
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MATTEXT: LANGUAGE MODELS NEED MORE THAN
TEXT & SCALE FOR MATERIALS MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Effectively representing materials as text has the potential to leverage the vast
advancements of large language models (LLMs) for discovering new materials.
While LLMs have shown remarkable success in various domains, their application
to materials science remains underexplored. A fundamental challenge is the lack
of understanding of how to best utilize text-based representations for materials
modeling. This challenge is further compounded by the absence of a comprehensive
benchmark to rigorously evaluate the capabilities and limitations of these textual
representations in capturing the complexity of material systems. To address this
gap, we propose MatText, a suite of benchmarking tools and datasets designed to
systematically evaluate the performance of language models in modeling materials.
MatText encompasses nine distinct text-based representations for material systems,
including several novel representations. Each representation incorporates unique
inductive biases that capture relevant information and integrate prior physical
knowledge about materials. Additionally, MatText provides essential tools for
training and benchmarking the performance of language models in the context
of materials science. These tools include standardized dataset splits for each
representation across a range of dataset sizes, probes for evaluating sensitivity to
geometric factors, and tools for seamlessly converting crystal structures into text.
Using MatText, we conduct an extensive analysis of the capabilities of language
models in modeling materials with different representations and dataset scales. Our
findings reveal that current language models consistently struggle to capture the
geometric information crucial for materials modeling across all representations.
Instead, these models tend to leverage local information, which is emphasized in
some of our novel representations. Our analysis underscores MatText’s ability to
reveal shortcomings of text-based methods for materials design.

1 INTRODUCTION

Large language models (LLMs) have been increasingly applied to scientific disciplines (Miret &
Krishnan, 2024; Mirza et al., 2024; AI4Science & Quantum, 2023; Madani et al., 2023). This
includes applying LLMs to materials modeling (Xu et al., 2023; Rubungo et al., 2023; Jablonka
et al., 2023; 2024) such as diverse property prediction tasks and the generation of new materials
based on text-based representations (Gruver et al., 2023; Flam-Shepherd & Aspuru-Guzik, 2023;
Antunes et al., 2024). Despite recent efforts, there is no clear understanding of the performance and
limitations of language models for text-based material-property prediction. For language modeling,
it is commonly believed that increasing the number of parameters or data improves performance in
various tasks. In the field of material science, however, physical laws govern the relationship between
materials and their properties. As such, the scaling laws may differ from those for the modeling of
natural language.

That lack of understanding related to scaling laws is currently limiting progress. While there are
practically an infinite number of ways to represent materials in text, the research community currently
has little understanding of how to design an effective representation. This shortcoming is further
aggravated by the absence of tooling to reliably create text-based representations of materials, as
well as datasets and benchmarks to evaluate language model performance on materials modeling
tasks. Moreover, existing datasets related to text-based materials modeling are fragmented and
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heterogeneous in their representation and availability, and can hence not be used for systematic
benchmarking.
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Figure 1: Overview of the MatText framework. For MatText, we compile pretraining and fine-tuning
data and implement text representations of crystal structures with different inductive biases in a
standardized, object-oriented framework. We use the data and text representations to build a property-
prediction benchmark for language modeling of materials properties and analyze the models and
results to reveal the limitations of current approaches.

In this work, we propose a comprehensive dataset and benchmark that spans nine text-based repre-
sentations of solid-state materials, including five novel representations first introduced in MatText.
Concretely, we make the following contributions (Figure 1).

• MatText Benchmark: We report the most comprehensive evaluation of text-based material
property prediction. The benchmark unifies four previously reported representations and five
new representations we propose in this work, covering many relevant inductive biases. The
MatText benchmark is based on open-source datasets and established materials informatics
tooling (Dunn et al., 2020; Ong et al., 2013) and can be easily applied to test other systems.

• MatText Representations: To enable the MatText benchmark, we also develop a software
package to convert geometric representations of materials into text-based representations.
Besides transforming crystal structures into text, our framework also facilitates the translation
into tokens by providing reference implementations of tokenizers, as well as decoding and
robustness evaluation utilities.

• MatText Analysis: We analyze the current shortcomings of language models related to
materials property modeling. Our analysis spans representations, as well as multiple data
and model scales and architectures, and highlights the importance of locality as inductive
biases. We provide systematic evidence that current language modeling frameworks falter
to effectively leverage geometric information about crystal structures.

Our observations suggest that scaling current language models similar to LLMs for natural language
may not improve material property predictions. We believe that our MatText framework will enable
the design and evaluation of better modeling frameworks.

2 RELATED WORK

Language Models as Supervised Learners (Large) language models (Brown et al., 2020; Touvron
et al., 2023; Rae et al., 2021; Hoffmann et al., 2022; Raffel et al., 2023) have gained substantial
attention due to their exceptional performance on diverse tasks (Bubeck et al., 2023; Wei et al., 2022),
including supervised learning problems. They are typically trained by self-supervised pretraining
on a large corpus before supervised fine-tuning on labeled data (Howard & Ruder, 2018). Encoder
models such as BERT (Devlin et al., 2018) have been augmented with classification or regression
heads to perform classification or regression tasks based on an input sequence (Adhikari et al., 2019).
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Dinh et al. (2022) showed that LLMs can be fine-tuned without architecture changes (such as adding
a regression head) to solve classification and regression tasks based on tabular data inserted into text
templates. Vacareanu et al. (2024) demonstrated that pre-trained large language models can perform
such linear and non-linear regression using only in-context learning.

Text-Based Modeling of Molecules, Proteins & Materials Language modeling has become a
popular approach for predicting protein structures and functions. The amino acid sequence is the
foundation for the structure and function of a protein and can be easily represented as text (Ruffolo
& Madani, 2024; Rives et al., 2021; Lin et al., 2023; Elnaggar et al., 2022; Xu et al., 2023). While
recent research by Vig et al. (2021) has demonstrated that language models can capture structural
information when trained on sequence data, other findings indicate that on many downstream tasks,
the performance of protein language models does not scale with pretraining (Li et al., 2024).

For molecules, various text-based representations such as SMILES (Weininger, 1988) and SELFIES
(Krenn et al., 2020; Cheng et al., 2023a) have been developed and used for language modeling
(Krenn et al., 2022; Bran & Schwaller, 2023; Cadeddu et al., 2014; Frey et al., 2023; White, 2023;
Noutahi et al., 2023). These representations have been successfully applied to tasks such as retro-
and forward-synthesis (Pesciullesi et al., 2020; Schwaller et al., 2019), molecular property prediction
(Chithrananda et al., 2020; Wang et al., 2019; Ahmad et al., 2022; Balaji et al., 2023), and conditional
generation of molecules (Born & Manica, 2023; Bagal et al., 2021; Grisoni, 2023; Ghugare et al.,
2023).

