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ABSTRACT

Popular post-training pruning methods such as Wanda (Sun et al., 2023) and
RIA (Zhang et al., 2024b) are known for their simple, yet effective, designs that
have shown exceptional empirical performance. Wanda optimizes performance
through calibrated activations during pruning, while RIA emphasizes the relative,
rather than absolute, importance of weight elements. Despite their practical suc-
cess, a thorough theoretical foundation explaining these outcomes has been lack-
ing. This paper introduces new theoretical insights that redefine the standard mini-
mization objective for pruning, offering a deeper understanding of the factors con-
tributing to their success. Our study extends beyond these insights by proposing
complementary strategies that consider both input activations and weight signifi-
cance. We validate these approaches through rigorous experiments, demonstrat-
ing substantial enhancements over existing methods. Furthermore, we introduce
a novel training-free fine-tuning approach R2-DSnoT that incorporates relative
weight importance and a regularized decision boundary within a dynamic pruning-
and-growing framework, significantly outperforming strong baselines and estab-
lishing a new state-of-the-art.

1 INTRODUCTION

Large Language Models (LLMs) (Zhang et al., 2022a; Touvron et al., 2023a;b; Javaheripi et al.,
2023) have demonstrated remarkable capabilities across a variety of tasks. However, their extensive
size often hinders practical deployment. Interest in LLM compression has surged in recent years,
driven by the need to reduce model sizes while maintaining performance (Xiao et al., 2023; Frantar
& Alistarh, 2023; Sun et al., 2023; Zhang et al., 2024b; Malinovskii et al., 2024). This paper focuses
on LLM post-training pruning (PTP), a prevalent method for reducing the footprint of pre-trained
weights.

A common approach to pruning is magnitude-based pruning, where elements of each layer’s weights
with smaller absolute values are set to zero. In contrast, Wanda (Sun et al., 2023) introduced an in-
novative method that scales the weights by the activations of each layer, demonstrating promising
performance on standard benchmarks. Building upon this, RIA (Zhang et al., 2024b) further im-
proved the approach by evaluating the relative importance of each weight across its corresponding
row and column before pruning. While their empirical results are encouraging, the underlying mech-
anisms remain poorly understood. This leads us to our first question:

Can we provide theoretical support for post-training pruning methods and derive more efficient
algorithms with minimal adaptations to the existing framework?

To deepen our understanding of these popular PTP methods, we introduce a novel formula-
tion—referred to as Symmetric Weight And Activation (SymWanda)—that aims to efficiently lever-
age both the input activation of a layer and the output for that layer. This symmetric and generalized
approach provides theoretical insights into the mechanisms of established empirical methods such
as Wanda and RIA.

Intrinsic PTP methods have demonstrated remarkable performance, as reflected by perplexity scores
and zero-shot accuracy. However, their performance can degrade significantly when the sparsity
ratio is high. This is due to the intrinsic reconstruction error between the pruned weights and the
original pre-trained weights. Minimizing this reconstruction error is particularly important for effi-
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cient post-training pruning. Beyond LLM pruning, we explore further fine-tuning to enhance model
efficiency and performance. This brings us to our second problem:

Can we fine-tune pruned LLMs without further training and outperforms state-of-the-art methods
with minimal effort?

Dynamic sparse training (DST) has gained attention for selectively updating and maintaining a
subset of network parameters throughout the training process while dynamically adapting the sparse
topology through weight operations. Its proven efficiency in enabling effective training suggests
DST could be a promising approach for fine-tuning LLMs in an efficient manner. However, DST
inherently requires backpropagation to train subnetworks, and its effectiveness heavily depends on
a sufficient number of weight updates (Liu et al., 2021).

Interestingly, the pruning-and-growing step within DST offers a training-free methodology, where
sparse mask adaptation is based solely on weight properties such as magnitude (Mocanu et al.,
2018). This opens up a potential alternative for addressing the challenge: Instead of relying on
computationally intensive backpropagation for fine-tuning sparse LLMs, we can explore the iterative
updating of sparse masks in a training-free manner. Motivated by this insight, we focus on training-
free fine-tuning approaches.

DSnoT (Zhang et al., 2023) introduced a straightforward yet effective method for pruning and grow-
ing weights using their values and statistical metrics (e.g., expectation and variance) for each ongo-
ing pruning row. Inspired by Wanda, DSnoT achieves simplicity but falls short of fully leveraging
relative weight information, particularly in scenarios where weight distributions are highly non-
uniform and contain many outliers (Zhang et al., 2024b). To address these limitations, we propose
incorporating relative weight importance into the growing criterion design. Furthermore, we ob-
serve that directly optimizing for reconstruction error is suboptimal. To improve performance, we
introduce a regularization term that relaxes the decision boundary. Our new designs demonstrate
significant efficiency and consistently achieve promising performance, paving the way for more
effective and computationally feasible fine-tuning methods for sparse LLMs.

Our contributions are summarized as follows: i): We propose a novel formulation, SymWanda,
which minimizes the impact of pruning on both input activations and output influences of weights.
This approach provides theoretical insights into the empirical successes of methods such as Wanda
and RIA. ii): Building on this formulation, we introduce a series of innovative pruning strategies.
Extensive experiments validate the effectiveness of our methods. Notably, we incorporate an ef-
ficient stochastic approach for manipulating relative importance, which achieves superior perfor-
mance with highly reduced sampling cost. iii): We present a novel training-free fine-tuning method
R?-DSnoT that leverages relative weight importance and a regularized decision boundary within a
pruning-and-growing framework. This approach significantly outperforms strong baselines, achiev-
ing remarkable results.

2  SYMMETRIC WANDA

2.1 PREREQUISITES

Post-training pruning is defined as follows: consider a target sparsity ratio ¢ € [0,1), a set of
calibration inputs X € R%*?, and pre-trained weights W € R®*¢, For clarity in the mathematical
framework, we abstract the dimensions of inputs and weights. Specifically, in the context of large
language models, let a == Cj,, b := N x L, and ¢ = Cyy, where N and L denote the batch size
and sequence length, respectively. The objective is to identify an optimal pruned weight matrix

W € RY*¢ that minimizes:

FW) = | X(W - W)|3, (InpRecon)

where the optimization challenge is:

minimize f(W) s.t. Mem(W) < (1 — )Mem(W),

where Mem(-) denotes the memory consumption associated with a weight matrix, and (InpRecon)
quantifies the input reconstruction error.



Under review as a conference paper at ICLR 2025

Table 1: Comparison of LLM post-training pruning algorithms.

