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ABSTRACT
Tumor detection and subtyping remain a significant challenge in
histopathology image analysis. As digital pathology progresses,
the applications of deep learning become essential. Whole Slide
Image (WSI) classification has emerged as a crucial task in digital
pathology, vital for accurate cancer diagnosis and treatment. In
this paper, we introduce an innovative abnormal-guidedMultiple
Foundation Model Fusion (MFMF) framework, aimed at enhanc-
ing WSI classification by integrating multi-level information from
pathology images with Multiple Instance Learning (MIL). Tradi-
tional methods often focus on patch-level features while neglecting
the rich contextual and morphological details at the cell and text
levels, thus failing to fully exploit the multidimensional nature of
WSIs. Our method enhances traditional models by efficiently inte-
grating patch-level, cell-level, and text-level features using three
foundation models. These are then fused through a novel three-step
cross-attention module that effectively leverages cell and text infor-
mation with patch-level features. Furthermore, unlike most studies
that use attention scores to select instances based on the assump-
tion that high scores indicate the presence of a tumor, we design
an abnormality-aware module to naturally identify and detect ab-
normal features (i.e., tumors) as the criteria for selecting important
instances, thereby reducing computational costs and boosting over-
all performance. We validate our approach against leading bench-
marks on the CAMELYON16 and TCGA-Lung datasets, achieving
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superior classification performance. Our study not only tackles
the challenges of sparsity and noise in multi-level features but
also enhances the efficiency and accuracy of WSI classification by
exploiting abnormal features.
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1 INTRODUCTION
Cancer significantly threatens human health, making tumor detec-
tion and subtyping crucial for effective diagnosis and treatment
[5]. Tissue examination by a pathologist remains the gold standard
[25, 27]. With the adoption of digital slide scanning, advances in
deep learning, and increased access to large datasets, computa-
tional pathology has transformed remarkably in recent years [21],
especially in training models on whole slide images (WSIs) from
Hematoxylin and Eosin (H&E)-stained specimens. However, WSIs
can be gigapixel in size, making data collection and annotation
labor-intensive [14]. A popular solution is weakly supervised learn-
ing based on Multiple Instance Learning (MIL) [11], where the WSI
is tokenized into many patch embeddings using a pretrained vision
encoder. These embeddings are then fed into pooling networks,
such as attention networks, for downstream tasks [7, 20].
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Recently, pretrained models have achieved significant success
in bioinformatics [9] and medical image analysis. However, most
existing WSI-based methods focus on extracting patch-level fea-
tures, neglecting the multi-level information intrinsic to pathology
images. Some methods try to utilize cellular microenvironment
information by using smaller patches, such as 16×16 pixel images
[2, 3, 23], but this does not capture true cell-level information,
missing critical features like cell contours and shapes. Moreover, re-
ducing patch size results in losing the ability to learn about cellular
context and background, limiting their effectiveness in providing
comprehensive medical and pathological insights. Recent state-of-
the-art (SOTA) multimodal methods, such as image-text models,
offer additional textual knowledge to enhance analysis. However,
obtaining accurate textual descriptions for pathology images usu-
ally requires manual annotations from experts, which is expensive
and time-consuming.

Foundation models offer potential solutions to these issues. For
example, foundation models for pathology images generate patch-
level features and convertmedical captions into text features, thereby
enhancing image-text and text-image retrieval tasks [15]. For cell-
level analysis, some fine-tuning technologies focus on cell segmen-
tation [18]. Additionally, recentmedical image-based large language
models (LLMs) [12, 19] generate textual descriptions, reducing the
need for manual annotations. Therefore, combining patch-level,
cell-level, and text-level features can create a comprehensive rep-
resentation, leveraging each foundation model’s strengths for a
more detailed understanding of pathology images. However, inte-
grating these features introduces challenges, such as information
sparsity in cell-level features and reliability issues in text-level de-
scriptions, which may contain noise. Patch-level features are consid-
ered highly reliable, while cell-level and text-level features, derived
from patches, can lack necessary information or include irrelevant
details. Addressing these discrepancies is crucial to maximize the
effectiveness of combined feature models in medical imaging.

