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Interpretingmachine learningmodelswith high-level, human-understandable con-
cepts has gained increasing importance. The concept bottleneck model (CBM) is
a popular approach for providing such explanations but typically sacrifices some
prediction power compared with standard black-box models. In this work, we pro-
pose an approach to turn an off-the-shelf black-box model into a CBM without
changing its predictions or compromising prediction power. Through an invertible
mapping from the model’s latent space to a concept space, predictions are decom-
posed into a linear combination of concepts. This provides concept-based explana-
tions for the complex model and allows us to intervene in its predictions manually.
Experiments across benchmarks demonstrate that CBM-zero provides comparable
explainability and better accuracy than other CBM methods.

1. Introduction
As artificial intelligence (AI) demonstrates remarkable success in diverse domains, concerns re-
garding interpretability [1, 2], fairness [3, 4], and privacy [5, 6] are also gaining increasing atten-
tion. While the complexity of deep learning models enables modeling complex patterns, it also
makes the decision-making process opaque. This “black-box” aspect of modern AI systems raises
concerns about deploying these models in high-stakes scenarios, and there is a growing demand
for more transparent AI systems [7, 8].
Numerous efforts have been made to enhance the interpretability of deep learning models, many
of them generating saliency-map style explanations using gradient-based analysis [9, 10], game-
theory approaches [11, 12], decomposition-basedmethods [13, 14], andmore. These saliencymaps
broadly highlight important features of the input, which provides valuable insights into where, or
to what features, the model attributes some notion of importance. However, saliency maps might
not always be sufficient, specifically when the prediction is based on global attributes, such as color,
texture, or overall morphology, rather than specific input dimensions [15]. This limitation is partic-
ularly evident in challenging tasks like clinical diagnosis, where localizing a particular subregion in
medical images may not fully represent important features, and high-level, domain-relevant expla-
nations are needed for more meaningful explanations [16, 17].
Concept-based explanations provide a compelling alternative by explaining classification models
with high-level, human-understandable attributes such as color, shape, texture, and objects [15].
The concept bottleneck model (CBM) [18, 19] is one such method that consists of two interconnected
predictors: a first concept predictor that predicts the presence of specific abstract concepts in some
embedded representation of the input, and a subsequent (linear)model that outputs the probability
of the class given the presence of such concepts. Since this model explicitly constructs predictions
that rely on the presence of concepts, this layer is referred to as a concept bottleneck. A crucial chal-
lenge of these CBM-basedmethods is the loss of predictive power that comeswith using a surrogate
(linear, and interpretable) model in lieu of a standard and more complex alternative. Although nu-
merous efforts have been made to alleviate this issue, such as constructing very complex and large
concept banks [20–25], performance drops still exist, especially in complex tasks.
In this work, we propose CBM-zero, a methodology that explains an off-the-shelf, standard black-
boxmodel by converting it to a concept bottleneckmodel. As Figure 1 illustrates, CBM-zero extracts
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Figure 1: The high-level idea of CBM-zero (a) A black-box model. (b) Construction of a concept
bottleneck through invertible affinemapping fromblack-boxmodel’s hidden space to concept space.
(c) The black-box model can be reformulated as a CBM without altering predictions.

representations computed just before its final layer andfinds an affinemapping from this latent space
to a concept space derived from human annotations or Contrastive Language-Image Pre-Training
(CLIP) models [26]. Importantly, we impose an invertibility constraint on the affine map to ensure
the original black-box model’s prediction is not changed. In this way, We can explain that black-
box model in a post-hoc manner without altering it, retaining its performance. Furthermore, like
other CBMs, our method allows human interventions. By inspecting and manually fixing incorrect
concept attributions, one can modify incorrect predictions. We quantitatively evaluate the accuracy
and explanation quality of our method on several image classification benchmarks. Comparedwith
other CBM-based counterparts, our method consistently achieves the best accuracy while offering
comparable or better interpretations.

