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Abstract

Inferring 3D human motion from video remains a challenging problem with many
applications. While traditional methods estimate the human in image coordinates,
many applications require human motion to be estimated in world coordinates.
This is particularly challenging when there is both human and camera motion.
Progress on this topic has been limited by the lack of rich video data with ground
truth human and camera movement. We address this with BEDLAM2.0, a new
dataset that goes beyond the popular BEDLAM dataset in important ways. In
addition to introducing more diverse and realistic cameras and camera motions,
BEDLAM2.0 increases diversity and realism of body shape, motions, clothing,
hair, and 3D environments. Additionally, it adds shoes, which were missing in
BEDLAM. BEDLAM has become a key resource for training 3D human pose
and motion regressors today and we show that BEDLAM2.0 is significantly better,
particularly for training methods that estimate humans in world coordinates. We
compare state-of-the art methods trained on BEDLAM and BEDLAM2.0, and find
that BEDLAM2.0 significantly improves accuracy over BEDLAM. For research
purposes, we provide the rendered videos, ground truth body parameters, and
camera motions. We also provide the 3D assets to which we have rights and links
to those from third parties.

1 Introduction

The BEDLAM dataset [6] was the first synthetic dataset of 3D human motion of sufficient realism
and complexity that synthetic data alone could be used to train a state-of-the-art (SOTA) method
for estimating 3D human shape and pose (HPS) from images. Since its introduction, BEDLAM has
become a standard dataset for supervised training of HPS regression methods. Despite this success,
BEDLAM has several key limitations that hold back the field. Key among these is that BEDLAM
uses limited camera focal lengths and camera motions. Here we address these limitations and provide
a significantly richer dataset appropriate for end-to-end training of HPS methods that estimate humans
in world coordinates. Beyond richer camera motions, the BEDLAM2.0 dataset addresses several
other important limitations that improve its diversity and realism.

Beyond the camera motions, BEDLAM2.0 goes beyond B1 in the following ways:

• We significantly expand the range of body shapes with more high-BMI bodies.
• We provide more varied and realistic 3D hair that is adapted to individual head shapes.
• We add widely varied shoes, which are completely missing in BEDLAM. This includes

defining the sole thickness, making foot-ground contact more realistic.
• We include more 3D clothing outfits and grade many outfits into standard sizes. In compari-

son to B1, this lets us dress diverse body shapes in realistic clothing.
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• B2 also includes more 3D scenes, more complex human motions, and longer motions,
increasing the diversity of the dataset.

The most significant upgrade involves the cameras. Specifically, we define cameras that cover the
range of focal lengths seen in real images and videos, including dynamically changing focal lengths.
We also define several types of camera motions: panning, zooming, orbiting, tracking, etc. and add
realistic motion noise to these. This is similar to prior work [27, 56, 58]. We go further, however, to
capture real camera motions using hand-held phone and tablet devices as well as an Apple Vision Pro
headset for ego-centric camera motion captures. For these captures, we place 3D humans in a 3D
scene and users move around the scene to view the virtual subject(s). This induces natural movements
with realistic camera shake from both hand-held and ego-centric views. The resulting dataset contains
over 27K image sequences with over 8M frames, over 4K diverse body shapes, resulting in 13.3M
bounding boxes.

To evaluate the dataset, we train several SOTA HPS regressors using BEDLAM (B1) and BEDLAM2.0
(B2) and evaluate their accuracy. Using B2 results in a significant improvement in accuracy compared
with B1 across all standard metrics and the combination of B1 and B2 leads to SOTA performance on
human pose estimation in world coordinates.

Similar to BEDLAM, the released dataset includes the videos, ground truth body parameters in
SMPL-X format [40], camera motions and focal lengths, clothing assets, 3D hair assets, and depth
maps. For assets that we cannot distribute, we provide links to the sources. As with BEDLAM, the
assets will enable others to render their own versions of the dataset for specific tasks like egocentric
vision. We also provide separate training and testing splits. BEDLAM2.0 is available for research
purposes.

2 Related Work

Prior to BEDLAM, numerous synthetic datasets were proposed for training human pose and shape
(HPS) regressors [5, 9, 12, 15, 23, 24, 30, 32, 36, 39, 41, 53]; see [6] for a review. Due to limited
realism and/or diversity, none of these are able to replace training data extracted from real images.
These methods also focus on human pose and not camera motion. While BEDLAM includes a few
sequences with moving cameras, the diversity of camera motions and focal lengths is limited and
most of the sequences have static cameras.

While early work on HPS estimation focuses on estimating the 3D human pose in camera coordinates,
many methods require bodies in world coordinates. Recent methods focus on this problem [27, 38, 45–
47, 59, 60, 64] but are limited by the lack of training data with ground truth camera motions and 3D
humans together. BEDLAM2.0 is designed to support this direction so, here, we focus on synthetic
datasets published since BEDLAM that include varied cameras and camera motions.

Contemporaneous with BEDLAM, SynBody [63] is a synthetic dataset in which each sequence
is rendered from 8 static views. While similar to BEDLAM, it is less effective for training HPS
regressors [8]. Microsoft’s SynthBody dataset [20] uses SMPL-H [43] with a different head compared
to SMPL-X and provides only static poses. They demonstrate how it can be used to detect dense
2D keypoints and they use these to fit a 3D body using optimization. They do not use the dataset to
train a 3D regressor or show results on standard benchmarks. STAGE [26] takes a different approach,
using generative AI to take a 3D body and produce realistic images matching the body pose but with
varied visual attributes such as BMI and clothing. They do not use this for training a regressor but,
rather, use this to generate benchmarks for evaluation.