While successes in protein and molecular text representations provide inspiration, materials science
poses unique challenges. Many properties, for example, depend on the 3D structure and periodic
repetition of a unit cell motif (Hoffmann, 1987) making representing materials as text more challeng-
ing. Nevertheless, past work has proposed different representations that include distinct inductive
biases, which we describe in greater detail in Section 3.1. For instance, Ganose & Jain (2019) aimed
to create human-readable descriptions by proposing a tool to automatically generate natural-language
descriptions of crystal structures, which have been used to create predictive embeddings and models
(Qu et al., 2024; Sayeed et al., 2023; Rubungo et al., 2024; Korolev & Protsenko, 2023). For specific
materials classes, such as metal-organic frameworks (MOFs), specialized representations like MOFid
Bucior et al. (2019) have been developed and used for materials design Cao et al. (2023). However,
unlike proteins, organic reactions, or small molecules, no natural representation has emerged for
materials, making language modeling more challenging in this field.

Inductive Biases for Material Modeling The modeling of physical systems can often benefit
from the inclusion of physical background knowledge as inductive bias. Locality, smoothness, and
symmetry are the most widely used inductive biases (Musil et al., 2021). Locality is commonly
incorporated using a distance cutoff and rationalized with the nearsightedness principle of quantum
mechanics (Prodan & Kohn, 2005). Related to this is using coarse-grained molecular motifs as
inductive bias (Sommer et al., 2023; Cheng et al., 2023b). Symmetry has been incorporated in many
of the most performant models by designing invariant or equivariant features (Langer et al., 2022;
Musil et al., 2021) or model architectures (Batatia et al., 2022; Satorras et al., 2021; Batzner et al.,
2022; Thomas et al., 2018). Previous work has indicated that for certain phenomena (e.g., when
all structures in a dataset are in the ground state), composition might implicitly encode geometric
information (Tian et al., 2022; Jha et al., 2018; Wang et al., 2021).

3 BENCHMARK

Our dataset leverages open-source materials structures sourced from the NOMAD archive (Draxl
& Scheffler, 2018; Miret et al., 2023). We interface with the developments from the MatBench
benchmark suite (Dunn et al., 2020) for property prediction tasks and use our new MatText Python
package to derive text representations.

Overall, we designed the MatText framework to allow the seamless conversion of crystals into text
representations with many different inductive biases (Section 3.1). For this, we implemented several
previously described representations and developed and implemented novel ones to cover additional
inductive biases, such as coarse-graining, and to allow for the ablation of different design choices in
text representations.
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3.1 MATTEXT REPRESENTATIONS

The MatText subpackage focussed on representations is based on pymatgen (Ong et al., 2013) and
provides an object-oriented way to convert crystal structures into text representations. Additionally,
MatText provides canonical implementations of relevant tokenizers that can be directly used for
diverse language model architectures. Moreover, MatText provides utilities to assess the robustness
of representations with respect to permutations, perturbations, and translations. For invertible
representations, MatText also implements decoders to convert text representations into pymatgen
crystal structure objects. MatText is easy to extend and use and described with tutorials as well as
code for all our analyses under MIT license.An example of usage is also shown in Appendix A.2.

Table 1: MatText Representations: The table summarizes the representations in this work, including
existing and newly proposed representations, alongside the various inductive biases encoded in the
text representations. Bonding captures the connection between atoms. Geometry describes the spatial
arrangement of atoms. Symmetry describes that the representation incorporates information on the
material’s translational, rotational, and reflection symmetries. Periodicity refers to information about
the periodic repeating unit. Coarse-graining refers to the aggregation of connected building blocks.

Stoichiometry Bonding Geometry Symmetry Periodicity Coarse Graining Reference

Composition ✓ Tian et al. (2022)
SLICES ✓ ✓ ✓ Xiao et al. (2023)
CIF P1 ✓ ✓ ✓ ✓ Flam-Shepherd & Aspuru-Guzik (2023)
Crystal-text-LLM ✓ ✓ ✓ Gruver et al. (2023)

New Representations

Atom Sequence ✓ -
Atom Sequence++ ✓ ✓ -
CIF Symmetrized ✓ ✓ ✓ ✓ -
Z-Matrix ✓ ✓ ✓ -
Local-Env ✓ ✓ ✓ ✓ -

In the subsequent section, we describe the representations used in our analysis along with the inductive
biases. Examples for each representation are listed in Table 3.

The text representations have different information content (going from just composition information
to information about the composition and the position of all the atoms), allowing us to analyze
what information language models can use for material property predictions. In addition, the
representations feature different combinations of inductive biases, which allows us to identify the
most meaningful ones in our analysis.

3.1.1 PREVIOUSLY REPORTED MATERIAL REPRESENTATIONS

Composition Prior work has shown that in certain cases, material composition alone can be
predictive for various materials properties (Tian et al., 2022). Hence, we also consider the composition
in customary Hill notation (Hill, 1900).

SLICES In addition to composition information, SLICES encompasses the composition and
bonding of atoms within and across the unit cell. It is an invariant and invertible string representation
without explicit information about the atom coordinates (Xiao et al., 2023). The representation
is a single-line string starting with elemental symbols within the unit cell and followed by bond
descriptions in the format uvxyz. Here, u and v represent node indices, while xyz denotes the
direction of the unit cell necessary to establish each bond connection across the unit cell boundaries.

CIF (P1) Crystallographic Information Files (CIFs) are a standard way to archive structural data
in crystallography (Hall et al., 1991). They have been previously used for generating materials
by fine-tuning LLMs (Flam-Shepherd & Aspuru-Guzik, 2023) or pretraining small GPT models
(Antunes et al., 2023). In the CIF P1 representation, the crystal structure is represented in the lowest
symmetry (P1 space group). This means that if there is any symmetry in the crystal structure, it is not
explicitly defined.

Crystal-text-LLM This representation is a condensed version of the CIF, which includes only the
parameters necessary for building the crystal structure(Gruver et al., 2023) (without additional syntax
of the CIF). Given the lattice parameters of the unit cell, atom types, and their coordinates, the bulk
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material structure can be represented as a listing of element symbols and coordinates separated by
linebreaks that are prefixed by the list of lattice parameters (cell lengths and angles). Contrasting the
CIF and the Crystal-text-LLM representations allows us to obtain insights into the importance of the
compactness of representations.

3.1.2 NEW MATERIAL REPRESENTATIONS

Atom Sequence To investigate the effect of the representation of compositional information, we
explicitly list all the atoms present within the unit cell to eliminate any confusion that might arise from
interpreting numbers as stoichiometric coefficients. Concretely, structures are represented by listing
each atom symbol n times to denote repetition within the unit cell structure. This representation is an
intermediate representation between SLICES and composition in Hill notation, allowing to ablate the
relevance of bonding information in SLICES.

Atom Sequence++ We incorporate lattice parameters sequentially into the Atom Sequence to ablate
the effect of having unit cell dimensions.

