
Effective Reinforcement Learning for Reasoning in Language Models

Anonymous ACL submission

Abstract001

Reinforcement learning (RL) has emerged as002
a promising strategy for improving the rea-003
soning capabilities of language models (LMs)004
in domains such as mathematics and coding.005
However, most modern RL algorithms were006
designed to target robotics applications, which007
differ significantly from LM reasoning. We an-008
alyze RL algorithm design decisions for LM009
reasoning, for both accuracy and computational010
efficiency, focusing on relatively small models011
due to computational constraints. Our findings012
are: (i) on-policy RL significantly outperforms013
supervised fine-tuning (SFT), (ii) PPO-based014
off-policy updates increase accuracy instead015
of reduce variance, and (iii) removing KL di-016
vergence can lead to concise generations and017
higher accuracy. Furthermore, we find that018
a key bottleneck to computational efficiency019
is that the optimal batch sizes for inference020
and backpropagation are different. We propose021
a novel algorithm, DASH, that performs pre-022
emptive sampling (i.e., sample a large batch023
and accumulate gradient updates in small incre-024
ments), and gradient filtering (i.e., drop sam-025
ples with small advantage estimates). We show026
that DASH reduces training time by 83% com-027
pared to a standard implementation of GRPO028
without sacrificing accuracy. Our findings pro-029
vide valuable insights on designing effective030
RL algorithms for LM reasoning.1031

1 Introduction032

Recent advancements have shown that reinforce-033

ment learning (RL) algorithms can significantly034

enhance the mathematical reasoning capabilities035

of language models (LMs) (DeepSeek-AI et al.,036

2025a; Qwen et al., 2025; Zeng et al., 2025). De-037

spite these results, there has been little systematic038

understanding of how different RL design deci-039

sions contribute to their effectiveness in the LM040

1Our code is here: https://anonymous.4open.
science/r/efficient_reasoning-A172/README.md.

GRPO DASH0
5

10
15
20
25
30
35
40

Co
m

pu
ta

tio
n

Ti
m

e
(H

)

Inference Gradient update

Figure 1: DASH can reduce running time by 83% com-
pared to GRPO by using preemptive sampling (Sec-
tion 3.4) and gradient filtering (Section 3.5).

reasoning setting. Many of these algorithms were 041

originally designed for robotics, while LM reason- 042

ing exhibits qualitatively different learning patterns, 043

meaning different design decisions may be more 044

effective (Ahmadian et al., 2024); indeed, even the 045

space of relevant design decisions may be different 046

for LM reasoning compared to robotics. Our goal 047

is to answer the following question: 048

How do we design effective RL algorithms for 049

improving the reasoning capabilities of LMs? 050

Importantly, we are interested not only in the 051

performance (i.e., the final accuracy), but also effi- 052

ciency (i.e., how quickly the algorithm converges). 053

Furthermore, we focus on relatively small mod- 054

els (0.5B, 1.5B, and 3B) where we can explore a 055

variety of different RL algorithms. 056

We perform a systematic analysis of the differ- 057

ent design decisions in an RL algorithm. We start 058

by considering the two most prevalent types of 059

algorithms: supervised fine-tuning (SFT) (Chen 060

et al., 2023; Zeng et al., 2023), also known as be- 061

havior cloning, and on-policy RL (e.g., policy gra- 062

dient (Sutton et al., 1999), PPO (Schulman et al., 063

2017a), GRPO (Shao et al., 2024), etc.). While 064

SFT is much more efficient, we find it to be signifi- 065

1

https://anonymous.4open.science/r/efficient_reasoning-A172/README.md
https://anonymous.4open.science/r/efficient_reasoning-A172/README.md

