in han-
dling complex tasks (Wei et al., 2022). However, this process can be computationally expensive for
our task, as it requires analyzing each slice of the entire reasoning chain, potentially resulting in tens
of slices per question. To improve efficiency, we modify the discriminator’s workflow to (i) briefly
analyze the reasoning chain, (ii) provide the evaluative judgment (slice reward rsi ), and (iii) provide
a concise rationale for its assessment, rather than generating a full reasoning chain before scoring.
The rationale provided after the judgment is used mainly for explainability. During training, the
discriminator is prompted to generate the analysis, rating (slice reward rsi ), and rationale in a single
response, but with the maximum generation length limited to K = 128 tokens to curtail the ratio-
nale and accelerate training. Notably, results in Sec. 4.3 indicate that restricting the discriminator’s
response at 128 tokens does not degrade performance: the final results remain comparable to those
with unrestricted response lengths, while substantially accelerating training.

To further improve the evaluation accuracy, especially after switching the discriminator to an analy-
sis–score–rationale format, we introduce a supervised fine-tuning (SFT) stage for the discriminator.
In this stage, we use a pre-trained LLM to generate reasoning steps on a small subset of the training
data. These reasoning steps are then evaluated by GPT-o4-mini, which provides a brief analysis,
an evaluative judgment, and a concise rationale for each example. To build a balanced SFT dataset
and mitigate bias, we randomly sample equal numbers of examples labeled ‘yes’ and ‘no’, ensuring
both classes are equally represented. We fine-tune the discriminator on this data with early stopping,
enabling it to adapt to the new format while preserving the capabilities of the original model.

In summary, training proceeds in two stages: (1) SFT of the discriminator to adapt it to the evaluation
format, and (2) joint optimization of the reasoner and discriminator with GRPO. At inference time,
only the LLM reasoner is used to produce answers, following the standard inference procedure.

4 EXPERIMENTS

This section presents a comprehensive evaluation of the mathematical reasoning capabilities of our
model. Sec. 4.1 outlines the experimental setup. Sec. 4.2 demonstrates that GAR significantly im-
proves over state-of-the-art models on mathematical benchmarks. Sec. 4.3 provides detailed analy-
ses of GAR, and Sec. 4.4 reports ablation studies. Finally, Sec. 4.5 discusses potential applications
and usage of our GAR.

4.1 EXPERIMENTAL SETUP

Model Details. Our implementation builds on OpenR1 (Hugging Face, 2025) and vLLM (Kwon
et al., 2023), and we evaluate two backbones. For the Qwen-based setup (Qwen Team, 2024),
we use DeepSeek-R1-Distill-Qwen-7B as the reasoner and DeepSeek-R1-Distill-Qwen-1.5B as the
discriminator. For the Llama-based setup (Dubey et al., 2024), we use DeepSeek-R1-Distill-Llama-
8B for both the reasoner and the discriminator, as no smaller Llama reasoning variant is available.

Tasks and Benchmarks. We evaluate GAR on mathematical reasoning tasks across seven public
benchmarks: AIME 2024/2025 (MAA, a), MATH500 (Hendrycks et al., 2021), GSM8K (Cobbe
et al., 2021), AMC23 (MAA, b), and LiveMathBench (Liu et al., 2024). For LiveMathBench, we
evaluate its hard splits (v202505 all en and v202412 hard en) and report the average performance.
For all evaluations, we adopt Pass@1 accuracy (averaged over 30 samples) as the metric, and fix the
decoding parameters to temperature = 0.6, top p = 0.95, and max tokens = 32K.

Dataset. All experiments are conducted using the OpenR1-Math-220k dataset from the OpenR1
project. To construct instruction-tuning data for the discriminator, we randomly sample 10% of the
training set, partition the dataset-provided DeepSeek-R1 chains of thought into slices, and annotate
each slice with binary (yes/no) judgments evaluating its soundness, along with brief rationales, using
the GPT-o4-mini API. To mitigate class imbalance in these judgments, we downsample the majority
class to achieve a 1:1 label ratio.
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Table 1: Pass@1 accuracy on mathematical reasoning benchmarks. Reported scores are aver-
aged over 30 runs per benchmark to reduce evaluation noise.

Model AIME24 AIME25 MATH500 GSM8K AMC23 Olympiad LiveMath
Bench Bench-Hard

DS-R1-Distill-Qwen-7B 54.0 38.0 94.3 90.6 90.3 52.5 18.4
+ GAR (Ours) 61.3 (+7.3) 44.3 (+6.3) 94.8 (+0.5) 92.2 (+1.6) 92.5 (+2.2) 54.8 (+2.3) 24.9 (+6.5)

DS-R1-Distill-Llama-8B 43.7 30.3 88.1 82.9 84.5 48.2 18.5
+ GAR (Ours) 53.7 (+10.0) 36.2 (+5.9) 91.3 (+3.2) 85.2 (+2.3) 90.0 (+5.5) 50.9 (+2.7) 22.4 (+3.9)

Training Details. The discriminator is first instruction-tuned with AdamW (Loshchilov & Hutter,
2017) for 500 steps (learning rate 1×10−4, 100 warm-up steps, weight decay 0.0001) using a global
batch size of 128 on 8 H100 GPUs. Then for adversarial reinforcement learning, we jointly optimize
the LLM reasoner and discriminator for 400 steps with AdamW (initial learning rate 1× 10−6 with
a 10% warm-up and cosine learning rate decay to 5 × 10−7), using a global batch size of 192 on 8
H100 GPUs. Reward weights are set to λ1 = λ2 = λ3 = 1 and λ4 = 0.5.

