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Abstract

Vision-Language-Action (VLA) models, particularly diffusion-based architectures,1

demonstrate transformative potential for embodied intelligence but are severely2

hampered by high computational and memory demands stemming from extensive3

inherent and inference-time redundancies. While existing acceleration efforts often4

target isolated inefficiencies, such piecemeal solutions typically fail to holistically5

address the varied computational and memory bottlenecks across the entire VLA6

pipeline, thereby limiting practical deployability. We introduce EfficientVLA,7

a structured and training-free inference acceleration framework that systemati-8

cally eliminates these barriers by cohesively exploiting multifaceted redundancies.9

EfficientVLA synergistically integrates three targeted strategies: (1) pruning of10

functionally inconsequential layers from the language module, guided by an anal-11

ysis of inter-layer redundancies; (2) optimizing the visual processing pathway12

through a task-aware strategy that selects a compact, diverse set of visual tokens,13

balancing task-criticality with informational coverage; and (3) alleviating temporal14

computational redundancy within the iterative diffusion-based action head by strate-15

gically caching and reusing key intermediate features. We apply our method to a16

standard VLA model CogACT, yielding a 1.93× inference speedup and reduces17

FLOPs to 28.9%, with only a 0.6% success rate drop in the SIMPLER benchmark.18

The code will be open-sourced and is available in the supplementary materials.19

1 Introduction20

Building upon advances in multimodal understanding from models integrating vision and language [1,21

2, 3, 4, 5], Vision-Language-Action (VLA) models enable transformative embodied intelligence.22

These systems, such as OpenVLA [6], CogACT [7], pi0 [8] and RT-2 [9], directly translate multimodal23

inputs into executable actions, successfully tackling complex robotic manipulation and reasoning24

tasks using large-scale datasets [10, 11]. Many cutting-edge VLAs couple a Vision-Language25

Model (VLM) for scene and instruction parsing with a diffusion model to handle multi-modal action26

distribution [7, 12, 13, 14]. However, the significant computational and memory overheads of these27

Diffusion-based VLA architectures during the inference time pose critical barriers to their practical28

deployment, particularly for real-time interaction on resource-constrained robotic platforms.29

Diffusion-based VLA architectures typically comprise a vision encoder to extract features, a large30

language model (LLM) [15, 16, 17, 18] core for multimodal reasoning, and a diffusion-based action31

decoder to predicts the final actions through multiple denoising steps. While this modular design32

underpins their powerful capabilities, it inherently results in substantial computational and memory33

overhead. Our findings (Table 1) indicate that the language module and the iterative diffusion head are34

primary contributors to overall latency and computational load. Furthermore, as illustrated in Figure 135
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Table 1: Module-wise inference characteristics of a baseline VLA model (CogACT, Left) compared to
our proposed EfficientVLA (Right). EfficientVLA demonstrates significant improvements in overall
inference speed and computational efficiency (FLOPs).

Vision Module Language Module Action Module
#Param (M) 802.3 6738.9 89.0

Vision Token 256 256 -
Denoising Steps - - 10

Inference Time (ms) 24.9 134.5 51.5
FLOPs (G) 405.50 3726.55 57.96

Vision Module Language Module Action Module
#Param (M) 802.3 3971.1 (↓41%) 89.0

Vision Token 256 56 (↓78%) -
Denoising Steps - - 2 (↓80%)

Inference Time (ms) 24.9 58.9 (↓56%) 26.2 (↓49%)
FLOPs (G) 405.50 792.58 (↓78%) 11.72 (↓80%)

(b) Layer-wise output cosine similarity (c) Timestep-wise output cosine similarity
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Figure 1: VLA inference bottleneck and redundancy analysis: (a) Visual token pruning impact on
FLOPs and inference time, revealing computation-bound and memory-bound regimes. (b) High
inter-layer cosine similarity of LLM hidden states, indicating depth-wise redundancy. (c) Temporal
cosine similarity of MLP/attention features in diffusion steps, showing computational redundancy.

(a), while visual token pruning initially reduces inference time in computation-bound scenarios, its36

efficacy quickly diminishes as the system becomes memory-bound by the LLM.37

Prior VLA acceleration efforts have largely focused on isolated tweaks, delivering minimal overall38

gains. These fragmented approaches often fail because they ignore the integrated nature of VLA,39

where optimizing one module in isolation merely shifts bottlenecks. Gains are limited by unaddressed40

inefficiencies elsewhere, such as the memory demands of LLM or the computational intensity of41

action head. For example, methods like TinyVLA [14] and DeeR-VLA [19] focus on specialized42

model architectures rather than broadly applicable inference acceleration frameworks for pre-trained43

VLAs. Other approaches, such as Mole-VLA [20], tackle LLM layer redundancy but require costly44

retraining and overlook other pipeline stages. Similarly, VLA-Cache [21] caches static visual45

tokens but provides limited speedup, constrained by the significant memory footprint of LLM and46

computational demands of the action head. Consequently, these existing approaches fall short of47

providing a truly holistic solution to navigate the complex landscape of VLA inefficiencies.48

To develop a more effective acceleration strategy, we systematically analyze the inference characteris-49

tics and multifaceted redundancies within each VLA module. In many Diffusion-based VLAs, the50

diffusion action head operates as a separate module, guided by features extracted from the VLM. This51

separation may underutilize the full reasoning capacity of VLM for action generation, questioning the52

necessity of its entire scale. As illustrated in Figure 1 (b), the language module demonstrates shows53

considerable depth-wise representational redundancy with high inter-layer hidden state similarity. The54

visual processing pathway exacerbates this issue by processing superfluous tokens, characterized by55

low task-relevance or high informational overlap due to visual similarity, which strains computational56

resources and intensifies the memory-bound condition of LLM. As shown in Figure 1 (c), the iterative57

diffusion action head displays significant temporal redundancy. The high similarity of its intermediate58

features across adjacent denoising steps implies extensive and near-static recomputations.59