2. Related works
As alluded to above, our work is most closely related to CBM-based methods. More broadly, it is
also related to conceptual explanation techniques, given that our method aims to explain black-box
models with concepts. We review these prior works to put our contribution in context.
Concept bottleneck model (CBM) The initial idea of CBM [18, 19] for classification relied on first
predicting concepts and then using these concept scores to predict a class, forming a concept bot-
tleneck. Dense image-wise concept annotations are needed to train the first predictor. Post-hoc
CBM (PCBM) [27] proposed learning concept activation vector (CAVs) in feature space as a con-
cept bank [28] and projecting the image embeddings onto these CAVs to produce concept scores.
Moreover, in cases where image-wise concept annotations are unavailable, they propose obtaining
concept bottleneck by aligning images with concepts through language-visionmodels such as CLIP.
Language in a Bottle (LaBo) [20] and label-free CBM [21] follow a similar idea and further boost the
accuracy by collecting concepts from a large language model. More recently, increasingly sophis-
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ticated methods have been dedicated to improving the concept bank quality in completeness [22]
and flexibility [23, 25]. In all cases, given that the final predictors are based on a linear model based
on predicted concepts, all methods share the crucial limitation of performance drops compared to
original black-box models. While numerous efforts have been made to minimize this performance
gap, some prediction power is always lost in challenging cases. Our method, on the other hand,
does not alter the classification function of the original predictor, guaranteeing zero performance
drop by design.
Other conceptual explanations More broadly, post-hoc methods find alternative ways of explain-
ing an off-the-shelf complex predictor, and typically need image-wise concept annotations in the
training set or an auxiliary set. T-CAV [28] is a popular approach that learns a linear classifier on
the feature space of a complex model to distinguish samples with and without certain concepts,
as parameterized by CAVs. The importance of the concept is then given by directional derivatives
of prediction to CAVs. Several extensions generalize and enhance T-CAV. For instance, Automatic
Concept-based Explanations (ACE) [29] considers super-pixels in images as concepts and discovers
them automatically. ConceptSHAP [30] defines completeness scores for CAVs, and uses Shapley
values to quantify the individual importance. Concept activation region (CAR) [31] relaxes the
linear separability assumption and uses a region instead of a vector in latent space to represent a
concept. Spatial CAV [32] attributes CAVs to relevant spatial regions, while Text2Concept [33] de-
rives CAVs from texts. Casual Concept Effect (CaCE) [34], on the other hand, assesses the causal
effect of concepts by generating counterfactual samples. More recently, [35] uses conditional inde-
pendence of concepts and sequential kernelized testing [36] to assess concept importance. The vast
majority of these methods need costly concept annotations to define which concepts to use to probe
the latent space of the original, complex model.

3. Methods
In this section, we detail the problem formulation, describe our methods, and briefly introduce the
related methods to be used in the experimental section.

3.1. Problem formulation
Consider a deep learning, black-box model that predicts a label1 y ∈ R from an input image x ∈ Rn.
Most deep neural networks consist of multiple stacked layers and end with a fully connected layer
(FCN). Let f : Rn → Rd represent all layers prior to the last FCN. Without loss of generality, we
consider a K-class image classification task. The weights and bias of the final FCN are denoted as
A ∈ RK×d and b ∈ RK , respectively. The black-box model and its prediction ŷ are then given by

z = Af(x) + b, ŷ = argmax
i

zi, (1)

where z ∈ RK denotes the logits for K classes, and the predicted label ŷ is the index of largest
logit. The goal is to explain this black-box model with human-understandable concepts (e.g., “red”,
“beak”, “stripes”). Like other CBM-based methods, we attempt to solve this problem by defining
a concept bank as a collection of M concepts, denoted as S = {s1, s2, ..., sM}. We seek to construct
a CBM by mapping the codomain of f(x) to an interpretable concept space, and then invert the
mapping to preserve the original predictions unchanged.

3.2. Constructing a zero-performance drop CBM
In this section, we will show that any black-box model with the form of Eq. (1) can be converted to
a CBM without changing the predictions and completely preserving the accuracy. Figure 2 shows
an illustration of our method. The core challenge is that the feature embedding f(x) in Eq. (1)

1Even though we will study classification problems, we will consider labels in R as we model the un-
normalized logits of the model, which approximate the conditional probability of a label given the input.
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Figure 2: An overview of the method. CLIP model is used to estimate concepts’ correlation with
images. Exponential transformation and normalization are applied to emphasize highly correlated
concepts. An invertible affine mapping is learned to map features from a black-box model’s hidden
space to the concept space.

resides in an abstract space that encodes useful information but is not semantically meaningful to
humans. Thus, we aim to relate this hidden space with another one that is interpretable to humans
by construction.
To do this, one needs a handle on what concepts are present in each image. In some cases, images
are annotated with concept labels, such as in the CUB dataset [37]. However, such dense concept
annotations are not always available. Thus, we use the CLIP model [26] to estimate the presence
of concepts in images, without requiring external images-wise concept annotations. CLIP trains an
image encoder EI : Rn → Rl and a text encoder ES : S → Rl (where S is the space of text/token
sequences) jointly via contrastive learning, allowing image and text embeddings to live in a shared
space. Their cosine similarity is defined as the CLIP score:

cos(x, si) =
EI(x)

TES(si)

∥EI(x)∥2∥ES(si)∥2
. (2)

For an image x, the CLIP scores for M concepts yields an M -dimensional vector,
[cos(x, s1), cos(x, s2), . . . , cos(x, sM )]T . To address the limited discriminative power of CLIP
[38], we apply an exponential transformation to emphasize concepts with stronger cor-
relations, followed by normalization. Specifically, the concept features c(x) is defined as
c(x) =