4.2 ADVANCING STATE-OF-THE-ART MODELS ON MATHEMATICAL REASONING

Table 1 summarizes the Pass@1 accuracy of our method compared to strong baselines across
diverse mathematical reasoning benchmarks. All results are averaged over 30 trials per bench-
mark, ensuring reliability by conducting three independent training runs and evaluating with 10
inference seeds per run. To ensure fair comparison, we re-evaluate all baselines under a unified
evaluation protocol (Habib et al., 2023) to eliminate scripting variance. Despite starting from
strong baselines, our method demonstrates consistent improvements across all benchmarks, espe-
cially on challenging datasets such as AIME24, AIME25, and LiveMathBench-Hard. For example,
our approach improves the accuracy of DeepSeek-R1-Distill-Qwen-7B on AIME24 by 7.3 and on
LiveMathBench-Hard by 6.5, and achieves an even larger improvement of 10.0 on AIME24 when
applied to DeepSeek-R1-Distill-Llama-8B. These results highlight our method’s effectiveness in
addressing difficult reasoning tasks. In particular, the discriminator model plays a crucial role by
supervising reasoning traces, thereby enhancing the system’s ability to solve complex questions with
greater accuracy. Beyond challenging datasets, our approach achieves notable improvements across
all benchmarks, highlighting its versatility and robustness in enhancing reasoning capabilities.

4.3 ANALYSES AND DISCUSSIONS

This section presents a detailed analysis and discussion of the proposed method.

Slice-Level Feedback from Our Discriminator. Table 2 presents training-time examples of the
LLM reasoning slices and our discriminator’s judgments. GAR provides concise, structured assess-
ments of each slice’s soundness, yielding localized, checkable feedback. The discriminator is able
to affirm correct algebraic and logical transformations, flag subtle arithmetic slips and flawed rea-
soning steps, and identify the exact symbols or steps responsible, while keeping rationales brief to
control cost. This dense, slice-level supervision localizes errors early, improves credit assignment,
and yields better learning than sparse outcome-only rewards.

Table 3: Rollout speed.
AIME24 Training Time (hours)

Standard RL 56.3 16
GAR w/ truncation 61.3 19
GAR w/o truncation 60.8 43

Discriminator with Improved Efficiency. To
obtain accurate and comprehensive analysis,
our discriminator evaluates each slice of the full
reasoning chain, which can yield tens of slices
per question and increase review costs. To im-
prove efficiency, we modify the discriminator
workflow as shown in Table 2: the discriminator first gives a brief analysis, then a binary ‘yes/no’
verdict on the slice’s soundness, and finally a concise rationale. During joint training of the LLM
reasoner and the discriminator, this design yields reliable judgments without requiring a full ra-
tionale. Specifically, we cap the discriminator’s output at 128 tokens, preserving the verdict and
truncating any justification beyond that limit. Table 3 compares three training settings: standard RL
without discriminator, discriminator with truncation, and discriminator without truncation. Apply-
ing the cap preserves accuracy while significantly improving training efficiency. It demonstrates that
our analysis–score–rationale design delivers dense supervision with minimal overhead.
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Table 2: Training-time examples of LLM reasoning slices and our discriminator judgments.
We underline the discriminator’s key analysis leading to its judgment. Our model provides localized,
interpretable justifications for each reasoning slice. Additional examples in Appendix B.

LLM Reasoning Slices Our Full Discriminator Judgments

1 Given n = (a− b)(a+ b), and both a− b and a+ b
are either both even or both odd.
If n is odd, then both a−b and a+b are odd, and their
product is n. So, any odd number can be expressed
as such.
If n is even, then both a− b and a+ b must be even,
so n must be divisible by 4. Let’s write n = 4k,
where k is a positive integer. Then, a− b = 2m and
a + b = 2n, where m × n = k. Thus, a = m + n
and b = n − m. For b to be positive, n > m, and
both m and n must be positive integers.
Therefore, for n to be a wise number, if n is odd, it’s
automatically a wise number. If n is even, it must
be divisible by 4, and n/4 must be expressible as
a product of two positive integers m and n where
n > m. Wait, but n/4 just needs to have at least one
pair of factors where m < n, which is true as long
as n/4 ≥ 1, which is always true since n is positive

The reasoning correctly notes that for odd n, a rep-
resentation always exists. For even n, it correctly
deduces n must be divisible by 4 and sets up the
parameterization a = m + n, b = n − m with
m ·n = k = n/4. It requires n > m > 0 for b > 0.
However, it then claims that as long as n/4 ≥ 1,
such a factor pair exists, which is not always true.
**NO**
The reasoning is flawed in the even case. While it
is true that n must be divisible by 4, the conclu-
sion that n/4 ≥ 1 guarantees such a factorization
ignores the requirement that b = n−m must be pos-
itive, meaning m < n. However, if n/4 is a prime
square (e.g., n = 4, so n/4 = 1), the only factor pair
is m = 1, n = 1, which gives b = 0, invalid since
b must be a positive integer. Thus, n = 4 is not
expressible in the required form, contradicting the
claim that all even n divisible by 4 with n/4 ≥ 1
work. The reasoning fails to consider that n/4 must
have a factor pair with distinct factors.