Motivated by this, we introduce EfficientVLA, a structured, training-free acceleration framework for60

Diffusion-based VLAs that systematically targets these issues. Using a similarity-derived importance61

metric to target the primary memory bottleneck of the language module and its observed depth-wise62

redundancy (Figure 1 (b)), EfficientVLA employs a similarity-derived importance metric to prune63

functionally inconsequential layers, thus reducing the depth of the model and the demands for memory64

without retraining. To manage the initial computational load from visual inputs before the memory65

of LLM limit is reached (Figure 1 (a)), our visual token pruning strategy tackles both task-relevant66

and inherent image redundancies by first selecting critical task-aligned tokens, then augmenting this67

set to ensure representational diversity while maintaining high task relevance. Lastly, EfficientVLA68
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addresses temporal redundancy in the compute-intensive action generator (highlighted by high feature69

similarity across timesteps, Figure 1 (c)) by caching and reusing intermediate attention and MLP70

outputs, thus curtailing redundant computations. This synergistic, structured approach provides a71

more holistic alleviation of GPU compute and memory bottlenecks than isolated optimizations.72

The main contributions of this work are summarized as follows:73

1. We present a systematic analysis identifying critical computational and memory-bound bottlenecks,74

alongside multifaceted redundancies within contemporary Diffusion-based Vision-Language-75

Action (VLA) architectures, thereby motivating the need for structured acceleration.76

2. We propose EfficientVLA, a novel training-free, structured inference acceleration framework that77

synergistically prunes redundant layers from the language module based on their informational78

impact and strategically selects a compact, task-focused subset of visual tokens by considering79

both VLA task relevance and inherent image feature diversity.80

3. Our framework further enhances efficiency by exploiting temporal redundancies in the diffusion-81

based action head, introducing a caching mechanism for intermediate attention and MLP computa-82

tions during the iterative denoising process.83

4. We demonstrate the efficacy of EfficientVLA through extensive experiments on the CogACT in84

the SIMPLER environment [22], achieving a 1.93× inference speedup and reducing FLOPs to85

28.9%, all while incurring a minimal accuracy degradation of only 0.6%. This will facilitate the86

application of large-scale VLAs on the resource-constrained robotics platforms in the real world.87

2 Related Work88

Vision-Language-Action Models. Vision-Language-Action (VLA) models [6, 19, 23, 24] extend89

Vision-Language Models (VLMs) [3, 25, 26, 27, 28] by incorporating action generation, bridging the90

gap between perception and action. These models enable machines to understand visual and textual91

inputs and generate corresponding actions for tasks [23, 29] such as robotic manipulation and object92

retrieval. VLA models typically use pretrained VLMs [26] to encode visual and linguistic data into93

a shared representation, from which actions are generated either as discrete tokens or continuous94

values. A prominent recent trend within VLA is the adoption of diffusion models for generating95

coherent continuous action sequences. This paradigm is exemplified by models such as CogACT [7],96

DexVLA [13], DiVLA [12], π0 [8], and TinyVLA [14]. Many of these diffusion-based VLAs employ97

a componentized design: the foundational VLM processes visual and linguistic inputs to produce a98

condensed feature representation, which then conditions a distinct diffusion-based action module99

responsible for the iterative generation of precise action trajectories. This often involves the VLM100

output steering the denoising process within the specialized action decoder.101

Efficient Vision-Language-Action Models. The computational complexity of Vision-Language102

Models (VLMs) poses significant challenges for their real-time deployment, particularly in applica-103

tions such as robotic control that require rapid decision-making. To address this issue, recent efforts104

to accelerate VLA models have been primarily categorized into training-aware and training-free meth-105

ods. Training-aware approaches, such as RoboMamba [30], EfficientVLM [31], and DeeR-VLA [19],106

focus on optimizing model architectures or applying compression techniques followed by retraining,107

achieving significant speedups while maintaining performance. For instance, DeeR-VLA reduces108

computational costs by leveraging dynamic reparameterization and efficient pruning strategies, which109

enable more flexible and scalable model deployment. Similarly, For example, Mole-VLA [20] reduces110

computational costs by dynamically activating only a subset of model layers based on task-specific111

needs. In contrast, training-free methods, such as VLA-Cache [21], enhance efficiency by reusing112

previously computed results for unchanged tokens between consecutive frames, which is particularly113

beneficial in scenarios with minimal variation in visual input.114

3 Method115

3.1 Preliminaries: Vision-Language-Action Models116

Vision-Language-Action (VLA) models represent a class of multimodal systems designed to bridge117

perception, language understanding, and robotic action. These models typically process image118

observations and natural language instructions through a sequence of specialized modules to generate119
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Figure 2: Overview of the EfficientVLA framework, our training-free, structured approach to
accelerate Diffusion-based VLAs. It employs: (1) pruning of redundant language module layers; (2)
VLA task-aware visual token selection balancing task relevance and informational diversity; and (3)
temporal caching of intermediate featuresin the diffusion action head.

executable action sequences. The initial stage of our basic VLA model employs a Vision Module,120

comprising powerful pre-trained encoders DINOv2 [32] and SigLIP [33], to transform the raw121

visual input Oimg into a set of rich feature embeddings FV . These visual features FV , along with122

tokenized language instructions, are then ingested by a language model backbone. This LLM123

performs multimodal fusion and contextual reasoning to derive a task-oriented representation or124

conditioning signal, FV L, which encapsulates the understanding of the scene and the instructed goal.125

Finally, a Diffusion-based Action Head takes the cognition feature extracted from the output feature126