PDHuman [58] and BEDLAM-CC [56] tackle the problem of varied focal lengths, which correlate
with the depth of the person from the camera; e.g. long focal lengths are used for people far away
and short ones for people close to the camera. They generate synthetic training images with widely
varied views and focal lengths and show that training on such data improves robustness to real-world
cameras. They do not, however, address camera motion.

Recent methods have introduced richer camera motions than those in BEDLAM. For example,
EgoGen [28] builds on the BEDLAM assets and re-purposes them for tasks in egocentric vision. They
provide a generative process of an agent’s motion in a 3D scene. This enables automated collection of
video sequences from an egocentric viewpoint. The HumanVid dataset [61] also leverages BEDLAM
and adds camera motions using simple rules. They sample multiple random camera locations in
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Figure 1: Camera intrinsics. (left) Log frequency of focal lengths. Red: BEDLAM; Blue BED-
LAM2.0. (right) Histogram of the horizontal field of view (HFOV).

Figure 2: Camera motion statistics. (top) Log histogram of camera height above the ground
(50-1200cm). (bottom left) Video duration (seconds). (bottom middle) Histogram of pitch. (bottom
right) Log histogram of roll. (right) Distribution of different types of camera motion (see text).

space at specific keyframes and point the camera at the subject’s face. They then smoothly connect
the cameras to create the camera motions. WHAC-A-Mole [65] renders dancing sequences, with
pairs of dancers, with varied camera motions including Arc, Pan, Push, Pull, and Tracking shots
plus combinations of these. Unfortunately, the synthetic data lacks realism. PACE [27] renders
3D characters in scenes with a moving camera but the amount and diversity of the data is limited.
Consequently, they use it only for evaluation of human and camera motion estimates.

3 Dataset: Methods

Here, we describe the key improvements of BEDLAM2.0 that increase its diversity and realism as
compared with BEDLAM.

3.1 Cameras

The recent focus of the field is on human pose and shape estimation in scenes with moving cameras.
There is limited training data for such scenarios, which makes it hard to train models end-to-end on
this task. BEDLAM2.0 addresses this by significantly increasing the complexity and realism of the
cameras and their motions.

Focal lengths. BEDLAM intrinsics primarily cover a small Horizontal Field Of View (HFOV) range
of 52◦ or 65◦ and are mostly fixed during a shot. Temporal variation of camera extrinsics is very
limited since most sequences use a static camera. We address this in BEDLAM2.0 with a much
broader focal length coverage. Figure 1 shows the distribution of HFOVs. Specifically, we cover
focal lengths from 14mm up to 400mm on a 16:9 DSLR sensor (36 x 20.25mm) that is designed
to mimic real-world focal lengths. This is much more diverse than the statistics of Flickr images
reported in [38]; see Appendix Fig. 11 for details and a comparison with [38].

Nine percent of all generated videos have varying focal length during the shot by zooming in or
out. This is important for realism as it mimics many real-world videos. Start and end focal length
values are randomized from a predefined configuration range suitable for the desired location shot
and are then keyframed in Unreal Sequencer using Unreal Python automation. Indoor environment
shots typically have short focal lengths, whereas long focal lengths are primarily used in outdoor
environments.
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Figure 3: Sample camera motions used in dataset. Left: Synthetic, Right: Captured.

Synthetic camera motions. BEDLAM2.0 introduces a variety of auto-generated synthetic camera
motions, including static, panning, tracking, dolly, orbit, and zoom, and various combinations of
these; see Fig. 3 (left) and the Appendix for details. To maximize variation in camera pose we
optionally layer differentiable synthetic Perlin-noise camera shake for location and rotation on top of
all these motions. The intensity of this shake effect is randomized. We have options to track individual
randomized body parts like the pelvis, spine or head with additional height offset randomization. For
shot types that track moving bodies, the changes in extrinsics are keyframed in Unreal Sequencer,
similar to the focal length setup. For tracking shots we utilize a custom Unreal Blueprint that uses
a camera setup with the Unreal SpringArm component for smooth camera motions via low-pass
filtering of the target location. For panning shots we use the default LookAt low-pass rotation filter
feature of the Unreal cinematic camera. When low-pass filtering position or rotation we make sure
to properly initialize the camera pose to the correct start pose for the first rendered frame before
activating the filter. For the majority of shots the camera height above ground is between 0.5m and
2.5m with the exception of crane shots (dolly up/down) where the camera can move up to 12m
above ground. This gives top-down views, which are often missing from existing real-world datasets,
increasing diversity.

Captured camera motions. To add more realism and diversity, we capture real-world camera
motions. These include hand-held camera motions, which we capture with phone and tablet devices
as well as egocentric camera motion data captured with an Apple Vision Pro headset. The user views
a scene containing 3D humans and we capture three types of camera movements: static location shots
of a user standing in same location, orbit shots, and approach/retreat shots. See the Appendix for
details. Before rendering, we optionally randomize both handheld and egocentric camera motion data
with additional height and distance offsets, pitch offsets, as well as world-space rotation offsets for
viewpoint randomization. Figure 3 (right) illustrates a few of these captured motions.

Summary. Together, the synthetic and real camera motions cover a broad range of movement
types (Fig. 2 (right)) with a diversity of camera pitches and heights (Fig. 2 (left)). BEDLAM2.0
also contains many longer sequences than B1 (Fig. 2 (bottom left)). In the final dataset, 86.4%
of the motions are synthetic, while 13.6% are captured. See the Appendix for further details and
https://b2dash.is.tuebingen.mpg.de/ for detailed statistics.

3.2 Human motions

Our motion pool is composed of 4643 motions in SMPL-X format, as compared to 2311 in BEDLAM.
The pool includes diverse motions sampled from AMASS [34], in particular from the datasets CMU
[10], KIT [35], BMLmovi [17], BMLrub [52], HDM05 [37], ACCAD [3], Transitions [34], MoSh
[33], SOMA [16], PosePrior [4] and DFaust [7]. We go beyond BEDLAM to sample additional
motions from the MOYO dataset [51], which contributes complex yoga movements, and the BEAT2
dataset [31], which captures conversational gestures.