2 1. (2, 3,−4): Prefix sums are 2, 5, 1. All positive.
Good.
2. (2,−4, 3): Prefix sums are 2, -2, 1. The second
prefix sum is negative. Not good.
3. (3, 2,−4): Prefix sums are 3, 5, 1. All positive.
Good.
4. (3,−4, 2): Prefix sums are 3, -1, 1. The second
prefix sum is negative. Not good.
5. (−4, 2, 3): Prefix sums are -4, -2, 1. The first
prefix sum is negative. Not good.
6. (−4, 3, 2): Prefix sums are -4, -1, 1. The first
prefix sum is negative. Not good.
So, out of 6 permutations, only 2 are good. Hmm,
that’s interesting. So, for n = 3, it seems that we can
have at least 2 good permutations exist. But is this
the minimum? Let’s see another example to confirm.

The reasoning lists all permutations of (2, 3, -4),
computes their prefix sums, and counts how many
have all prefix sums positive. It finds 2 permutations
are ”good” and then asks if this is the minimum.
**YES**
The thinking process enumerates all permutations of
the specific numbers (2, 3,−4) and correctly com-
putes their prefix sums to determine which per-
mutations have all prefix sums positive (only two:
[2, 3,−4] and [3, 2,−4]). Each listed prefix-sum
sequence is arithmetically accurate, the classification
(good / not good) follows the stated criterion, and the
cautious conclusion (”at least 2”) is logically sound
(they do not overclaim a proven minimum). The only
minor point is they stop short of proving minimality
for n = 3, but that does not detract from the correct-
ness of the presented analysis.

Selective-Entropy without Collapse. Recent studies on RL for LLMs warn that performance gains
often come with policy entropy collapse and reduced diversity, hurting exploration and calibra-
tion (Cui et al., 2025; Cheng et al., 2025; Wang et al., 2025). However, as shown in Fig. 3-(a), after
RL training, our per-problem mean-entropy distribution remains comparable to the baseline model
(DeepSeek-R1-Distill-Qwen-7B), with only a mild left shift and preserved spread. Moreover, con-
trary to the common trade-off between accuracy and entropy, we raise AIME24 accuracy from 54.0
to 61.3 (+7.3) without a global drop in entropy. In Fig. 3-(b), both models exhibit the expected
“wrong > correct” pattern. However, our wrong-case violin plot is markedly tighter with a shorter
low-entropy tail, and our correct-case entropy is lower than R1’s, demonstrating better calibration
and fewer extreme failures. More importantly, Fig. 3-(c) (computed after removing zero-entropy
tokens) reverses the ordering for correct cases: our mean entropy over non-zero-entropy tokens ex-
ceeds R1’s, and is comparable between our correct and wrong groups, indicating that we suppress
entropy only where the model is confident while retaining stochasticity on informative tokens.

The contrast between Fig. 3-(b) and (c) reveals a selective-entropy mechanism: our on-policy slicing
with an adversarial discriminator encourages low entropy on deterministic slices (producing many
zero-entropy tokens and a lower global mean) while sustaining exploration on decision-critical slices
(higher non-zero entropy), thereby reducing high-entropy outliers when the model is wrong. This
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Figure 3: Improving model without entropy collapse. Compared to DeepSeek-R1-Distill-Qwen-
7B, our method raises AIME24 accuracy (+7.3), but maintains a comparable overall mean-entropy
distribution (5.20% vs. 5.27%) (a) and tightens the “wrong” distribution (b), indicating better cali-
bration with fewer extreme-uncertainty failures. Removing zero-entropy tokens (c) flips the ordering
(entropy is higher on correct cases), revealing a selective-entropy behavior (decisive on determinis-
tic spans, exploratory on decision-critical tokens) that aligns with the AIME24 accuracy gains.

Table 4: Ablation study. Beginning with the baseline (DeepSeek-R1-Distill-Qwen-7B), we verify
the effectiveness of each component.

Model Exact Match Judger Alignment Discriminator AIME24 AIME25Grading Rm Score Rg Reward Rg Reward Rg

1 Baseline (BL) 54.0 38.0
2 BL + Standard RL ✓ 56.3 40.7
3 BL + Fixed Standard Critic ✓ ✓ 56.7 40.4
4 BL + Fixed GAR Discriminator ✓ ✓ 58.6 42.0
5 BL + Trainable GAR Discriminator ✓ ✓ ✓ 59.4 42.8
6 BL + Trainable GAR Discriminator ✓ ✓ ✓ 60.2 43.3
7 BL + Trainable GAR Discriminator ✓ ✓ ✓ ✓ 61.3 44.3

pattern explains the observed accuracy gains on AIME24 and suggests a practical control signal:
token- or slice-level entropy can trigger self-checks or adaptive sampling precisely where uncertainty
is concentrated, improving both efficiency and reliability.

4.4 ABLATION STUDY

We conduct various ablations in Table 4, progressively building on the baseline DeepSeek-R1-
Distill-Qwen-7B to validate each component and culminate in our final model (row 7).

Discriminator Design Analysis. We ablate the discriminator in Table 4 (rows 2 – 4). Row 2
is a baseline LLM fine-tuned with standard GRPO using an outcome-based exact-match reward,
without any discriminator. Row 3 adds a fixed standard critic (DeepSeek-R1-Distill-Qwen-1.5B) to
provide feedback. Row 4 keeps the LLM critic’s capacity fixed, instruction-tunes it to our slice-level
judgment format with brief rationales, and deploys it under the compute-efficient review schedule.