Algorithm W?  Act? X Y S;® Comment
General Sym. v v X Y Wikl (IXjll2 + 1Y k:ll2) Lemma 2.1
Marginal v X I 0 W k|

Wanda v v X 0 Wi 11X 511, Corollary B.1
OWanda v v 0 Y Wil 1Yl Corollary B.2
Symmetric v v wT w7 Wik l\/IIW 113 + HW.kH22 Corollary B.3
Rl (v1) voox (L5, )0t = (VBITWL) 7Y sl 1) s = (VEIIWall) ™8 W5l + Wl Theorem B.4
Rl (v2) v Diag(|Wa. [l Wl h) Diag(|Wall7', ... IWeell; ) W57+ W Theorem B.4
RIA 4 v Su=iSu=pllCijlIg W I Su=sOu=r[Cs IS Wk [T (\IWJ It + HvaHTl> 15115 Lemma B.5
General (diag) < ADx® DyvB 1AL IW LT + [Brell, [WellT! LemmaB.6
tpnorm (i) /X9 Wl Wl - Wi (Wl Wizt WL Wik (W51, + Wkl ) Lemma B.7
£p-norm (v2) v X Wit -u Wil h - v Wik [ (IW3 1+ Wkl ) Lemma B.§
StochRIA voox tgesy (Wi hvr) Liesy (IWsyrlliv?) ™ Wkl (IWsos, I+ [WsgellT) Lemma B9

@ Without loss of generality, we consider the elimination of a single weight, W ;. The detailed explanation can be found in Lemma 2.1 and Section 2.2.

®) por simplicity, instead of displaying the entire matrices X and 'Y, we present the columns X ; and the rows Yg..
This design is employed in the algorithms RI, RIA, £,-norm, and StochRIA.

(©) The Kronecker delta, denoted by d;;, is a function of two indices 7 and j that equals 1 if ¢ = j and 0 otherwise.

@ Dx and D~ are the diagonal matrices associated with W, as defined in Appendix B.3.
© By default, for £;,-norm and StochRIA, we do not consider the input activation. However, the design is similar to the transition from Rl to RIA, as described in Appendix B.2.

This formulation applies to various post-training compression techniques, including both pruning
(Frantar & Alistarh, 2023; Sun et al., 2023; Zhang et al., 2024b) and quantization (Frantar et al.,
2023; Egiazarian et al., 2024). Our focus here is specifically on post-training pruning.

2.2  SYMMETRIC WANDA: NEW FORMULATIONS

Building upon the methods introduced in Wanda (Sun et al., 2023), which considered both weights
and activations, and later improvements by RIA (Zhang et al., 2024b), which analyzed the relative
importance of weights by summing over corresponding rows and columns, we provide new insights
by redefining our optimization objective. Apart from the previous defined input calibration X, we
particularly introduce the output calibration Y € R¢*¢. Considering both the input and output
dependencies, we express the objective as:

9(W) = |[X(W = W)|lr + (W~ W)Y, (Sym)
and propose to solve:

minimize g(W), s.t. Mem(W) < (1 —e)Mem(W).

We refer to the method that utilizes the general matrix in (Sym) without instantiation as SymWanda,
which is designed to minimize the reconstruction error affected by both the input X and the output
Y. It is important to note that this formulation employs non-squared Frobenius norms to facilitate
better theoretical interpretations. A squared norm version is also provided in Appendix F for com-
parison. We elucidate the efficacy of both approaches and provide new theoretical insights into the
performance advantages previously observed with Wanda and RIA.

Lemma 2.1. Assume we aim to eliminate a single weight W i, setting ij = 0 and keeping all
other weights unchanged. The simplified expression for (W) becomes:

9(W) = W (IX5ll2 + [ Yk:ll2) = S (D
where X.; and Y i represent the j-th column and k-th row of X and Y, respectively.
This formulation (1) underscores the impact of individual weights on the error metrics and guides
the pruning process. While Lemma 2.1 simplifies the formulation for pruning a single weight, the

general approach can be extended to multiple weights iteratively. This method facilitates a robust
pruning strategy that is backed by both empirical results and theoretical foundations, bridging the
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gap in understanding observed in prior studies such as Wanda (Sun et al., 2023) and RIA (Zhang
et al., 2024b). We compare different methods and introduce various new strategies in Table 1, with
details provided in Appendix B.

2.3 TRAINING-FREE FINE-TUNING

We explore training-free fine-tuning within the context of the pruning-and-growing framework.

Specifically, for the pruned weight matrix W, we aim to minimize the reconstruction error as de-
fined in (Sym). Initially, we identify the growth index, followed by the pruning index, to maintain
a consistent sparsity ratio. DSnoT (Zhang et al., 2023) developed a growing criterion based on the
expected change in reconstruction error when reinstating a weight. Particularly, for any given weight
row ¢ € [1,b], the index i is determined as follows:

i = arg max sign(E[e,]) - W, - E[X,]/Var(X,),

where ¢, == WX — Wq;X denotes the reconstruction error of the g-th row across different input
activations. It is important to note that for simplicity, output activations are not considered here,
which may provide an interesting avenue for future exploration. The functions sign(-), E[-], and
Var(-) denote the standard sign function, expectation, and variance of given inputs over N x L
tokens, respectively. Drawing inspiration from the Wanda metric, the DSnoT model defines the
pruning index j as:
j = argmin [Wg [ [[Xgll,,
r:A(g,r)<0
where A(q,r) == sign(Ele,]) (W, - E[X,]).

Several simple yet effective modifications have been incorporated into the pruning-and-growing
framework: a) Relative weight importance. Both in determining the growing index ¢ and the
pruning index j, we incorporate global information, emphasizing the relative importance of weights
in neuron selection. b) Square root activation. Our follow-up experiments on Wanda and RIA
demonstrate the benefits of square root activation in determining the pruning index j. c¢) Regularized
objective. The method MagR (Zhang et al., 2024a) found that adding an /., norm helps reduce the
magnitude of weights during quantization. Here, we adopt a more general regularizer, considering
a general £, norm and focusing on specific rows rather than entire layers to reduce communication
costs.

Define D, , = qu’:||1_1 + ||\A7\7:7T||1_1. The updated rule for identifying the growing index ¢ is
formalized as:

E[X,]

qu) +71||Wq||p}7 2

i = arg max {sign(E[eq]) Dy -
where 7, is the growing regularization parameter, striking a balance between fidelity and the £,
regularizer. Similarly, the pruning index j is now defined as:

j = argmin {[Wy, |- Dy XI5 + 22 W, } - 3)
r:A(q,r)<0

where A(g,7) = sign(E[ey)) (Wq, r-Dgq,r - E[Xq]> , and 7 denotes the pruning regularization
parameter.

We name this approach Relative and Regularized Dynamic Sparse No Training (R*-DSnoT). It en-
ables efficient network fine-tuning without additional training, conserving computational resources
while enhancing performance.