CIF symmetrized This CIF representation represents the asymmetric unit and list the symmetry
operations that can be applied to fill the unit cell by generating all equivalent positions. It typically
contains fewer lines describing atoms’ positions than the CIF in P1 but extra text describing the
symmetry operations. Thus, this representation can contain more tokens for some structures than the
P1 variant (CIF P1). This representation allows us to elucidate the importance of explicit symmetry
information alongside positional information.

Z-matrix The z-matrix is a representation widely used as input for quantum mechanical simulations
of small molecules (but not materials). It leverages internal coordinates and is hence invariant with
respect to translation or rotation. The internal coordinates used in a z-matrix are bond distances,
angles, as well as dihedral angles. As all of these internal coordinates are defined with respect to
neighboring atoms, the representation implicitly also encodes bonds. Here, we define the z-matrix
based on the atoms within one unit cell.

Local-Env We also report a new text representation inspired by the frequently used inductive bias
of locality and Pauling’s rule of parsimony, which states that local environments tend to be redundant
(Pauling, 1960). To derive the local environments, we perform the coordination environment analysis
reported by Waroquiers et al. (2020), derive Wyckoff labels using spglib (Togo & Tanaka, 2018),
and SMILES using openbabel (O’Boyle et al., 2011). We prefix the representation using the
spacegroup number and then list the Wyckoff label and SMILES separated by line breaks for each
local environment.

3.2 DATA PREPARATION

For each representation, we provide standardized splits of 30k, 100k, 300k, and 2M samples of
crystal structures in different text representations to enable researchers to study the effects of different
data scales. To prepare the data, we first filtered out non-unique materials based on the NOMAD ID
as a first step to address potential duplicates returned from API requests and then based on string
matching of canonicalized CIF files from a set checkpoint of the NOMAD database. We also shuffled
the dataset. For consistency, we limited the data to structures for which geometry was optimized with
the PBE functional and the VASP electronic structure code. Using the shuffled dataset, we created a
test holdout set (20k samples) by random sampling. Subsequently, we generated multiple subsets of
varying sizes from the remaining data (30k, 100k, 300k, and 2M samples). Each subset was created
by selecting the required number of examples sequentially. This method ensures that the smaller
subsets are proper subsets of the larger ones.

For the analysis, we excluded datasets with 2D structures and with high standard deviation on the
leaderboard from those originally reported in MatBench. However, our MatText package allows
users to seamlessly also leverage the other MatBench tasks.
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4 MATTEXT ANALYSIS

We conduct a comprehensive study using our MatText framework and expose significant shortcomings
of existing text-based material modeling methods. Our experimental design closely resembles the
standard pretraining of encoder-only transformers and fine-tuning of decoder-only transformers for
materials science and chemistry (Trewartha et al., 2022; Rubungo et al., 2023; Schwaller et al., 2021).
Our results show that: 1. scaling of pretraining does not necessarily lead to better performance on
downstream property-prediction tasks (Section 4.2.1); 2. that locality is an important inductive bias,
and, most importantly; 3. that current language modeling frameworks do not effectively leverage
geometric information. To further verify this hypothesis, we conduct a study with a separable
physic-inspired potential function in Section 4.3. The procedure allows us to precisely ablate the
contributions of compositional and geometric features and further confirms the general results of our
analysis that current language-modeling frameworks struggle to leverage geometric information and
do not consistently improve by increasing pretraining scale.

Table 2: MatText Performance of models trained on different representations. The table compares
the performance of different representations in predicting material properties using MatText-BERT
with tokenizers that split numbers into individual digits and Regression Transformer-based number
tokenization (Born & Manica, 2023), respectively. Additionally, we report the performance of
MatText-Llama of different sizes and the performance of BERT in a classification task. Root mean
squared error (RSME, lower is better ↓ ) is the performance measure for regression tasks and Receiver
Operating Characteristic/Area Under the Curve (ROC AUC, higher is better ↑) for classification task;
the reported error indicates the standard deviation across the cross-validation folds. The models listed
here are the best among the data scaling experiments for their respective representations. The SOTA
(State of the Art) refers to the best-known performance from the MatBench leaderboard (Dunn
et al., 2020).

Task SLICES CIF P1 Composition CIF Symmetrized Z-Matrix Local-Env SOTA*

BERT Custom Number Tokenizer**

Shear Modulus (GPa) ↓ 0.144±0.002 0.152±0.003 0.175±0.006 0.152±0.007 0.153±0.002 0.169±0.008 0.108±0.001a

Bulk Modulus (GPa) ↓ 0.149±0.003 0.154±0.007 0.173±0.006 0.153±0.008 0.152±0.002 0.154±0.007 0.104±0.004a

Perovskites (eV) ↓ 0.099±0.007 0.095±0.007 0.563±0.006 0.109±0.008 0.095±0.005 0.098±0.009 0.055±0.004a

Bandgap (eV) ↓ 0.843±0.009 1.565±0.033 0.959±0.010 1.125±0.030 1.095±0.013 0.805±0.005 0.396±0.005a

Formation Energy (eV) ↓ 0.349±0.017 0.681±0.009 0.407±0.008 0.358±0.020 0.826±0.017 0.255±0.007 0.048±0.06a

Is Metal (ROC AUC) ↑ 0.931±0.002 0.920±0.005 0.929±0.002 0.932±0.002 0.875±0.004 0.934±0.004 0.952±0.007b

BERT Regression Transformer Number Tokenizer**

Shear Modulus (GPa) ↓ 0.150±0.006 0.136±0.004 0.174±0.005 0.153±0.002 0.154±0.005 0.146±0.002 0.108±0.001a

Bulk Modulus (GPa) ↓ 0.144±0.003 0.143±0.004 0.173±0.007 0.156±0.006 0.154±0.006 0.143±0.003 0.104±0.004a

Perovskites (eV) ↓ 0.101±0.005 0.098±0.007 0.561±0.007 0.108±0.010 0.097±0.002 0.096±0.005 0.055±0.004a

Llama-3-8B-Instruct - Finetuned

Shear Modulus (GPa) ↓ 0.288±0.076 0.343±0.130 0.365±0.152 0.342±0.132 0.382±0.038 0.329±0.071 0.108±0.001a

Bulk Modulus (GPa) ↓ 0.460±0.246 0.315±0.077 0.302±0.108 0.402±0.182 0.219±0.017 0.480± 0.004 0.104±0.004a

Perovskites (eV) ↓ 0.294±0.150 0.181±0.018 0.716±0.033 0.225±0.031 0.286±0.045 0.410±0.045 0.055±0.004 a

Llama-2-7b-chat-hf - Finetuned

Shear Modulus (GPa) ↓ 0.189±0.006 0.194±0.007 0.212±0.008 0.191±0.008 0.193±0.007 0.181±0.007 0.108±0.001
Bulk Modulus (GPa) ↓ 0.181±0.012 0.185±0.011 0.196±0.006 0.186±0.018 0.186±0.008 0.177±0.005 0.104±0.004
Perovskites (eV) ↓ 0.155±0.010 0.130±0.004 0.691±0.018 0.289±0.008 0.146±0.006 0.139±0.008 0.055±0.004