A simple strategy is to concatenate embeddings from different
foundation models, but this often leads to suboptimal solutions
due to sparsity in cell-level information and noise in text-level
features. This approach fails to effectively integrate the necessary
multi-level information, limiting model performance and diagnostic
accuracy. Additionally, some cross-attention multimodal fusion
methods have limited capabilities because they are designed for
only two modalities [26], making them difficult to reuse when the
number of modality types exceeds two. Moreover, to our knowledge,
there is little research on scenarios where the confidence level of
one modality significantly surpasses others.

To address these challenges, we propose an abnormal guided
Multiple Foundation Model Fusion (MFMF) network with MIL
for WSI classification. Our method generates multi-level informa-
tion from WSIs using three foundation models: the CONCH [15]
model for patch-level embeddings, the Segment Any Cell (SAC)
[18] model for cell-level embeddings, and the Quilt-LLaVA [19]
model for text-level embeddings. We introduce a three-step cross-
attention module to integrate cell-level and text-level information
with primary patch-level features. This module first fuses cell-level
and text-level embeddings, then combines the merged cell-text fea-
tures with patch-level embeddings. To further enhance predictive

performance, we design an abnormal detection module to gener-
ate abnormality-aware features based on patch-level embeddings
and fuse these with the patch-cell-text features. Extensive exper-
iments on cancer classification and subtyping demonstrate the
effectiveness of our framework, showing promising performance
improvements. Overall, our contributions can be summarized as
follows:
• We propose an innovative MFMF framework across pathol-
ogy image, cell, and text-based foundation models, achieving
superior classification performance on both cancer classifi-
cation and subtyping datasets. Comparative analysis with
multiple datasets further demonstrates that our method sur-
passes SOTA techniques.
• To the best of our knowledge, we are the first to introduce
an abnormal detection module based on Variational Autoen-
coder (VAE) to naturally select top-𝑘 instances, thereby re-
ducing computational costs and enhancing the learning of
patch-level features for abnormal detection. This component
not only boosts performance but also accelerates progress
in tumor classification tasks.
• The proposed method integrates diverse feature types de-
rived exclusively fromWSIswithout requiring any additional
manually curated data, such as micro environment annota-
tions or expert-provided ground truth descriptions. Instead,
annotations are effectively replaced by automatically ex-
tracted cell features, and expert descriptions are substituted
with text features.

2 METHODOLOGY
2.1 Multiple Instance Learning
We adopt theMIL approach forWSI classification, as MIL effectively
handles large data with only slide-level labels, given that obtaining
instance-level annotations in medical imaging is costly and time-
consuming. Particularly, each WSI is treated as a bag of multiple
instances. A bag is labeled as positive if it contains at least one
positive instance (i.e., tumor cropped patch) and negative otherwise.

Y𝑖 =

{
0, iff

∑︁
𝑦𝑖, 𝑗 ∈ {0, 1},with 𝑗 = 1 . . .𝑚,

1, otherwise.
(1)

Given a bag of instancesX𝑖 = {x𝑖,1, . . . , x𝑖,𝑚}, where the instance-
level labels {𝑦𝑖,1, . . . , 𝑦𝑖,𝑚} are unknown, our goal is to predict
Ŷ𝑖 ∈ {0, 1} such that the prediction Ŷ𝑖 matches the target value
Y𝑖 ∈ {0, 1}, for 𝑖 = 1, . . . , 𝑏. Here, 𝑏 represents the total number of
bags, and𝑚 is the number of instances in the 𝑖-th bag. Notably, the
value of𝑚 can vary across different bags.