[
cost(x,s1)−µ1

σ1
, . . . , cost(x,sM )−µM

σM

]T
, where µi and σi are the mean and standard devia-

tion of cost(x, si) over the inputs, estimated from training samples. We empirically set t = 5 to
emphasize concepts with higher CLIP scores, and discuss other choices of t and their sensitivities
in Appendix A.3.
We define an interpretable concept space so that c(x) ∈ C ⊂ RM , and a latent space H ⊂ Rd so that
f(x) ∈ H. We seek an affine projection, (W ∈ RM×d, h ∈ RM ) : H → C to map from the hidden
space to the concept space. Importantly, we impose the constraint that rank(W ) = d, and therefore
M ≥ d, to ensure that the left pseudo-inverse of W , defined by W+ = (WTW )−1WT , exists. As a
result, the mapping from the latent to the concept space is invertible, allowing us to preserve the
output of the original model unaltered.
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Algorithm 1 Make Matrix Full Rank
1: Input: A rank-deficient matrix W ∈ RM×d(M ≥ d), perturbation scale ϵ
2: Output: A full-rank matrixW ′

3: Perform singular value decomposition (SVD) of W : W = UΣV T

4: for each singular value σi in Σ do
5: if σi = 0 then
6: Sample r ∼ U(0, 1)
7: Set σ′

i = ϵr (small perturbation)
8: else
9: Set σ′

i = σ (keep original singular value)
10: end if
11: end for
12: Set Σ′ = diag(σ′

1, . . . , σ
′
d)

13: Reconstruct the matrix W ′ = UΣ′V T

14: Return W ′

To learnW andh, we propose to solve the following optimization problemunder the rank constraint:
(Wλ, hλ) = argmin

W,h
E

x∼D
∥Wf(x) + h− c(x)∥22 + λR(W ) s.t. rank(W ) = d (3)

where D is the training data distribution, R(W ) is a regularization term, and λ controls regulariza-
tion strength. We use elastic net regularization onAW+ to encourage sparsity, i.e., so that each class
employs a small number of concepts, facilitating interpretability. To be more specific,

R(W ) = α∥AW+∥1 + (1− α)∥AW+∥2F , (4)
where ∥ · ∥F is the Frobenius norm, ∥AW+∥1 =

∑
i

∑
j |(AW+)i,j | is element-wise ℓ1 norm, and α

controls this trade-off, which we empirically set as 0.5.
The concept bank S is a pre-defined, task-specific set containing concepts relevant to the prediction
task of interest. As the black-box model is not initially trained with these concepts, some concepts
can be not used or detectable by the black-boxmodel. Wemeasure the detectability of si by calculating
the Pearson correlation coefficient [39] between the ith entry ofW0f(x)+h0 and that of c(x), where
W0 and h0 are obtained by solving Eq. (3) with λ = 0. Concepts with low detectability, are filtered
and removed.
We then train a single linear layer with the remaining concepts via the objective in Eq. (3) using the
Adam optimizer [40]. The rank ofWλ is tracked each time the linearmap is updated. When the full-
rank constraint is not fulfilled, we add a small perturbation to its zero singular values, as detailed in
Algorithm 1. The hyper-parameter λ is chosen adaptively to find a good trade-off between concept
alignment and sparsity of concept weights, as detailed in Appendix A.3.

3.3. Global and local explanations
AfterWλ and hλ are obtained for a fixed λ, the original black-box model predictions (logits) can be
reformulated–exactly–as a linear combination ofM interpretable concepts. DenotingWλ and hλ as
W and h for simplicity, these are given by

z = Ã(Wf(x) + h) + b̃ = Af(x) + b, (5)
whereWf(x)+h ∈ RM represents the activations in the concept space, and Ã := AW+ and b̃ := b−
Ãh provide the adapted affine classifier. Notice that, sinceW+W = I , these logits have not changed
from those in the original prediction. Yet, this expression allows us to compute the difference in
importance of a given concept to a specific class. To understand the prediction of class i in terms of
concepts, we can compute the deviation of zi from the mean logit across classes:

zi −
1

K

K∑
j=1

zj =

M∑
m=1

Ãi,m − 1

K

K∑
j=1

Ãj,m


︸ ︷︷ ︸

Γi,m

(Wf(x) + h)m +B, (6)

5



where B = bi − 1
K

∑
j bj +

1
K

∑
j(Ãh)j − (Ãh)i is a constant term.

From this, we can identify the global weights of concept sm in predicting class i, Γi,m := Ãi,m −
1
K

∑
j Ãj,m. Moreover, γi,m(x) := Γi,m(Wf(x) + h)m is the local contribution of concept sm to the

specific sample x. From these, one can also calculate the difference between classes i and j in terms
of their employed concepts:

zi − zj =

M∑
m=1

(Ãi,m − Ãj,m)(Wf(x) + h)m + bi − bj + (Ãh)j − (Ãh)i. (7)

These local and global explanations will be demonstrated shortly in the Experimental Section.