Preprocessing. The motions are filtered to exclude actions where the balance of the body depends
on an external object, such as sitting, or where the motion is not supported by a ground plane,
such as going up and down stairs. Since many mocap motions start and/or end with a T-pose, we
automatically identify the frames where the body is in T-pose and exclude these segments from
sampling. Furthermore, we subsample the motions to 30 fps and add an offset to the translation
parameters to ensure that the body is centered at the origin during the first frame of the motion.
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Figure 4: Body shapes. Left: Histogram of BMIs for the body shapes in BEDLAM (red) and BED-
LAM2.0 (blue). Right: Resampled histogram used to generate more diverse bodies in BEDLAM2.0.

Sampling. From the motion pool, we sample motion segments ranging from a minimum of 4 seconds
to a maximum of 16 seconds in length, prioritizing 16-second long segments when available and
shortening only when the source motion duration is not long enough. For comparison, the maximum
length in BEDLAM is 8 seconds. From this sampling process we obtain a total of 10592 motion
segments and 3,231,846 pose frames, of which 1,665,448 (51.53%) appear only once in the dataset.

Retargeting. To augment the animation data with various body shapes, we designed an automated
pipeline to retarget the samples from our motion pool to the sampled body shapes. This is necessary
because the sampled bodies may have different limb lengths than the original motion-capture subjects.
We use the IK-Retargeter tool from Unreal Engine, which retargets a source motion to a target
skeleton, minimizing foot-sliding by world-space pelvis location adjustments for the new limb
lengths. This significantly increases the shape-motion diversity compared to BEDLAM. Moreover,
by adjusting body poses to fit different skeletons, the retargeting increases pose variety. The code is
available on the project website.

Hand motion. Due to the complexity of capturing hands with optical motion capture technology, a
large fraction of AMASS does not contain hand motion. In order to provide hand pose variation, we
augment the data by adding randomly sampled hand motions from the ARCTIC dataset [14] to the
existing AMASS motions.

3.3 Body shape

Body shapes in BEDLAM are not as diverse as in the real population. Here we increase the body-
shape diversity, particularly for high-BMI bodies. To that end, we sample SMPL-X [40] with 16
shape parameters in accordance with the body mass indices (BMIs) in the CAESAR dataset [42],
which includes a diverse range of male and female body shapes. Specifically, we sample 1,615
bodies with BMIs ranging from 18 to 41, ensuring balanced representation across the entire BMI
spectrum, as shown in Fig. 4 (left). Note that the BMIs in CAESAR are skewed to BMIs under 30. To
provide more shape diversity, we resample this distribution to include more bodies with high BMIs as
depicted in Fig. 4 (right).

Note that B1 uses a different version of SMPL-X from B2. For B2, we use the version with a
“locked” head, which removes the hair “bun” from the shape space. This is needed for realistic
hair groom generation. B1 also uses fewer body shape components (11 vs 16). To enable training
and comparison using both datasets, we refit the B1 ground-truth using the B2 16-beta model.
The resulting motion files are available for download from the original BEDLAM website (https:
//bedlam.is.tuebingen.mpg.de/).

3.4 Hair

Hair realism and variation in BEDLAM is limited by the card-based hair models used and most
subjects do not have hair. Additionally, the hair assets have a license that does not allow redistribution.
To address these issues BEDLAM2.0 uses higher quality strand-based 3D hair grooms. This approach
models the hair as individual hair strand 3D curves, allowing us to adapt each hair groom to the
individual body head shapes. This also improves render quality and results in more accurate hair
rendering under HDR image-based lighting conditions with raytraced shadows. Unlike BEDLAM
we use hair in all rendered sequences.
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Figure 5: Strand-based hair. These examples illustrate the realism and diversity, which is much
better than in BEDLAM.

a b c d

Figure 6: SMPL-X Shoes. (a) SMPL-X foot vs the “sock” foot. (b) Examples from the shoe database.
(c) Displacement, normal and texture maps. (d) Shoes rendered on the SMPL-X body.

We contracted a professional VFX studio with previous experience in generating realistic grooms
for synthetic data generation [62] to create 40 unique hairstyles for our SMPL-X (AMASS, no head
bun) neutral mesh default head shape (see Fig. 5). Each groom has between 50k and 100k 3D strand
curves of varying length. Total vertex count for a groom starts at 1 million for straight hair and can
go up to 13 million for complex curly hair styles like afro, where each strand contains about 170
vertices. Unlike previous work in this area, we release all of these grooms for non-commercial use.
In Unreal, we apply a randomized hair groom to the selected target body and use the hair binding
component to adapt it automatically to the target headshape surface. Hair color is determined by a
dedicated hair shader, which uses a combination of melanin and redness values to define the 9 hair
material presets used for rendering.

3.5 Shoes

BEDLAM, and similar datasets, contain SMPL or SMPL-X bodies with bare feet. This creates a
domain gap to real imagery in which people typically wear shoes. This further creates an issue for
estimating the body height and foot-ground contact because shoes introduce a displacement between
the bottom of the SMPL-X foot and the ground.

Adding shoes to SMPL-X is not trivial since the mesh topology represents the toes. Consequently, as
a first step, we smooth out the SMPL-X toes to create a smooth canonical sock-like foot that better
matches the shape of shoes (Fig. 6a).

Next, we source shoes from the Google Scanned Objects dataset [13], which contains a wide variety
of shoes and textures (see Fig. 6b for examples). We use a subset containing 45 loafers, 6 formal
shoes, 9 ballerina flats, 3 flip-flops, 18 boots, 5 football shoes (with traction studded soles), while the
remaining 96 are casual sport shoes.