The table shows that row 3 improves over row 2 on AIME24, confirming the benefit of adding a
discriminator. Moreover, Row 4 consistently outperforms both, indicating that the discriminator
drives the gains. By reframing the discriminator’s role from holistic solution grading to slice-level
soundness judgments with concise rationales, we obtain more accurate and interpretable feedback.
The resulting dense, slice-level rewards provide continuous learning signals compared with sparse
exact-match grading, improving credit assignment and sample efficiency, and thereby significantly
boosting performance across benchmarks.

Reward for Discriminator Training. We ablate the discriminator’s reward design in Table 4 (rows
5 - 7). Both the alignment and discriminator rewards individually improve performance over the
baseline. Combining them yields the best results, indicating the two signals are complementary. The
alignment term sharpens the discriminator’s ability to distinguish correct from incorrect reasoning,
but its supervision can be noisy because it depends on the correctness of that step’s generated final
answer. The discriminator term stabilizes learning by steering the discriminator toward reference
judgments. Together, these complementary signals yield a stronger and more reliable training signal.

Effectiveness of Joint Training. Finally, we evaluate joint training of the LLM reasoner and the
discriminator in Table 4 (rows 4 and 7). Compared with using a fixed discriminator (row 4), joint on-
policy updates (row 7) yield consistent gains by keeping rewards aligned with the reasoner’s current

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

behavior. As the reasoner improves, the co-trained discriminator adapts to detect subtler errors and
provides more informative slice-level feedback, which raises the performance ceiling and mitigates
drift or overfitting to a static reward signal.

4.5 GAR UNLOCKS NEW APPLICATIONS AND FUTURE DIRECTIONS

Finally, we briefly discuss novel use cases and capabilities enabled by our method in this section.

Table 5: Partial-trace evaluation without a
final-answer reward yields faster training
and higher accuracy than standard RL.

AIME24 Training Time (hours)
Standard RL 56.3 16
Ours (3 slices) 57.7 6

RL without Full Chain-of-Thought or Verifiable
Final Answers. Another advantage of our approach
is that it decouples RL post-training from judgeable
final answers. Standard RL-based post-training re-
quires generating a complete chain of thought and
an automatically verifiable final answer. This makes
training much slower than supervised fine-tuning
(which only predicts the next token) and restricts applicability to tasks with clear evaluators (e.g.,
requiring an execution engine for code generation and struggling with open-ended math proofs).
In contrast, our model provides additional reward signals, enabling us to remove the final-answer
reward and update the model solely using our discriminator’s scores on intermediate reasoning. We
demonstrate this advantage in Table 5. Rather than generating a complete reasoning trajectory and
a final answer, we stop after three reasoning slices and have the discriminator evaluate these partial
traces, providing dense early feedback without a full chain of thought. This yields substantial effi-
ciency gains while improving accuracy: our method surpasses standard RL with significantly less
training time. Moreover, because it does not rely on final-answer rewards or external executors, it
naturally extends to tasks with hard-to-evaluate outputs, such as mathematical proofs.

Table 6: Distinguishability of reason-
ing patterns. We report the success rate
of human experts distinguishing gener-
ated reasoning from Gemini reasoning
before and after GAR training.

w/o GAR w/ GAR
Success rate 82.3% 55.9%

Distilling Reasoning Patterns with GAR. GANs have
been widely used for distilling patterns in tasks like im-
age generation (Sauer et al., 2024). Similarly, we show
that GAR enables reasoning distillation, aligning a stu-
dent model’s reasoning pattern with that of a teacher.

In a demo experiment, we use the S1K-1.1 (Muennighoff
et al., 2025) dataset from the OpenR1 project, containing
two reasoning trajectories, “gemini thinking trajectory”
and “deepseek thinking trajectory”, to train the discriminator to distinguish between the two styles.
We then use this discriminator to jointly train the reasoner and discriminator within our GAR frame-
work. Notably, the reasoner is only trained on the Math220K dataset, without exposure to the
Gemini trajectory during training. In the evaluation, human experts are asked to differentiate be-
tween the generated and Gemini trajectories in a randomized side-by-side comparison. As shown
in Table 6, our model significantly increases similarity to the Gemini reasoning style, reducing the
distinguishability success rate from 82.3% to 55.9% (close to 50% random guess baseline), making
it substantially harder for experts to tell the two apart. Experimental details are included in the Ap-
pendix A. A natural extension of GAR ’s distillation ability is human preference alignment, where
teacher reasoning comes from human explanations, enabling alignment with human-like reasoning.
We leave empirical validation to future work.