2.2 Autoencoder-based Abnormal Detection
The vanilla Variational Autoencoder (VAE) consists of two primary
components: an encoder, 𝐸𝑛𝑐𝑉𝐴𝐸 , and a decoder, 𝐷𝑒𝑐𝑉𝐴𝐸 . The
encoder compresses the input data 𝑥 into a lower-dimensional latent
space 𝑧, and the decoder attempts to reconstruct the original feature
from this latent representation. The VAE is trained by minimizing
the following loss function:

L𝑉𝐴𝐸 = E𝑞 (𝑧 |𝑥 ) [log 𝑝 (𝑥 |𝑧)] − 𝐾𝐿(𝑞(𝑧 |𝑥) | |𝑝 (𝑧)). (2)
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Figure 1: Overview of MFMF. (a) Abnormal Detection Module: The process begins by dividing input WSIs into patches and
extracting patch-level embeddings using an image encoder. These embeddings are used to train an abnormal detection module,
generating reconstruction features and calculating reconstruction errors to select the top-𝑘 potential patches. (b) MFMF: The
selected patches are further processed to extract cell-level and text-level embeddings. (c) Fusion Module: These embeddings are
integrated using cross-attention mechanisms. Finally, the integrated embedding is passed through a fully connected layer to
predict the slide-level label.

The intrinsic capability of VAE to detect abnormalities aligns
well with the MIL classification described in Eq. 1. Since instance-
level labels are not available, it is only certain that all instances
in a normal bag are normal, whereas a tumor bag contains both
normal and tumor embeddings. To implement the concept of VAE
in tumor classification, the abnormal detection (AD) module is
trained exclusively on WSIs labeled as normal. For cancer subtype
classification, any subtype can be designated as a normal case.

We utilize AD model to generate embeddings that are sensitive
to abnormalities from tiles extracted from WSIs. Intuitively, this
approach focuses on identifying and encoding deviations from typ-
ical histopathological patterns, facilitating a more refined analysis
in subsequent processing stages. Further than that, to completely
leverage the power of AD, we introduce the reconstruction error-
based selection module that will be applied before extracting cell
and text-level embeddings (see Figure 1). This module, equipped

with AD, filters out patches that do not exhibit significant abnormal
features, thus focusing computational resources on top-𝑘 promising
candidates for detailed analysis. This strategy helps to reduce both
the data preparation stage and the volume of processed data in train-
ing, streamlining the overall workflow and enhancing the efficiency
of the system. The specifics of the error-based instance selection
approaches will be thoroughly detailed in the next subsection.

2.3 Multiple Foundation Model Fusion
Feature encoding with foundation models. Given𝑚 cropped
patches from the bag X𝑖 , cell features F𝑐 ∈ R𝑚×𝑑1 and patch fea-
tures F𝑝 ∈ R𝑚×𝑑3 are derived from the corresponding encoders,
where SAC [18] and CONCH [15] are employed, respectively. For
text features, we apply Quilt-LLaVA [19] as a caption generation
function 𝐺𝑒𝑛𝑐𝑎𝑝 (X𝑖 ) to produce descriptions of the patches. The
prompts in MFMF are designed to elicit responses using three
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specific types of queries proposed in the LLaVA structure [13]:
short conversation, detailed description, and complex reasoning.
We use the prompts introduced by Quilt-LLaVA directly and sup-
plement them with relevant medical terms depending on the tumor
or subtype classification tasks. The length of the response is limited
to a maximum of 1024 tokens. These text responses of arbitrary
length are then encoded to obtain fixed-size text-based embeddings,
F𝑡 ∈ R𝑚×𝑑2 . The diverse feature extraction techniques employ in
this phase are summarized in the Appendix section.