cantly less effective at improving reasoning ability066

for the models we consider; this may be due to the067

inability for smaller models to effectively mimic068

the reasoning traces of larger models or humans.069

In contrast, we find that on-policy RL is highly070

effective at improving performance.071

Next, we compare different kinds of on-policy072

RL algorithms. Compared to the original policy073

gradient (PG) algorithm, PPO is designed to im-074

prove stability by “freezing” the inference policy075

and taking multiple gradient steps. We find that076

while PPO achieves a slight increase in perfor-077

mance, it has significantly higher variance com-078

pared to PG, which is the opposite of conventional079

wisdom. In addition, PPO introduces a KL term080

to regularize the training policy towards the infer-081

ence policy; perhaps surprisingly, we find that KL082

divergence leads to lengthier generations and often083

perform worse than without KL.084

While on-policy RL is highly effective, exist-085

ing algorithms are computationally expensive to086

run. Analyzing the performance bottlenecks of on-087

policy RL, we find that the sampling procedure is a088

key bottleneck. The key issue is that inference and089

training require significantly different batch sizes090

to make maximal use of computational resources.091

Thus, we find that it is much more effective to per-092

form inference in a single large batch, and then ac-093

cumulate gradient steps for this batch over multiple094

training steps. This strategy allows us to perform095

efficient sampling in conjunction with using the096

PG algorithm. Combined with strategies to filter097

out samples with small advantage estimates, we098

call the resulting algorithm Distributed-Aggregated099

Sampling Handler (DASH); compared to GRPO,100

it reduces on-policy training time by 83% with-101

out sacrificing model performance (Figure 1). We102

open-source our DASH implementation to facili-103

tate further research.104

To summarize, our key findings are as follows:105

• For models we consider, we find on-policy RL106

to be effective but not SFT (Section 4.2).107

• We propose DASH, and find that it can ac-108

celerate on-policy training by 83% without109

compromising accuracy (Section 4.3).110

• We find that while PPO-style gradient updates111

can slightly improve accuracy, it can introduce112

instability into training (Section 4.4).113

• We find that removing KL divergence can lead114

to more concise generations and higher accu- 115

racies (Section 4.5). 116

2 Related Work 117

LM Reasoning. Given the promising perfor- 118

mance of language models (LMs), numerous stud- 119

ies have explored their application to mathemat- 120

ical problem solving (Hendrycks et al., 2021; 121

Cobbe et al., 2021; Glazer et al., 2024), pro- 122

gram synthesis (Austin et al., 2021; Puri et al., 123

2021), and other reasoning tasks. Since LMs 124

often exhibit varying performance when directly 125

prompted for these tasks, various methods have 126

been proposed to explicitly elicit reasoning. For 127

instance, Chain-of-Thought prompting (Wei et al., 128

2023) encourages LMs to generate intermediate 129

reasoning steps before producing the final answer. 130

Tree-of-Thought (Yao et al., 2023a) and Graph- 131

of-Thought (Besta et al., 2024) extend this idea 132

by imposing logical structure to organize the rea- 133

soning process. LM reasoning has also been en- 134

hanced through tool use (Yao et al., 2023b; Shinn 135

et al., 2023). While these methods have proven 136

effective in guiding LM reasoning and improving 137

downstream task performance, they primarily fo- 138

cus on better prompt design rather than improving 139

the models’ inherent reasoning capabilities. 140

RL for LM reasoning. Recent efforts have fo- 141

cused on using RL to improve LM reasoning 142

capabilities. In question-answering tasks, Fire- 143

Act (Chen et al., 2023) and AgentTuning (Zeng 144

et al., 2023) enhance reasoning capabilities by 145

learning from demonstrations from humans or 146

stronger models. These approaches are commonly 147

referred to as supervised fine-tuning (SFT), or be- 148

havior cloning in the RL literature. However, sev- 149

eral studies have found limits on the effective- 150

ness of SFT, instead proposing to use on-policy 151

RL (DeepSeek-AI et al., 2025a; Shao et al., 2024; 152

Zeng et al., 2025). However, on-policy RL can 153

be very computationally expensive, leading to a 154

great deal of interest in improving efficiency. One 155

shortcoming is that they require re-sampling gener- 156

ations after each model update, leading to sample 157

inefficiency and prolonged training times. To miti- 158

gate this, DeepSeek-AI et al. (2025b) propose more 159

efficient transformer architectures to accelerate pre- 160

training, and Kwon et al. (2023a) introduce ad- 161

vanced memory management techniques to speed 162

up sampling in post-training. Although current RL 163

algorithms can leverage vLLM acceleration, the 164

2

Prompt batch 𝑥!, 𝑥", … , 𝑥#

…

Aggregate 𝑦%!!, … , 𝑦%#/%! ∪⋯∪ 𝑦%!% , … , 𝑦%#/%%

…

Inference
GPU 𝐻

Backprop
GPU 𝐻!

Inference
GPU 1

Backprop
GPU 1

Figure 2: Illustration of preemptive sampling. We use
H GPUs for inference and H ′ for backpropagation; they
are shown in blue and green, respectively. Given a batch
of M prompts {x1, . . . ,xM}. The inference GPUs
then generate corresponding responses {ŷ1, . . . , ŷM},
which are aggregated across GPUs into CPU memory.
When a backpropagation GPU requests generations for
a prompt xm, the corresponding cached response ym is
retrieved and delivered. Since we are using groups for
advantage estimation, each prompt xm is duplicated to
form groups, and all generations in the same group are
sent to the backpropagation GPU upon request.

full potential of vLLM remains underutilized, leav-165

ing significant room for improving RL efficiency.166

3 Effective RL for LM Reasoning167

First, we describe basic design decisions of our RL168

algorithm rooted in the prior literature; these are169

based either on experiments from prior work or170

our own experiments. Specifically, we consider an171

LM πθ with parameters θ, which takes in a user172

prompt x and generates a reasoning trace ŷ, which173

we call a trajectory. We let ŷt denote the tth token174

in trajectory ŷ. For a training prompt xn, we can175

check whether a generated trajectory ŷn produces176

the correct answer, represented as a scalar reward177

rn = R(xn, ŷn) ∈ R. We assume that rn is for the178

entire trajectory; typically, it is a binary indicator179

of whether the final answer is correct.2180

3.1 RL Strategy181

The first decision is what kind of RL strategy to182

use. We consider two strategies: supervised fine-183

tuning (SFT) and on-policy RL. SFT is effectively184

the same as behavior cloning, a popular imitation185

learning algorithm. Given a prompt training set186

D = {xn}Nn=1, SFT collects corresponding expert187

trajectories Y = {yn}Nn=1, either from a human188

or a stronger LM. Then, the LM is optimized via189

2Recent work has found that process rewards (Wang et al.,
2024) may not be effective in our setting due to the diffi-
culty predicting whether a reasoning trace is on the right
track (DeepSeek-AI et al., 2025a).

maximizing the log likelihood on (D,Y): 190

θ∗ = argmax
θ

N∑
n=1

log πθ(yn | xn) 191

πθ(yn | xn) =
T∏
t=1

πθ(ŷn,t | xn, ŷn,1, ..., ŷn,t−1) 192

Alternatively, on-policy RL learns from trajecto- 193

ries generated by the current LM πθ. Given the 194

a prompt set D, a typical on-policy RL algorithm 195

optimizes the expected reward: 196

πθ∗ = argmax
θ

J(θ) (1) 197

J(θ) =
1

N

∑
xn∈D

Eŷn∼πθ(·|xn)[R(xn, ŷn)]. 198

While SFT has been shown to be effective in set- 199

tings like (Muennighoff et al., 2025) where an 200

already post-trained larger sized model is used 201

(Qwen2.5-32B-Instruct), our experiments show 202

that it can be ineffective when the gap between 203

the expert and πθ is too large (where we use small 204

base models to ablate on the effect of RL post- 205

training). For instance, an expert may take leaps of 206

reasoning that are incomprehensible to the learner. 207

Thus, DASH uses on-policy RL. Another alterna- 208

tive that has been studied in the literature is self- 209

imitation (Oh et al., 2018), where the “expert” tra- 210

jectories are obtained by performing search guided 211

by πθ, but results applying this strategy to LMs 212

have so far been mixed (Shao et al., 2024). 213

3.2 Gradient Update Strategy 214

Next, we discuss the gradient update strategy. We 215

consider both policy gradient (PG) (Sutton et al., 216

1999) and PPO (Schulman et al., 2017b) (which 217

includes GRPO (Shao et al., 2024)). In general, 218

we consider gradient approximations ∇θJ(θ) ≈ 219

N−1
∑N

n=1 Jn where Jn encodes the gradient ap- 220

proximation for the nth summand of J(θ). First, 221

by the Policy Gradient Theorem, using 222

JPG
n = Eyn∼πθ(·|xn)