FV L as input and predicts the final action space of a gripper with 7 degrees of freedom (DoF).127

3.2 Vision-Language Model Pruning128

3.2.1 Layer Redundancy Analysis129

The language module within VLA models, typically a multi-layer Transformer decoder, is critical130

for multimodal reasoning but often introduces substantial computational overhead. Each layer ℓ131

in such a transformer updates its input hidden state x(ℓ) ∈ Rd×S via a residual transformation:132

x(ℓ+1) = x(ℓ) + f(x(ℓ), θ(ℓ)), where f(·) is the layer-specific function with parameters θ(ℓ), d is the133

hidden dimension, and S is the sequence length. Our empirical analysis, illustrated in Figure 1 (b),134

reveals significant depth-wise representational redundancy within this language module component.135

Specifically, we observe high cosine similarity between the input x(ℓ) and output x(ℓ+1) states for136

numerous, particularly deeper layers. This indicates that the effective transformation f(x(ℓ), θ(ℓ))137

imparted by these layers is minimal, rendering them functionally less critical and prime candidates138

for pruning to enhance inference efficiency with negligible impact on task performance.139

3.2.2 Importance-Driven Non-Contiguous Layer Pruning140

To address the identified depth-wise redundancy within the language module of VLA models, we first141

rigorously quantify the functional importance of each layer. Our approach aims to identify layers that142

contribute minimally to the transformation of hidden state representations, rendering them candidates143

for pruning. We define the importance score I(ℓ) for a given layer ℓ based on the principle that a layer144

effecting substantial change to its input is more critical than one whose output closely mirrors its145

input. Specifically, I(ℓ) is quantified as one minus the average cosine similarity between its input146

and output hidden states across a representative dataset D of VLA training samples and all L token147

positions within each sample:148

I(ℓ) = 1− 1

|D|

|D|∑
i=1

 1

L

L∑
j=1

x
(ℓ)
i,j · x

(ℓ+1)
i,j

∥x(ℓ)
i,j ∥2∥x

(ℓ+1)
i,j ∥2

 (1)

where x
(ℓ)
i,j ,x

(ℓ+1)
i,j ∈ Rd denote the input and output hidden state vectors, respectively, at position j149

of sample i for layer ℓ. A high cosine similarity signifies a minimal transformative effect by the layer150

function f(x(ℓ), θ(ℓ)), resulting in a low importance score I(ℓ) and indicating functional redundancy.151
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Based on these importance scores, we employ a non-contiguous pruning strategy. For an LLM152

comprising N layers, the importance score I(ℓ) is computed for every layer ℓ ∈ {1, . . . , N}. These153

scores are then sorted in ascending order, yielding an ordered list of layer indices Lranked =154

[ℓ(1), ℓ(2), . . . , ℓ(N)] such that I(ℓ(1)) ≤ I(ℓ(2)) ≤ · · · ≤ I(ℓ(N)). Subsequently, the first n layers from155

this list, {ℓ(1), ℓ(2), . . . , ℓ(n)}, are selected for removal from the model.156

3.3 Task-Relevance and Diversity-Driven Visual Token Pruning157

Visual token streams processed by VLA models, despite their rich informational content, frequently158

exhibit significant redundancy, imposing substantial computational and memory overhead. This159

redundancy typically manifests in two primary forms: (i) tokens possessing low relevance to the160

specific VLA task objectives and (ii) tokens that are informationally duplicative due to inherent visual161

similarities within the input. To counteract these distinct forms of superfluity, we introduce a novel,162

training-free, VLA task-aware visual token pruning methodology. Our approach strategically distills163

a compact yet maximally informative subset of visual tokens, Vpruned ⊂ V of a predetermined size164

Kfinal (from an initial set of Ntotal token embeddings V = {v1, v2, . . . , vNtotal
} derived from the165

input image). This is achieved by first anchoring the selection with task-critical tokens identified via166

attention analysis, and subsequently augmenting this core set by judiciously balancing continued task167

relevance with the explicit promotion of feature diversity through similarity measures. The retained168

visual tokens for inference can be found in the supplementary material.169

3.3.1 Quantifying Task Relevance170

To guide visual token pruning, we quantify the task relevance for each initial visual token vi (from a171

set of Ntotal) by leveraging cross-attention scores from selected VLM layers. These scores capture172

the attention from vi towards Lctx task-defining contextual embeddings (e.g., language instructions).173

Let A(h)
i,j denote the attention from visual token vi to the jth contextual token in the hth attention174

head (of H total heads). The raw task relevance score ri for vi is computed by first averaging175

attention contributions across all H heads for each visual-contextual pair (i, j), and then summing176

these averaged attentions over all Lctx contextual elements:177

ri =

Lctx∑
j=1

(
1

H

H∑
h=1

A
(h)
i,j

)
(2)

These raw scores ri, signifying each token’s overall engagement with the task context, are sub-178

sequently normalized (e.g., via min-max scaling) to standardized scores si ∈ [0, 1] for robust179

comparison and subsequent token selection.180

3.3.2 Selection of Key Task-Relevant Tokens181

Armed with the normalized task relevance scores {si}, the first phase of pruning identifies an initial182

set of Kkey visual tokens (e.g., Kkey empirically set between 4 and 8) that demonstrate the highest183

relevance to the VLA task. These tokens constitute the core and indispensable visual token set, Vkey:184

Vkey = {vi ∈ V | si is among the top Kkey scores in {sk}Ntotal

k=1 } (3)

The tokens in Vkey are unconditionally retained in Vpruned, forming a foundational scaffold of185

visual cues deemed essential for task comprehension and successful execution. The set of remaining186

candidate tokens for further consideration is denoted as Vrem = V \ Vkey .187

3.3.3 Augmentative Selection Balancing Relevance and Diversity188

To supplement the core set Vkey and achieve the target final token count Kfinal, an additional189