We align all the shoe meshes, scaling them to create a common shoe size corresponding to the neutral
SMPL-X mesh. We then align the shoes with the SMPL-X mesh and, for each pair of shoes, bake
normal and texture maps to the SMPL-X UV space and compute a displacement map (Fig. 6c) that,
when applied to the sock-like foot, deforms its shape to match the shape of the shoe. Subsequently,
we add an appropriate upwards translation to the whole body to account for the sole thickness. See
the Appendix for further details.
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Figure 7: Graded garments. Example of a graded outfit draped on bodies of varying BMI.

This approach provides the illusion of a shoe (Fig. 6d) while maintaining compatibility with AMASS
motions [34] and leverages the SMPL-X shape space to handle shoe-size changes according to body
shape. We only consider flat-soled shoes because heels require a significant change in foot topology
and would influence posture and movement; this is future work.

3.6 Clothing

BEDLAM animates bodies in 111 high-quality, detailed, 3D outfits. Unfortunately, the outfits come
in only one size and do not fit high-BMI bodies. Consequently, all large bodies in BEDLAM are
only rendered with clothing textures on the naked body, limiting realism and making it hard to train
methods that estimate body shape under clothing.

We go beyond BEDLAM to add 76 new 3D outfits (187 in total) created by a professional 3D
clothing designer using CLO [1]. The dataset contains a wide variety of outfits, from simple dresses
to complex multi-layered outfits comprised of multiple garments, such as a man’s suit.

We had the designer grade 50 of the outfits into sizes XS, S, M, L, XL, 2XL, 3XL, 4XL, 5XL, and
6XL. We match each outfit size with a reference BMI value, and assign an outfit size to each avatar
based on the BMI of the body. This allows us to dress, animate, and render bodies of all sizes in
realistic clothing (Fig. 7).

For each outfit, we define a set of texture patterns (from BEDLAM) from which we sample during
rendering. Each outfit has a minimum of 6 and a maximum of 28 texture variations, while the median
number of texture variations per outfit is 10. As in BEDLAM, cloth simulation is done using CLO
and manually checked for quality; see the Appendix for details.

3.7 Scenes and lighting

Similar to BEDLAM we render the animated bodies in many different environments including both
simple scenes with high-dynamic-range (HDR) image-based lighting and full 3D environments.

HDRI. We use HDRI environments when the camera is primarily panning and not translating since
there is no parallax in this case. We randomly sample from 94 preselected HDR images with varying
illumination from PolyHaven [2] and use these as the sole light source to light the bodies. The
equirectangular HDR image is re-projected onto a virtual half dome using the Unreal HDRIBackdrop
component. To increase the illumination and background variation we randomize the orientation of
the rendered subjects and cameras in world space. Raytraced shadows are used to provide realistic
dynamic body shadows on the ground plane for HDR images taken in direct sunlight.

3D environments. BEDLAM uses only 5 3D environments, whereas BEDLAM2.0 has 15 high
quality, geographically diverse, 3D environments (from Unreal Marketplace and Fab). Only one
3D environment is shared between BEDLAM and BEDLAM2.0 and the other 14 are new. The
number of indoor environments increases from 1 in BEDLAM to 9 here. For each environment,
we sample between 3 and 25 shot locations depending on the type of environment, creating much
more background variation compared to BEDLAM. We also increase lighting variation by using
time-of-day randomization for selected environments with properly calculated physically correct sun
light direction. We also use different lighting setups like daylight, sunset, overcast and night time
when available in the 3D environment.
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3.8 Occlusion

The dataset includes a significant amount of occlusion of the bodies, including frame occlusion,
self-occlusion, person-person occlusion, and environmental/scene occlusion, not to mention occlusion
of the body caused by clothing, hair and shoes.

We performed a quantitative analysis on a randomly selected set of 41.5k images (covering 58.6k
rendered bodies) to examine frame, scene, and person-person occlusion. Our results show that 12.7%
of the images exhibit more than 20% occlusion, and the top 10% most occluded bodies experience an
average of 61.1% occlusion. See Fig. 15 in the Appendix for examples.

3.9 Rendering: Image and Depth data

Data is rendered in Unreal Engine 5.3 on NVIDIA RTX3090/RTX4090 GPUs using the built-in
Movie Render Pipeline plugin with deferred rasterizer in cinematic quality settings. Two separate
render passes are used for image and depth data generation at a resolution of 1280x720 for a target
video framerate of 30 frames per second.

Image data. To achieve realistic motion blur, which is important for work like [11], we use the
default 180-degree shutter for motion blur and always render 7 separate temporal subframe images
that are combined into the final output image. Rendered image data is saved in lossless compressed
PNG and EXR formats. EXR output is used to store the correct camera pose used at render time for
each frame in JSON format embedded in the EXR metadata. This approach ensures correct camera
pose data when camera shake modifiers are used. We observed that Blueprint-based approaches
for camera pose logging like the method used in BEDLAM do not capture these additional shake
modifications, which would lead to inaccurate camera ground truth data.

Depth data. We also generate ground-truth depth maps in a separate render pass using center
subframe camera pose, resulting in non-blurred depth in EXR format with 16-bit float precision. To
ensure correct camera pose consistency between the image and depth pass, we created two custom
Unreal Engine C++ plugins. The first plugin ensures that Perlin noise camera shake is deterministic
between re-renders with controllable variability. We achieve this by extending the existing camera
shake functionality with the option to externally specify the used seed for noise randomization.
The second plugin fixes the existing behavior of the Unreal Movie Render Pipeline, which only
stores the last subframe camera pose and not the desired center subframe camera pose as ground
truth in the EXR metadata. When rendering fast camera motions with 7 temporal samples there are
noticeable differences in camera pose between the last subframe and the center subframe. We extend
the functionality to log the camera pose for all subframes in EXR metadata with center subframe as
the ground truth camera pose reference. See the Appendix for more details.