Comment. We present extensive experiments in Appendix C and a detailed discussion of future
work in Appendix D, demonstrating both the efficiency and comprehensive analysis of our method.
In conclusion, this paper provides a systematic theoretical analysis of post-training pruning meth-
ods and introduces a symmetric pruning framework that enhances large language model efficiency
without requiring additional training.
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A RELATED WORK

Traditional model pruning. Pruning has emerged as a powerful strategy to compress and ac-
celerate deep neural networks by removing redundant connections while preserving overall perfor-
mance (Han et al., 2015; Frankle & Carbin, 2018; Hoefler et al., 2021). Early works introduced
iterative pruning-and-retraining approaches, which iteratively identify unimportant weights, discard
them, and retrain the resulting sparse network to recover accuracy (LeCun et al., 1989; Han et al.,
2015). More recent dynamic sparse training techniques (Mocanu et al., 2018; Bellec et al., 2018; Lee
et al., 2018; Mostafa & Wang, 2019) start from a sparse initialization and continuously prune and
grow connections throughout training. These methods integrate sparsification into the training loop,
yielding promising trade-offs between model size and performance. A prominent line of work has
leveraged learnable thresholds to realize non-uniform sparsity (Kusupati et al., 2020) or combined
magnitude-based pruning with periodic connectivity updates to regrow valuable weights (Evci et al.,
2020; Lasby et al., 2023). However, most of these methods still rely on standard back-propagation
over the full parameter set, which can be prohibitively expensive when scaling up to LLMs.

LLM post-training pruning. The substantial computational demands of LLMs have raised the
development of pruning methods tailored to reduce parameters counts without compromising per-
formance (Li et al., 2023; Zhu et al., 2024). Among these methods, post-training pruning elim-
inates redundant parameters in a pre-training network without requiring resource-intensive fine-
tuning. For instance, SparseGPT (Frantar & Alistarh, 2023) leverages second-order information to
solve layer-wise reconstruction problems, supporting both unstructured and N:M structured sparsity
(Zhou et al., 2021). Wanda (Sun et al., 2023) introduces a pruning metric that incorporates both
weight magnitudes and corresponding input activations, achieving perplexity performance compa-
rable to SparseGPT while surpassing simple magnitude-based pruning. The RIA method (Zhang
et al., 2024b) builds on Wanda by considering relative weight importance, offering performance
improvements at minimal additional cost. Moreover, DSnoT (Zhang et al., 2023) proposes pruning
and regrowing weights based on statistical properties (e.g., mean and variance) in each pruning row,
obviating the need for retraining.

B INSTANTIATION OF VARIOUS POST-TRAINING PRUNING METHODS

B.1 RECOVERING WANDA AND RELATIVE IMPORTANCE (RI)

Corollary B.1. Setting Y = 0 € R*? transitions our method to input Wanda, described by
Sj = Wkl X]l2-

This directly aligns with the objective in Sun et al. (2023), demonstrating that Wanda is a specific
case under our broader framework.

Corollary B.2. Conversely, choosing X = 0 € R** simplifies our pruning method to what we
term output Wanda (denoted as OWanda), where the score matrix becomes S, = |W ;||| Y 1| 2.

Corollary B.3. By setting X = W' € R*%(a = ¢)and Y = W' € R*%(d = b), the score
matrix Sy, is redefined as |W ji|(||W.||2 + [[W.k]|2).

This configuration suggests an alternative masking approach and segues into a further analysis on
how our method encompasses both Wanda and RIA as special cases. The following theorem provides
a provable construction to recover the relative importance design in Zhang et al. (2024b).

Theorem B.4. Assuming a = b and ¢ = d, consider one of the following strategies:

o X, =t(1;...51) € R and Yy, i= s1,(1,...,1) € R, wheret; = (vb||[W.||1) !
and sy, = (/e[ Wk [l1) 7"

* X = Diag([[Wy 7", ... [WellT") and Y = Diag(|Wa |7, ..., [WellT).
For these configurations, the condition || X.;||l2 + || Yi|l2 = ajrx = |[Wj.l7" + W[ " holds
forall j, k.
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This theorem elucidates that our methodology can invariably reconstruct the framework of relative
importance Rl in (Zhang et al., 2024b), validating the adaptability and breadth of our proposed
pruning strategy.

B.2 FRroOM RI TO RI ACTIVATION

In Theorem B.4, we revisit the concept of Relative Importance (RI). Specifically, we represent RI by
the following equation:

—1 —1
Sjr = [Wik[[Wylly ™ + IWkl[[Wekll; = Rlj.

Zhang et al. (2024b) also introduces an enhanced version of RI, termed RI with Activation (RIA),
which incorporates the />-norm of activations:

RIA;j, = Rlj - X515 , )

where « is controlling the strength of activations.

This section aims to explore the derivation of RIA with theoretical grounding in RI. To clarify our
notation and avoid confusion, we are aiming at finding the suitable A € R**® and B € R**? such
as:

140, + 1Bl = (W + Wl ) - 1€

where C.; will be instantiated as X.; to satisfy Equation (4).

Lemma B.5. Let p be a valid column index for A. Define A, = 0 for all (u,v) # (j,p), and
A, = |IC,ISIW NIt Similarly, let s be a valid row index for B. Define By, = 0 for all
(u,v) # (s,k), and B = ||C;||$||W.r||1". Then we recover Equation (4).

The nonzero element in A ensures that the /o-norm of the j-th row of A is: [[A .||, = W} H;l .
[C.;l|5 - Similarly, the nonzero element in B ensures that the £5-norm of the k-th column of B is:
Bl = |We Hl_l -||Cll5 - Combining these norms fulfills the intended equation.

B.3 GENERAL SOLUTION

In Theorem B.4, we presented two distinct strategies for recovering the relative importance as de-
scribed in Zhang et al. (2024b). Following this, in Lemma B.5, we constructed a method that
accounts for both the weights and the input activations. Inspired by the diagonal design in Theo-
rem B.4, we now propose a general variant that considers both the weights and the activations.

Given that Dx € R?*? and Dy € R°%€ are diagonal matrices with entries defined as (Dx) i =
2 = [|[Wa|;" and (Dy),, = yi = [[W.|;" respectively, and A € R**® and B € R* are

arbitrary matrices, our objective is to compute the sum of norms: H (ADx) ‘2 + |(DyB),.Il, -

Lemma B.6. Given the above definition, we show

A4ls , B,
W, T TW

H(ADX)

+IDyB), ], =

g

The utilization of the diagonal matrices Dx and D~ simplifies the sum of the norms to the expres-
sions derived above, offering insights into the influence of the weight matrix W on the norms of
matrix transformations.