3.4. Comparative methods
We compare our method with the following existing CBM-based approaches.
Post-hoc CBM (PCBM) [27] PCBM trains a linear classifier to learn concept activation vectors
(CAVs) [28], and projects the image embedding onto these to obtain concept scores. In cases with-
out concept annotations, CLIP-derived image embedding vectors are projected onto text embed-
dings to obtain concept scores. A sparse linear classifier is trained on these concept scores to make
final predictions.
Language in a Bottle (LaBo) [20] LaBo is similar to the CLIP version of PCBM, but the concept
score is defined as the inner product of the image and concept embeddings. A linear predictor with
softmax-normalized coefficients is then trained to predict labels, with no sparsity regularization.
Label free CBM (LF-CBM) [21] LF-CBM first learns a linear mapping from a black-box model’s
latent space to a concept space and then trains a sparse linear predictor on the resulting features
to predict the class labels. While the mapping from hidden space to concept space shares a similar
motivation to ourmethod, LF-CBM learns a new predictor to predict labels and, as a result, it cannot
explain the original prediction and typically results in a loss of predictive power.

4. Experiments
Datasets We evaluate our method on six datasets in total: three for standard image classification
sets (CIFAR-10, CIFAR-100 [41] and ImageNet [42]), and three fine-grained image classification
datasets (CUB [37], AwA2 [43], and Food-101 [44]).
Black-box models Our method applies to any black-box model provided that the number of con-
cepts (M) is larger than the dimension (d) of its last FCN,which is not a big restriction in practice, as
we will shortly show. We train a black-box model for each dataset, with the image encoder of CLIP-
ViT-L/14[26] as the backbone, and attach a two-layer multi-layer perceptron (MLP) as the classifier.
The hidden dimension of MLP is set to be 64 for CIFAR-10 and AwA2, and 256 for CIFAR-100, CUB,
and Food-101. For ImageNet, we train a linear probe on top of the image encoder of CLIP-ViT-L/14
as the black-box model. During training, the image encoder is fixed.
Concept bank Each dataset has an associated concept bank relevant to its task. We use existing con-
cept annotations for CUB and AwA2. For CIFAR-10, CIFAR-100, and ImageNet, we curate 85, 691,
and 2,901 concepts, respectively, by querying ConceptNet (a knowledge graph connecting textual
concepts with edges between them) [45] with class names. For Food-100, we use 1,295 concepts
curated by LaBo [20] using GPT-3, since class names are specific food names and less present in
ConceptNet. We present more details about concept curation in Appendix A.3. Importantly, all
methods use the same concept bank per dataset for fair comparison.
Concept features As described in Section 3, CLIPmodels are used to generate concept feature c(x),
which is a proxy of ground truth concept features when annotations are not available. We use the
CLIP-ViT-L/14 model for the main results, and include other versions of CLIP models in Appendix
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Table 1: Accuracy and Global Explanation Quality on General Image Classification sets
Method CIFAR-10 CIFAR-100 ImageNet

ACC X-Fact@10 ACC X-Fact@10 ACC X-Fact@10
Black- box 0.981 – 0.873 – 0.844 –
PCBM 0.937 0.650 ± 0.136 0.826 0.501 ± 0.173 0.814 0.307 ± 0.158
LaBo 0.976 0.540 ± 0.080 0.855 0.422 ± 0.159 0.830 0.225 ± 0.119
LF-CBM 0.979 0.670 ± 0.142 0.848 0.375 ± 0.131 0.708 0.248 ± 0.126
CBM-zero(Ours) 0.981 0.683 ± 0.107 0.873 0.360 ± 0.131 0.844 0.334 ± 0.163

Table 2: Accuracy and Global Explanation Quality on Fine-grained Image Classification sets
Method CUB AwA2 Food-101

ACC X-Fact@10 ACC X-Fact@10 ACC X-Fact@10
Black- box 0.861 – 0.981 – 0.953 –
PCBM 0.824 0.119 ± 0.123 0.632 0.486 ± 0.201 0.947 0.413 ± 0.185
LaBo – – 0.897 0.674 ± 0.161 0.943 0.335 ± 0.161
LF-CBM 0.831 0.268 ± 0.171 0.976 0.673 ± 0.136 0.944 0.545 ± 0.171
CBM-zero(Ours) 0.861 0.620 ± 0.180 0.981 0.616 ± 0.135 0.953 0.477 ± 0.175

A.3. In the case of CUB, which has image-wise concept annotations andwhere general CLIPmodels
struggle to capture these fine-grained annotated concepts (see AppendixA.4), we use the annotated
presence labels as c(x). For a fair comparison, we also use ground truth annotations in PCBM (the
CAV version) and LF-CBM for cases where image-wise concept annotations are present. Yet, this
does not apply to LaBo, as the CLIP score is essential to its input.

4.1. Results
Prediction Power The prediction power of models is easily evaluated by their classification accu-
racy, as shown in Table 1 and Table 2. We obtain the highest accuracy across all the datasets as
expected, since it inherently preserves the black-box models’ prediction.
Global explanations The evaluation of explanation quality is more challenging. Prior works have
often omitted it [27], or relied on subjective human inputs [20, 21]. In this work, we define a new
metric, termed X-factuality@k, to evaluate the validity of k-top concepts receiving the highest global
weights (Γi,m) to explain a given class i. The definition of validity of concepts differs per dataset,
depending on whether human annotations are present or not:

1. For concepts curated from ConceptNet, a concept is valid if there exists a valid edge con-
necting it and the corresponding class name2.