Kaug = Kfinal − Kkey tokens are meticulously selected from Vrem. This crucial augmentation190

phase is guided by a ratio α ∈ [0, 1], which orchestrates a hybrid selection strategy that concurrently191

promotes continued emphasis on task relevance and the introduction of informational diversity.192

Task-Driven Augmentation. A fraction of the augmentation quota, specifically Ktask = ⌊α·Kaug⌋193

tokens, is selected from Vrem by further prioritizing tokens based on their high task relevance scores194

si. Vtask reinforces the task-centric nature of the pruned representation by incorporating additional195
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tokens that, while not part of the initial Kkey elite, still exhibit strong relevance signals. These tokens196

are added to the selection, and the pool of remaining candidates is updated: Vrem ← Vrem \ Vtask.197

Diversity-Driven Augmentation. The remaining Kdiv = Kaug − Ktask tokens are selected198

from the updated Vrem with the explicit objective of maximizing feature diversity relative to the199

key selected tokens. This step is vital for capturing a broader spectrum of visual information and200

mitigating inherent redundancies not addressed by task relevance alone. For each candidate token201

vj ∈ Vrem, its dissimilarity to the set Vkey is computed. A common measure is the cosine distance,202

ensuring that selected tokens are distinct in the embedding space:203

Diversity(vj , Vkey) = 1− max
vk∈Vkey

vj · vk
∥vj∥2∥vk∥2

(4)

The Kdiv tokens from Vrem exhibiting the highest dissimilarity scores (i.e., those maximally different204

from already selected tokens) are chosen to form the set Vdiv . This targeted inclusion of diverse tokens205

ensures the final selection is not overly specialized and retains a richer contextual understanding.206

Final Pruned Visual Token Set. The comprehensive set of visual tokens retained after pruning is207

the union of these strategically selected components:208

Vpruned = Vkey ∪ Vtask ∪ Vdiv (5)

This final set Vpruned, of cardinality Kfinal, is subsequently utilized for all downstream processing209

within the VLA model. This systematic reduction in visual sequence length significantly alleviates210

computational demands while preserving critical task-specific and diverse visual information.211

3.4 Caching Intermediate Features in Action Prediction212

Generating high-fidelity action sequences with Diffusion-based VLA models involves an iterative213

denoising process that demands significant computation due to repeated self-attention and MLP214

computations over T timesteps. We observe strong temporal coherence in the intermediate features215

produced during action generation (Figure 1 (c)), indicating substantial redundancy across timesteps.216

To address this inefficiency and accelerate the action generation phase, we propose a static caching217

mechanism. This strategy periodically recomputes and caches critical intermediate attention and218

MLP output at a fixed interval N , reusing these cached values for the intervening time steps in219

the generation of action sequences. This selective computation aims to significantly reduce the220

computational cost associated with generating the action sequence while preserving its quality.221

3.4.1 Feature Generation and Temporal Coherence in DiT Blocks222

Let t denote the current denoising timestep, typically iterating from an initial Tstart down to 1. Within223

each DiT block at timestep t, the input features zt (which may incorporate cognitive features ft from224

upstream VLM modules and the current noise estimate) are processed sequentially by a self-attention225

module and an MLP module to produce intermediate hidden states:226

hattn
t = Self-Attn(zt) (6)

hmlp
t = MLP(hattn

t + zt) (7)

These features, hattn
t and hmlp

t , are fundamental to the denoising capacity of the diffusion model. Our227

observation of their high temporal coherence—meaning hmodule
t ≈ hmodule

t−1 for many t and module228

types—motivates their periodic caching and reuse.229

3.4.2 Static N-Step Caching Implementation230

We define a cache interval N (1 ≤ N < Tstart). At the initial timestep t = Tstart, the features231

hattn
Tstart

and hmlp
Tstart

are computed via Equations 6 and 7 and stored in a persistent cache, denoted232

Cattn and Cmlp. For any subsequent timestep t < Tstart, these features are recomputed and the233

caches are updated if and only if t (mod N) = 0 (assuming t > 0 and t aligns with desired multiples234

for caching, e.g., Tstart, Tstart −N,Tstart − 2N, . . . ). Thus, for such recomputation timesteps:235

Cattn ← Self-Attn(zt) (8)
Cmlp ← MLP(Cattn + zt) (9)
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Table 2: Performance of EfficientVLA on the CogACT versus the other baselines in the SIMPLER
environment. Settings vary by retained LLM layers (L) and visual tokens (T). Random Dropping
denotes a method involving the random retention of 112 visual tokens.

SIMPLER Method Training-free PickCan MoveNear Drawer DrawerApple Average FLOPs↓ Speedup↑ Params (B)

Visual
Matching

CogACT - 91.3% 85.0% 71.8% 50.9% 74.8% 100.0% 1.00× 7.63
Random Dropping ✓ 9.7% 20.4% 53.5% 0.0% 20.9% 58.5% 1.20× 7.63

FastV ✓ 92.6% 81.4% 69.8% 52.4% 74.1% 42.0% 1.21× 7.63
VLA-Cache ✓ 92.0% 83.3% 70.5% 51.6% 74.4% 80.1% 1.38× 7.63

EfficientVLA (L=28, T=112) ✓ 95.3% 83.3% 70.3% 56.5% 76.4% 45.1% 1.59× 5.87
EfficientVLA (L=28, T=56) ✓ 94.7% 82.4% 69.8% 55.4% 75.5% 32.9% 1.71× 5.87

EfficientVLA (L=22, T=112) ✓ 94.0% 82.1% 69.2% 54.6% 75.0% 38.2% 1.78× 4.86
EfficientVLA (L=22, T=56) ✓ 93.3% 81.3% 68.2% 53.8% 74.2% 28.9% 1.93× 4.86