Guided abnormal features with VAE. Given a set of training
samples 𝐵 = {(X𝑖 ,Y𝑖 )}𝑏 , where 𝑏 is the number of bags, the ab-
normal detection component is trained using patch features from
bags X𝑖 if the corresponding labels Y𝑖 are denoted as normal. For
instance, in tumor classification, the selected bags have Y𝑖 = 0. We
design the loss function of the Abnormal Detection (AD) module
based on the VAE architecture. Thus, the Eq. 2 is updated to com-
bine the Mean Squared Error (MSE) for the reconstruction loss and
the Kullback-Leibler Divergence (KLD) for the regularization loss,
defined as follows:

L𝑀𝑆𝐸 =
1
𝑁

𝑁∑︁
𝑖=1
| |f (𝑖 )𝑝 − 𝐷𝑒𝑐𝑉𝐴𝐸 (𝐸𝑛𝑐𝑉𝐴𝐸 (f

(𝑖 )
𝑝 )) | |2, (3)

L𝐾𝐿𝐷 = −1
2

𝑑∑︁
𝑗

(
1 + log(𝜎2𝑗 ) − 𝜇

2
𝑗 − 𝜎

2
𝑗

)
, (4)

L𝑉𝐴𝐸 = L𝑀𝑆𝐸 + L𝐾𝐿𝐷 , (5)
with 𝑁 is the total number of patches that belong to training bags
labeled as normal, 𝑑 is the dimensionality of the latent space, and
𝜇 and 𝜎 are the mean and standard deviation of the latent vari-
able, respectively. The combined loss function, L𝑉𝐴𝐸 , ensures
that the model not only accurately reconstructs the input fea-
tures but also maintains a well-behaved latent space by regular-
izing it to follow a standard normal distribution. During both the
training and testing phases of MFMF, the trained autoencoder is
kept frozen. Each patch’s image feature, f𝑝 , is processed through
the frozen autoencoder to obtain the reconstructed feature, f𝑟 ←
𝐷𝑒𝑐𝑉𝐴𝐸 (𝐸𝑛𝑐𝑉𝐴𝐸 (f𝑝 )).

Integrating multimodal features. Let the quadruplet (F𝑝 , F𝑐 ,
F𝑡 , F𝑟 ) represent the matrices that contain all the corresponding
features for each modality, which we denote as F for simplicity.
Based on the defined MIL classification problem in Section 2.1, to
predict the bag-level label, the MIL models need to aggregate all
instances and then produce a conclusion in the form of: Ŷ𝑖 = 𝑔(𝑙 (F)),
where 𝑙 (·) is the aggregation function and 𝑔(·) is the bag-level
classifier.

We designed the function 𝑙 (·) by cascading three cross-attention
blocks to integrate the information from the quadruplet F. The
cross-attention [22] module can be mathematically expressed as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q,K,V) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (QK
𝑇√︁
𝑑𝑘

)𝑉 , (6)

where
√︁
𝑑𝑘 is the dimension of the key vectors, which scales the

dot-product of Q and K𝑇 .
In the initial attention block, H1 = Attention(F𝑡 , F𝑐 , F𝑐 ), cell fea-

tures are used as keys (K) and values (V), while text features serve

as queries (Q). This layer integrates information from text descrip-
tions with cell-based embeddings to enhance the representation
of cell features. In the subsequent block, patch features serve as K
and V, and the output from the first block is then used as Q, repre-
sented asH2 = Attention(H1, F𝑝 , F𝑝 ). Reconstructed patch features,
which capture abnormal information, are used as queries in the
third cross-attention block, while K and V are derived fromH2. This
integration, denoted as H3, ensures that the model leverages both
original and reconstructed features for robust decision-making. We
then average the resultant H3 to obtain a bag representation. One
linear layer, 𝐿𝑖𝑛𝑒𝑎𝑟 (·), is applied to the aggregated features, yield-
ing the logits. The decision classifier 𝑔(·) is trained using the Binary
Cross-Entropy loss:

L𝐵𝐶𝐸 = − 1
𝑏

𝑏∑︁
𝑖=1

[
Y𝑖 log(Ŷ𝑖 ) + (1 − Y𝑖 ) log(1 − Ŷ𝑖 )

]
. (7)

Scaling MFMF with Perceiver IO. The Transformer architec-
ture suffers from quadratic complexity, leading to inefficient scaling
in both computational and memory resources. To address this issue,
we utilized Perceiver IO [8], which performs the attention mecha-
nism in the latent space. Thus, the three lightweight Perceiver IO
blocks are applied as the cross-attention mechanism in the function
𝑙 (·) to process data 𝐹 efficiently.