4 Dataset Statistics

BEDLAM2.0 contains 27480 video image sequences with a resolution of 1280x720 at 30 frames per
second resulting in total 8,048,411 PNG images. This results in 12.5M and 862K bounding boxes
containing humans with ground truth SMPL-X parameters for training and test set, respectively. These
images are generated from 56,338,877 rendered temporal subframes for realistic motion blur in every
image of the dataset. The average video length is 10s. We also provide compressed H.264 encoded
MP4 videos for all sequences as well as overview images for first, middle and last image of all
sequences. For each image we provide world-space ground truth for camera extrinsics and intrinsics
and ground truth 3D bodies and their appearance randomization parameters. For 44% of the images
we also provide depth images (16-bit float) and a corresponding center subframe render without
motion blur in EXR multilayer format. All image renders are organized by camera motion type to
facilitate selecting desired camera motion subsets. See the Appendix for a numerical comparison with
other datasets. Also please see the project website (https://bedlam2.is.tuebingen.mpg.de/)
and video (https://youtu.be/ylyqHnwhpsY) example sequences illustrating the dataset.

To construct the training and test splits, we held out (i) a subset of 161 body shapes, and (ii) a subset
of 597 motions, ensuring that the test set contains exclusively unseen pose and shape parameters; we
then render 1824 new sequences in 5 new environments, containing only test bodies and motions,
resulting in 449061 test images. Please refer to the Appendix for details on the data split and its
usage.
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Table 1: Single-frame pose estimation using CameraHMR [38]. See text.

Dataset 3DPW [54] EMDB [25] RICH [22]

PA-MPJPE ↓ MPJPE ↓ PVE ↓ PA-MPJPE ↓ MPJPE ↓ PVE ↓ PA-MPJPE ↓ MPJPE ↓ PVE ↓
BEDLAM1 43.2 68.0 80.7 50.0 88.7 101.6 42.1 75.2 83.2
BEDLAM2 41.1 64.8 76.3 46.5 74.6 86.2 36.8 70.8 79.4
BEDLAM1+2 41.0 65.2 77.7 46.4 75.5 87.3 36.4 68.0 75.7

Table 2: World-space evaluation of video-based methods.

RICH (24) EMDB (24)

Models WA-MPJPE100 W-MPJPE100 RTE Jitter Foot-Sliding WA-MPJPE100 W-MPJPE100 RTE Jitter Foot-Sliding

DPVO[49] + HMR2.0[18] 184.3 338.3 7.7 255.0 38.7 647.8 2231.4 15.8 537.3 107.6
GLAMR [66] 129.4 236.2 3.8 49.7 18.1 280.8 726.6 11.4 46.3 20.7
TRACE [47] 238.1 925.4 610.4 1578.6 230.7 529.0 1702.3 17.7 2987.6 370.7
SLAHMR [64] 98.1 186.4 28.9 34.3 5.1 326.9 776.1 10.2 31.3 14.5
WHAM [46] 109.9 184.6 4.1 19.7 3.3 135.6 354.8 6.0 22.5 4.4
GVHMR [45] 78.8 126.3 2.4 12.8 3.0 111.0 276.5 2.0 16.7 3.5
PHMR [59] 71.0 216.5 1.4 16.3 3.5

GVHMR [45] - B1 87.3 140.0 2.6 13.5 2.9 112.4 284.6 1.8 17.1 3.5
GVHMR [45] - B2 75.5 120.6 2.4 12.3 2.7 113.7 284.4 2.1 15.9 3.4
GVHMR [45] - B1 + B2 75.8 121.3 2.3 11.3 2.6 109.7 273.1 1.7 15.0 3.4

PHMR [59] - B1 85.7 139.4 2.9 12.7 4.0 77.6 211.1 1.4 14.9 3.4
PHMR [59] - B2 75.3 122.4 2.5 11.7 2.8 71.9 197.7 1.4 12.2 3.4
PHMR [59] - B1 + B2 72.5 116.6 2.3 10.2 2.6 70.5 193.7 1.4 11.3 3.2

5 Experiments

Since BEDLAM is already widely adopted in the field, we focus on comparing B2 with B1. We use
standard metrics for camera-space methods (MPJPE, PA-MPJPE, and PVE); see [6]. For methods that
estimate bodies in world space, we use WA-MPJPE100, W-MPJPE100, RTE, Jitter, and Foot-Sliding;
see [27, 46, 64] for definitions. We evaluate on 3DPW [54], RICH [22], and EMDB [25]. These are
all real-image datasets with high-quality pseudo ground truth.

Image-based methods. For single-image methods the diversity of the training data (poses, scenes,
cameras, etc.) is key to accuracy. While camera motion, per se, is irrelevant for single-image methods,
B2 still has a wider range of camera focal lengths and camera poses than B1. We take the current
most accurate single-frame method at time of writing, CameraHMR [38], as representative of such
methods. As shown in Tab. 1 training on B2 alone produces significantly lower error than training on
B1. Training on both B1 and B2 does not provide a clear advantage. Training on B2 also results in a
20% improvement in shape accuracy compared to training on B1 (see Table 3 in the Appendix).

Video-based methods. We use B1 and B2 to train two recent SOTA methods that estimate human
motion from video, GVHMR [45] and PromptHMR [59]. For the image-space evaluation of these
video-based methods, see the Appendix. Here we focus on the world-space evaluation in Tab. 2. The
top half of the table reports the accuracy of other existing methods (from their respective papers).
Note that these methods are typically trained using a variety of data including real and synthetic
(including B1).