B.4 ENHANCED RELATIVE IMPORTANCE STRATEGIES

Beyond RIA, we propose several alternative strategies for relative importance that aim to minimize
S,k in Equation (1).

10
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B.4.1 GENERALIZED /,-NORM

Expanding beyond the conventional ¢;-norm, we explore the utility of the £,-norm in designing
score matrices. In our approach, mirroring the strategy outlined in Theorem B.4 for reconstructing
RIA outcomes, we define the score as:

Sik = Wikl (IWill," + Wkl ) ®)

Next, we are interested in finding the explicit formulation of X and Y instead of the norm represen-
tation when constructing the general £,,-norm.

Lemma B.7 (Generalized ¢,-norm). Let X.; = ||Wj;||;1 Wt W/ and Y. =
|\W;k||;1 . HWkH2_1 - W}, we recover Equation (5).

Since the equation only requires || X;||, = [|[W; ||;1, any vector with this £o-norm will satisfy the
condition. Inspired by this fact, we can consider the random unit vector scaling in the below lemma.

Lemma B.8 (Random unit vector scaling). Choose any unit vector u, v (i.e.,
and set X.; = |W. ||;1 -uand Y. = ||VV:/C||;1 - v ensuring Equation (5).

ully =1, vl =1)

B.4.2 STOCHASTIC RELATIVE IMPORTANCE

Considering the computational and noise challenges associated with summing all elements across
the full rows and columns of large matrices, we introduce a stochastic approach that involves sam-
pling a subset of each row and column. This method assesses the effects of varying subset sizes,
denoted by 7, where 7 < min(b, c), on the overall performance. Specifically, we aim to:

a) Evaluate the sensitivity of the final performance to the size of 7 when 7 is reasonably large.
b) Determine if random sampling can enhance the results compared to a deterministic approach.

For this, we define the score matrix for a randomly sampled subset as:

Sjk = Wikl (IWjs, I+ [Wskll ), (6)

where S; and S}, represent the sampled indices from the j-th row and k-th column, respectively,
each with a cardinality of 7. This approach builds on the RIA-inspired framework, adapting it for
practical scenarios involving large-scale data.

For RIA in each weight layer, the reweighting sampling complexity is O(b + ¢). In LLMs, b and ¢
are always very large. Let’s say the selection ratio is S, then for the stochastic relative importance
design, the sampling complexity can be reduced to O(8 min(b, ¢)), which has been highly reduced.

Lemma B.9. Let S; and Sy, be index sets, and let T > 0. Define the vectors X.; and Y . by

__ Liesy
W, .klliv/T

__ Lgiesy
IWiies; lliv/7

Then these vectors satisfy Equation (6).

Xij (’L) Y. (Z)

C EXPERIMENTS

Setup and configurations. We assess the proposed methods across a broad spectrum of popu-
lar LLMs, including L1aMA2 (7b-13b) (Touvron et al., 2023b), LIaMA3-8b (Dubey et al., 2024),
OPT-1.3b (Zhang et al., 2022a). We utilize publicly available model checkpoints from the Hug-
gingFace Transformers library (Wolf et al., 2020) for our evaluations. Each experiment, focused
on post-training pruning, is conducted on an NVIDIA A100-80G GPU. The effectiveness of each
pruned model is primarily measured using the perplexity score on the Wikitext-2 dataset (Merity
et al., 2016). For calibration, we use 128 samples from the C4 dataset (Raffel et al., 2020), with
each sample comprising 2048 tokens. This approach ensures consistency with the settings used in
baseline methods, enabling a fair comparison.

11
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Table 2: Comparison of StochRIA (8 = 0.1) and RIA on the Wikitext-2 dataset, using perplexity
scores with o« = 1. For StochRIA, the mean perplexity over 5 trials is shown in dark, with standard
deviation in green. Improvements and declines relative to RIA are indicated in blue and red, respec-
tively.

Sparsity  Method Sampling LlaMA2-7b LlaMA2-13b LlaMA3-8b OPT-1.3b

- Dense - 5.47 4.88 6.14 14.62
Magnitude - 16.03 6.83 205.44 1712.39
S0% Wanda - 7.79 6.28 10.81 22.19
RIA Full 6.88 5.95 9.44 18.94
stochRIA 10% 6.915009% 5957009 9465005  18.78%0 0"
- RIA Full 131 840 22.89 2743
stochRIA 10% 114150000 84450016 23743032 26.787) 42"
48 RIA Full 8.39 6.74 13.77 21.59
stochRIA 10% 8A4E)0M 64Ty 13.93%090° 214970050

C.1 EFFICIENCY OF STOCHASTIC METHODS

We begin by examining two key designs discussed in Appendix B.4: the generalized ¢, norm and
stochastic relative importance. The results for the £, norm are presented in Appendix G.2, where
we confirm that p = 1 is indeed optimal. We also compare various £,, norm reweighting strategies,
with the results presented in Appendix G.3. Our primary focus, however, is on the findings related
to stochastic relative importance, which, to the best of our knowledge, represents the first approach
to incorporating stochasticity into LLM post-training pruning.

We analyze the impact of stochastic relative importance, with the results summarized in Table 2. The
stochRIA results correspond to a sampling ratio of 3 = 0.1. Each reported value represents the mean
performance across five trials with different random seeds. Notably, even with less than only 10%
of the samples used to estimate relative importance, the results remain sufficiently representative,
leading to promising outcomes.

In addition to unstructured pruning with a sparsity ratio of 0.5, we also explore structured pruning
using the N:M pattern (Zhou et al., 2021; Zhang et al., 2022b). The results are presented in Table 2.
Noticed that here for intuitive comparison between RIA and stochRIA, we use the plain N:M struc-
tural pruning without channel permutation. These results consistently demonstrate the benefits and
efficiency of our proposed method, stochRIA.

Furthermore, when aggregating results across all examined models and baselines, stochRIA achieves
an accumulated perplexity that is 0.66 lower than RIA, demonstrating the effectiveness of a stochastic
design. This stochastic sampling preserves the diversity needed to handle subpopulations that rely
on lower-average-importance weights while also helping preserve generalization by avoiding the
dilution of salient features.

We also evaluate the performance across different sampling ratios, as shown in Appendix G.4. Our
main takeaway is that stochRIA exhibits stable and competitive performance relative to RIA, par-
ticularly when the sampling ratio 7 > 0.05. At or above this threshold, the performance remains
robust and occasionally surpasses less noisy sampling configurations. However, at an extremely low
sampling ratio of 7 = 0.01, a significant performance drop is observed. Consequently, we adopt
7 = 0.1 as the default setting for our experiments.