Llama-2-13b-chat-hf - Finetuned

Shear Modulus (GPa) ↓ 0.179±0.007 0.180±0.005 0.210±0.007 0.184±0.009 0.178±0.007 0.183±0.009 0.108±0.001
Bulk Modulus (GPa) ↓ 0.168±0.006 0.172±0.009 0.197±0.013 0.181±0.010 0.173±0.009 0.163±0.012 0.104±0.004
Perovskites (eV) ↓ 0.133±0.005 0.227±0.035 0.689±0.016 0.206±0.014 0.146±0.006 0.125±0.004 0.055±0.004

Llama-2-70b-chat-hf - Finetuned

Shear Modulus (GPa) ↓ 0.173±0.008 0.180±0.010 0.205±0.010 0.184±0.009 0.182±0.006 0.180±0.007 0.108±0.001
Bulk Modulus (GPa) ↓ 0.173±0.008 0.171±0.008 0.193±0.008 0.182±0.012 0.174±0.012 0.171±0.012 0.104±0.004
Perovskites (eV) ↓ 0.112±0.002 0.115±0.002 0.715±0.014 0.149±0.006 0.127±0.001 0.110±0.001 0.055±0.004
a connectivity-optimized nested GNNs Ruff et al. (2023).
b CGCNN v2019 Xie & Grossman (2018)
* Due to limitations in context length, some structures were filtered out during fine-tuning and testing to prevent ambiguity from truncated structures. More analysis

justifying the filtering is provided in Appendix A.9. Note that SOTA results do not apply this filtering; hence, our metrics underestimate the performance of the
text-based approaches.

** The “Custom Number Tokenizer” refers to the custom MatText tokenizers used for the respective representations without any special handling of numbers. The
“Regression Transformer Tokenizer” applies special treatment for numbers in addition to the custom MatText tokenizers.
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4.1 MATTEXT-LLAMA

Recent findings have shown that the fine-tuning of general-purpose (decoder-only) large language
models can be an effective way to predict the properties of chemical compounds and materials
(Jablonka et al., 2024; Rubungo et al., 2024). To understand the effect of materials representation in
this setting, we performed parameter-efficient fine-tuning of two LLMs of different sizes, specifically
Llama-3 8B model and Llama-2 13B model.

Interestingly, we find that these models struggle to leverage positional information (Table 2). In
some cases, explicit positional information (e.g., CIF P1 or Crystal-text-LLM) even detriments
the performance of the model. A notable exception is the perovskites dataset, which has few
unique chemical environments compared to the shear and bulk modulus datasets (see Appendix A.7),
wherefore most of the variance cannot be explained using composition information alone. Importantly,
however, the SLICES representation, which does not contain explicit geometric information, does not
perform much worse than representations with explicit positional information (e.g., CIF), indicating
that the models do not leverage explicit positional information.

While the increase in model size led to notable improvements in property prediction across all repre-
sentations and properties, the observed lack of positional information utilization remains consistent
(SLICES, Local-Env better than CIF in most of the cases). table 2. This suggests that while larger
model sizes enhance overall predictive capability, they do not inherently address the specific challenge
of leveraging positional information effectively in materials science applications.

4.2 MATTEXT-BERT

To determine if our findings are limited to the setting of fine-tuning of decoder-only LLMs, which
have not been pretrained on materials representations, we pretrained BERT models (with 4 layers and
8 heads) using a masked language modeling objective for 50 epochs on our MatText representations.
Following pretraining, we fine-tuned the models on the materials property prediction tasks.

4.2.1 PRETRAINING DATA SCALING

The Limited Utility of Scaling Pretraining In our pretraining scaling experiments (Figure 2), we
find that the dataset size has little effect on the performance for some tasks (such as the prediction of
the heat of formation of perovskites). This echos findings for protein language models that indicate
that the scaling of pretraining does benefit many relevant downstream tasks (Li et al., 2024).

Figure 2: MatText-BERT scaling cross-validation scores. We pretrained BERT models with increasing
pretraining dataset sizes (indicated in color) and fine-tuned them for material property prediction
tasks using different material text representations. The error bars indicate the standard deviation
across cross-validation folds.

The Limited Utility of Geometric Information However, the impact of the text representations
is even more striking. Conventionally, one might expect that adding more information improves

7
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predictive performance. For instance, one would expect that the addition of positional information
increases performance in predicting the bulk and shear modulus (which one also observes for other
models, e.g., GNNs, on these tasks). In our experiments, however, we find that this is not the case. In
several instances, we could achieve comparable, if not better, performance with less information using
a representation such as SLICES, which only contains information about the composition and the bond
network. Notably, the predictive performance also does not improve when we incorporate classical
inductive biases such as symmetry information (e.g., CIF Symmetrized) or internal coordinates
(Z-Matrix). This indicates that the model cannot efficiently leverage the geometric information itself
(encoded in numeric form) and supports our findings on MatText-Llama. Our attention analysis
in Appendix A.6 shows further evidence on how language models place significant importance on
compositional information and little on geometrical information. In addition, we also do not observe
a noticeable impact from changing the tokenizer to one optimized for numbers (Born & Manica,
2023) in our pretraining and fine-tuning experiments (Appendix A.5), indicating that our findings are
not specific to a particular choice of tokenizer.

The Importance of Locality Importantly, our results show that other inductive biases can be
more effective and, hence, can guide the development of better text representations. The good
performance of SLICES seems to be based on the added bonding information in SLICES compared to
Composition and Atom Sequence (Figure 2). Based on these findings and hypothesizing that models
mostly learn by leveraging contributions of local environments (inspired by Pauling’s redundancy
rule (Pauling, 1960)), we developed a new representation, Local-Env, which is a text-based coarse-
grained representation of the local environment. It does not contain explicit bonding and positional
information but performs in many cases comparably to representations with explicit positional
information or explicit bonding information while being more concise and readable.

4.3 HYPOTHETICAL POTENTIAL TO RELABEL STRUCTURES

A problem with many standard benchmarks is that they make it difficult to distinguish effects
stemming from the data-generating process from those stemming from the model, which introduces
some level of arbitrariness in the benchmarking results based on the choice of the dataset. For
instance, positional features might only have a limited effect in our case because explicit geometric
features could be unimportant for the task at hand. To remove this effect and to better understand
the limitations of models in leveraging geometric information, we relabel crystal structures using a
physics-inspired hypothetical potential, E, based on a composition- and a position-dependent term
with independent generative processes.