The lower half shows GVHMR and PromptHMR (abbreviated PHMR here) trained on B1, B2 or
both. Overall, the combination of B1+B2 offers the best results. This makes sense, since datasets like
EMDB contain activities that are present in B1 but not in B2. BEDLAM contains several motions like
sitting and climbing stairs for which the rendered videos do not contain supporting objects. Hence,
these motions are non-physical given the scene. In BEDLAM2.0, we remove these to focus on
physical plausibility in the 3D scene. This actually reduces accuracy on scenarios like stair climbing
in EMDB relative to B1. Thus the two datasets are complimentary and users can select whether to
include B1 or not, depending on the kinds of motions they anticipate.

What is important to note is that GVHMR and PromptHMR, trained using only synthetic data, are
more accurate the the originally published versions. Note that the original versions train using B1
together with real sequences; both are improved by adding B2, even when no real data is used. For
visualizations and more results, including an evaluation of video-based methods on the B2 test set,
see the Appendix.
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6 Conclusions and future work

BEDLAM2.0 addresses a key need in the community for an extensive ground truth dataset for
training methods to estimate 3D human motion in world coordinates, particularly in sequences
with moving cameras and changing focal lengths. This is currently a critical topic for the field.
BEDLAM2.0 provides diverse ground-truth camera motions not present in any other dataset while
improving on the original BEDLAM dataset in every aspect (body shape, clothing, hair, scenes,
shoes). The results with SOTA methods suggest that training on B2 (or B1+B2), with no real data,
achieves world-space accuracy exceeding the recent SOTA. We release the rendered video sequences,
the ground-truth 3D humans, as well as the 3D clothing, hair and shoes; these are all available at
https://bedlam2.is.tuebingen.mpg.de/. The only assets that we cannot release are the 3D
environments and, for these, we provide a “shopping list” in Table 6 of the Appendix explaining how
people can obtain the assets. Code for training, evaluation, rendering are provided, as well as the
code we use to retarget AMASS motions to new body shapes. We also provide the trained model
checkpoints for CameraHMR, PromptHMR and GVHMR.

6.1 Limitations.

A key limitation of B1 and B2 is that they only support people interacting with the ground and not
with other objects. B1 contains motions like sitting or climbing that are not grounded in the 3D scene
with object contact. We removed such motions from B2 so that the movements are grounded. Even so,
other than foot-ground contact, other body-scene contacts may not be accurate; for example, during
a cartwheel, the hands may not properly interact with the ground. Generating realistic synthetic
sequences of general human-object and human-human interaction remains an open research problem
but is clearly the next step for the field. Such data would support inference of human-object and
human-human contact; cf. [65]. As in B1, the motions in B2 are not semantically meaningful in
the context of the scene or the motions of other humans in the scene. This limits use of the dataset
for some semantic tasks. Like previous models, the bodies do not include children, amputees, or
people whose body morphology deviates significantly from the mean (e.g. scoliosis). Similarly,
the movements are from healthy individuals, lacking physical impairments, motor disorders, or
supportive equipment like canes or walkers. And, of course, there is a still a visual domain gap
between B2 and real videos. Despite this, as evidenced by our experiments, B2 is sufficiently realistic
to produce SOTA results. An important direction for future work is to add facial motions and audio,
which are completely lacking in B1 and B2. This is necessary to develop synthetic data that supports
reasoning about direct human-human communication.

6.2 Broader impacts.

Synthetic data of people has a huge advantage over real data, which is typically scraped from the
Internet without consent. In contrast, synthetic data reduces privacy concerns. The primary use case
of BEDLAM2.0 is to train methods to estimate 3D humans from video; this has positive and negative
use cases. We use a custom license that prohibits use of the data for “pornographic, military, or
surveillance, purposes," as well as to “create fake, libelous, misleading, or defamatory content."

In addition to supporting work on human motion estimation, BEDLAM2.0 is useful for training
and evaluating methods for 3D/4D point tracking, structure from motion estimation with non-rigid
motions, depth estimation, optical flow, and dynamic scene reconstruction. Recent work on these
topics [57, 67] is limited due to a lack of ground truth sequences for end-to-end training.
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and quality evaluation of the clothing simulations. We thank the Software Workshop at MPI-IS for
deploying the dataset-statistics web app.
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7 Appendix

In this Appendix, we provide additional details in roughly the order they are mentioned in the main
paper. Please see https://b2dash.is.tuebingen.mpg.de/ for a wide range of dataset statistics,
presented graphically.

Note: We maintain a list of known issues on the project website at https://bedlam2.is.
tuebingen.mpg.de/. If you identify a problem with any part of the dataset please send a re-
port to bedlam@tue.mpg.de and include a “[BEDLAM2]” tag in the subject line to indicate that
your report is specific to BEDLAM2.0.

7.1 Details of the camera motions

Synthetic camera motion generation. We extend the limited camera motions and focal lengths of
BEDLAM by adding a new camera movement component to the render pipeline pre-processing stage.
It uses randomizable camera movement configurations and outputs the desired movement definitions
as camera pose keyframes for the Unreal Sequencer in JSON format. This is then used with Unreal
Python to fully automate the generation of needed Unreal Level Sequences for rendering.

Synthetic camera shot types:

• Panning shots at static location, optionally augmented by tracking of target body parts

• Tracking camera shots for a moving target body. Maintains distance and optionally also
viewpoint to the target body. Target location and rotations are low-pass filtered to ensure
smooth camera motions.

• Dolly shots (left-right, forward-backward, diagonal, up-down/crane)

• Orbit shots (tracking fixed target location or moving target body)

• Zoom shots with varying focal length, can be combined with other shot types

• Camera shake with Perlin noise with randomized intensity, can be combined with other shot
types

Captured camera motions. All motion capture shots are captured for a target stimulus at the origin
which allows us to later randomize the viewpoint onto the subject by rotating the mocap data. We
also vary the strength of the capture device shake between the various capture sessions.