Scaling MFMF with reconstruction error. Furthermore, we
design a reconstruction error-based approach to scale the data
and decrease the computational costs, as mentioned in Section
2.2. This approach involves selecting instances in a bag based on
the Euclidean distances between the original features F𝑝 and the
reconstructed features F𝑟 , using two strategies:
• Maximum selection: We select the top-𝑘 instances with the
highest reconstruction error scores to be forwarded to our
MFMF. This strategy focuses on the instances most likely to
contain tumor information or potential false positives.
• MinMax selection: This approach selects the top-𝑘 instances
based on both the highest and lowest reconstruction error
scores. By including instances with minimal reconstruction
error, we balance the model’s learning space and prevent
it from becoming overconfident, reducing the likelihood of
false negatives.

Given a bag X𝑖 , the number of instances remaining in the bag af-
ter applying the select function 𝑆𝑒𝑙𝑒𝑐𝑡 (·) is ⌈𝑘 ∗𝑚⌉, where 𝑘 ∈ (0, 1]
represents the percentage of instances in the bag to be processed.
By doing so, we reduce the number of instances to be processed by
(1 − 𝑘) × 100%, making the model more efficient.

3 EXPERIMENTS
3.1 Implementation Details
3.1.1 Datasets: We evaluate the proposed method on three differ-
ent histopathological datasets: CAMELYON16 [4], TCGA-LUAD
[1], and TCGA-LUSC [10]. TCGA-LUAD and TCGA-LUSC are com-
bined into a single large dataset, TCGA-Lung, for the cancer subtype
classification task.

In the pre-processing stage, each WSI is cropped into 1024×1024
patches without overlap to form a bag, with magnifications of 40×
for CAMELYON16 and 20× for TCGA-Lung. We apply Macenko
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color normalization [17] and discard patches with more than 30%
background.

CAMELYON16 consists of 398 WSIs, producing 569,533 patches,
while TCGA-Lung includes 1,042 WSIs, yielding 729,193 patches.
Both datasets are split for 5-fold cross-validation, with CAME-
LYON16 tested on its official test set and TCGA-Lung on the DSMIL
GitHub test set [11]. The training-to-testing ratios are 269:129 for
CAMELYON16 and 828:214 for TCGA-Lung..

3.1.2 Evaluation: All experiments are conducted on a single Nvidia
GTX 4090 GPU with 32GB of RAM and an Intel Core i7 processor.
We report the mean and standard deviation of the 5-fold cross-
validation results for the area under the curve (AUC), accuracy, and
recall scores of eight baselines and our proposed MFMF in the task
of WSI classification on both datasets. We evaluate our method’s
robustness against eight baselines in both unimodal andmultimodal
settings, ensuring fairness by using the same input features for all
methods.

In the unimodal setting, the input to baselines is a set of patch
feature vectors F𝑝 extracted using the foundation CONCH model.
MFMF utilizes these F𝑝 as key and value, while using its reconstruc-
tion features F𝑟 as query, and combines the two features with a
single Perceiver IO block. In the multimodal setting, the inputs are
tuples of image, cell, and text features, denoted as F𝑝+F𝑐+F𝑡 . To
implement the multimodal mode on eight baseline methods, the im-
age, cell, and text features are concatenated as described in [6]. The
normal class in CAMELYON16 and the LUSC class in TCGA-Lung
are used to train the AD module.

3.2 Results
MFMF demonstrates superior performance in both unimodal and
multimodal settings, as shown in the comparisons in Tables 1-2.