Variant
Aggregation

CogACT - 89.6% 80.8% 28.3% 46.6% 61.3% 100.0% 1.00× 7.63
Random Dropping ✓ 4.0% 16.1% 15.6% 0.0% 8.9% 58.5% 1.20× 7.63

FastV ✓ 91.4% 78.6% 27.6% 50.6% 62.1% 42.0% 1.19× 7.63
VLA-Cache ✓ 91.7% 79.3% 32.5% 45.8% 62.3% 82.6% 1.37× 7.63

EfficientVLA(L=28, T=112) ✓ 94.8% 77.6% 28.4% 51.9% 63.2% 45.1% 1.57× 5.87
EfficientVLA (L=28, T=56) ✓ 94.4% 77.2% 27.6% 51.3% 62.6% 32.9% 1.69× 5.87

EfficientVLA (L=22, T=112) ✓ 93.9% 76.4% 27.3% 50.6% 62.1% 38.2% 1.76× 4.86
EfficientVLA (L=22, T=56) ✓ 93.2% 75.8% 26.9% 49.2% 61.2% 28.9% 1.91× 4.86

And the outputs for this step are hattn
t = Cattn and hmlp

t = Cmlp. In all other timesteps, where t236

(mod N) ̸= 0, the computationally intensive Self-Attn and MLP operations are entirely bypassed.237

Instead, the required features are directly retrieved from the most recently populated cache:238

hattn
t ← Cattn (when t (mod N) ̸= 0) (10)

hmlp
t ← Cmlp (when t (mod N) ̸= 0) (11)

This static caching schedule effectively prunes the execution of these core modules for N − 1 out of239

every N timesteps post-initialization, leading to a substantial reduction in floating-point operations240

and latency for the action generation component of the VLA. The choice of N allows for a tunable241

trade-off between acceleration and the fidelity of the generated actions, as reusing features for longer242

intervals might introduce slight deviations if underlying representations were to change rapidly.243

4 Experiment244

4.1 Experimental Settings245

Simulation Implementation Details. To assess our VLA model, we utilize the SIMPLER environ-246

ment [22], a simulation-based benchmark for table-top manipulation. SIMPLER is designed to closely247

emulate real-world dynamics for robots such as the Google Robot and WidowX, demonstrating robust248

alignment between simulation and real-world performance. The VLA model in this setup takes249

224×224 RGB image observations and natural language task instructions (e.g., "Pick coke can")250

as input and outputs a sequence of actions in 7-DoF Cartesian space. The SIMPLER supports two251

evaluation configurations: Visual Matching, which prioritizes fidelity to real-world appearances, and252

Variant Aggregations, which incorporates diverse conditions such as altered lighting, backgrounds,253

and surface textures. For the Google robot, SIMPLER provides both two evaluation settings, each254

featuring the same four tasks: 1) Pick coke can; 2) Move near; 3) Open/close drawer; and 4) Open255

top drawer and place apple. Success rate is used as the evaluation metric.256

Baselines. Our primary experimental validation of EfficientVLA is performed on the CogACT [34],257

which integrates powerful vision encoders (DINOv2 [32] and SigLIP [33]), a Llama2-7B [15]258

language module for multimodal reasoning, and a Diffusion Transformer (DiT) for generating action259

trajectories. We benchmark against relevant baseline methodologies. These include a Random260

Dropping approach, where 112 visual tokens are retained uniformly at random, to evaluate the261

benefits of our guided vision token pruning. We further compare with FastV [35], a notable approach262

focused on accelerating inference by pruning redundant visual tokens, and VLA-Cache [21], which263

leverages temporal analysis to cache static tokens across timesteps.264

Implementation Details. For EfficientVLA, in addition to layer pruning, we further compressed the265

model parameters by adopting the PruneNet [36] configuration for LLM compression. Specifically,266

we applied a sparsity of 25% to the MLP layers of all Transformer blocks. For visual token pruning,267
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Table 3: Scalability Analysis: We evaluate mean success rate and inference time in a simulation
environment of visual matching across various model sizes. Our EfficientVLA configuration maintains
L = 22 and T = 56.

SIMPLER Model Action-Params Methods Average Inference time (s) Total-Params (B)

Visual
CogACT-Small 13M

CogACT 73.3% 0.2156 7.55
EfficientVLA 72.6% 0.1173 4.78

Matching
CogACT-Base 89M

CogACT 74.8% 0.2342 7.63
EfficientVLA 74.2% 0.1213 4.86

CogACT-Large 308M
CogACT 76.7% 0.2628 7.85

EfficientVLA 76.1% 0.1312 5.08

CogACTCogACT

EfficientVLA-28

EfficientVLA-22

EfficientVLA-28

EfficientVLA-22

FLOPs (T)Inference Time (s)

1.93×

1.71×

↓71.1%

↓67.1%

Figure 3: Efficiency analysis in simulation, comparing FLOPs and inference time of our Effi-
cientVLA variants against the original model backbone. EfficientVLA-22 and EfficientVLA-28
denote configurations retaining 22 and 28 LLM layers, respectively.

we started from the 2nd Transformer layer with a ratio α = 50% and Kkey = 4 for key task-critical268

tokens. Furthermore, the cache interval was set to 5. All experiments were conducted on NVIDIA269

A40 GPUs, and the inference time was measured as the average single-step inference duration. More270

details can be found in the supplementary material.271

4.2 Results on Simulation Environment272

Main Results on SIMPLER. Table 2 details the performance of our structured, entirely training-free273

pruning method in the SIMPLER environment. Our approach consistently excels across configurations274

retaining 22/28 layers and 56/112 visual tokens. For instance, pruning 10 layers with 112 tokens275

surpasses both CogACT and VLA-cache in success rate and inference speed. Remarkably, on the pick276

coke can task, pruning 36% of parameters paradoxically improved the success rate from 91.3% to277