2. For concepts collected from GPT, we prompt GPT-4 with “Please assign a score between 0 and
1 based on the importance of {concept} in visually recognizing {class name}”. Concepts receiving
scores higher than 0.5 are deemed valid.

3. AWA2 has class-wise concept annotations, and we consider concepts with “presence” an-
notations as valid.

4. CUB provides image-wise concept annotations, which are aggregated to class-wise contin-
uous scores (ranging from 0 to 100), indicating the percentage of times a concept is marked
as “present” within each class. We consider concepts with values above 50% as valid.

We denote the estimated set of top k important concepts for class i as Ŝk
i , and the “valid” concepts

as Si. Given Ŝk
i and Si, we define X-factuality as:

X-factualityi@k =
|Ŝk

i ∩ Si|
k

, (8)

2The ConceptNet assigns a semantic meaning to each edge, and we consider an edge valid if its semantic
meaning is not “Obstructed By”, “Antonym”, “Distinct From”, or “External URL”.
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Figure 3: An examples of local explanations. Blue bars show the percentage concept contributions
(γi,m(x)) to logit. Cyan bars show the concept activation ((Wf(x) + h)m), and orange bars show
the concept weights (Γi,m). Negative values of both activation and weight indicate the absence of
certain concepts contributing to prediction, and we prepend ”NOT” to the concept name to reflect
this.

Ground truth annotations

Figure 4: Quantitative assessment of local explanations quality on CUB. The top 10 contributing
concepts per image are selected and compared with ground truth, which has 7 possible certainty-
presence combinations: definitely/probably/guessing for either present or absent, or not visible).
These top concepts can be important due to their presence or absence. We calculate the proportion
of these 7 combinations for both, concepts that are present (left, more green is better) and absent
(right, more red is better).

Note that while the definition of X-factuality seems related to the commonly used precision, they
are not equivalent since “valid” concepts are not necessarily important for a prediction task. For
instance, “fur” might be “valid” in many animals, but might not be important in classifying dif-
ferent types of animals. A high X-factuality only indicates the selected concepts do not contradict
human intuition, but does not guarantee the correctness of an explanation, since the actual concept
importance for predictions is not always clear or well-defined.
Table 1 and Table 2 show results on X-Factuality@10 of global explanation for general and fine-
grained tasks, respectively. X-factuality is calculated per class and aggregated asmean and standard
deviation. CBM-zero obtains comparable interpretation quality with other methods, ranking first
or second in most cases. Figure A.1 further shows X-factuality@k as a function of k.

Local explanations Recall from Sec. 3.3 that the local contributions of concept sm for predicting
the sample x as class i is defined as γi,m. Figure 3 illustrates the top 10 contributing concepts and
their percentage of contribution to class logit for an example image from CUB. Note that concepts
with high contribution are not always present in certain images. Conversely, the absence of a concept
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Modify concept activation:  "horns": 3.15 -> 0, "desert": 2.11 -> 0                      Prediction: "antelope" -> "deer"

Figure 5: An example ofmanual intervention. The image gets an incorrect prediction of "antelope".
By zeroing out the unreasonably high activations of "horns" and "desert", the prediction is corrected.

can also contribute towards a predicted label, when both Γi,m and (Wf(x) + h)m are negative. We
prepend “NOT” to the concept in this case. More examples appear in Appendix A.4.
Quantitative evaluation of these local explanations needs costly sample-wise concept annotations,
which are only available for CUB. We select the top 10 contributing concepts per image (estimated
by CBMs) and compare them with annotations, which have 7 possible presence-certainty combi-
nations. As mentioned before, a concept’s contribution can be caused by its presence or absence,
depending on whether its activation is positive or negative. We assess alignment with ground truth
annotations for both cases and present these results in Figure 4. All the methods perform well in
identifying concepts contributing by their absence, with more than 80% of them annotated as ab-
sent. Our method performs best in identifying concepts contributing by their presence, with 42.6%
annotated as “definitely present” and another 16.6% annotated as “probably present”, significantly
better than comparative methods.
Interventions Like other CBM-based methods, CBM-zero supports human intervention. Incorrect
predictions can be fixed by identifying andmanually editing errors in concept activations (Wf(x)+
h) using domain knowledge, known as local interventions. Notably, intervening in CBM-zero is
equivalent to intervening in the original black-boxmodel, as these two are strictly equivalent in their
formulations. We show an example of manual intervention in Figure 5, where an image of "deer" is
incorrectly predicted as an "antelope". By inspecting the local explanations, we identified that the
top contributed concepts – "horn" and "desert"– get high activations, which are inconsistent with the
image. By zeroing out the activation of these two concepts, the prediction is successfully corrected.
We show more examples of such local interventions in Figure A.13 and A.14. In Appendix A.5, we
also include global intervention studies, where we modify concept weights (Γi,m) to change model
behavior and gain improvements globally.