[
∇θπθ(ŷn | xn)

πθ(ŷn | xn)
Aπθ(xn, ŷn)

]
(2)

223

is exact, i.e., ∇θJ(θ) = N−1
∑N

n=1 J
PG
n . Here, 224

Aπθ(xn, ŷn) is the advantage function, which we 225

discuss below. This update is truly on-policy since 226

the trajectories ŷ must be sampled using the cur- 227

rent policy πθ. In robotics, PG can be unstable 228

3

due to high variance when estimating the gradient229

∇θπθ(ŷn | xn); as a consequence, πθ can change230

rapidly across gradient steps, sometimes even be-231

coming worse. PPO was devised to mitigate this232

instability. Specifically, they weaken the on-policy233

requirement, and “freeze” the data-generating pol-234

icy πθold for some number of gradient steps. The235

resulting update has the alternative form236

JPPO
n =237

Eŷn∼πθold (·|xn)

[
∇θπθ(ŷn | xn)

πθold(ŷn | xn)
Aπθold (xn, ŷn)

]
,238

where the differences compared to (2) are high-239

lighted in red. Because this gradient is only valid240

when θ ≈ θold, a KL regularization is imposed, to241

obtain JPPO-KL
n = JPPO

n + βJKL
n , where242

JKL
n = ∇θDKL(πθbase(· | xn) ∥ πθ(· | xn))243

Following Jaques et al. (2019); Ouyang et al.244

(2022), the KL divergence term is with respect to245

the original model πθbase instead of πθold as in PPO.246

Critically, in PPO, θold is updated to be θ every247

K steps, where K is a hyperparameter. To fur-248

ther improve stability, the gradient is often clipped.249

GRPO uses the same gradient update as PPO; early250

versions include a weight 1/len(ŷn) on the nth251

term to normalize by the length of the trajectory,252

but this term was removed in later versions (Liu253

et al., 2025). Finally, we note that when θ = θold,254

this gradient update is equivalent to the PG update255

(2); this property holds even with gradient clipping.256

Now, assume we have sampled a batch of M257

samples {(xm, ŷm)}Mm=1 from πθold , where ini-258

tially θ = θold. If we take a single gradient step on259

all examples, then PPO coincides with PG. This is260

the strategy used by DASH. We consider two im-261

plementations of PPO that do not devolve into PG.262

First, we can take K gradient steps using all M263

samples, which we call PPO-Multi (or just Multi).264

Second, we can divide the M examples into K265

mini-batches of size M/K each, and take one gra-266

dient step on each mini-batch, which we call PPO-267

Mini (or just Mini). In our experiments, we find268

that DASH is more stable than Multi and Mini, sug-269

gesting that the added complexity of PPO-based270

off-policy gradient updates increases variance.271

3.3 Advantage Estimation272

A key challenge in RL is estimating the quantity273

Aπ(ŷ | x), which is called the advantage (Sut-274

ton and Barto, 2018); it is defined to be Aπ(ŷ |275

x) = Qπ(ŷ | x) − V π(x), where Qπ is the Q- 276

function and V π is the value function. Intuitively, 277

it captures how the specific generation ŷ compares 278

to a random sample ŷ′ ∼ πθ(· | x). In general, 279

Aπ is not known and must be estimated from data. 280

We consider three strategies: (i) training a model 281

to predict Aπ, (ii) a Monte Carlo estimate called 282

the single-path method, and (iii) a Monte Carlo 283

estimate introduced by GRPO. The first approach 284

is to train a model to predict Qπ(ŷ | x), which 285

can be used to compute V π and Aπ (Schulman 286

et al., 2017a). This approach can reduce variance, 287

but recent work has found that it is highly biased 288

due to the difficulty in predicting Qπ for reasoning 289

tasks (Liang et al., 2022). Thus, we focus on Monte 290

Carlo approaches. 291

The most popular Monte Carlo approach is the 292

single-path method, which uses the estimate 293

Aπθ(ŷn | xn) ≈ rn − 1

N

N∑
n′=1

rn′ , (3) 294

i.e., it is the centered reward; b = N−1
∑N

n′=1 rn′ 295

is called the baseline. Intuitively, rn is an estimate 296

of the Q-function, and b is an estimate of the value 297

function. A standard modification is to normalize 298

by the standard deviation; this normalization can be 299

useful when rewards tend to increase significantly 300

as learning progresses, but our rewards are bounded 301

so this cannot happen. Another modification is to 302

leave out the reward for rollout n when estimating 303

the value for rollout n, which reduces bias (Sutton 304

and Barto, 2018); this modification can be impor- 305

tant when N is small (e.g., N = 2) but only has a 306

minor impact for larger N since the bias is small. 307

A shortcoming of the single-path method is 308

that b is an estimate of the average value 309

N−1
∑N

n′=1 V (xn′) across all samples, whereas 310

it ideally should estimate the value V (xn). One 311

alternative is the vine method (Kazemnejad et al., 312

2024; Schulman et al., 2017a), which uses a tar- 313

geted sampling strategy to fix this issue; however, 314

the vine method requires a large number of samples, 315

making it computationally expensive. GRPO uses 316

an advantage estimate that interpolates between the 317

single-path and vine methods. It exploits the fact 318

that in the reasoning setting, we typically train on 319

multiple samples ŷn for a single user prompt xn. 320

In our formulation, we can think of there being 321

multiple xn that are identical. Suppose that we 322

partition N into groups N1, ..., NK , where xn is 323

the same for all n ∈ Nk. Then, it estimates the 324

4

advantage using the formula325

Aπθ(ŷn | xn) ≈ rn − 1

Nk

∑
n′∈Nk

rn′ , (4)326

where Nk is the group containing n. In other words,327

it replaces the baseline with a state-dependent base-328

line b(xn) = N−1
k

∑
n′∈Nk

rn′ ; now, b(xn) is an329

unbiased estimate of V (xn). This strategy can be330

viewed as performing a vine estimate of the advan-331

tage at state xn, but not at any other state. DASH332

uses the GRPO advantage estimate in Section 4.333

3.4 Preemptive Sampling334

A key feature of RL for LMs is that inference typi-335

cally occurs on specialized inference servers such336

as vLLM (Kwon et al., 2023b). Importantly, infer-337