E = αEcomp + (1− α)Epos =

k∑
k=1

wknk︸ ︷︷ ︸
Ecomp

+

N∑
i=1

V (ri) +

N∑
i=1

∑
j∈N (i)

V (|ri − rj |)︸ ︷︷ ︸
Epos

, α ∈ (0, 1)

(1)
where wk is a parameter associated with particles of type k. This term represents the contribution of
each particle type’s intrinsic properties to the system’s total energy, nk is the number of particles of
type k, and N (i) returns the neighborhood of i.

Using this formalism, we can easily measure the learning of positional information as well as long-
range interactions by tuning these parameters in the parameters. For instance, when we tune the
influence of geometric information by changing α, we see that models fail to effectively capture posi-
tional information, with most representations showing a similar behavior as a function of α (Figure 3).
For instance, for the structures of the GVRH and dielectric datasets, virtually all representations
perform equally poorly in predicting the geometric component of the hypothetical energy. That is,
independent of the presence or absence of geometric information, the model—in contrast to simple
baseline models—fails to leverage it (even for our locality-constrained setup). Again, the perovskite
dataset might appear as a special case at first glance. However, the representations with and without
explicit geometric information perform equally well here, too. Notably, the very good performance of
the representations with locality information in this task indicates that the model can learn shortcuts
based on recurring local environment instead of learning the underlying physical relationship (Dziri
et al., 2023; Geirhos et al., 2020; Zhou et al., 2023).
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Figure 3: Performance of fine-tuned models as a function of the importance of geometric features. The
x-axis represents the relative contribution (α in Equation (1)) of composition (Ecomp) and position-
dependent (Epos) terms to the energy (E). The y-axis is the mean absolute error in predicting the
hypothetical energy by our pretrained BERT (2M) models finetuned with different representations.
As α increases, the geometric term (Epos) becomes less dominant, leading to less error in predicting
the energy. For this experiment, we chose a Lennard-Jones-like term for V (r) in Equation (1). The
KVRH and GVRH datasets contain the same structures but different labels. The baseline model
refers to a gradient-boosting regression tree trained on a conventional material informatics descriptor
(Appendix A.8) and shows less sensitivity with respect to α.

Overall, our findings suggest that simply scaling pretraining may not improve performance on
downstream tasks and that language modeling frameworks may not effectively utilize geometric data.

4.4 LIMITATIONS

The proximity of distributions of pretraining and downstream tasks is relevant for transfer performance
(Hernandez et al., 2021; Cherti & Jitsev, 2022), and we cannot exclude the possibility that some
downstream tasks are out-of-distribution. Additionally, other pretraining objectives (compared to
Masked Language Modeling (MLM) or the general pretraining of a large language model) and model
architectures might be better suited for our tasks. We also cannot exclude the potential for some
emergent understanding if we were to increase the model scale, e.g., in the presence of grokking
(Power et al., 2022).

5 CONCLUSIONS AND FUTURE WORK

There has been considerable interest in modeling the properties of materials using language models. It
is often believed that language models can solve almost any task, provided enough scale and data. Our
findings indicate that for text-based materials modeling, more nuance is required. Specifically, our
results demonstrate that additional information about the 3D geometry of materials, which one might
expect to improve performance, does not help models and can sometimes even degrade performance.
This observation holds true even when this data is seemingly enhanced using conventional inductive
biases such as symmetry or internal coordinates. Consequently, our work suggests that conventional
wisdom from building models on natural language may not be applicable to modeling materials using
language models.

Moreover, our findings imply that, at least within the current language modeling frameworks (in-
cluding both masked and causal language modeling), these models might not be the best solution
for modeling materials. This mirrors observations such as the continued struggle of leading models
with basic arithmetic tasks (Shen et al., 2023; Lee et al., 2023; Dziri et al., 2023). Zhou et al. (2023)
proposed that transformers can generalize across task lengths if the task can be solved using a short
so-called Restricted Access Sequence Processing Language (RASP) program (Weiss et al., 2021).
Such RASP programs are intended to provide formal representation of programs that can be expressed
using transformers and the the addition of numbers, for example, cannot be expressed with such a
short RASP program. Modeling materials requires not only addition and subtraction but also more
complex operations. From this perspective, our findings align with this conjecture and highlight
significant limitations of current text-based modeling of material properties. This, however, must
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not apply to the unconditional generation of materials, which might be represented using simpler
programs and for which successes have been demonstrated using language models.

Positional encoding has been identified as one of the reasons for these issues (Nogueira et al., 2021).
Therefore, our future work will leverage novel encoding schemes such as COPE (Golovneva et al.,
2024), but also specific continuous number encoding techniques (Golkar et al., 2023).

Interestingly, our findings underscore that locality is one of the strongest inductive biases for materials
modeling, suggesting that current language modeling setups might be most applicable where the
property prediction problem can be solved using a group contribution formalism.

These findings highlight the importance and utility of our MatText framework. Practitioners can now
easily create, use, and evaluate various text-based representations of materials in a systematic fashion.
We believe that this framework will enable further systematic study of text-based materials modeling
and thus expedite the design and discovery of novel materials.

6 ETHICS STATEMENT

The development and application of MatText, a suite of benchmarking tools and datasets for evaluating
language models in materials science, have been conducted with careful consideration of ethical
implications. However, we acknowledge the potential for the datasets and models in this work to be
applied in the development of new materials and molecules. While the applications of this work hold
significant potential, we acknowledge the possibility of dual use.

7 REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our work, we have provided all the computational de-
tails and hyperparameters in appendix A.3 and appendix A.4. We have uploaded the
source code for pretraining, finetuning, analysis, and tooling to create all the representations
and tokenization to https://www.dropbox.com/scl/fo/afey2ymttiiaouzv31ld0/
AKTTV3E9_k5rILd24FjiHBE?rlkey=3oncu3annj6yrsty6uq21naoy&dl=0. All the
checkpoints used in this work and the dataset can be downloaded with the same package (example
code given in appendix A.2).
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A APPENDIX

A.1 MATTEXT REPRESENTATIONS

In Table 3, we list examples of the same material in various text representations.