For the unimodal setting on CAMELYON16, MFMF achieves an
AUC of 0.9402, an accuracy of 0.9302, and a recall of 0.9090. These
results demonstrate that MFMF is highly competitive, with excel-
lent performance across all metrics. Significantly, MFMF achieved
the best recall, underscoring its robustness in detecting relevant
features from image data. In the multimodal setting, MFMF out-
performs other methods, achieving an AUC of 0.9746, an accuracy
of 0.9566, and a recall of 0.9429. Specifically, MFMF with instance
selection achieves the highest performance. This substantial im-
provement with multimodal inputs highlights the effectiveness of
integrating multiple feature types for pathological image analysis.

Our method again demonstrates superior performance for the
unimodal setting on TCGA-Lung, achieving the best results for
accuracy and the second-best recall. This validates its robustness
across different datasets. In the multimodal setting, MFMF main-
tains its superior performance, achieving the best results for AUC,
accuracy, and recall metrics. This further demonstrates the advan-
tage of using multimodal inputs.

Notably, our recall scores consistently surpass those of other
methods, indicating that the abnormal detection module success-
fully guides MFMF to identify positive features. This enhanced
recall is crucial, as false negatives are particularly dangerous in
fields such as diagnosis and medical imaging, where missing infor-
mation about metastases or other critical abnormalities can have
serious consequences.

4 CONCLUSIONS
In this study, we introduced MFMF, an innovative framework that
integrates multiple foundation models to enhance whole slide im-
age classification performance. This framework distinctively in-
corporates an abnormal-guided Variational Autoencoder, which
significantly boosts classification accuracy by effectively integrat-
ing patch-level, cell-level, and text-level features through a cross-
attention mechanism. Extensive experiments are conducted on the
CAMELYON16 and TCGA-Lung datasets to demonstrate the supe-
rior performance of our model over existing SOTA methods, partic-
ularly in multimodal settings. Looking ahead, we plan to establish
a benchmark for multi-class classification to further validate and
refine our framework’s capabilities. MFMF represents a significant
and promising step forward in computational pathology.
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Table 1: Classification performance comparison on CAMELYON16. The best result is shown in bold, the second-best result is
underlined, and the third-best result is in italics. "MFMF ∗" represents our methods.
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A APPENDIX
A.1 Experiment Setup
The process of MFMF begins with the extraction of patch-level
embeddings from the input instances X𝑖 = {x𝑖,1, . . . , x𝑖,𝑚} using an
image encoder, resulting in feature representations F𝑝 , with F𝑝 is a
set that contains𝑚 feature vectors f𝑝 . These embeddings are then
utilized to train an abnormal detection module (VAE) which pro-
duces reconstruction features F𝑟 . By calculating the reconstruction
errors | |f (𝑖 )𝑝 − f

(𝑖 )
𝑟 | |2, potential abnormal instances are identified,

and a subset of these instances is selected based on a threshold
𝑘 , where | | · | |2 denotes the squared Euclidean norm. The selected
instances undergo further feature extraction, where cell-level and
text-level embeddings are generated using respective encoders.
These embeddings f𝑐 and f𝑡 , along with the refined patch-level
and reconstruction features, are integrated using attention mecha-
nisms. Finally, the integrated features are passed through a classifier
to predict the WSI-level label Ŷ𝑖 . The diverse feature extraction
techniques employed in this research are summarized in Table 3.

Table 3: Feature extraction methods.

Embedding Process Dim.

f𝑝
Patches of size 1024×1024 pixels were fed into the
image encoder of the CONCH foundation model,
which uses ViT-Base-16 as a backbone.

R512

f𝑐

SAC fine-tuned the image encoder, a ViT from
SAM, with a cell segmentation task using LoRA.
We then extracted the features using SAC’s image
encoder, processing them with max pooling to
generate cell features.

R1280

f𝑡

The Quilt-LLaVA foundation model was used to
generate a description for each patch. These de-
scriptions were then input into the text encoder
of the CONCH model.

R512

f𝑟

An image-based embedding extracted by CONCH
was then encoded and decoded by the Abnormal
Detection model (see Section 2.2) to obtain the
512-dimensional reconstructed embedding.