94.0%, highlighting significant parameter redundancy in the VLA model. Conversely, random token278

dropping to 112 tokens drastically reduces the average success rate to 20.9%, affirming the superiority279

of our guided selection strategy. Furthermore, a 22-layer, 56-token setup achieved a 71.1% reduction280

in FLOPs with merely a 0.6% drop in average success rate, demonstrating exceptional efficiency. In281

comparision, approaches like FastV [35] (T = 56) show that solely optimizing visual tokens yields282

only a 1.21× speedup due to unaddressed memory bottlenecks, despite acceptable task performance.283

Efficiency Analysis. As demonstrated in Table 2 and Figure 3, our proposed method significantly284

outperforms previous baselines, achieving a 71.1% reduction in FLOPs and a 1.93× speedup in285

inference time. In stark contrast, VLA-cache, when applied to the CogACT model, only reduces286

FLOPs by 19.9% and achieves a mere 1.38× speedup. This disparity substantiates our prior anal-287

ysis: VLA-cache, functioning solely as a cache for visual tokens between adjacent time steps, is288

inherently constrained by memory bounds, thereby limiting the efficacy of token-only acceleration.289

Consequently, the structured framework of our system offers distinct advantages, highlighting our290

method’s superior capability in balancing computational efficiency with robust performance.291

Scalability Evaluation. Table 3 illustrates the scalability of our proposed method across different292

sizes of the CogACT model. With the primary difference among the three models being the param-293

eter size of their action modules, the results reveal that our method’s effectiveness becomes more294

pronounced with larger models. Specifically, on the CogACT-Large model, our approach achieves a295

2.0× inference speedup, while performance only marginally decreases from 76.7% to 76.1%. This296

increased impact is because action modules in larger models, having more parameters, inherently297

exhibit longer inference times, thus allowing our method to yield more significant accelerations.298

These findings also underscore the robustness of our method across models of various scales.299
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Table 4: Performance impact of varying visual token reduction ratios (Left) and diffusion action head
cache intervals (Right) as applied within our EfficientVLA framework.

Token 56 72 96 112 256
Ratio 77.8% 71.8% 62.5% 56.2% 100.0%

Accuracy 95.0% 95.3% 95.0% 96.0% 91.3%
Inference time (s) 0.1866 0.1870 0.1889 0.1956 0.2342
FLOPs (T) 1.76 1.96 2.25 2.45 4.19

Cache Interval 1 2 3 4 5

Accuracy 91.3% 94.0% 93.7% 90.3% 93.7%
Inference time (s) 0.2342 0.2031 0.1987 0.1953 0.1909
FLOPs (T) 4.190 4.161 4.155 4.150 4.144

Table 5: Ablation study on our EfficientVLA, where ’Layer’ denotes applying only the LLM layer
pruning component, and ’MLP’ refers to a distinct strategy of compressing 25% of MLP weights
within each layer.

Model Compression Visual Token Action Success Inference Speedup↑
Layer MLP Pruning Cache Rate Time (s)

Ex0 ✗ ✗ ✗ ✗ 91.3% 0.2342 1.00×
Ex1 ✗ ✗ ✓ ✗ 95.6% 0.1866 1.25×
Ex2 ✗ ✗ ✗ ✓ 93.7% 0.1909 1.23×
Ex3 ✓ ✗ ✓ ✗ 85.7% 0.1604 1.46×
Ex4 ✓ ✓ ✗ ✗ 92.3% 0.1638 1.43×
Ex5 ✓ ✓ ✗ ✓ 93.3% 0.1387 1.69×
Ex6 ✗ ✗ ✓ ✓ 95.3% 0.1592 1.47×
Ex7 ✓ ✓ ✓ ✓ 93.3% 0.1213 1.93×

Impact of Token Reduction Ratio and Cache Interval. Table 4 details our experiments on the pick300

coke can task reveal distinct impacts of component-specific optimizations. Aggressively pruning301

visual tokens, down to retaining only 22%, effectively lessens computational load for substantial,302

near-lossless acceleration. However, inference speed gains largely saturate beyond this point, with303

further token reduction yielding only marginal improvements, thereby revealing dominant system-304

level performance bottlenecks. Separately, for the diffusion-based action generator, we observed that305

increasing the cache reuse interval N for intermediate attention and MLP features progressively and306

significantly accelerates action trajectory generation.307

4.3 Ablation Study308

We conducted an ablation study on the components of our proposed framework, using the pick309

coke can task as an illustrative example. As suggested by prior analysis (e.g., Figure 1 (a), solely310

optimizing visual tokens for VLA inference tasks yields limited acceleration; retaining just 56 tokens311

resulted in a mere 1.23× speedup, although the success rate paradoxically rose from 91.3% to 95.6%.312

This underscores the inherent limitations of token-centric optimization methods, such as VLA-cache,313

and affirms that achieving substantial VLA inference acceleration viable for hardware deployment ne-314

cessitates a more model-centric strategy. In contrast, our model compression approach—concurrently315

pruning layers and compressing MLP in the remaining layers—achieved a 1.43× speedup. Critically,316

when all components were integrated, a 1.93× speedup was realized, and the overall task success317

rate still saw an improvement of 2% points. These collective results highlight the imperative and318

significance of adopting a structured framework for effective VLA inference acceleration.319

5 Conclusion320

In this paper, we addressed the critical challenge of high computational and memory overheads321

that impede the practical deployment of powerful Diffusion-based Vision-Language-Action (VLA)322

models. We proposed EfficientVLA, a novel training-free, structured framework to accelerate323