Handheld footage is captured in landscape or portrait mode with Apple iPhone Pro 14 and Google
Pixel 4a phone devices and an iPad Pro 11 tablet device running the Unreal VCam application. This
application captures camera extrinsics with the ARKit/ARCore tracking components which estimate
6DOF device pose through visual odometry by sensor fusion of device camera and IMU data, similar
to device pose capture approaches in [11]. The camera pose is sent from the handheld device to
a Windows PC running a custom Unreal Engine scene with target stimulus. A real-time render of
the scene is streamed back from the PC to the handheld device to provide immediate feedback on
the current camera pose values, helping the operator to properly frame the stimulus. The PC is also
recording the camera pose which we later auto-export from its Unreal-specific binary format into a
reusable JSON representation compatible with the synthetic camera motion generation pipeline.

Egocentric footage is captured on Apple Vision Pro mixed-reality headset running a custom Unity 6
3D head pose capture application. It provides an egocentric 90fps real-time render of the stimulus
scene based on the head pose of the user. We record the user head pose at 90Hz. To ensure consistent
data capture timestamps we first record head pose into a large pre-allocated data array in memory and
only save to local device storage at the end of the capture session. Captured data can optionally be
played back on device and visualized with a virtual camera 3D model for initial quality assessment.
This capture setup is completely self-contained without external device dependencies and can be used
wherever there is enough walking space for the desired camera motion. This approach allows us to
capture camera motions that go beyond the space limitation of typical optical motion capture studios.

7.2 Dataset statistics

BEDLAM2.0 includes:
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Figure 8: Egocentric Camera Motion Capture In-the-wild 90Hz camera pose capture setup on
Apple Vision Pro, where our custom Unity 6 app renders a real-time 3D reference stimulus. The user
can start, stop and review captures by interacting with the provided 3D user interface.

• 8M images with realistic motion blur using 7 temporal subframes
• 27480 video sequences at 1280x720 resolution, 30fps
• 74.52 hours of video
• ground truth SMPL-X bodies with 16 shape coefficients
• 1,615 diverse body shapes including high and low BMI
• 4,643 motions sampled from AMASS, MOYO and BEAT2
• 187 unique clothing outfits
• 182 unique shoes
• 40 unique hairstyles with 50-100K 3D strands
• 10,592 unique combinations of body shape, motion, and clothing
• widely varied focal lengths and camera motions with realistic noise and ground truth
• 94 HDRI environments and 15 detailed 3D environments
• ground truth depth maps
• 26TB of data

Note that the core dataset distribution includes the images together with the associated SMPL-X
ground truth and camera ground truth. We also provide the 3D clothing, shoes, and hair; Subsection
7.14 describes the assets in detail and how to obtain them.

Detailed interactive plots with comprehensive statistics that cover the rendered images, cameras and
camera motions as well as bodies and animations can be found at this website: https://b2dash.
is.tuebingen.mpg.de/

7.3 Shoes

In contrast to previous datasets based on SMPL and SMPL-X, here we add shoes to the model.
Roughly 40% of the rendered images contain bodies with shoes. It is easy for users of the dataset to
sample sequences with our without shoes as needed.

Shoes are represented using the SMPL-X UV space by defining texture, displacement, and normal
maps, which we obtain from the Google Scanned Objects dataset. Here we provide details of how we
transform shoes from the dataset and apply them to SMPL-X.

Stocking feet. We first modify the foot of the SMPL-X template mesh to remove the shape of the
toes, while keeping the mesh topology the same (see Fig. 6a in the main paper). We find that applying
the standard shape parameters (β) to this modified template mesh produces natural looking variations
in foot shape. We make this modified SMPL-X template, with stocking feet, available for research.
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Figure 9: New outfits. We added 76 new and more complex clothing outfits to BEDLAM2.0.

Texture Extraction. We align, rotate and scale the raw scans from the dataset to create a common
shoe size that corresponds to the neutral SMPL-X base foot (zero-pose, zero-shape). We then translate
all shoes so that they align with the SMPL-X base feet.

Textures are extracted from the shoe models using the xNormal software (https://xnormal.net).
It works by raycasting from the right foot to the right shoe to get color, normal and displacement
values. These values are mirrored for the left foot.

We make the code for putting shoes on SMPL-X available and this contains all the details.

Sole thickness and ground contact. Sole thickness for each shoe is calculated as the mean
displacement value in the displacement map corresponding to the sole of that shoe. The body is then
translated vertically by the mean amount.

7.4 Hair

Note that we cannot say that having realistic hair actually improves HPS accuracy as we have not
performed an ablation study that removes hair. While this remains unclear, realistic hair may serve
other uses like training generative models of 3D hair and hair motion. We hope that the 3D assets
will find uses beyond our present application.

7.5 Clothing

More examples of new complex outfits and graded outfits are shown in Figure 9 and Figure 10
respectively, and in the supplemental video (https://youtu.be/ylyqHnwhpsY). Note that an
“outfit" may include multiple pieces of clothing; e.g. a man’s suit includes the pants, dress shirt, and
jacket. These individual pieces can be rendered individually or in new combinations. This gives users
of the dataset flexibility in generating new data.