C.2 INSIGHTS ON SENSITIVITY, ACTIVATION, AND SPARSITY

Column and row sensitivity. Compared with the Wanda design, RIA accounts for the relative
importance of both rows and columns. However, it remains unclear whether columns and rows con-
tribute equally to RIA’s performance improvements. To investigate this, we conducted an extensive
analysis of the significance of column-wise and row-wise relative importance, with the results shown
in Table 3. A key finding is that the sum of the columns has more impact on performance, indicating
greater importance.

12
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Table 3: Perplexity scores on Wikitext-2, accounting for various norm « values and column & row
sensitivity, with a sparsity ratio 50%.

Model L1aMA2-7b L1aMA2-13b L1aMA3-8b OPT-1.3b
o 0 05 1 2 0 05 1 2 0 0.5 1 2 |0 0.5 1 2
Dense 547 \ 4.88 \ 6.14 \ 14.62
Wanda | 1603 7.60 7.79 8.66 | 683 617 628 7.5 | 20544 10.66 10.81 12.98 | 1712.39 22.14 22.19 24.74

Col-Sum | 11.59 6.83 691 7.46
Row-Sum | 1493 749 751 8.01
RIA 739 681 688 7.37

639 5.87 596 6.55
6.74 6.13 624 7.01
595 593 595 6.56

5941 953  9.69 12.01 | 1062.66 1828 1841 22.25
17.80 1050 10.55 11.79 | 141.92 22.09 2247 26.62
1207 934 944 1067 | 6470 18.08 18.94 23.39

0.0200

0.0175

0.0150

0.0125

- 0.0100

Rows

- 0.0075

- 0.0050

- 0.0025

’ : - 0.0000
Columns

Figure 1: Visualization of the dense weight matrix in LLaMA2-7b.

To provide further insights, we visualized the heatmap of a randomly selected dense weight matrix
from LLaMAZ2-7b, as illustrated in Figure 1. The heatmap displays stripe-like patterns, indicat-
ing column-specific structures where certain columns show significantly higher activations, forming
distinct stripes. This observation suggests that normalizing by rows effectively balances these dis-
parities. In cases where the rows within a specific column already exhibit relatively uniform distri-
butions, normalization over rows may not be necessary. Thus, column normalization alone might
suffice to balance the contributions of output neurons, especially when some columns dominate due
to large absolute values.

Benefits of square root input activation. In the design of Wanda (Sun et al., 2023), the power
factor «v applied to input activations is set to 1, whereas in RIA (Zhang et al., 2024b), « is adjusted
to 0.5. In this study, we systematically explore the impact of varying the power factor on input
activations, with detailed results presented in Table 3. An « value of O implies that no activation is
considered in generating the pruning matrix. Our findings consistently show that incorporating input
activation improves performance in terms of perplexity. Notably, a« = 0.5 proved optimal across
various methods, underscoring the advantages of reducing the magnitude of input activations. We
attribute this improvement to the mitigation of outliers in the input activations, where smoothing
these values provides more meaningful guidance for pruning.

Various unstructured sparsity ratios. We established a default unstructured sparsity ratio of
50%. In this section, we investigate the impact of varying sparsity ratios, as detailed in Table 4.
For stochRIA, we report the mean average perplexity after three trials. Given that stochRIA has been
shown to be stable, with variance examined in Table 1, we omit the variance to focus on performance.
Our findings reveal that Wanda is particularly sensitive to higher sparsity ratios, whereas both RIA
and our proposed stochRIA demonstrate robustness to increased sparsity, maintaining stable perfor-
mance across a broader range of conditions. Interestingly, we observed that on LLaMA3-8b and

13
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Table 4: Perplexity on Wikitext-2 with different sparsity. o = 1.0.

Sparsity  Method  Sampling L2-7b  L2-13b L3-8b OPT-1.3b

Dense - - 5.47 4.88 6.14 14.62
Wanda - 7.79 6.28 10.81 22.19

50% RIA Full 6.88 5.95 9.44 18.94
stochRIA 10% 6.91 5.95 9.46 18.78

Wanda - 15.30 9.63 27.55 38.81

60% RIA Full 10.39 7.84 19.52 26.22
stochRIA 10% 10.62 7.97 19.04 25.93
Wanda - 21493 10497 41290  231.15

70% RIA Full 68.75 51.96 169.51 98.52
stochRIA 10% 72.85 62.15 155.34 93.29

Table 5: Perplexity scores on Wikitext-2 after training-free fine-tuning. The sparsity ratio is set to
60% and « = 0.5.

Base FT LlaMA2-7b LlaMA2-13b LlaMA3-8b
Dense - 5.47 4.88 6.14
Magnitude - 6.9¢3 10.10 4.05e5
Magnitude DSnoT 4.1e3 10.19 4.18e4
Magnitude R2?-DSnoT 2.4e2 10.09 1.44e4
Wanda - 9.72 7.75 21.36
Wanda DSnoT 10.23 7.69 20.70
Wanda R?-DSnoT 10.08 7.69 20.50
RIA - 10.29 7.85 21.09
RIA DSnoT 9.97 7.82 19.51
RIA R2?-DSnoT 9.96 7.78 18.99

OPT1.3b, stochRIA consistently outperforms RIA, whereas on LLaMA2-7b and LLaMA2-13b, the
reverse is true. This intriguing phenomenon may be attributed to the heavy noise present in the sam-
pling process for LLaMA3-8b and OPT1.3b. In such cases, selecting a subset of weights through
stochRIA may yield more reliable relative weight information, resulting in improved performance.

C.3 TRAINING-FREE FINE-TUNING COMPARISONS

The intrinsic gap between pruned weights and the original, unpruned pretrained weights underscores
the importance of minimizing reconstruction loss to achieve promising results. We introduced R?-
DSnoT, which incorporates relative weight reweighting and a regularized decision boundary during
the dynamic sparse refinement step, all without additional training. Perplexity scores, as shown in
Table 5, reveal that our R*-DSnoT approach consistently surpasses baseline methods and the previ-
ous state-of-the-art DSnoT without fine-tuning. For instance, Magnitude exhibited subpar perplexity
scores on L1aMA2-7b and L1aMA3-8b; however, our R*-DSnoT achieved perplexity reductions of
96.5% and 96.4%, respectively. These results not only validate R*-DSnoT’s efficacy but also offer
guidance for scenarios involving high sparsity or underperforming pruned models, with minimal
effort and no additional training.