VLA models. Our framework enhances efficiency by synergistically pruning redundant layers of324

language module identified by their minimal impact on transforming hidden states and by strategically325

selecting a compact set of visual tokens that balances VLA task relevance with inherent feature326

diversity. Furthermore, it optimizes the action module by caching critical intermediate computations327

across its iterative denoising steps. We demonstrate the efficacy of EfficientVLA through extensive328

experiments on the CogACT in the SIMPLER environment [22], achieving a 1.93× inference speedup329

and reducing FLOPs to 28.9%, all while incurring a minimal accuracy degradation of only 0.6%.330
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nature of the contribution. For example529

(a) If the contribution is primarily a new algorithm, the paper should make it clear how530

to reproduce that algorithm.531

(b) If the contribution is primarily a new model architecture, the paper should describe532

the architecture clearly and fully.533

(c) If the contribution is a new model (e.g., a large language model), then there should534

either be a way to access this model for reproducing the results or a way to reproduce535

the model (e.g., with an open-source dataset or instructions for how to construct536

the dataset).537

(d) We recognize that reproducibility may be tricky in some cases, in which case538

authors are welcome to describe the particular way they provide for reproducibility.539

In the case of closed-source models, it may be that access to the model is limited in540

some way (e.g., to registered users), but it should be possible for other researchers541

to have some path to reproducing or verifying the results.542

5. Open access to data and code543
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Question: Does the paper provide open access to the data and code, with sufficient instruc-544

tions to faithfully reproduce the main experimental results, as described in supplemental545

material?546

Answer: [NA]547

Justification: This paper uses public datasets and models, and the specific links are given in548

the additional materials.549

Guidelines:550

• The answer NA means that paper does not include experiments requiring code.551

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/552

public/guides/CodeSubmissionPolicy) for more details.553

• While we encourage the release of code and data, we understand that this might not be554

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not555

including code, unless this is central to the contribution (e.g., for a new open-source556

benchmark).557

• The instructions should contain the exact command and environment needed to run to558

reproduce the results. See the NeurIPS code and data submission guidelines (https:559

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.560

• The authors should provide instructions on data access and preparation, including how561

to access the raw data, preprocessed data, intermediate data, and generated data, etc.562

• The authors should provide scripts to reproduce all experimental results for the new563

proposed method and baselines. If only a subset of experiments are reproducible, they564

should state which ones are omitted from the script and why.565

• At submission time, to preserve anonymity, the authors should release anonymized566

versions (if applicable).567

• Providing as much information as possible in supplemental material (appended to the568

paper) is recommended, but including URLs to data and code is permitted.569

6. Experimental setting/details570

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-571

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the572

results?573

Answer: [Yes]574

Justification: We provided the detailed experimental settings in the Section 4.1 and also in575

the supplementary material to ensure reproducibility of our method.576

Guidelines:577

• The answer NA means that the paper does not include experiments.578

• The experimental setting should be presented in the core of the paper to a level of detail579

that is necessary to appreciate the results and make sense of them.580

• The full details can be provided either with the code, in appendix, or as supplemental581

material.582

7. Experiment statistical significance583

Question: Does the paper report error bars suitably and correctly defined or other appropriate584

information about the statistical significance of the experiments?585

Answer: [NA]586

Justification: We follow the settings of previous methods where the result of a single run is587

provided.588

Guidelines:589

• The answer NA means that the paper does not include experiments.590

• The authors should answer "Yes" if the results are accompanied by error bars, confi-591

dence intervals, or statistical significance tests, at least for the experiments that support592

the main claims of the paper.593

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for594

example, train/test split, initialization, random drawing of some parameter, or overall595

run with given experimental conditions).596

• The method for calculating the error bars should be explained (closed form formula,597

call to a library function, bootstrap, etc.)598

• The assumptions made should be given (e.g., Normally distributed errors).599

• It should be clear whether the error bar is the standard deviation or the standard error600

of the mean.601

• It is OK to report 1-sigma error bars, but one should state it. The authors should602

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis603

of Normality of errors is not verified.604

• For asymmetric distributions, the authors should be careful not to show in tables or605

figures symmetric error bars that would yield results that are out of range (e.g. negative606

error rates).607

• If error bars are reported in tables or plots, The authors should explain in the text how608

they were calculated and reference the corresponding figures or tables in the text.609

8. Experiments compute resources610

Question: For each experiment, does the paper provide sufficient information on the com-611

puter resources (type of compute workers, memory, time of execution) needed to reproduce612

the experiments?613

Answer: [Yes]614

Justification: We provided the detailed experiments compute resources in the Section 4.1.615

All of our experiments were conducted on a single NVIDIA A40 GPUs.616

Guidelines:617

• The answer NA means that the paper does not include experiments.618

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,619

or cloud provider, including relevant memory and storage.620

• The paper should provide the amount of compute required for each of the individual621

experimental runs as well as estimate the total compute.622

• The paper should disclose whether the full research project required more compute623

than the experiments reported in the paper (e.g., preliminary or failed experiments that624

didn’t make it into the paper).625

9. Code of ethics626

Question: Does the research conducted in the paper conform, in every respect, with the627

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?628

Answer: [Yes]629

Justification: We followed the NeurIPS Code of Ethics in preparing our manuscript.630

Guidelines:631

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.632

• If the authors answer No, they should explain the special circumstances that require a633

deviation from the Code of Ethics.634

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-635

eration due to laws or regulations in their jurisdiction).636

10. Broader impacts637

Question: Does the paper discuss both potential positive societal impacts and negative638

societal impacts of the work performed?639

Answer: [Yes]640

Justification: Provided in the supplementary material.641

Guidelines:642

• The answer NA means that there is no societal impact of the work performed.643
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• If the authors answer NA or No, they should explain why their work has no societal644

impact or why the paper does not address societal impact.645

• Examples of negative societal impacts include potential malicious or unintended uses646