5. Discussion, Limitations, and Conclusion
In this work, we introduce CBM-zero, which explains black-box models by constructing a CBM via
an invertible mapping between its latent space and an interpretable concept space. Unlike other
CBMs, CBM-zero does not alter the original black-box model, preserving its performance exactly.
Experiments across various benchmarks demonstrate its superiority in maintaining the model’s ac-
curacy and providing high-quality interpretations compared with states-of-arts. This work also has
several limitations. The affinemappingmight not always be powerful enough, and leveragingmore
expressive yet still invertible models (e.g., normalizing flows [46]) in the future might address this.
The reliance on CLIP models introduces limitations. CLIP scores measure correlation rather than
directly indicating the presence of concepts. Therefore, an image of a baby might get a high score
for “stroller” even if no stroller is shown in the image. Exploring alternatives, such as querying
large language and vision models [38] or human collaborators [47] about the presence of certain
concepts, might address this issue. Finally, the concept banks used are not perfect. ConceptNet,
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although large and evolving, is not sufficient to represent the numerous concepts and complex rela-
tionships in the real world. GPT-generated concepts are more flexible but might be overly complex
and include non-visual descriptions. Both ConceptNet and GPT-generated concepts can be inaccu-
rate in describing the relationship between concepts, with unclear levels of noise. Human annota-
tions are costly and labor-intensive, hindering its broad applicability. Incorporating recent advances
in concept discovery [22–24, 48], as well as incorporating notions of uncertainty quantification to
our results [49, 50], may help generate more reasonable explanations.

6. Reproducibility Statement
Codes for implementing this method and reproducing the results can be found in this repository:
https://github.com/JasmineZhen218/CBM-zero
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A. Appendix
The Appendix provides additional clarifications and details that are not included in the main text
due to the length limit.

A.1. X-factuality@k as a function of k
In the main text, we only report X-factuality @ 10 for global explanations in Table 1 and 2. Here, we
extend this by plotting X-factuality@k as a function of k, as shown in Figure A.1.

CIFAR-10 CIFAR-100 ImageNet

CUB AwA2 Food-101

Figure A.1: X-Factuality @ k v.s. k. Solid lines show the mean X-Factuality across classes, and the
shaded area shows the standard deviation among classes.

A.2. CLIP models on CUB
As described in Section 4, the CUB dataset contains 312 human-annotated concepts. These concepts
are fine-grained descriptions of the color, shape, and size of specific bird parts. We found that even
state-of-the-art CLIP models struggle to align these concepts with the correct images, reducing the
faithfulness of any explanation methods relying on them. To demonstrate this, we select the top
10 concepts with the highest CLIP scores per image and compare them with annotations. Table
A.1 summarizes the results of different versions of CLIP models, and none of them align with the
ground truth well.

A.3. Implementation details
Concept curation For CIFAR-10, CIFAR-100, and ImageNet, we collect concepts by querying Con-
ceptNet [45] with the {class name} and obtain {concepts}). Only concepts with valid connections
(excluding connections with semantic meaning of “Obstructed By”, “Antony”, “Distinct From”, or
“External URL”) are retained. For a specific dataset, the concepts connecting all the class names
are gathered, and the following processing is applied: (1) long concepts with more than 10 char-
acters are excluded to include simple concepts instead of complex statements; (3) only the top 10
concepts with the highest connection strength to each class name are preserved, which excludes
those less common, and weakly related concepts; (3) concepts that are close to each other and close
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Table A.1: Quality of different versions of CLIP models on capturing concepts of CUB
Annotations Composition of Top-10 Correlated Concepts (%)

Presence Certainty RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14

Yes(↑)
Definitely 7.71 ± 11.5 6.69 ± 10.5 8.97 ± 13.0 8.45 ± 11.8 10.4 ± 12.3
Probably 4.93 ± 9.04 3.73 ± 7.92 5.04 ± 9.74 5.43 ± 9.76 5.86 ± 9.72
Guessing 1.43 ± 4.43 0.97 ± 3.73 1.17 ± 4.41 1.54 ± 4.93 1.44 ± 4.60

No(↓)
Definitely 39.3 ± 31.6 45.6 ± 33.7 41.0 ± 32.1 35.7 ± 32.8 38.1 ± 31.6
Probably 23.0 ± 27.1 25.4 ± 29.0 23.1 ± 27.3 21.7 ± 27.8 21.8 ± 27.5
Guessing 6.37 ± 15.3 6.10 ± 15.4 5.66 ± 14.6 6.25 ± 16.1 6.05 ± 15.9

Not visible 17.3 ± 24.0 11.6 ± 18.7 15.1 ± 22.5 20.9 ± 29.6 16.4 ± 25.8
We select the top 10 concepts with the highest CLIP scores per image, calculate their proportions of 7 possible presence-certainty
combinations and report the mean and standard deviation across images.