Table 3: Example of MatText representations for one material.

representation name representation

Composition MgPtTa

Atom Sequence Mg Ta Pt

Atom Sequence ++ Mg Ta Pt 4.32 4.32 4.32 60 60 60

SLICES Mg Ta Pt 0 2 - - o 0 2 - o - 0 2 - o o 0 2 o - - 0
2 o - o 0 2 o o - 0 1 - - o 0 1 - o - 0 1 o - - 1
2 o o o

Crystal-text-LLM

3.5 4.2 4.4
90 90 90
Ta
0.76 0.12 0.00
Ta
0.00 0.12 0.18
V
0.00 0.00 0.00
Ga
0.76 0.00 0.18

CIF P1

data_MgTaPt
_symmetry_space_group_name_H-M ’P 1’
_cell_length_a 4.32
_cell_length_b 4.32
_cell_length_c 4.32
_cell_angle_alpha 60.0
_cell_angle_beta 60.0
_cell_angle_gamma 60.0
_symmetry_Int_Tables_number 1
_chemical_formula_structural MgTaPt
_chemical_formula_sum ’Mg1 Ta1 Pt1’
_cell_volume 56.85
_cell_formula_units_Z 1
loop_
_symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz
1 ’x, y, z’
loop_
_atom_site_type_symbol
_atom_site_label
_atom_site_symmetry_multiplicity
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy
Mg Mg0 1 0.0 0.0 0.0 1.0
Ta Ta2 1 0.58 0.58 0.58 1.0
Pt Pt1 1 0.53 0.53 0.53 1.0
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Z-Matrix
Mg
Ta 1 6.1
Pt 2 0.5 1 0

CIF-Symmetrized

data_MgTaPt
_symmetry_space_group_name_H-M R3m
_cell_length_a 4.32
_cell_length_b 4.32
_cell_length_c 10.57
_cell_angle_alpha 90.0
_cell_angle_beta 90.0
_cell_angle_gamma 120.0
_symmetry_Int_Tables_number 160
_chemical_formula_structural MgTaPt
_chemical_formula_sum ’Mg3 Ta3 Pt3’
_cell_volume 170.55
_cell_formula_units_Z 3
loop_
_symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz
1 ’x, y, z’
2 ’-y, x-y, z’
3 ’-x+y, -x, z’
4 ’-y, -x, z’
5 ’-x+y, y, z’
6 ’x, x-y, z’
7 ’x+1/3, y+2/3, z+2/3’
8 ’-y+1/3, x-y+2/3, z+2/3’
9 ’-x+y+1/3, -x+2/3, z+2/3’
10 ’-y+1/3, -x+2/3, z+2/3’
11 ’-x+y+1/3, y+2/3, z+2/3’
12 ’x+1/3, x-y+2/3, z+2/3’
13 ’x+2/3, y+1/3, z+1/3’
14 ’-y+2/3, x-y+1/3, z+1/3’
15 ’-x+y+2/3, -x+1/3, z+1/3’
16 ’-y+2/3, -x+1/3, z+1/3’
17 ’-x+y+2/3, y+1/3, z+1/3’
18 ’x+2/3, x-y+1/3, z+1/3’
loop_
_atom_site_type_symbol
_atom_site_label
_atom_site_symmetry_multiplicity
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy
Mg Mg0 3 0.0 0.0 0.0 1.0
Ta Ta1 3 0.0 0.0 0.42 1.0
Pt Pt2 3 0.0 0.0 0.47 1.0

Local Env

R3m
Ta (1a) [Ta]#[Pt]
Pt (1a) [Ta]#[Pt]
Mg (1a) [Ta][Mg][Ta].[Ta].[Pt].[Pt].[Pt]
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Robocrys MgTaPt crystallizes in the trigonal R3m space
group. Mg(1) is bonded in a 6-coordinate geometry
to three equivalent Ta(1) and three equivalent
Pt(1) atoms. All Mg(1)-Ta(1) bond lengths are
2.66 Å. All Mg(1)-Pt(1) bond lengths are 3.22
Å. Ta(1) is bonded in a single-bond geometry to
three equivalent Mg(1) and one Pt(1) atom. The
Ta(1)-Pt(1) bond length is 0.55 Å. Pt(1) is bonded
in a single-bond geometry to three equivalent
Mg(1) and one Ta(1) atom.

A.2 MATTEXT PYTHON PACKAGE EXAMPLE USE CASES

All these representations can be easily obtained with the MatText Python package

from mattext.representations import TextRep
from pymatgen.core import Structure

# Load s t r u c t u r e from a CIF f i l e
from_file = "InCuS2_p1.cif"
structure = Structure.from_file(from_file , "cif")

# I n i t i a l i z e Tex tRep C l a s s
text_rep = TextRep.from_input(structure)

requested_reps = [
"cif_p1",
"slices",
"atom_sequences_plusplus",
"crystal_text_llm",
"zmatrix"

]

# Get t h e r e q u e s t e d t e x t r e p r e s e n t a t i o n s
requested_text_reps = text_rep.get_requested_text_reps(requested_reps)

Custom MatText Tokenizer MatText provides tokenizers designed specifically for the MatText
representations for more meaningful tokenization. All the MatText tokenizers have the option to
enable special treatment for numbers first implemented in Born & Manica (2023).

from mattext.tokenizer import SliceTokenizer

tokenizer = SliceTokenizer(
model_max_length=512,
truncation=True,
padding="max_length",
max_length=512

)
tokenizer.tokenize("Ga Ga P P 0 3 − − o 0 2 − o − 0 1 o − −")

# o u t p u t : [ ’ [ CLS ] ’ , ’Ga ’ , ’Ga ’ , ’P ’ , ’P ’ , ’0 ’ , ’3 ’ , ’− − o ’ , ’0 ’ ,
’2’, ’− o −’, ’0’, ’1’, ’o − −’, ’[SEP]’]

tokenizer = SliceTokenizer(
special_num_token=True,
model_max_length=512,
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special_tokens={},
truncation=True,
padding="max_length",
max_length=512

)
tokenizer.tokenize("H2SO4")

# o u t p u t : [ ’H ’ , ’ _2_0_ ’ , ’ S ’ , ’O ’ , ’ _4_0_ ’]

More Examples

# S l i c e T o k e n i z a t i o n : [ ’ [ CLS ] ’ , ’Ca ’ , ’Hg ’ , ’O ’ , ’O ’ , ’0 ’ , ’3 ’ ,
’o o +’, ’0’, ’3’, ’o + o’, ’0’, ’3’, ’+ o o’, ’0’, ’2’, ’− o o’,
’0’, ’2’, ’o − o’, ’0’, ’2’, ’o o −’, ’1’, ’2’, ’− − −’, ’1’, ’3’,
’o o o’, ’[SEP]’]
# S l i c e T o k e n i z a t i o n ( R e g r e s s i o n T r a n s f o r m e r ) : [ ’ [ CLS ] ’ , ’Ca ’ , ’Hg ’ ,
’O’, ’O’, ’_0_0_’, ’_3_0_’, ’o o +’, ’_0_0_’, ’_3_0_’, ’o + o’,
’_0_0_’, ’_3_0_’, ’+ o o’, ’_0_0_’, ’_2_0_’, ’− o o’, ’_0_0_’,
’_2_0_’, ’o − o’, ’_0_0_’, ’_2_0_’, ’o o −’, ’_1_0_’, ’_2_0_’, ’− −
−’, ’_1_0_’, ’_3_0_’, ’o o o’, ’[SEP]’]