R512

In terms of the prompts used for the CAMELYON16 and TCGA-
Lung datasets to obtain patch descriptions generated by Quilt-
LLaVA, we employed the following prompts, respectively:

‘Can you describe the main features visible in this histopathology
image? In a few words, what does the histopathology image depict?
Is there a tumor in this pathology image? Are there abnormal,
neoplastic, atypical, or metastatic cells in this pathology image?
Make a diagnosis based on this single patch of histopathology
image.’

‘Can you describe the main features visible in this histopathology
image? In a few words, what does the histopathology image depict?
Is it lung adenocarcinoma or lung squamous cell carcinoma?’

A.2 Classification Results
To emphasize the robustness of our method, we plot bag embed-
dings produced by four different methods on the CAMELYON16
test set under multimodal conditions.

In Figure 2, the clear distinction between ‘Normal’ and ‘Tumor’
categories in the MFMF model’s scatter plot underscores its effec-
tiveness in differentiating between tissue types. In contrast, the
othermethods showmore categorymixing, suggesting less effective
feature integration and classification capabilities.

(a) ABMIL (b) TransMIL

(c) ILRA-MIL (d) MFMF (ours)

Figure 2: t-SNE visualizations of the CAMELYON16 test set
in multimodal mode.

Similarly, in Figure 3, the proposed method continues to out-
perform other methods in distinguishing between two subtypes,
‘LUAD’ and ‘LUSC’, with clear clustering of each category. This
consistent performance across different datasets underscores the
effectiveness of the MFMF model in feature integration and classifi-
cation tasks, highlighting its potential for broader applications in
histopathological image analysis.

A.3 Ablation Results
A.3.1 Top-𝑘 settings: We conduct a grid search experiment to gain
an in-depth understanding of the Maximum and MinMax selection
strategies.

From Figure 4, in CAMELYON16, the best performance for Max-
imum selection is at 𝑘 = 0.3, while in TCGA-Lung, the best perfor-
mance for both strategies is around 𝑘 = 0.6. The MinMax selection
strategy demonstrates more stable performance across different
𝑘 values compared to Maximum selection. This stability suggests
that including instances with minimal reconstruction error helps
in maintaining a balanced learning space, reducing overconfidence
in the model. Maximum selection tends to peak at specific 𝑘 values
but shows more variability as 𝑘 changes. However, although the
MinMax selection strategy generally demonstrates stable perfor-
mance across different 𝑘 values, there are cases, such as at 𝑘 = 0.2
in the TCGA-Lung dataset, where its performance is more vari-
able. In contrast, the Maximum selection method performs better
at specific 𝑘 values, particularly on the TCGA-Lung dataset, where
𝑘 ∈ {0.2, 0.4, 0.8}. This suggests that whileMinMaxmight be amore
robust choice when the optimal 𝑘 value is uncertain, the Maximum
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Table 4: Classification performance for different instance selection strategies on CAMELYON16.

Maximum selection MinMax selection
Top-𝑘 AUC Accuracy Recall Precision AUC Accuracy Recall Precision

𝑘 = 0.4 0.9648 ± 0.0124 0.9442 ± 0.0158 0.9265 ± 0.0208 0.9570 ± 0.0108 0.9708 ± 0.0109 0.9426 ± 0.0267 0.9249 ± 0.0351 0.9583 ± 0.0173
𝑘 = 0.3 0.9746 ± 0.0098 0.9566 ± 0.0079 0.9429 ± 0.0104 0.9674 ± 0.0056 0.9702 ± 0.0109 0.9457 ± 0.0245 0.9327 ± 0.0345 0.9604 ± 0.0161
𝑘 = 0.2 0.9626 ± 0.0165 0.9504 ± 0.0152 0.9363 ± 0.0204 0.9608 ± 0.0103 0.9695 ± 0.0102 0.9442 ± 0.0237 0.9306 ± 0.0338 0.9593 ± 0.0155
𝑘 = 0.1 0.9613 ± 0.0198 0.9379 ± 0.0129 0.9215 ± 0.0154 0.9491 ± 0.0131 0.9633 ± 0.0108 0.9504 ± 0.0126 0.9355 ± 0.0168 0.9619 ± 0.0087

Table 5: Classification performance for different instance selection strategies on TCGA-Lung.