Figure A.2: An illustration of the selection of regularization strength λ. The x-axis shows values of
λd, where d is the dimension of f(x).

to class names are excluded, where the text-text similarity is measured by cosine similarities of the
embedding encoded by all-mpnet-base-v2 [51] sentence encoder and a threshold of 0.85 is applied.
For Food-101, we use the concepts curated by LaBo [20], where the GPT-3 is prompted with describe
what {class name} looks like and relevant concepts are extracted from the answers. We exclude overly
long and complex concepts with more than 15 characters.

Hyperparameters λ The regularization strength, λ, controls the trade-off between concept align-
ment and the sparsity of concept weights, which are both important to generate good explanations.
Given a specific λ, we quantitatively assess them in the following ways:

1. concept alignment: We calculate the Pearson correlation coefficient between the ith entry
ofWλf(x) + hλ and that of c(x), resulting in the alignment of the ith concept. We calculate
the average of alignments across concepts.

2. concept sparsity: we assess the ratio of zero values in AW+
λ with the cut-off of 0.01.

We search λ in a range of [0, 10
d ] (d is the dimension of f(x)) and monitor the change of concept

alignment and concept sparsity. Naturally, the alignment of the concept decreases and the sparsity
increases as λ increases. We aim to encourage sparsity without compromising concept alignment
too much. Practically, we decide on a “reasonable zone” for λ, where the mean alignment of the
concept is not less than 90% of its maximum, and the sparsity is not less than 90% of its maximum
during the search. If the reasonable zone covers more than one choice of λ, we choose the smallest
λ. Figure A.2 shows an illustration of this process, using experiments on AwA2 as an example. In
this case, λ = 7

d is the final selection. We evaluated the alignment and sparsity of the concept of the
chosen λ and compared them with the results of not applying regularization. Figure A.3 shows the
distribution of the magnitudes of concept weights and concept alignments. The results show that
we can significantly increase sparsity without harming alignment by choosing a reasonable λ.
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CIFAR-10 CIFAR-100 ImageNet

CUB AwA2 Food-101

Sparisty

CIFAR-10 CIFAR-100 ImageNet

CUB AwA2 Food-101

Alignment

Figure A.3: Comparison of concept sparsity and alignment with and without regularization. The
upper part shows the histogram of absolute values of concept weights. The lower parts show the
histogram of alignments across concepts.

Table A.2: X-Factuality@10 with different choices of exponential power t
CIFAR-10 CIFAR-100 ImageNet AwA2 Food101

t=1 0.700 ± 0.107 0.355 ± 0.131 0.284 ± 0.156 0.576 ± 0.177 0.435 ± 0.177
t=3 0.767 ± 0.125 0.357 ± 0.120 0.337 ± 0.169 0.582 ± 0.161 0.468 ± 0.190
t=5(default) 0.683 ± 0.107 0.360± 0.131 0.334 ± 0.163 0.616 ± 0.135 0.477 ± 0.175

Hyperparameters t As described in Section 3.2, we apply an exponential transformation with
power t on the CLIP scores to emphasize concepts with higher correlation to images. We set t = 5
as the default and discuss how the choice of t affects the quality of the interpretation. Table A.2
reports the X-factuality@10 for each dataset. The results are not very sensitive to the choice of t,
while applying exponential power (t = 3 or 5) is generally better than not (i.e., t = 1). Note that
the choice of t will not affect the accuracy of classification models, as CBM-zero does not alter the
original classifier by design.
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Table A.3: X-Factuality@10 with different choices of CLIP models
CIFAR-10 CIFAR-100 ImageNet AwA2 Food101

ViT-B/16 0.833 ± 0.094 0.315 ± 0.142 0.222 ± 0.126 0.594 ± 0.130 0.441 ± 0.190
ViT-B/32 0.833 ± 0.137 0.310 ± 0.118 0.202 ± 0.124 0.596 ± 0.155 0.471 ± 0.179
ViT-L/14 0.683 ± 0.107 0.360± 0.131 0.334 ± 0.163 0.616 ± 0.135 0.477 ± 0.175

Other CLIP versions In main texts, we use ViT-L/14 as the clip model to estimate the presence of
concepts in images. Here, we analyze the quality of global interpretations of other versions of CLIP
in Table A.3.

Computational efficiency All the models are trained on a single Nvidia GPU. The training of a
black-box model takes from a few minutes to two days depending on the dataset size. Once the
feature embedding of the black-box model and CLIP image encoders are saved, the training of the
affine mapping for interpretation purposes is typically within 10 minutes.

A.4. More examples of explanations
In this section, we provide some examples of contributions of concepts in the prediction of spe-
cific images across different datasets. To be more specific, we focus on the deviation of logit of the
predicted class from the mean logit across classes, zŷ − 1

K

∑K
i=1 zi, and calculate the contribution

of concept sm, denoted as ((AW+)ŷm − 1
K

∑
i(AW+)im)(f(x) + h)m in percentage. The top 10

contributed concepts for each image are shown. Figure A.4 and Figure A.5 show examples from
CIFAR-10 and CIFAR-100. Figure A.6 shows examples from CUB, Figure A.7 shows examples from
AwA2, and Figure A.7. For ImageNet with a lot of images from diverse classes, we show examples
by category, furniture in Fig A.9, animals in Fig A.10, clothes in Fig A.11, and locations in Fig A.12.