5 CONCLUSION

In this paper, we presented an adversarial co-training framework that couples an LLM Reasoner
with an LLM-based Discriminator to deliver dense, calibrated, slice-level rewards that supplement
sparse exact-match grading. Our model partitions reasoning into logically complete slices, and the
Discriminator provides concise and structured feedback. During training, the reasoner is rewarded
for logically consistent steps that lead to correct answers, and the Discriminator is rewarded for
correctly detecting reasoning errors. This design reduces annotation burden, mitigates reward mis-
specification and reward hacking, and improves credit assignment and sample efficiency under a
controlled compute budget. Empirically, the approach yields consistent gains over strong RL base-
lines on mathematical tasks, including +7.3 on AIME24 for DeepSeek-R1-Distill-Qwen-7B and
+10.0 for DeepSeek-R1-Distill-Llama-8B, along with better calibration and fewer extreme failures.
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APPENDIX

In the appendix, we provide additional information as listed below:

• Sec. A provides experimental details for reasoning distillation.
• Sec. B provides additional training-time examples of the LLM reasoning slices and our

discriminator judgments.
• Sec. C lists the system prompts used for the reasoner and the discriminator.
• Sec. D provides additional experiments on coding ability.
• Sec. E demonstrates that GAR can further improve more advanced RL methods.
• Sec. F provides ablations on the slice segmentation design.
• Sec. G provides ablations on the discriminator size.
• Sec. H demonstrates that the discriminator reliably detects model correctness instead of

incentivizing reward hacking.
• Sec. I discusses the limitations of our method.
• Sec. J provides the ethics statement.
• Sec. K provides the reproducibility statement.
• Sec. L reports the LLM usage.

A EXPERIMENTAL DETAILS FOR REASONING DISTILLATION.

In the demo experiment, we use the S1K-1.1 (Muennighoff et al., 2025) dataset from the
OpenR1 project, which contains two reasoning trajectories, ”gemini thinking trajectory” and
”deepseek thinking trajectory”, to train a discriminator to distinguish between the two styles. We
use the same settings as our main experiments and train the discriminator for 1,000 iterations. We
then integrate this discriminator into our GAR framework and jointly train the reasoner and the dis-
criminator under the Partial trace setting: instead of generating the full reasoning trajectory and a
final answer, we stop after three reasoning slices and have the discriminator evaluate these partial
traces. We train this model for 3,000 steps, and all other hyperparameters are the same as in the
main experiment. The reasoner is trained only on the Math220K dataset, without exposure to the
Gemini trajectory during training.

For the human preference study, we generate 200 reasoning slices, pair them side by side with the
corresponding Gemini slices, and randomly shuffle the order. We then ask 10 experts from three
academic institutions, including 3 undergraduate students and 7 PhD students, to first familiarize
themselves with the differences between Gemini and DeepSeek-R1 reasoning styles by reviewing
the S1K-1.1 dataset, and then conduct the evaluation. We compare the success rate of experts dis-
tinguishing generated reasoning from Gemini reasoning before and after GAR training, and report
the results in Table 6.

B SLICE-LEVEL FEEDBACK FROM OUR DISCRIMINATOR.

We provide additional examples of the LLM reasoning slices and our discriminator’s judgments
during joint training in Table 7 and Table 8.

C SYSTEM PROMPTS

We provide the system prompts for the LLM reasoner and the discriminator as follows:

System prompt for the LLM reasoner:

You are a helpful AI Assistant that provides well-reasoned and
detailed responses. You first think about the reasoning process as
an internal monologue and then provide the user with the answer.
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Respond in the following format:<think>\n...\n</think>\n<answer>
\n...\n</answer>

System prompt for the LLM discriminator:

You are an evaluator responsible for assessing whether a reasoning
/ thinking process is reasonable, rigorous, and accurate. Based on
these criteria, determine if the analysis is of high quality. First,
analyze the reasoning very briefly, then respond with ’**YES**’ for
high quality or ’**NO**’ if it is not. Finally, provide a brief but
specific explanation for your judgment. Hint: You can first summarize
the given thinking process to identify the main reasoning chain, then
analyze the reasoning chain sentence by sentence.

D RESULTS ON CODING GENERATION

We further evaluate our model on coding-based reasoning tasks. As shown in Table 9, our method
yields substantial improvements across multiple coding benchmarks. To ensure statistical reliabil-
ity, all results are averaged over 30 trials per benchmark (three independent training runs, each
evaluated with 10 inference seeds).

Experiments are conducted on the CodeForces-CoT dataset, where the (approximate) ground-truth
reasoning traces are produced by DeepSeek-R1. The maximum rollout length during training is
fixed at 800 steps. The reward function is an equal-weight combination of three components:

• CF-Code Reward: Computes a weighted sum over public test cases, assigning 1 for pass
and 0 for fail.

• Code-Format Reward: Assigns a reward of 1 when the model output includes a valid
code-block wrapper (e.g., ‘‘‘ python ‘‘‘).

• Critic Reward: Incorporates alignment and discriminative terms, using the same structure
as in the math-reasoning setting.

Table 9: Pass@1 accuracy on coding benchmarks. Similar to the results reported in the main paper,
scores are averaged over 30 runs per benchmark to reduce evaluation noise. Our method significantly
improves coding performance.

Model LiveCodeBench HumanEval HumanEval+
DS-R1-Distill-Qwen-7B 37.4 40.4 37.8
DS-R1-Distill-Qwen-7B + GAR (Ours) 43.6 42.7 39.3

E COMPARISON TO RL-BASED APPROACHES AND COMPLEMENTARITY

Although several related approaches are also RL-based, they are not directly comparable to our
setting due to differences in base models, the presence or absence of explicit reasoning, task for-
mulations, and training strategies. For instance, SPIRAL(Liu et al., 2025a) frames training as a
zero-sum game for self-play and self-evolution, while LSP(Kuba et al., 2025b) employs an LLM to
alternate between a Challenger that generates new instructions and a Solver that attempts to follow
them for data-free training. These paradigms differ substantially from ours, making a fair head-to-
head comparison infeasible.