ence is typically much more memory efficient than338

backpropagation, meaning much larger batches are339

optimal for inference compared to backpropaga-340

tion. Empirically, sampling takes up a much larger341

portion of training time than backpropagation if342

performed in small batches (Figure 1). Thus, we343

propose preemptive sampling, where we sample344

a large number of trajectories in one batch, and345

then perform backpropagation on these samples in346

smaller batches. Preemptive sampling can be fur-347

ther sped up by using multiple inference servers in348

parallel (Figure 2). In practice, our method can be349

used for both on-policy and off-policy sampling, de-350

pending on algorithmic design choices, as detailed351

in Section 3.2. Figure 2 illustrates preemptive sam-352

pling. DASH uses preemptive sampling.353

3.5 Gradient Filtering354

Finally, we propose to drop examples with small355

advantage estimates (which is equivalent to clip-356

ping small advantage values to zero, effectively357

dropping them from the gradient update). If the358

advantage estimate is small, then the contribu-359

tion to the gradient is likely to be small (unless360

∇θπθ(ŷn | xn) happens to be very large, which361

we find to be unlikely in practice). Intuitively, these362

are examples where the model either almost always363

gets the answer right (in which case there is noth-364

ing new to learn) or almost always gets it wrong (in365

which case the problem is currently too difficult to366

learn). In addition, even if we only drop advantages367

that are identically zero, this strategy can provide a368

speedup since backpropagation still takes time to369

compute the gradients ∇θπθ(ŷn | xn) before they370

are eventually multiplied by Aπθ(ŷn | xn) = 0.371

DASH uses gradient filtering.372

4 Experimental Results 373

We perform experiments showing that (i) on-policy 374

RL significantly outperforms SFT (Section 4.2, 375

(ii) DASH significantly reduces running time com- 376

pared to standard GRPO (Section 4.3), (iii) PG 377

gradient updates outperform PPO-based gradient 378

updates (Section 4.4), and (iv) removing KL diver- 379

gence can lead to concise generations and higher 380

accuracies (Section 4.5). 381

4.1 Experimental Setup 382

We use Qwen2.5-{0.5B, 1.5B, 3B} models as our 383

base models, all of which are not post-trained 384

(i.e., no instruction tuning). We use the MATH 385

dataset (Hendrycks et al., 2021), with the MATH- 386

500 split (Lightman et al., 2023), which contains 387

12,000 examples for training and 500 examples 388

for evaluation. We additionally use the GSM8K 389

dataset (Cobbe et al., 2021) for out-of-distribution 390

evaluation, which contains 1,319 examples. Finally, 391

we also perform some experiments in the coding 392

domain using the MBPP+ dataset (Liu et al., 2023), 393

a 378-problem subset of verified problems from 394

the MBPP dataset (Austin et al., 2021); we use 395

264 problems for training and 114 for evaluation. 396

Additional details are provided in Table 7. 397

4.2 SFT vs. On-Policy RL 398

We compare three algorithms: (i) SFT with human- 399

written reasoning traces, denoted SFT-H, (ii) SFT 400

with reasoning traces from Qwen2.5-7B-Instruct, 401

denoted SFT-M, and (iii) DASH. Results are shown 402

in Table 1. As can be seen, DASH improves perfor- 403

mance both in-distribution and out-of-distribution, 404

demonstrating that on-policy algorithms can ef- 405

ficiently learn mathematical reasoning skills that 406

generalize across datasets. On the other hand, nei- 407

ther SFT-H nor SFT-M improve performance, with 408

SFT-H significantly degrading both in-distribution 409

and out-of-distribution performance. Intuitively, 410

the substantial performance degradation caused by 411

SFT-H can be attributed to the fact that human rea- 412

soning often omits many intermediate steps, which 413

is especially problematic for smaller LMs. 414

For coding, we train on human programs in 415

MBPP+. Results are shown in Table 2. As can 416

be seen, DASH outperforms SFT in most cases, 417

demonstrating the the general effectiveness of on- 418

policy RL at improving the reasoning capabilities 419

of LMs. To the best of our knowledge, these are 420

among the first results to show that on-policy RL 421

5

Method Size (B) MATH (%) GSM8K (%)

Base 0.5 22.6 30.3
1.5 48.0 58.8
3.0 58.8 66.0

SFT-H 0.5 8.0 7.2
1.5 17.2 32.8
3.0 24.0 30.6

SFT-M 0.5 24.0 22.7
1.5 46.2 46.0
3.0 53.0 66.0

DASH 0.5 27.2 31.1
1.5 54.8 56.0
3.0 63.4 65.9

Table 1: Comparison of SFT to on-policy RL on math.

Method Size (B) pass1 (%) pass@8 (%)

BASE 0.5 2.6 22.8
1.5 7.1 60.5

SFT-H 0.5 8.77 29.0
1.5 19.3 42.1

DASH 0.5 11.4 40.4
1.5 23.7 63.2

Table 2: Comparison of SFT to on-policy RL on coding.

can improve code generation for smaller LMs.422

4.3 DASH vs. GRPO423

Next, we compare DASH to GRPO both in terms424

of accuracy and running time. Specifically, we425

train Qwen2.5-0.5B using both GRPO and DASH.426

We also use an ablation of DASH without gradi-427

ent filtering, denoted No-GF. Results are shown428

in Table 3 and illustrated in Figure 1. As can be429

seen, DASH significantly reduces GRPO training430

time (from 39 hours to 6.6 hours) without any sig-431

nificant reduction in performance, highlighting the432

effectiveness of preemptive sampling and gradi-433

ent filtering. Compared to No-GF, DASH reduces434

running time by 4% without any significant reduc-435

tion in performance. The effectiveness of gradient436

filtering can be improved; see Appendix B. We ad-437

ditionally show results for coding in Table 4. For438

coding, we again see a significant speedup, though439

it is smaller since the generation length is much440

smaller so the gap in optimal inference and back-441

propagation batch sizes is smaller.442

Method Time (h) MATH (%) GSM8K (%)

BASE N/A 22.6 30.3
GRPO 38.9 27.6 32.8
No-GF 6.9 27.4 31.6
DASH 6.6 27.2 31.1

Table 3: Comparing on-policy RL algorithms on
Qwen2.5-0.5B for math.