# R e p r e s e n t a t i o n w i t h l o c a l i t y encoded ( l o c a l env )
from mattext.tokenizer import SliceTokenizer

local_env = "P1 Rb (1a) [Cs][As]([Cs])[Cs].[Cs][As][Cs].[As][Rb].[As][Cs] As (1a) [Rb][As]([Cs])[Rb].[Rb][Cs].[Rb].[Cs].[Cs] Cs (1a) [Rb][As]([Rb])[Rb].[Rb][As][Rb].[As][Rb].[As][Cs]"
composition = "AsCsRb"

tokenizer = SmilesTokenizer (
model_max_length =512 ,
truncation =True ,
padding =" max_length ",
max_length =512,
special_num_token=False,
)

# o u t p u t :
# [ ’ [ CLS ] ’ , ’P ’ , ’1 ’ , ’ ’ , ’Rb ’ , ’ ’ , ’ ( ’ , ’ 1 ’ , ’ a ’ , ’ ) ’ , ’ ’ , ’ [ ’ , ’ Cs ’ , ’ ] ’ ,
’[’, ’As’, ’]’, ’(’, ’[’, ’Cs’, ’]’, ’)’, ’[’, ’Cs’, ’]’, ’.’, ’[’, ’Cs’, ’]’,
’[’, ’As’, ’]’, ’[’, ’Cs’, ’]’, ’.’, ’[’, ’As’, ’]’, ’[’, ’Rb’, ’]’, ’.’, ’[’,
’As’, ’]’, ’[’, ’Cs’, ’]’, ’ ’, ’As’, ’ ’, ’(’, ’1’, ’a’, ’)’, ’ ’, ’[’, ’Rb’,
’]’, ’[’, ’As’, ’]’, ’(’, ’[’, ’Cs’, ’]’, ’)’, ’[’, ’Rb’, ’]’, ’.’, ’[’, ’Rb’,
’]’, ’[’, ’Cs’, ’]’, ’.’, ’[’, ’Rb’, ’]’, ’.’, ’[’, ’Cs’, ’]’, ’.’, ’[’, ’Cs’,
’]’, ’ ’, ’Cs’, ’ ’, ’(’, ’1’, ’a’, ’)’, ’ ’, ’[’, ’Rb’, ’]’, ’[’, ’As’, ’]’,
’(’, ’[’, ’Rb’, ’]’, ’)’, ’[’, ’Rb’, ’]’, ’.’, ’[’, ’Rb’, ’]’, ’[’, ’As’, ’]’,
’[’, ’Rb’, ’]’, ’.’, ’[’, ’As’, ’]’, ’[’, ’Rb’, ’]’, ’.’, ’[’, ’As’, ’]’, ’[’,
’Cs’, ’]’, ’[SEP]’]

Input to models in LLM finetuning

f"<s>[INST] <<SYS>> What is the {self.property_} of {rep}
Answer: [/INST] {label:.3f} </s>"

# Here p r o p e r t y , r e p r e s e n t a t i o n and l a b e l s would be r e p l a c e d d u r i n g t r a i n i n g .
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A.3 MATTEXT-BERT COMPUTATIONAL DETAILS

We used the BERT base-uncased model with a configuration of hidden size 512, 4 hidden layers, 8
attention heads Devlin et al. (2018), and absolute positional embedding with a maximum position
embedding of 1024 as the architecture for the MatText-BERT model.

We choose a batch size and context length specific to representation and training models for a total
of 50 training epochs and a learning rate of 2 × 10−4 using a masked language modeling (MLM)
approach with a probability of 0.15 for masking tokens. Due to limitations in available computing
resources, we employ different batch sizes for models.

For fine-tuning, we employ early stopping with a patience of 10 and a threshold of 0.001 to prevent
overfitting, utilizing 20% of the data for evaluation while the remaining 80% is used for training. The
learning rate is set to 2 × 10−4. The pretrained base model layers are not frozen, and a regressor head
on top of the base model is used for the regression where the embedding of the first token ([CLS]
token) is used as the feature.

The Pretraining and finetuning were conducted using NVIDIA A100 GPUs, with variants of 80 GB
and 40 GB memory. Pretraining representations with a context length of 512 took approximately
8, 24, and around 48 h on a single A100 GPU for datasets of 30k, 100k, and 300k, respectively.
Pretraining with 2 million data points was completed in 8 A100 GPUs with 40 GB memory each,
totaling 30 h. For representations with a context length of 1024, the computation time ranged from
18 h to 3 days for datasets of 30k to 2 million points. Context length of 32 required significantly less
time, approximately 40 min, 120 min, and 250 min for 30k, 100k, and 300k datasets, respectively,
and around 8 h to 12 h for the 2 million dataset. Finetuning on perovskite structures took 2 h, 4 h
to 5 h, and 8 h for context lengths of 32, 512, and 1024, respectively, while for KVRH and GVRH
models, it took slightly more than half of the respective finetuning durations.

Table 4: Representations and their corresponding context lengths.
Representation Context Length

SLICES 512
Composition 32

Crystal-text-LLM 512
Z-Matrix 512
CIF P1 1024

CIF Symmetrized 1024
Atom Sequence 32

Atom Sequence++ 32
Local-Env 512

A.4 MATTEXT-LLAMA COMPUTATIONAL DETAILS

Following related work (Gruver et al., 2023; Rubungo et al., 2024) we finetune Llama-3-8B (Touvron
et al., 2023) models with LoRA (Hu et al., 2021). In addition, we use 4-bit quantization with
nf4 quantization type and float16 compute data type Dettmers et al. (2024). We employed a
rank-size of 32 and α = 64, with a batch size of 8 for 5 epochs and a cosine-annealed learning
rate of 0.0003, with no bias applied and on a CAUSAL_LM task. We accumulated gradients over
4 steps and employed gradient checkpointing. The learning rate was set to 3 × 10−4 with a cosine
scheduler, a warmup ratio of 0.03, and a weight decay of 0.001. Optimization was performed using
the paged_adamw_32bit optimizer. A maximum gradient norm of 0.3 was maintained to ensure
stable training. On A100 80 GB GPUs, the finetuning and testing time varies from 120 min to 350 min
depending upon the representation and finetune dataset size, with composition consuming the least
time and CIF Symmetrized the most for the perovskite dataset. Packing during training was disabled,
and a data collator was defined to train only for the generation part of the prompts. Fine-tuning
LLAMA on 80 GB A100 GPUs for perovskites ranged from 3 h for smaller representations to 5 h
(SLICES, Crystal-text-LLM) to 17 h (CIF Symmetrized), with other datasets generally requiring
about half the compute time.
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A.5 TOKENIZATION INFLUENCE

One reason numbers might not be processed correctly is the tokenization method (Singh & Strouse,
2024). For instance, in many default tokenization methods (e.g., BPE, single-digit tokenization),
numbers are represented with varying numbers of tokens, which might make it more difficult for
models to use them effectively. To address this issue, we implemented the tokenizer proposed by
Born & Manica (2023), which preserves decimal order and also encodes the order of magnitude. We
find that this change does not lead to a noticeable impact on the results (Figure 4).
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Figure 4: MatText-BERT pre-trained with increasing dataset sizes and fine-tuned for material property
prediction using different material text representations, where numbers are tokenized as implemented
in Regression Transformer (Born & Manica, 2023).