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations647

(e.g., deployment of technologies that could make decisions that unfairly impact specific648

groups), privacy considerations, and security considerations.649

• The conference expects that many papers will be foundational research and not tied650

to particular applications, let alone deployments. However, if there is a direct path to651

any negative applications, the authors should point it out. For example, it is legitimate652

to point out that an improvement in the quality of generative models could be used to653

generate deepfakes for disinformation. On the other hand, it is not needed to point out654

that a generic algorithm for optimizing neural networks could enable people to train655

models that generate Deepfakes faster.656

• The authors should consider possible harms that could arise when the technology is657

being used as intended and functioning correctly, harms that could arise when the658

technology is being used as intended but gives incorrect results, and harms following659

from (intentional or unintentional) misuse of the technology.660

• If there are negative societal impacts, the authors could also discuss possible mitigation661

strategies (e.g., gated release of models, providing defenses in addition to attacks,662

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from663

feedback over time, improving the efficiency and accessibility of ML).664

11. Safeguards665

Question: Does the paper describe safeguards that have been put in place for responsible666

release of data or models that have a high risk for misuse (e.g., pretrained language models,667

image generators, or scraped datasets)?668

Answer: [NA]669

Justification: This article is a training-free acceleration method, using open source and670

secure models.671

Guidelines:672

• The answer NA means that the paper poses no such risks.673

• Released models that have a high risk for misuse or dual-use should be released with674

necessary safeguards to allow for controlled use of the model, for example by requiring675

that users adhere to usage guidelines or restrictions to access the model or implementing676

safety filters.677

• Datasets that have been scraped from the Internet could pose safety risks. The authors678

should describe how they avoided releasing unsafe images.679

• We recognize that providing effective safeguards is challenging, and many papers do680

not require this, but we encourage authors to take this into account and make a best681

faith effort.682

12. Licenses for existing assets683

Question: Are the creators or original owners of assets (e.g., code, data, models), used in684

the paper, properly credited and are the license and terms of use explicitly mentioned and685

properly respected?686

Answer: [Yes]687

Justification: We properly cite the relevant papers and acknowledge the checkpoints we use688

in the supplementary material.689

Guidelines:690

• The answer NA means that the paper does not use existing assets.691

• The authors should cite the original paper that produced the code package or dataset.692

• The authors should state which version of the asset is used and, if possible, include a693

URL.694

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.695
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• For scraped data from a particular source (e.g., website), the copyright and terms of696

service of that source should be provided.697

• If assets are released, the license, copyright information, and terms of use in the package698

should be provided. For popular datasets, paperswithcode.com/datasets has699

curated licenses for some datasets. Their licensing guide can help determine the license700

of a dataset.701

• For existing datasets that are re-packaged, both the original license and the license of702

the derived asset (if it has changed) should be provided.703

• If this information is not available online, the authors are encouraged to reach out to704

the asset’s creators.705

13. New Assets706

Question: Are new assets introduced in the paper well documented and is the documentation707

provided alongside the assets?708

Answer: [NA]709

Justification: This paper proposes a training-free inference acceleration method. The specific710

implementation of the method has been detailed in the paper, and no new datasets or software711

models are introduced that are intended to be released as independent assets.712

Guidelines:713

• The answer NA means that the paper does not release new assets.714

• Researchers should communicate the details of the dataset/code/model as part of their715

submissions via structured templates. This includes details about training, license,716

limitations, etc.717

• The paper should discuss whether and how consent was obtained from people whose718

asset is used.719

• At submission time, remember to anonymize your assets (if applicable). You can either720

create an anonymized URL or include an anonymized zip file.721

14. Crowdsourcing and research with human subjects722

Question: For crowdsourcing experiments and research with human subjects, does the paper723

include the full text of instructions given to participants and screenshots, if applicable, as724

well as details about compensation (if any)?725

Answer: [NA]726

Justification: The relevant aspect of our research is solely focused on accelerating a pre-727

trained model.728

Guidelines:729

• The answer NA means that the paper does not involve crowdsourcing nor research with730

human subjects.731

• Including this information in the supplemental material is fine, but if the main contribu-732

tion of the paper involves human subjects, then as much detail as possible should be733

included in the main paper.734

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,735

or other labor should be paid at least the minimum wage in the country of the data736

collector.737

15. Institutional review board (IRB) approvals or equivalent for research with human738

subjects739

Question: Does the paper describe potential risks incurred by study participants, whether740

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)741

approvals (or an equivalent approval/review based on the requirements of your country or742

institution) were obtained?743

Answer: [NA]744

Justification: The relevant aspect of our research is solely focused on accelerating a pre-745

trained model.746

Guidelines:747
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• The answer NA means that the paper does not involve crowdsourcing nor research with748

human subjects.749

• Depending on the country in which research is conducted, IRB approval (or equivalent)750

may be required for any human subjects research. If you obtained IRB approval, you751

should clearly state this in the paper.752

• We recognize that the procedures for this may vary significantly between institutions753

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the754

guidelines for their institution.755

• For initial submissions, do not include any information that would break anonymity (if756

applicable), such as the institution conducting the review.757

16. Declaration of LLM usage758

Question: Does the paper describe the usage of LLMs if it is an important, original, or759

non-standard component of the core methods in this research? Note that if the LLM is used760

only for writing, editing, or formatting purposes and does not impact the core methodology,761

scientific rigorousness, or originality of the research, declaration is not required.762

Answer: [NA]763

Justification: Our research does not involve LLMs as any important components.764

Guidelines:765

• The answer NA means that the core method development in this research does not766

involve LLMs as any important, original, or non-standard components.767

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/768

LLM) for what should or should not be described.769
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