Method Time (m) pass@1 (%) pass@8 (%)

BASE N/A 2.3 22.8
GRPO 35.3 11.4 49.1
No-GF 16.3 10.5 43.9
DASH 16.5 11.4 40.4

Table 4: Comparing on-policy RL algorithms using
Qwen2.5-0.5B for coding.

The impact of GF on training dynamics is il- 443

lustrated in Figure 3. Specifically, as shown in 444

Figure 3a, gradient filtering increases the average 445

absolute advantage values, leading to more sig- 446

nificant gradient updates; consequently, as shown 447

in Figure 3b, forward and backward pass running 448

times are reduced. Finally, since only samples in- 449

ducing trivial gradient updates are filtered out, the 450

training curves remain similar before and after ap- 451

plying gradient filtering, as shown in Figure 3c. 452

4.4 PG vs. PPO Gradient Updates 453

Next, we compare DASH to Multi and Mini. 454

DASH uses a batch size of M = 256 (with K = 1), 455

Multi uses M = 256 and K = 3, and Mini 456

uses M = 8 so K = 32. Multi and Mini are 457

slower than DASH; for fair comparison, we trun- 458

cate their training times to match the wall-clock 459

time of DASH. The results are shown in Table 5, 460

and training curves are shown in Figure 4. As can 461

be seen, Multi and Mini achieve faster initial per- 462

formance improvements and have slightly higher 463

accuracies; however, they have significantly more 464

unstable training curves. Similar results for the 465

1.5B model are shown in Appendix B. 466

4.5 KL Divergence Regularization 467

Next, we compare DASH to an ablation without 468

the KL divergence term, denoted No-KL. Training 469

rewards are shown in Figure 6a. As can be seen, 470

removing KL divergence regularization generally 471

leads to higher rewards during training; most likely, 472

No-KL can focus on reward optimization without 473

6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch

0.26
0.28
0.30
0.32
0.34
0.36
0.38

Ab
so

lu
te

 A
dv

an
ta

ge
DASH NO-GF

(a) Average absolute advantage values.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch

0.148
0.149
0.150
0.151
0.152
0.153
0.154

Ti
m

e

(b) Loss computation time.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch

0.18
0.20
0.22
0.24
0.26
0.28
0.30

Re
wa

rd

(c) Training reward recurves.

Figure 3: Comparison between DASH and No-GF for
Qwen2.5-0.5B on math.

being constrained to stay close to the initial model.474

As shown in Table 6, No-KL leads to greater im-475

provements in- and out-of-distribution upon the476

base model compared to DASH with KL (save one477

out-of-distribution result for the 3B model, which478

DASH also underperforms).479

Furthermore, as shown in Figure 6b, we find that480

for No-KL, the average generation length is shorter,481

thereby reducing overall training time; this differ-482

ence is also reflected in Table 6. We hypothesize483

that to compensate for KL divergence regulariza-484

tion, models must generate longer reasoning traces.485

Finally, for the 3B model, we study how KL di-486

vergence regularization affects pass@k. We follow487

Chen et al. (2021) to evaluate pass@k in an unbi-488

ased way. Results are in Figure 5: No-KL performs489

best for small k, although the gap closes for larger490

k. Intuitively, RL concentrates probability mass491

and reduces generation diversity (Shypula et al.,492

Method Size (B) MATH (%) GSM8K (%)

DASH 0.5 27.2 31.1
1.5 53.0 58.9

Multi 0.5 28.8 31.5
1.5 54.0 61.0

Mini 0.5 29.8 31.6
1.5 36.0 8.1

Table 5: Comparing PG to PPO for math.

0 1 2 3 4 5 6 7
Runtime (Hour)

0.20
0.22
0.24
0.26
0.28
0.30

Re
wa

rd

DASH
Multi
Mini

Figure 4: Training reward curves for PG vs. PPO on
Qwen2.5-0.5B for math.

2025; West and Potts, 2025). 493

5 Conclusion 494

We have performed a careful empirical analysis 495

of several of the key design decisions in RL algo- 496

rithms for improving language model reasoning, 497

with a particular focus on computationally con- 498

strained scenarios; these include SFT vs. on-policy 499

RL, policy gradient vs. PPO, and whether KL di- 500

vergence regularization is used. Furthermore, we 501

identify the sampling strategy as the primary com- 502

putational bottleneck in on-policy RL; to address 503

these issues, we propose DASH, a novel algorithm 504

using preemptive sampling and gradient filtering 505

to improve efficiency. We demonstrate that DASH 506

can reduce RL training time by 83% while main- 507

taining performance. More broadly, we believe that 508

systematizing the study of RL for language model 509

reasoning is key to designing more effective RL al- 510

gorithms in this domain, which differs significantly 511

from robotics domains targeted by existing RL al- 512

gorithms such as PPO. Our study is a first step in 513

this direction. 514

Limitations. Due to computational constraints, 515

we do not perform extensive hyperparameter tun- 516

ing, instead adopting commonly used values; bet- 517

7

1 2 4 8 16 32 64 128256512
k

0.5

0.6

0.7

0.8

0.9
Pa

ss
@

k

3B Base
DASH 3B (With KL)
NO-KL 3B

Figure 5: Impact of KL divergence regularization on
pass@k for Qwen2.5-3B on math.