A.5. Interventions
In this section, we describe the intervention studies in more detail. The users can intervene
in concept bottleneck models by identifying and manually editing errors in concept activations
(Wf(x) + h) and concept weights (Γi,m). We refer to the former editing as “local intervention”,
as it changes the prediction of individual samples at test time; and the latter editing as “global in-
tervention”, as it changes model parameters and thus impacts model behavior globally.

Local intervention we inspect local explanations of images where the model made wrong predic-
tions, manually edit incorrect/counter-intuitive activations of concepts (Wf(x)+h), and eventually
change the logits and predictions. Figure A.13 and A.14 shows representative examples across dif-
ferent datasets.

Global intervention Like other related works [21, 27], we manually identify concepts that are im-
portant for a particular class while having minimal impact on others, and then manually edit their
weights accordingly. Through a quick exploration in ImageNet, especially in classes where the orig-
inal model does not perform very well, we have found several beneficial edits, as listed below.

1. If we increase the weight of the concept "seaport" for the class "deck" by 0.2, the class-wise
accuracy of "deck" increases from 64% to 88%. (This also doesn’t negatively affect themodel
performance in other classes either; in fact, the overall accuracy improves from 84.39% to
84.40%. Note that one class only constitutes a small portion of the entire dataset.)

2. If we increase the weight of the concept "reservoir" for the class "dam" by 0.2, the class-wise
accuracy of "dam" increases from 88% to 92%. The overall accuracy remains.

3. If we increase the weight of the concept "screen" for the class "firescreen" by 0.2, the class-
wise accuracy of "firescreen" increases from 68% to 74%. The overall accuracy improves
from 84.39% to 84.41%.
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4. If we increase the weight of the concept "soup" for the class "hot pot" by 0.2, the class-wise
accuracy of "hot pot" increases from 78% to 84%. The overall accuracy remains.

5. If we increase theweight of the concept "kitchen" for the class "dishwasher" by 0.2, the class-
wise accuracy of "dishwasher" increases from 68% to 76%. The overall accuracy improves
from 84.39% to 84.40%.

Aside from labor-intensive and subjective manual global intervention, we also have utilized our
definition of "valid" concepts to intervene in the model. Specifically, we iterated through all the
classes and checked their most (positively) important concepts. If a concept is designated as a
"valid" concept for a certain class, we increase its weight for that class by 0.05. In this manner, even
without carefulmanual tuning, the accuracy of ImageNet has been improved from84.39% to 84.42%.
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Figure A.4: Examples of local explanations from CIFAR-10. The top 10 contributed concepts are
shown.
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Figure A.5: Examples of local explanations from CIFAR-100. The top 10 contributed concepts are
shown.
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Figure A.6: Examples of local explanations from CUB. The top 10 contributed concepts are shown.
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Figure A.7: Examples of local explanations fromAwA2. The top 10 contributed concepts are shown.
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Figure A.8: Examples of local explanations from Food101. The top 10 contributed concepts are
shown.
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Figure A.9: Examples of local explanations from ImageNet (Furniture). The top 10 contributed
concepts are shown.
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Figure A.10: Examples of local explanations from ImageNet (Animals). The top 10 contributed
concepts are shown.
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Figure A.11: Examples of local explanations from ImageNet (Clothes). The top 10 contributed con-
cepts are shown.
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Figure A.12: Examples of local explanations from ImageNet (Locations). The top 10 contributed
concepts are shown.
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Modify concept activations: "oven": 3.40->0, "kitchen": 3.03->0, "cooker": 3.50->0, "dish": 1.48->0Prediction: "dishwasher" -> "washing machine"

Modify concept activations: "tablet": 2.92->0 Prediction: "hand-held computer" -> "mobile phone"

ImageNet

ImageNet

Modify concept activations: "scooped into a cone":  3.65 --> 0 Prediction: "ice cream" -> "yogurt"

Modify concept activations: "cupped": 1.98->0 Prediction: "cup cakes" -> "donuts"

Food-101

Food-101

Figure A.13: Examples of local interventions.
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Modify concept activations: "toughskin": 2.93->0

Modify concept activations: "hunter": 2.90->0, "gray": 2.42->0, "fierce": 2.23->0

Prediction: "german shepherd" -> "collie"

Prediction: "wolf" -> "fox"

AwA2

CUB

AwA2

Modify concept activations: "bill color is black ": 1.21->-1

Modify concept activations: "bill length is shorter than head ": 0.32->0

Prediction: "Sooty Albatross" -> "Crested Auklet"

Prediction: "Northern Fulmar" -> "Sooty Albatross"

CUB

Figure A.14: Examples of local interventions.
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