At the same time, our method is complementary to these approaches and can be incorporated on
top of stronger RL-style frameworks. We demonstrate this by considering a recent improvement to
GRPO, KL Cov(Cui et al., 2025). As shown in Table 10, adding GAR on top of KL Cov yields
further gains across all benchmarks. This suggests that our framework can enhance more advanced
RL-based reasoning algorithms as well.
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Table 10: GAR further improves KL Cov (Enhanced GRPO Baseline).
AIME24 AIME25 AMC MATH-500 OlympiadBench

GRPO 21.2 9.6 58.7 78.8 40.7
GRPO + KL Cov(Cui et al., 2025) 22.6 12.9 61.4 80.8 42.6
GRPO + KL Cov + GAR (ours) 25.7 16.2 62.5 84.2 44.0

F ABLATIONS ON SLICE SEGMENTATION DESIGN

F.1 SEGMENTATION STRATEGY

In this section, we clarify the rationale behind adopting the proposed segmentation method based
on explicit delimiters combined with a token-length range. Chain-of-thought (CoT) generated by
contemporary reasoning models (e.g., DeepSeek-R1, Gemini) is typically organized into coherent
fragments separated by line breaks (“\n”) and discourse cues such as “Wait,” “Since,” and “There-
fore.” These natural markers provide reliable boundaries for forming semantically self-contained
slices. Applying an additional token-length constraint prevents segments from being excessively
short or long, while keeping computation and implementation overhead minimal.

Table 11 compares this rule-based method with two alternatives: (1) pure fixed-length token win-
dows and (2) LLM-based semantic segmentation, where a model is prompted to automatically parti-
tion the CoT. The results show that the alternatives either disrupt coherent reasoning steps or require
substantially higher training cost, without yielding performance improvements over our method.

Table 11: Ablation on different slice segmentation strategies.
Method AIME24 Training Time (hours)
Pure fixed-length token windows 58.7 19
LLM-based semantic segmentation 61.6 35
Ours 61.3 19

F.2 SENSITIVITY TO SLICE LENGTH

We further add a sensitivity analysis over slice length. As shown in Table 12, model performance
is highest and most stable when slices contain approximately 320–560 tokens. Shorter slices of-
ten contain no explicit reasoning error, making it difficult for the discriminator to learn informative
supervision signals. In contrast, very long slices typically include at least one flaw, causing most
segments to be labeled as “incorrect” and reducing label diversity, which in turn weakens the dis-
criminator’s effectiveness.

Table 12: Ablation over slice length (tokens).
Slice Length 160 320 480 560 800 960 1120 1440

AIME24 57.4 61.3 61.5 61.4 61.0 59.3 56.5 56.8

G ABLATIONS ON DISCRIMINATOR SIZE

In the Qwen configuration, we use a 1.5B discriminator because, after supervised fine-tuning (SFT),
even this smaller model becomes a strong discriminator. As shown in Table 13, replacing the 1.5B
discriminator with a 7B one yields better performance but also introduces substantially higher train-
ing cost. Due to compute constraints, we therefore adopt the 1.5B model as the default discriminator.
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Table 13: Ablation on discriminator size for the Qwen setup.
Discriminator Size AIME24 AIME25
1.5B 61.3 44.3
7B 62.5 45.2

For Llama, the 8B model is the smallest publicly available Llama checkpoint with R1-style reasoning
ability. Consequently, we do not have access to a smaller, compatible backbone for the discriminator.
Therefore, for the Llama setup, we use the 8B model as both the generator and the discriminator.

H REASONING CORRECTNESS UNDER CONTROLLED STYLE

Our “real slices” are reference CoTs sampled from strong reasoning models (DeepSeek-R1 or Gem-
ini). While they naturally contain stylistic regularities, our reward design prevents the policy from
exploiting style alone. In particular, the discriminator reward Rd is always paired with (i) task-level
correctness rewards and (ii) KL regularization, ensuring that purely stylistic imitation is penalized
whenever it harms correctness or formatting. Furthermore, within the discriminator, Rd is combined
with the alignment reward Ra, anchoring slice judgments to correctness rather than surface patterns.

A central question is whether the discriminator learns reasoning correctness rather than merely
style. To directly isolate this factor, we introduce a style-controlled evaluation (Table 14): for each
reference CoT, we keep the overall writing style, structure, and tone fixed, while perturbing only
intermediate numbers or local conclusions—producing logically incorrect but stylistically indistin-
guishable slices.

As shown in Table 14, the discriminator reliably differentiates logically correct from incorrect slices
even under matched style, indicating that it learns to detect reasoning errors rather than mimic sur-
face patterns.

Table 14: Style-controlled discrimination accuracy. Even when reasoning style and tone are held
constant, the discriminator correctly identifies logical errors.

Predicted Correct Predicted Wrong
Actually correct 84.3% 15.7%
Actually wrong 23.3% 76.7%

I LIMITATIONS AND FUTURE WORK

The proposed GAR has a few remaining limitations. First, it remains challenging to balance the dis-
criminator’s reasoning depth with compute efficiency. In this work, we reformulate the think–answer
format into an analysis–score–rationale format to make the discriminator more efficient while pre-
serving its reasoning ability. Nevertheless, there is room to further improve compute-efficient rea-
soning. Promising directions include adaptive early-exit mechanisms, dynamic truncation of anal-
ysis conditioned on confidence, etc. Second, although we compute slice-level dense rewards, the
final objective aggregates them into a single trajectory-level signal by averaging, which can dilute
local credit assignment and increase variance. Better ways to leverage slice-wise information could
improve training efficiency and stability.