Zero-shot performance. To provide a comprehensive evaluation, we also conducted zero-shot
classification tests using seven well-regarded datasets. These tests assess the pruned models’ ability
to accurately categorize objects or data points into previously unseen categories. We employed
the methodology described by Sun et al. (2023) and utilized tasks from the EleutherAI LM Harness
(Gaoetal., 2021), including BoolQ (Clark et al., 2019), RTE (Wang et al., 2018), HellaSwag (Zellers
et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC (Easy and Challenge) (Clark et al., 2018),
and OpenbookQA (Mihaylov et al., 2018). The results, presented in Table 6, show that R?>-DSnoT
consistently outperforms DSnoT in zero-shot tasks, confirming its effectiveness. To the best of our

14
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Table 6: Accuracies (%) for LLaMA2 models on 7 zero-shot tasks at 60% unstructured sparsity.

Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean
Dense 777 628 572 69.2 764 434 314 579
Magnitude 412 513 37.0 55.7 500 270 162 393
w. DSnoT 432 542 38.4 56.4 533 277 206  4L.1

LIaMA2-7b \ p2psnoT 509 520 398 56.8 566 283 234 434
RIA 6.1 53.1 435 63.2 646 302 260 495
w. DSnoT 655 534 447 64.6 653 317 264 502
w. R>-DSnoT 652 538 447 65.1 650 316 270 503
Dense 813 697 60.1 73.0 801 504 348 642
Magnitude 378 527 30.7 51.0 397 234 144 357
w. DSnoT 378 527 33.4 49.9 435 230 148 364

LIaMA3-8b  \, p2pgnoT 378 527 33.1 52.1 439 236 148 371
RIA 702 534 397 61.7 61.1 286 204 479
w. DSnoT 707 534 403 613 617 280 200 479
w. R>-DSnoT 704 534 403 61.9 612 283 210 481

knowledge, R?-DSnoT establishes a new state-of-the-art for training-free pruning and fine-tuning
methods in zero-shot performance.

D DISCUSSION AND FUTURE WORK

Beyond pruning. Our exploration of Wanda and RIA introduced the symmetric objective in (Sym),
initially aimed at post-training pruning for LLMs. However, our approach is extendable to post-
training quantization and training-aware compression (Frantar et al., 2023; Egiazarian et al., 2024;
Malinovskii et al., 2024), making these areas promising for future research.

Better sampling. In Appendix C.1, we demonstrated that selective sampling of matrix rows and
columns enhances both performance and efficiency by maintaining diversity in lower-importance
weights. Future research could explore asymmetric or non-uniform sampling within the (Sym)
framework to further optimize performance.

Exploring symmetric designs. As shown in Table 1, general and diagonal-specific symmetric
designs for LLM compression highlight the potential of symmetric weight and activation patterns.
Extending these approaches to distributed and federated settings (Yi et al., 2024; Ye et al., 2024)
could also be valuable.

E MISSING PROOFS

E.1 PROOF OF LEMMA 2.1

By using the definition of (W) in Equation (InpRecon), we have

c 2 b N 9
g(W) = ;HX (Wa _W;k>H2+ Z_}H(WJ - W) YH2
= ; :1 (Xi: (W:k - W:k))2 + ;; ((W] - Wj:) Y;z)2
¢ a 2 . 2
SIS (s (e wa) | 3 (3 (W W) v
k=11i=1 Jj=1 Jj=11=1 k=1
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Now say we want to prune away just a single weight W ;.. That is, we want to set \7\7] r =20 and

W, = W forall (57, k') # (j, k). For such a weight matrix W ;. the expression for f(W)
simpliﬁes to

2

g(W) = i i X (Wj/k — Wj’k) + i (i ( k' — ij/) Yk’l)

i=1 \j'=1 =1 \k'=1

= 4|2 Xj (ij - ij) + Z X (Wj/k - Wj’k)

J'#i

(ng— jk:) Yo + Z ( ik — W )Ykl

k'#k

2

IS}

s
I
—

+
_
-

[ V]

I
<M@

(Xij (0= Wix) + > Xijr (Wjirk — Wiig))?
—_—

i=1 J'#3 -0
d —_—
+ D (O0=-Wi) Y+ > (ij - ij) Yii)?
1=1 e
=0
a d
= ( ijwjk + Z ]kYkl
1=1 =1
a d
- Z XEWh | 2 Wi YR,
=1

= Wil (Xl + [1Y5:lly) = Sy

E.2 PROOF OF THEOREM B .4
* Assume it is possible to choose matrices X € R?*? and Y € R**? such that the identity
1 1

1Xeklly + 1Y 50l = e = + )
2 2 ! ||WJ||1 ”W:k”l
holds for all j, k. This is always possible!
Indeed, if we choose a = b, and let the j-th row of X be of the form X.; :=t¢,(1;--- ;1) €
bx1 ) — — 1

R**', where t; f”w R ,then || X .||, =t;Vb= W,

Similarly, if we choose d = ¢, and let the k-th column of Y be of the form Y., =
c _ 1 _ _ 1

Sk(]., e ,].) c RIX . where S = m, then HYZkHQ = Sk\/E = m

So, Equation (7) holds. In this case, our score matrix Equation (1) reduces to the plug-and-
play method RIA (Zhang et al., 2024b).

* Another (even simpler) possiblity for constructing matrices X,Y such that Equation (7)
holds is as follows. Let a = b, and let X = Diag(||W1. Hl_l S ||Wb||1_1) Clearly, for

allj=1,---,bwehave | X, = m

Similarly, let d = ¢, and let Y = Diag(||[W.||; ", -, [|W..||; ). Clearly, for all k =
1,---,¢, wehave | Y|, = ||V\};k-|| -

Therefore, ||X.;l, + [ Y|, = m + m for all j, k. So again, our score matrix

(1) reduces to the plug-and-play method in Zhang et al. (2024b).
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E.3 PROOF OF LEMMA B.6

Recall that in Appendix B.3 Dx € R®*? and Dy € R®*¢ are diagonal matrices with entries
defined as (Dx),;, = z; = ||W1H;1 and (Dy),; = vi = HW1||171 respectively, and A € R**b
and B € R°*9 are arbitrary matrices. We first compute ADx. This product scales each column of
A by the corresponding x;. Specifically, for the j-th column, this operation is expressed as:

(ADx):j = JUjA;j.
The ¢5-norm of this column is then given by:

AP, |, = 21450, = W,
J:11

Next, we compute Dy B. In this computation, each row of B is scaled by the corresponding y;. For
the k-th row, the scaling is represented as:

(DYB)]{): = kak: .

The ¢5-norm of this row is:

B[l
DvB). |, =y |Bk:|l, = .
||( Y )ky.HQ Yk || k-H2 ||W:k:||1
Finally, we consider the sum of these norms:
1Ay (Bl
(ADx)..|| +||((DyB),.|l, = + .
H Ill2 BEIWIL T TWelly

The first term involves scaling the j-th column of A by x;, with the resulting norm being the original
column norm divided by the ¢;-norm of the corresponding weights in W. Similarly, the second term
scales the k-th row of B by y;, with the resulting norm also being the original row norm divided by
the ¢1-norm of the corresponding weights in W.