A.6 ATTENTION ANALYSIS

To further elucidate why models seemingly falter to leverage explicit positional information encoded
in numeric form, we analyzed attention weights. The amount of attention received by different tokens
can be interpreted as a measure of the relevance of different tokens in the representation (Figure 2).
The models here attend most to atomic symbols, which is consistent across all the representations
and aligns with our other findings that composition/stoichiometry is an important feature contributing
to accurate property prediction (Section 4.2.1). Consistently, we also observe that numbers receive
less attention. Overall, this supports the hypothesis that current models do not effectively utilize
numerical information for learning complex geometric features.

Token attention contribution calculation To perform this analysis, we first compute the contribu-
tion per token.

The element-wise multiplication of the attention matrix A(l,h) and mask Mk gives the contribution of
the attention scores for the token type k:

C
(l,h)
k = A(l,h) ⊙Mk

Here, ⊙ denotes element-wise multiplication.
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In this context, A(l,h) represents the attention matrix for layer l and head h, and Mk is the mask
for token type k in tokenized material text representations. Tokens can be classified into different
types for analytical purposes. For example, the SLICES representations can have tokens of the type
ATOMS, NUMS, and DIR. Specifically, all atoms are classified under the ATOMS token type, numbers
are classified under NUM, and DIR represents tokens defining the direction of bonds.

The mask Mk is defined as:
Mk ∈ {0, 1}T×T ,

where Mk is a binary matrix taking values 0 or 1.

The dimension of Mk matches that of the attention weight matrix A(l,h). Given that samples in
the dataset may contain varying numbers of atoms, each sample can have different corresponding
masks. To facilitate this analysis, the MatText tokenizers provide the functionality to generate a list
of token types alongside the list of tokens. These token types are used dynamically to design masks
for attention analysis.

Token Weight The percentage weight for token type k in layer l and head h is then calculated as:

W
(l,h)
k =

∑
i,j

(
C

(l,h)
k (i, j)

)
∑

i,j Mk(i, j)
.

Here W
(l,h)
k is the percentage attention recieved by a particular token type k in layer l and head h

during prediction and
∑

i,j denotes summing over all elements in the matrix.

Aggregation Across Folds Aggregates the attention weights for all the samples across multiple
folds. This involves summing the weights for each token across all samples (N ) and folds (f ). The
total contribution of token type k across all folds is given by:

Tk =
∑
N

∑
f

∑
l,h

W
(l,h,f)
k .

Results In the attention heat maps, we observe certain heads specialized to learn features from
compositions, which is not the case for numbers, where we observe rather a dispersed nature in
heads (Figure 6). Previously, with unsupervised language modeling of proteins, the formation of such
heads was associated with parts of the architecture concentrating on learning certain features (Vig
et al., 2021). We observe that groups dedicated to learning numerical features do not emerge with
pretraining.
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Figure 5: Attention received by different types of tokens in different representations summed across
all the heads and layers

A.7 DIVERSITY ANALYSIS

To understand the impact of the dataset on the benchmark, we benchmarked the diversity of the
datasets by computing the uniqueness and balance of local environments. To do so, we leverage the
local environment analysis implemented for our Local-Env representations.
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Figure 6: Attention contributions for different types of tokens in different heads and layers.

UNIQUENESS

Uniqueness =
{e}
∥e∥

, (2)

where e is a concatenation of the local environments of all structures.

BALANCE Let p = {p1, p2, . . . , pn} be the probability distribution derived from the counter values,
where pi =

ci∑n
j=1 cj

and ci are the counts of local environments.

H(p) = −
n∑

i=1

pi log2(pi)

where pi log2(pi) is defined to be 0 if pi = 0.

We define balance as the entropy normalized by the maximum entropy:

Balance = Hnorm =
H(p)

Hmax
=

−
∑n

i=1 pi log2(pi)

log2(n)
(3)

Table 5: Diversity analysis of the fine-tuning datasets. We compute diversity metrics based on local
environment features (i.e., SMILES derived for coordination environments). The perovskite dataset
has the lowest number of unique structures.

dataset number of
structures

local env count uniqueness balance

Shear Modulus (GPa) 38025 12293 0.11 0.92
Bulk Modulus (GPa) 38025 12293 0.11 0.92
Perovskites (eV) 144660 13063 0.02 0.84
Dielectric 18190 7134 0.08 0.88

The low values for uniqueness indicate a high value for redundancy, supporting intuition based on
Pauling’s rule of parsimony (Pauling, 1929).
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A.8 MODELING THE HYPOTHETICAL POTENTIAL USING “CONVENTIONAL” MODELS

To test whether the behavior of the test error as a function of α in Equation (1) is specific to the
language modeling setup, we also trained models that mimic established setups in material informatics.
We use Dscribe (Himanen et al., 2020) to derive Many-Body Tensor Representation features (Huo
& Rupp, 2022) (using the pairwise inverse distance as geometry function on a grid with 250 points
between 0 and 7, smoothed with a Gaussian of width 0.1 and exponential weighting) to describe the
geometry of the structures and featurize the composition using matminer Ward et al. (2018), where
employ the fraction of element, the mass of the atoms in the unit cell, the number of atoms in the
unit cell, p-norms of stochiometric attributes (Ward et al., 2016). We then train a Histogram-based
Gradient Boosting Regression Tree (Pedregosa et al., 2011) to predict the energy based on the
features.

A.9 FILTERING TRUNCATED STRUCTURES

One limitation of language modeling is the fixed sequence lengths the model can take as input. In order
to deal with this, we modeled the longer representations with bigger context lengths (for example, a
context length of 1024 for CIF-based representations). However, incorporating all the structures in
the MatBench is impractical as it would demand a context length of more than 2048 (around 4 times
higher computational cost). We hence created a separate filtered version of MatBench dataset where
structures with sequence lengths beyond their respective context length when represented as CIF (P1),
CIF Symmetrized, SLICES, or Crystal-text-LLM are filtered out. However, this filtering does not
make the comparisons erroneous but removes all the ambiguity that can arise from having truncated
and nonphysical structures in the analysis. This is also supported by our further analysis of prediction
error correlation with sequence length, where we do not notice any correlation that can arguably
suggest the model performs poorly on larger sequence material. In fact, this filtering step can make
the task more difficult as there are fewer samples in the training set. Therefore, we suggest using
the MatText-filtered dataset for researchers limited by compute and MatText-matbench otherwise.
Figure 7 shows the prediction error for samples with different sequence lengths. Perovskite structures
are relatively small (five atoms in a unit cell) and do not undergo filtering.
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Figure 7: Prediction error correlation with sequence length for Shear Modulus and Bulk Modulus
datasets.
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