J ETHICS STATEMENT

This work seeks to improve model reasoning and training efficiency, but we acknowledge risks
including bias amplification, spurious correlations, reward hacking, and potential misuse for gener-
ating harmful or deceptive content. We rely on publicly available datasets (Math-220K) and adhere
to their licenses, avoid collecting or exposing personal data, and assess safety and fairness where
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applicable, documenting observed failure modes. We will not release artifacts that materially in-
crease misuse risk and provide usage guidelines to support responsible deployment. Downstream
use should include human oversight, continuous monitoring, and domain-specific risk assessments.

K REPRODUCIBILITY STATEMENT

We will release code, pretrained checkpoints, and detailed scripts to reproduce all results, including
data preparation, training, and evaluation. The repository will provide exact configurations (model
architectures, the analysis–score–rationale discriminator format, slice-level reward computation and
aggregation, loss functions, optimizers, schedules), dataset splits and preprocessing, and the evalu-
ation harness with metrics. We document software and hardware environments (package versions,
CUDA/cuDNN, GPU types), supply containerized setups (Conda/Docker), and fix random seeds;
results are reported as mean over 30 runs. The implementation details are also provided in Sec. 4.1.

L LLM USAGE

LLM is only used for limited writing assistance (clarity edits and grammar).
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Table 7: Training-time examples of LLM reasoning slices and our discriminator judgments.
We underline the discriminator’s key analysis leading to its judgment. Our model provides localized,
interpretable justifications for each reasoning slice.

LLM Reasoning Slices Our Full Discriminator Judgments

1 Case 1: p divides 2s. Since 2s is a power of 2, p
must be 2.
Case 2: p divides q. Since q is a prime, p = q.
Let’s explore each case.
**Case 1: p = 2**
Substituting p = 2 into the equation, we get:

2sq = 2y − 1

Rearranging:

2y = 2sq + 1

Since 2y is even, the right-hand side must also be
even. However, 2sq is even if s ≥ 1, so 2sq + 1 is
odd. This is a contradiction because an even number
cannot equal an odd number. Therefore, p = 2 is not
a valid solution.

The reasoning examines the case where the prime p
divides 2s. It correctly concludes p = 2, substitutes
into the equation 2sq = 2y − 1, and argues that the
left side 2y is even while the right side 2sq + 1 is
odd, leading to a contradiction.
**YES**
The reasoning is rigorous and accurate. It system-
atically considers the case p = 2, substitutes it into
the equation, and rearranges to 2y = 2sq + 1. It
correctly observes that 2y is even, while 2sq + 1
is odd (since 2sq is even for s ≥ 1 ), leading to a
contradiction. The logic is clear, step-by-step, and
based on fundamental parity properties, leaving no
room for ambiguity. This is a high-quality analysis
for this specific case.

2 Let me start with the first part. I know that a wise
number can be written as a2 − b2 where a and b
are positive integers. I can factor this expression as
(a−b)(a+b). So, any wise number can be expressed
as the product of two integers (a− b) and (a+ b).
Since a and b are positive integers, a + b must be
greater than a − b, and both a + b and a − b must
be positive integers. Moreover, both a+ b and a− b
must have the same parity because a + b + (a −
b) = 2a must be even, meaning their sum is even.
Therefore, both a+ b and a− b must be either both
even or both odd. This implies that their product
(a− b)(a+ b) must be either odd or divisible by 4.
So, if a number is of the form 4k+2, it cannot be ex-
pressed as the product of two integers with the same
parity. For example, a number like 2 cannot be writ-
ten as the difference of two squares because 2 is of
the form 4k+2 (where k = 0), and there are no two
integers a and b that would satisfy a2 − b2 = 2.

The reasoning shows that a2 − b2 = (a− b)(a+ b)
requires both factors to have the same parity, so
the product is either odd or divisible by 4. Thus,
numbers of form 4k + 2 (like 2) cannot be wise
numbers.
**YES**
It correctly identifies that a wise number is of the
form a2− b2 = (a− b)(a+ b) , and notes that a+ b
and a − b must be positive integers with the same
parity (both even or both odd) because their sum is
2a (even). This leads to the key insight: the product
(a− b)(a+ b) must be either odd or divisible by 4.
Consequently, numbers of the form 4k + 2 (which
are even but not divisible by 4) cannot be expressed
as such a product. The example of 2 (which is
4× 0 + 2) solidifies the argument. The logic is
clear, step-by-step, and based on sound number the-
ory principles.

3 But since this is an approximation, I need to check
if 2686 or 2687 is a wise number. Let me check if
2686 is a wise number.
2686 divided by 2 is 1343, which is odd. So, 2686
is 2 times an odd number, which is not a multiple of
4. Therefore, 2686 is not a wise number because it
cannot be expressed as the difference of squares.
Next, check 2687. Since 2687 is odd, it can be ex-
pressed as a difference of squares. So, 2687 is a wise
number.
Therefore, the 2015th wise number is 2687.
Wait, but let me make sure. Let’s verify how many
wise numbers are less than or equal to 2686 and
2687.