Method Size (B) Time (h) MATH (%) GSM8K (%)

Base 0.5 N/A 22.6 30.3
1.5 N/A 48.0 58.8
3.0 N/A 58.8 66.0

0.5 6.6 27.2 31.1
DASH (with KL) 1.5 12.8 54.8 56.0

3.0 22.6 63.4 65.9

0.5 5.7 31.4 34.0
No-KL 1.5 10.3 56.8 62.1

3.0 17.6 66.4 60.0

Table 6: Comparing No-KL to DASH and Base on math.

ter hyperparameter choices could further improve518

performance. Also, we focus on relatively small519

Qwen2.5 models, and our findings may not gener-520

alize to larger models or other architectures.521

Ethics statement. Our paper aims to design bet-522

ter RL algorithms for reasoning in LMs; we do523

not foresee any ethical concerns beyond standard524

ethical issues with reasoning in LMs.525

References526

Arash Ahmadian, Chris Cremer, Matthias Gallé,527
Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,528
Ahmet Üstün, and Sara Hooker. 2024. Back to529
basics: Revisiting reinforce style optimization for530
learning from human feedback in llms. Preprint,531
arXiv:2402.14740.532

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten533
Bosma, Henryk Michalewski, David Dohan, Ellen534
Jiang, Carrie Cai, Michael Terry, Quoc Le, and535
Charles Sutton. 2021. Program synthesis with large536
language models. Preprint, arXiv:2108.07732.537

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-538
stenberger, Michal Podstawski, Lukas Gianinazzi,539
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadom-540
ski, Piotr Nyczyk, and Torsten Hoefler. 2024. Graph541

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch

0.2
0.3
0.4
0.5
0.6

Re
wa

rd

NO-KL 0.5B
DASH 0.5B

NO-KL 1.5B
DASH 1.5B

NO-KL 3B
DASH 3B

(a) Training reward curves.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch

540

560

580

600

620

640

Ge
ne

ra
tio

n
Le

ng
th

(b) Generation length.

Figure 6: Comparing KL divergence regularization on
math.

of thoughts: Solving elaborate problems with large 542
language models. Proceedings of the AAAI Confer- 543
ence on Artificial Intelligence, 38(16):17682–17690. 544

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, 545
Karthik Narasimhan, and Shunyu Yao. 2023. Fire- 546
act: Toward language agent fine-tuning. Preprint, 547
arXiv:2310.05915. 548

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 549
Henrique Ponde de Oliveira Pinto, Jared Kaplan, 550
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 551
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, 552
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela 553
Mishkin, Brooke Chan, Scott Gray, and 39 others. 554
2021. Evaluating large language models trained on 555
code. Preprint, arXiv:2107.03374. 556

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 557
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 558
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 559
Nakano, Christopher Hesse, and John Schulman. 560
2021. Training verifiers to solve math word prob- 561
lems. Preprint, arXiv:2110.14168. 562

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, 563
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, 564
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, 565

8

https://arxiv.org/abs/2402.14740
https://arxiv.org/abs/2402.14740
https://arxiv.org/abs/2402.14740
https://arxiv.org/abs/2402.14740
https://arxiv.org/abs/2402.14740
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-566
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.567
2025a. Deepseek-r1: Incentivizing reasoning capa-568
bility in llms via reinforcement learning. Preprint,569
arXiv:2501.12948.570

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-571
uan Wang, Bochao Wu, Chengda Lu, Chenggang572
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,573
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,574
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,575
and 181 others. 2025b. Deepseek-v3 technical report.576
Preprint, arXiv:2412.19437.577

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego578
Chicharro, Evan Chen, Alex Gunning, Caroline Falk-579
man Olsson, Jean-Stanislas Denain, Anson Ho,580
Emily de Oliveira Santos, Olli Järviniemi, Matthew581
Barnett, Robert Sandler, Matej Vrzala, Jaime Sevilla,582
Qiuyu Ren, Elizabeth Pratt, Lionel Levine, Grant583
Barkley, and 5 others. 2024. Frontiermath: A bench-584
mark for evaluating advanced mathematical reason-585
ing in ai. Preprint, arXiv:2411.04872.586

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul587
Arora, Steven Basart, Eric Tang, Dawn Song, and588
Jacob Steinhardt. 2021. Measuring mathematical589
problem solving with the math dataset. Preprint,590
arXiv:2103.03874.591

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan592
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and593
Weizhu Chen. 2021. Lora: Low-rank adaptation of594
large language models. Preprint, arXiv:2106.09685.595

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen596
Shen, Craig Ferguson, Agata Lapedriza, Noah Jones,597
Shixiang Gu, and Rosalind Picard. 2019. Way598
off-policy batch deep reinforcement learning of599
implicit human preferences in dialog. Preprint,600
arXiv:1907.00456.601

Amirhossein Kazemnejad, Milad Aghajohari, Eva602
Portelance, Alessandro Sordoni, Siva Reddy, Aaron603
Courville, and Nicolas Le Roux. 2024. Vineppo: Un-604
locking rl potential for llm reasoning through refined605
credit assignment. Preprint, arXiv:2410.01679.606

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying607
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.608
Gonzalez, Hao Zhang, and Ion Stoica. 2023a. Ef-609
ficient memory management for large language610
model serving with pagedattention. Preprint,611
arXiv:2309.06180.612

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying613
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.614
Gonzalez, Hao Zhang, and Ion Stoica. 2023b. Effi-615
cient memory management for large language model616
serving with pagedattention. In Proceedings of the617
ACM SIGOPS 29th Symposium on Operating Systems618
Principles.619

Litian Liang, Yaosheng Xu, Stephen McAleer, Dailin620
Hu, Alexander Ihler, Pieter Abbeel, and Roy Fox.621
2022. Reducing variance in temporal-difference622

value estimation via ensemble of deep networks. 623
Preprint, arXiv:2209.07670. 624

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri 625
Edwards, Bowen Baker, Teddy Lee, Jan Leike, 626
John Schulman, Ilya Sutskever, and Karl Cobbe. 627
2023. Let’s verify step by step. Preprint, 628
arXiv:2305.20050. 629

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling- 630
ming Zhang. 2023. Is your code generated by chat- 631
GPT really correct? rigorous evaluation of large lan- 632
guage models for code generation. In Thirty-seventh 633
Conference on Neural Information Processing Sys- 634
tems. 635

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, 636
Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin. 637
2025. Understanding r1-zero-like training: A critical 638
perspective. Preprint, arXiv:2503.20783. 639

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi- 640
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke 641
Zettlemoyer, Percy Liang, Emmanuel Candès, and 642
Tatsunori Hashimoto. 2025. s1: Simple test-time 643
scaling. Preprint, arXiv:2501.19393. 644

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak 645
Lee. 2018. Self-imitation learning. Preprint, 646
arXiv:1806.05635. 647

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 648
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 649
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1 650
others. 2022. Training language models to follow in- 651
structions with human feedback. Advances in neural 652
information processing systems, 35:27730–27744. 653

Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, 654
Giacomo Domeniconi, Vladimir Zolotov, Julian 655
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, 656
Veronika Thost, Luca Buratti, Saurabh Pujar, Shyam 657
Ramji, Ulrich Finkler, Susan Malaika, and Fred- 658
erick Reiss. 2021. Codenet: A large-scale ai for 659
code dataset for learning a diversity of coding tasks. 660
Preprint, arXiv:2105.12655. 661

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, 662
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan 663
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan 664
Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin 665
Yang, Jiaxi Yang, Jingren Zhou, and 25 oth- 666
ers. 2025. Qwen2.5 technical report. Preprint, 667
arXiv:2412.15115. 668

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, 669
and Yuxiong He. 2020. Zero: Memory optimizations 670
toward training trillion parameter models. Preprint, 671
arXiv:1910.02054. 672

John Schulman, Sergey Levine, Philipp Moritz, 673
Michael I. Jordan, and Pieter Abbeel. 2017a. 674
Trust region policy optimization. Preprint, 675
arXiv:1502.05477. 676

9

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/1907.00456
https://arxiv.org/abs/1907.00456
https://arxiv.org/abs/1907.00456
https://arxiv.org/abs/1907.00456
https://arxiv.org/abs/1907.00456
https://arxiv.org/abs/2410.01679
https://arxiv.org/abs/2410.01679
https://arxiv.org/abs/2410.01679
https://arxiv.org/abs/2410.01679
https://arxiv.org/abs/2410.01679
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2209.07670
https://arxiv.org/abs/2209.07670
https://arxiv.org/abs/2209.07670
https://arxiv.org/abs/2305.20050
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/1806.05635
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1502.05477

John Schulman, Filip Wolski, Prafulla Dhariwal,677
Alec Radford, and Oleg Klimov. 2017b. Prox-678
imal policy optimization algorithms. Preprint,679
arXiv:1707.06347.680

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,681
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan682
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.683
Deepseekmath: Pushing the limits of mathemati-684
cal reasoning in open language models. Preprint,685
arXiv:2402.03300.686

Noah Shinn, Federico Cassano, Edward Berman, Ash-687
win Gopinath, Karthik Narasimhan, and Shunyu Yao.688
2023. Reflexion: Language agents with verbal rein-689
forcement learning. Preprint, arXiv:2303.11366.690

Alexander Shypula, Shuo Li, Botong Zhang, Vishakh691
Padmakumar, Kayo Yin, and Osbert Bastani. 2025.692
Evaluating the diversity and quality of llm generated693
content. Preprint, arXiv:2504.12522.694

Richard S. Sutton and Andrew G. Barto. 2018. Rein-695
forcement Learning: An Introduction. A Bradford696
Book, Cambridge, MA, USA.697

Richard S Sutton, David McAllester, Satinder Singh,698
and Yishay Mansour. 1999. Policy gradient methods699
for reinforcement learning with function approxima-700
tion. In Advances in Neural Information Processing701
Systems, volume 12. MIT Press.702

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai703
Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang Sui.704
2024. Math-shepherd: Verify and reinforce llms705
step-by-step without human annotations. Preprint,706
arXiv:2312.08935.707

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten708
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and709
Denny Zhou. 2023. Chain-of-thought prompting elic-710
its reasoning in large language models. Preprint,711
arXiv:2201.11903.712

Peter West and Christopher Potts. 2025. Base models713
beat aligned models at randomness and creativity.714
Preprint, arXiv:2505.00047.715

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,716
Thomas L. Griffiths, Yuan Cao, and Karthik717
Narasimhan. 2023a. Tree of thoughts: Deliber-718
ate problem solving with large language models.719
Preprint, arXiv:2305.10601.720

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak721
Shafran, Karthik Narasimhan, and Yuan Cao. 2023b.722
React: Synergizing reasoning and acting in language723
models. Preprint, arXiv:2210.03629.724

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao725
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttun-726
ing: Enabling generalized agent abilities for llms.727
Preprint, arXiv:2310.12823.728

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Ke- 729
qing He, Zejun Ma, and Junxian He. 2025. Simplerl- 730
zoo: Investigating and taming zero reinforcement 731
learning for open base models in the wild. Preprint, 732
arXiv:2503.18892. 733

10

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2504.12522
https://arxiv.org/abs/2504.12522
https://arxiv.org/abs/2504.12522
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2505.00047
https://arxiv.org/abs/2505.00047
https://arxiv.org/abs/2505.00047
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892

A Additional Experimental Setup734

Math. All GRPO experiments are conducted us-735

ing 6 Nvidia A6000 GPUs; we use 4 GPUs for736

backpropagation and 2 for inference across all three737

model sizes (Qwen2.5-{0.5B, 1.5B, 3B}) (in prac-738

tice, the 0.5B model only needs 2 GPUs for back-739

propagation, but we still use 4 for consistency). Our740

implementation is based on Huggingface’s GRPO741

Trainer; the hyperparameters are as follows:742

• Learning rate: 1e-06 for the 0.5B model and743

3e-06 for the 1.5B and 3B models744

• Backpropagation batch size per GPU: 2 (so745

batch size is 8)746

• # generations per prompt: 4 (resulting in 2747

prompts backpropagated on in each step)748

• Maximum completion length: 2048749

• Inference batch size for DASH: 256 (128 per750

inference GPU); for comparing to Multi and751

Mini on Qwen2.5-1.5B, we use 1024 (512 per752

inference GPU)753

• Gradient accumulation steps for DASH: 32754

(so the effective batch size is 256); for com-755

paring to Multi and Mini on Qwen2.5-1.5B,756

we use 128 (so the effective batch size is 1024)757

• Gradient steps per batch for Multi: 3758

• Batch size for Mini: 8 (equivalently, no gradi-759

ent accumulation)760

• Gradient filtering threshold: 0.1761

All other parameters are set to the default of the762

Huggingface trainer; a summary of the GRPO hy-763

perparamaters is in Table 7. To reduce memory764

footprint, we use DeepSpeed (Rajbhandari et al.,765

2020) ZeRO Stage 3 as well as CPU offload, gradi-766

ent clipping, and mixed precision; our DeepSpeed767

configuration is shown in Figure 7.768

Parameters for SFT are shown in Table 8. All769

SFT experiments use end-to-end fine-tuning in-770

stead of using parameter efficient methods such771

as LoRA (Hu et al., 2021). For model-generated772

reasoning traces, we use Qwen2.5-7B-Instruct as773

the teacher to keep the distribution of generations in774

the Qwen family. We use a temperature of 0.7 and775

filter out reasoning traces with the wrong answer.776

The resulting training set has 8,955 examples.777

compute_env i ronmen t : LOCAL_MACHINE
debug : f a l s e
d e e p s p e e d _ c o n f i g :