E.4 PROOF OF LEMMA B.7

We aim to construct X.; to be proportional to W]—r A natural choice is to set
_ T
Xj=c- Wy,

where c is a scalar to be determined. A similar condition applies when considering Y .. The central
task is to compute the corresponding scaling factor ¢ for both X and Y.

To determine ¢, we choose it such that
-1
||X:jH2 = HC ’ W]THQ = ”Wj:Hp .

We now compute the £-norm of X.;:

le- Wil = el - (Wl = lel - Wl

Setting this equal to ||W ||;1, we have:
—1
el W3l = W3l

Solving for ¢, we obtain:

1 1
c= . .
Wi, Wl
Using this value of ¢, we define X.; as:
1 1
X, = . WL
ToWal, WG,
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This construction ensures that )
X5l = IWll,

Similarly, for Y, we have:
1 1

Wl (Wl

Yk: . W—lrga

which satisfies Equation (5).

By combining these results, we conclude the proof of Lemma B.7.

E.5 PROOF OF LEMMA B.8

Let u be any unit vector in £5-norm, i.e., [ul|, = 1. Construct X.; = ||WJ||;1 u. Then by using
the definition of the ¢5-norm, we have

— —1 —1 -1
11 = W5 1 Ml = (W5, il = W5, 1= W

Hence, we obtain || X;||, = ||W;: Hgl, which is exactly as desired.

Similarly, let v be any unit vector in £5-norm, we have [W | - [[W.z || *.

Put them together, we prove Lemma B.8.

E.6 PROOF OF LEMMA B.9

Given that X.; and Yy, are vectors to be constructed, W is a matrix, and S; and S}, are randomly
sampled index sets from the j-th row and k-th column of W, respectively, each with cardinality 7,
our task is to construct X.; and Y. with specific norms. Specifically, the goal is to construct X.;
and Y. such that:

1 . 1
(Wis, ||, Wsll,’
where W .5, denotes the entries of the j-th row of W at indices in S;, and Wg, ., denotes the
entries of the k-th column of W at indices in Sj.

Xl + 1Ykl =

We first define the support vector eg, of appropriate size (equal to the number of rows in X)) as:

(e5.); = %, ifi e 5y,
i 0, otherwise.

The vector es; has non-zero entries only at indices in S;, each equal to \%, ensuring that the /-

norm of eg; is I:
17 1)\?
feste = 2 () ()
i€S;

To construct X.,;, we set:

1

X,=—-eg.
T Wl

A basic verification shows that the £-norm of X.; is:
1 1 1

1K = e [l = e 1=
= s, lesle = s = s

Similarly, we define the support vector eg, of appropriate size (equal to the number of columns in

Y) as:
L ifie S
o Ve 1 ks
(esy)i {0, otherwise.
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To construct Y., we set:

1
Yi= el
Wl "

Adding the norms:
1 1

||X]||2 + ||Yk||2 = ijisjul * ||‘A]-SkI]€H17

which matches the desired expression.

Alternative construction using /; and /> norms.

Wi, [l = D el [Wieslly = [ > wiic
iESj iESj

We can construct X.; as:

By definition:

1 1 -

X.. = . .W,: -
Fo Wl Wi,

where WJT g, 1s a vector with entries:

Wi, ifi € Sj,
0, otherwise.

Ws) = {

Similarly, we can construct Y. as:
1 1
= . . W:g" "
[Wsnlly  [Wsyklly e

where ng ., 18 @ vector with entries:

wi, ifi € Sy
W )= ’ 7
(Ws,r) {o, otherwise.

Yk:

Putting everything together, we prove Lemma B.9.

F SYMMETRIC WANDA VARIANT WITH SQUARED FROBENIUS NORMS

Choose € € (0,1]. Given X € R**®* ' W € R**¢and Y € R°*4, define

g(W) = [X(W -~ W)[% + (W - W)Y},

and consider solving the problem

mininimize ¢'(W) s.t. Mem(W) < e Mem(W), W € R*¢.

)= 3 (W) [ 2 (- w)
-3 3 (% (W W) D (W - W) )
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Now say we want to prune away just a single weight W .. That is, we want to set \7\7] r = 0 and

W, ke = W forall (57, k") # (4, k). For such a weight matrix ij the expression for g/ (W)
simpliﬁes to

2

=1 k' £k
a d
= (X (0= W)+ Y Xijr (Wi, 230 - W) Y + Y (W]k - W]k)
i=1 ey 5 =1 L
a d
= Z (—Xi W) + Z ~W,. Y )
=1 =1

- wjk (||X:ju2 + ||Yk:|\2) =S5

Our proposal is to choose entry (7, k) which the smallest score S ;. Special cases:

1. If we choose X = 0 € R**?, then our pruning method reduces to “output” Wanda:

Sjk = Wk [ Ykl

2. If we choose Y = 0 € R*?, then our pruning method reduces to “input” Wanda:

Sjk = W] [ Xl -

3. If we choose X = W' € R*%(a = c)and Y = WT € R°*}(d = b), then our score matrix
becomes

(27)
Sit Wl V1K 12 4+ 1Y 2 = (W IW I + W

. 2 2
Letting G2, := 51 (HW]HQ + HWng) note that
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b
e SOS (IW I+ W)

i W lI5 + ZZ Wl

b+c(j—1k:1 k=1j=1

b
1
= (e IWL Y W
j=1 k=1
1
— o (IWIE B W)
= Wi

Clearly,

2 2 (22
S5k W35G

b+ollWiE W%

4. Assume it is possible to choose matrices X € R?*? and Y € R*? such that the identity

1 1
VIR 2+ 1Yl = i = "
olla Il = it = R W

holds for all j, k (note that this is not always possible!). In this case, our score matrix reduces to the
plug-and-play method of Zhang et al. (2024b).

G ADDITIONAL EXPERIMENTS

G.1 IMPLEMENTATION DETAILS

Our selected baselines are implemented using the source code from Wanda' and RIA?. The default
settings remain unchanged to ensure consistency. Notably, we explicitly set the sequence length
to 2048 instead of using the maximum possible length to enable a fair comparison, following the
strategy outlined in RIA.

The training-free fine-tuning component is based on DSnoT®. We configure the maximum cycle
count to 50 and set the update threshold to 0.1. The default power of variance for regrowing and
pruning is set to 1. Additionally, we incorporate the regularized relative design, resulting in our
modified approach, DSnoT.