The reasoning checks if 2686 and 2687 are wise
numbers, correctly using the parity/divisibility rule.
It then concludes 2687 is the 2015th wise number
without verifying the count.
**NO**
While it correctly identifies that 2686 (even but not
divisible by 4) cannot be a wise number, and that
2687 (odd) can be a wise number, it fails to verify
whether 2687 is actually the 2015th wise number.
The reasoning jumps to a conclusion without cal-
culating how many wise numbers exist up to 2686
and 2687. Specifically, it does not account for the
fact that not all odd numbers are necessarily wise
(e.g., 1 is odd and wise, but other constraints might
exist) and, more importantly, it does not compute
the cumulative count of wise numbers to confirm the
index. This lack of systematic counting or verifica-
tion makes the reasoning incomplete and potentially
incorrect.
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Table 8: Training-time examples of LLM reasoning slices and our discriminator judgments.
We underline the discriminator’s key analysis leading to its judgment. Our model provides localized,
interpretable justifications for each reasoning slice.

LLM Reasoning Slices Our Full Discriminator Judgments

1 But wait, I should double-check if this is indeed the
minimum. Maybe I made a mistake in applying the
Lagrange multipliers. Alternatively, perhaps there’s
a geometric interpretation that can confirm this re-
sult.
Thinking geometrically, as I considered earlier, the
expression represents the sum of distances from
points on the coordinate axes to the point (12, 9).
The minimal total distance should be the straight
line distance from the origin to (12, 9), which is√
122 + 92 =

√
144 + 81 =

√
225 = 15. That

matches the result I got using calculus, so it seems
correct.
So, the minimal value is indeed 15.

The reasoning cross-checks a calculus result (La-
grange multipliers) with a geometric interpretation:
the sum of distances from points on the axes to
(12,9) is minimized by the straight-line distance
from the origin to (12,9), which is 15. The results
match.
**YES**
The reasoning is rigorous and accurate. It cross-
validates the result obtained from calculus (La-
grange multipliers) with a geometric interpretation:
the expression

√
x2 + 144 +

√
(15− x)2 + 81

represents the sum of distances from a point on
the x-axis to fixed points, and the minimal path
is indeed a straight line from the origin to (12,9),
yielding a distance of 15. This geometric insight is
sound and confirms the calculus result, demonstrat-
ing thoroughness and multiple perspectives. The
logic is clear and well-supported.

2 From this table, I notice a pattern. It seems that f(n)
alternates between 1 and 0, but it’s not straightfor-
ward. Let me try to see if there’s a base-3 pattern or
something related to the recursive formula involving
division by 3.
Looking at the recursive formula:

f(n) = 1− f(n− 1) · f
(⌊n

3

⌋)
This suggests that the value of f(n) depends on the
previous value f(n− 1) and the value at ⌊n/3⌋.
Let me consider the sequence more carefully. It
seems that f(n) is 1 except when n ≡ 0 mod 3,
but that’s not entirely accurate because f(3) = 0,
f(6) = 1, f(9) = 1, and f(12) would depend on
f(11) and f(4).

The reasoning observes a pattern in f(n) and re-
calls the recursive definition f(n) = 1 − f(n −
1) · f (⌊n/3⌋). It tests a simple hypothesis
(based on divisibility by 3) but immediately notes
counterexamples (like f(6)=1, f(9)=1), showing the
pattern is more complex.
**NO**
The reasoning is not rigorous or accurate. It at-
tempts to identify a pattern (e.g., alternation or mod-
ulo 3 behavior) but quickly contradicts itself with
counterexamples (e.g., f(3) = 0, f(6) = 1,
f(9) = 1). The analysis is superficial and does
not deeply engage with the recursive formula. It
mentions considering the recursion but does not
systematically compute values or derive properties.

3 In a geometric sequence, each term is obtained by
multiplying the previous term by a constant ratio r.
Given a2 = 2, we have:

a2 = a1 × r ⇒ 2 = a1 × r (1)

Given a5 = 1
4

, we have:

a5 = a1 × r4 ⇒ 1

4
= a1 × r4 (2)

Dividing equation (2) by equation (1):

1
4

2
=

a1 × r4

a1 × r
⇒ 1

8
= r3 ⇒ r =

3

√
1

8
=

1

2

Substituting r = 1
2

into equation (1):

2 = a1 ×
1

2
⇒ a1 = 4

Thus, the geometric sequence is:

an = 4×
(
1

2

)n−1

= 22 × 2−n+1 = 23−n

The reasoning uses the geometric sequence defini-
tion to set up equations for a2 and a5, solves for the
ratio r by dividing the equations, finds r = 1/2,
then solves for a1 = 4, and derives the general for-
mula an = 23−n.
**YES**
The reasoning is rigorous and accurate. It correctly
uses the definition of a geometric sequence, sets up
equations based on the given terms (a2 = 2 and
a5 = 1/4), and solves for the common ratio r by di-

viding the equations. The calculation
1
4
2
= 1

8
= r3

is correct, leading to r = 1
2

. Then, it substi-
tutes back to find a1 = 4. Finally, it expresses
the general term an in both exponential and simpli-
fied form (23−n). The steps are logical, clear, and
mathematically sound, with no errors or gaps. This
is a high-quality analysis.
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