g r a d i e n t _ c l i p p i n g : 1 . 0
o f f l o a d _ o p t i m i z e r _ d e v i c e : cpu
o f f l o a d _ p a r a m _ d e v i c e : cpu
z e r o 3 _ i n i t _ f l a g : f a l s e
z e r o 3 _ s a v e _ 1 6 b i t _ m o d e l : f a l s e
z e r o _ s t a g e : 3

d i s t r i b u t e d _ t y p e : DEEPSPEED
downcas t_b f16 : ’ no ’
e n a b l e _ c p u _ a f f i n i t y : f a l s e
mach ine_rank : 0
m a i n _ t r a i n i n g _ f u n c t i o n : main
m i x e d _ p r e c i s i o n : bf16
num_machines : 1
num_processes : 4
rdzv_backend : s t a t i c
same_network : t r u e
tpu_env : []
t p u _ u s e _ c l u s t e r : f a l s e
t p u _ u s e _ s u d o : f a l s e
use_cpu : f a l s e

Figure 7: DeepSpeed configuration.

Versions of python and key libraries are shown in 778

Table 9. The dev version of trl was cloned directly 779

from trl’s GitHub repository on April 10, 2025. 780

Coding. All experiments with MBPP+ on cod- 781

ing using on-policy RL for Qwen2.5-0.5B were 782

conducted on AWS EC2 g6.12xlarge instances 783

with 48 vCPUs, 192 GiB memory, and 4 NVIDIA 784

L4 Tensor Core GPUs with 96 GiB total GPU 785

memory, with 2 GPUs dedicated to training and 786

2 to sampling. Experiments with Qwen2.5-1.5B 787

and Qwen2.5-3B were conducted on AWS EC2 788

g6e.12xlarge instances with 48 vCPUs, 384 GiB 789

memory, and 4 NVIDIA L40S Tensor Core GPUs 790

with 192 GB total GPU memory, with 2 GPUs 791

dedicated to training and 2 to sampling. All SFT 792

experiments on MBPP+ were conducted using 2 793

NVIDIA A6000 GPUs. The hyperparameters for 794

coding are the same as for math. 795

B Additional Experiment Results 796

We compare gradient filtering with larger batch 797

sizes, finding that gradient filtering is more effec- 798

tive when the per device batch size is 4 (instead 799

of 2). This experiment is only possible for the for 800

Qwen2.5-0.5B on the math dataset using our com- 801

pute. Results are shown in Table 10 and training 802

curves are shown in Figure 9. The time reduction 803

achieved is larger than before (10% instead of 4%). 804

These results suggest that gradient filtering may 805

become more effective with larger batch sizes. 806

11

Hyperparameter Qwen2.5-0.5B Qwen2.5-1.5B Qwen2.5-3B

NVIDIA A6000 GPUs (training / sampling) 4 / 2 (2 / 2 using ZeRO) 4 / 2 4 / 2
Learning rate 1× 10−6 3× 10−6 3× 10−6

Epochs 3 3 3
Batch size per device 2 2 2
Generations per prompt 4 4 4
Max completion length (tokens) 2048 2048 2048
Gradient accumulation steps for DASH based runs 32 32 32
Gradient accumulation steps for Multi and Mini 32 128 N/A
Gradient steps per sampled batch for Multi 3 3 N/A
Gradient-filtering threshold 0.1 0.1 0.1
Normalize gradients by generation length? No No No

Table 7: Experimental configuration and hyperparameters for on-policy RL on MATH.

Parameter Value

Learning rate 2× 10−5

Epochs 3
Batch size per device 4
Gradient accumulation steps 2

Table 8: Experimental configuration and hyperparame-
ters for SFT.

Package Version

python 3.11.11
trl 0.17.0.dev0
vllm 0.8.1
pytorch 2.6.0

Table 9: Package versions.

We also show the comparison of Mini, Multi,807

and DASH on the 1.5B model (Figure 8). Con-808

clusions are similar to Section 4.4. In this case809

we stabilize Multi by increasing the gradient ac-810

cumulation step to 128, but the high instability of811

Mini leads to decrease in training rewards as well812

as accuracies as shown in Table 5.813

Method Time (h) MATH (%) GSM8K(%)

No-GF 5.1 31.8 31.3
DASH 4.6 28.4 30.9

Table 10: Comparing No-GF to DASH with per device
batch of 4 instead of 2 for Qwen2.5-0.5B on math.

0 2 4 6 8 10
Runtime (Hour)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Re
wa

rd

DASH
Multi
Mini

Figure 8: Training reward curves for PG vs. PPO on
Qwen2.5-0.5B for math.

12

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch

0.30
0.35
0.40
0.45
0.50

Ab
so

lu
te

 A
dv

an
ta

ge

DASH NO-GF

(a) Average absolute advantage values.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch

0.16
0.17
0.18
0.19
0.20

Ti
m

e

(b) Loss computation time.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch

0.18

0.20

0.22

0.24

0.26

0.28

Re
wa

rd

(c) Training reward curves.

Figure 9: Comparison of No-GF and DASH with a per-
device batch size of 4 for Qwen2.5-0.5B on math.

13

	Introduction
	Related Work
	Effective RL for LM Reasoning
	RL Strategy
	Gradient Update Strategy
	Advantage Estimation
	Preemptive Sampling
	Gradient Filtering

	Experimental Results
	Experimental Setup
	SFT vs. On-Policy RL
	DASH vs. GRPO
	PG vs. PPO Gradient Updates
	KL Divergence Regularization

	Conclusion
	Additional Experimental Setup
	Additional Experiment Results