Maximum selection MinMax selection
Top-𝑘 AUC Accuracy Recall Precision AUC Accuracy Recall Precision

𝑘 = 0.8 0.9769 ± 0.0038 0.9299 ± 0.0029 0.9303 ± 0.0028 0.9305 ± 0.0027 0.9744 ± 0.0046 0.9168 ± 0.0075 0.9168 ± 0.0075 0.9177 ± 0.0075
𝑘 = 0.6 0.9804 ± 0.0035 0.9374 ± 0.0069 0.9377 ± 0.0067 0.9386 ± 0.0056 0.9815 ± 0.0029 0.9355 ± 0.0062 0.9358 ± 0.0058 0.9365 ± 0.0048
𝑘 = 0.4 0.9769 ± 0.0038 0.9308 ± 0.0019 0.9312 ± 0.0018 0.9314 ± 0.0016 0.9736 ± 0.0018 0.9206 ± 0.0066 0.9209 ± 0.0069 0.9221 ± 0.0069
𝑘 = 0.2 0.9762 ± 0.0018 0.9280 ± 0.0023 0.9286 ± 0.0022 0.9294 ± 0.0020 0.9639 ± 0.0097 0.9001 ± 0.0179 0.8999 ± 0.0183 0.9008 ± 0.0173

(a) ABMIL (b) TransMIL

(c) ILRA-MIL (d) MFMF (ours)

Figure 3: t-SNE visualizations of the TCGA-Lung test set in
multimodal mode.

method could be more effective in certain cases, depending on the
dataset and selected 𝑘 value. Overall, the worst performance for
both strategies is still comparable to SOTA methods, indicating the
reliability of our approach. The results also suggest that the effec-
tiveness of instance selection strategies can be dataset-dependent.
Please refer to Tables 4-5 for the full report.

A.3.2 Abnormal guided component: To highlight the importance of
reconstruction features and the proposed instance selection strate-
gies, we present the classification results of MFMF when these
features are excluded. In this scenario, the input features consist of
the triplet (F𝑝 , F𝑐 , F𝑡 ) only.

From the results of Table 6, it is evident that the inclusion of
the AD component improves the overall performance of the MFMF
model across both datasets. For the CAMELYON16 dataset, the

Figure 4: AUC performance for different instance selection
strategies on CAMELYON16 and TCGA-Lung. Results for
other metrics can be found in the Appendix section.

AUC increases from 0.9478 to 0.9746, indicating stronger class dis-
tinction. Additionally, accuracy improves from 0.9395 to 0.9566,
and recall rises from 0.9236 to 0.9429, showing enhanced identi-
fication of positive samples. In the TCGA-Lung dataset, the AUC
increases slightly from 0.9806 to 0.9815, while accuracy improves
from 0.9271 to 0.9374, and recall from 0.9271 to 0.9377, reflecting
better true positive identification. These results underscore the AD
component’s role in enhancing the MFMF model’s performance.
Consistent improvements in AUC, accuracy, and recall across both
datasets highlight the effectiveness of the AD component in refin-
ing classification, which is crucial for precise abnormality detection
in medical imaging.

Table 6: Classification performance of MFMF without the
abnormal detection component (no instance selection and
no reconstruction features F𝑟 ) in multimodal mode.

Dataset AUC Accuracy Recall

CAMELYON 0.9478 ± 0.016 0.9395 ± 0.008 0.9236 ± 0.011
TCGA-Lung 0.9806 ± 0.003 0.9271 ± 0.009 0.9271 ± 0.009
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