The seed for sampling the calibration data is set to 0. For N:M structural pruning, to enable an
intuitive comparison, we use the standard approach without employing channel reallocation or linear
sum assignment, as used in RIA.

G.2 OPTIMAL ¢, NORM

In this study, we further explore the influence of the ¢, norm, considering standard norms where
p € [1,2,3,4], as well as the 0-norm and co-norm. The results are presented in Table 7. We observed

"https://github.com/locuslab/wanda/tree/main
2https ://github.com/biomedical-cybernetics/Relative-importance-and-activation-pruning
Shttps://github.com/zyxxmu/DSnoT
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Perplexity scores on Wikitext-2 for p-norm.
Table 7: The sparsity ratio is 50%, and all results cor-
respond to o = 1.

p LlaMA2-7b LlaMA2-13b LlaMA3-8b OPT-1.3b
1 6.88 5.95 9.44 18.95
2 6.90 5.96 9.48 19.02
3 6.95 6.01 9.57 19.66
4 7.12 6.08 9.92 20.77
0 7.78 6.28 10.81 22.17
0 8.60 6.80 11.28 24.92

Perplexity scores on Wikitext-2 for ¢,-norm re-
weighting with different strategies. The sparsity ratio

Table 8: . .

is 50%, and all results are computed with & = 0.5 and
p=1

Strategy LLaMA2-7b LLaMA2-13b LLaMA3-8b OPT-1.3b

S1 (default) 6.81 5.83 9.34 18.08

S2 6.99 591 9.58 19.01

S3 9.32 6.87 17.31 31.66

S4 14.51 20.78 30.47 53.17

that higher p values degrade performance, as reflected by the perplexity scores, with p = 1 yielding
the best results. This may be due to the fact that in pruning, significantly magnifying the differences
between weights is not beneficial. Additionally, we found that both the 0-norm and co-norm do not
yield promising results, as they capture only partial, and often highly biased, information about the
weights.

G.3 {, NORM RE-WEIGHTING

In this section, we explore different £, norm re-weighting strategies. Our default re-weighting ap-
proach is defined in Equation (5) and is referred to as S1. Additionally, we investigate alternative
strategies, denoted as S2, S3, and S4, as specified below:

82 = S0 = (Wil /(W[ + Wi,
S3 =Sk = [Wikl - (IWllp + [Wkllp),
S4 = S0 = Wl /(IW5. ;" + Wl ).

The comparative results for these strategies are presented in Table 8. As shown, our default strategy
(S1) achieves the best performance, while the alternative designs fail to deliver improvements.

We hypothesize that the performance differences arise due to the relative magnitudes of the terms
IWillp + [[Wekllp and [[W [ + [Wp ||t Specifically, we assume that [|[W .|l + Wl
is typically large, while [[W .|| + [[W ;! is generally small. Consequently, dividing by the
former (S2) or multiplying by the latter (S4) reduces the magnitude of the pruning weights. We will
provide statistical evidence to validate this assumption in subsequent sections.

G.4 INFLUENCE OF SAMPLING RATIOS

In this section, we examine the impact of varying sampling ratios in stochRIA. It is important to note
that these ratios are applied over min(b, c¢), where b and ¢ represent the number of rows and columns
in each layer, respectively. In Table 9, we can see the performance of stochRIA is generally stable
and compares favorably to that of RIA when sampling across entire rows and columns, particularly
for 5 > 0.05. At this threshold and above, the performance is robust, occasionally even surpassing
less noisy sampling configurations. However, at an extremely low ratio of 5 = 0.01, there is a
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Perplexity scores on Wikitext-2 for stochRIA with
different sampling ratios. The sparsity ratio is

Table 9: 50%, and all results correspond to @ = 1. We
highlight those performance drops over 0.1 as sig-
nificant.

ratio () LlaMA2-7b LlaMA2-13b LlaMA3-8b  OPT-1.3b

1 6.91 5.95 9.45 18.88
0.9 6.91 5.95 9.43 18.87
0.5 6.90 5.95 9.42 18.84
0.1 6.91 5.95 9.46 18.78
0.05 6.91 5.96 9.47 18.91
0.01 6.98 6.00 9.69-0.24  19.36-0.48

R?-DSnoT Hyperparameter Ablations on LLaMA3-8b. Each row
Table 10: shows the non-default hyperparameter values compared to the
best-performing method.

base setting  p  grow relative? 7  prune relative? Y2 perplexity]
best 2 v 0 X 0.0001 18.99
1 19.04
P 18.99
Wanda 0 18.99
7 0.001 18.99
X X 19.49
relative X v 19.25
4 v 19.63
best 2 X 0 v 0.001 20.50
25.61
p 00 20.51
RIA , 0 20.51
7 0.0001 20.52
X X 21.33
relative 4 X 22.16
v v 22.60

significant performance decline. Consequently, we have set 5 = 0.1 as the default setting for our
experiments.

G.5 ANALYSIS OF R2-DSnoT HYPERPARAMETERS

In Section 2.3, we introduced the equations for our proposed R*-DSnoT method, specifically Equa-
tion (2) and Equation (3). This method primarily involves three key hyperparameters: the regu-
larization penalty 71,2 and the norm type p. Additionally, we consider whether to apply relative
importance reweighting during the growing or pruning phases—or during both. Given the number
of hyperparameters, understanding their interactions can be computationally expensive and time-
consuming.

To address this complexity, we adopt a systematic approach by performing a random search over 20
different combinations of hyperparameter settings. These combinations include: p € {1,2,00},
v € {0,0.0001,0.001}, 2 € {0,0.0001,0.001}, and binary choices for relative reweighting
(True/False) during both the growing and pruning phases. For each of the 20 trials on the same
model, we identify the best-performing combination and treat its hyperparameters as the ”ground
truth.” We then evaluate the behavior under different scenarios and report the results in Table 10.

Our findings reveal several notable insights:
* Norm type p: The smooth £,,-norm with p = 2 consistently achieves the best performance.
Compared to the non-differentiable ¢;-norm, which underperforms due to its non-smooth

nature, and the ¢,-norm, which focuses only on the largest values and ignores smaller
differences, the £,-norm with p = 2 balances sensitivity and robustness effectively.
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» Relative importance reweighting: Applying relative reweighting during either the grow-
ing or pruning phase improves performance significantly—yielding a 0.5 improvement on
Wanda and 0.83 on RIA. However, applying reweighting to both phases simultaneously
leads to substantial performance degradation, with a 0.64 and 2.1 drop on Wanda and RIA,
respectively.

* Regularization penalty v: The impact of v is minimal, as variations in its value result in
only marginal differences in performance. This finding highlights the greater importance
of the relative reweighting strategy.
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