Simulation. The garments in motion are physically simulated using CLO. We pin some of the
vertices of the outfit mesh to the body to avoid garments sliding and falling. Clothing simulation
is extremely sensitive to mesh interpenetration; garments can get stuck to body parts and be pulled
and deformed in extreme and unnatural ways, causing the simulation to break. Due to the fact
that the SMPL-X model does not have the ability to deform the body based on contact, body self-
interpenetration is quite common. Additionally, when we apply 3D motions captured on a slim subject
to a high-BMI body shape, this can cause self-penetration of the body parts. In order to reduce the
number of simulation failures, we temporarily remove the hands of the body mesh during simulation
because they are very likely to interpenetrate the body, especially in the thigh region. A correct outfit
size assignment (described in Section 3.6 of the main paper) is also crucial to reducing the number of
failures, allowing us to successfully simulate people with a wide variety of body shapes and complex
outfits. The simulation results are visually checked and rated in order to exclude failures.
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Figure 10: Grading. More examples of graded outfits. Here are shown, from left to right, sizes XS,
M, L, 2XL, 3XL, 5XL and 6XL.

Due to their complexity of the yoga motions in the MOYO dataset, we do not use clothing simulation
for these. Instead we use texture maps, which look like tight-fitting yoga clothing. This type of
clothing is appropriate for these motions.

7.6 Depth data

Since we are rendering the dataset, we can also render depth maps. While we do not use these
for training HPS methods, there are many applications where it is useful to have the depth maps
associated with the video sequences. We render approximately 44% of the images with the associated
depth map; see https://b2dash.is.tuebingen.mpg.de/.

Note that, to create realistic motion blur, each RGB frame of the video is generated from 7 rendered
subframes. Note also that the depth data is not blurred. Thus it is critical that the depth data correspond
to a specific point in time, which we chose to the center subframe in the set of 7.

By default, Unreal saves the last subframe camera information and not the center one in the generated
EXR files. To address this we extended the existing MovieRenderQueue C++ plugin with functionality
to store camera ground-truth values for every subframe. This allows us to then properly store the
ground truth for the center subframe in the EXR image metadata section.

Data generated before 10/2024 used the last subframe and we fixed this with post processing.
Specifically, we first determined the fixed time delta between the last and center subframe by
modifying the Unreal C++ source code to obtain this information. For our use case with 7 temporal
samples at 30fps render rate, we obtained a subframe delta time of 0.002375s which results in
0.007125s time difference between the last subframe and the center subframe when using 7 temporal
samples. We then used that information to resample the camera pose ground truth from the last
subframe to the center subframe using Piecewise Cubic Hermite Interpolating Polynomials for a tight
fit to original data without overshooting. This allowed us to re-render the depth at the center subframe
with high accuracy. We also log this information in the camera ground truth JSON files so that it is
clear if the camera pose data was resampled in post or correctly obtained from our custom center
subframe ground truth render plugin.

7.7 Normal data

BEDLAM2.0 does not contain normal image data. To help researchers who are interested in this
type of data we are releasing the BEDLAM2.0 render pipeline code for Unreal Engine 5.3, similar
to our previous BEDLAM render code release for Unreal Engine 5.0. Access details are provided
on our project website (https://bedlam2.is.tuebingen.mpg.de/). The new 5.3 code includes
the functionality to also output camera-space or world-space normal images in EXR format. This
functionality can be useful for downstream tasks like normal estimation or avatar creation from a
single image.
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7.8 Comparisons with other datasets

It is hard to fully compare synthetic datasets numerically since they rarely report all the details and
the details that are reported often differ. Here we try to bring together the relevant, and known, details
to enable numerical comparison.

There have been several static image datasets like SynthBody [20], BEDLAM-CC [56], and PDHuman
[58] that are all similar to BEDLAM but address different issues. SynthBody adds more facial detail
than is present in BEDLAM, while the other two datasets focus on close-up shots of the body with
wide-angle lenses. We focus on the datasets that introduce camera motion.

SynBody [63]: This dataset is very similar to BEDLAM in terms of goals and approach. They
sample 10K body shapes from the SMPL-X shape space and generate 6,960 sequences with 1.2M
images and ground truth SMPL-X. These are generated in 6 3D scenes. They use 1,187 motions
from AMASS. The dataset is generated from 4 fixed camera viewpoints; it does not include camera
motion. As reported in [8], SynBody is not as effective for training as BEDLAM. The reasons are not
completely clear but it likely has to do with the visual quality, which is lower for SynBody.

WHAC-A-Mole [65]: This dataset is built on SynBody and inherits its limited realism. What it adds,
however, are sequences with human-human interactions, including dancing, together with diverse
camera motions. Like BEDLAM2.0, they use a range of standard camera motions but, in addition,
they use combinations of these. Overall, the dataset has 1.46M crops and 2434 sequences.

PACE [27]: Camera trajectories use heuristics and include dolly zoom, arc motions, tracking shots,
and motions from the MannequinChallenge dataset [29]. The bodies are scans from RenderPeople
(see [39]), the motions are from AMASS [34], and the 3D scenes are from Unreal Marketplace. The
dataset contains only 25 video sequences with 1-8 people per sequence.

HumanVid [61]: HumanVid generates synthetic sequences with either SMPL-X bodies or anime
characters; we focus on the former here. For this, they use BEDLAM bodies, motions and clothing.
They appear to use only one body per sequence. Where they go beyond BEDLAM is in designing
a rule-based camera motion generation pipeline. Given a body, they sample camera locations in a
semicircle in front of the body, point the camera at the person, and randomly sample the camera roll.
They form a camera path between these camera keyframes using an interpolating spline. With this,
they generate 50K clips with a total of 8M frames.

EgoGen [28]: Goes further to use generated human motions in varied environments, effectively
enabling the capture of an infinite amount of synthetic egocentric video. There have been several prior
efforts [50, 55] to create egocentric data but EgoGen is more realistic in that it is built on BEDLAM
assets. Rather than use physics simulation for the clothing as done here, they use a neural garment
simulation method [19] to make the process more automatic and scalable. They generate two datasets.
The depth dataset has 105,000 depth images, while the RGB dataset has 301,073 images. The key
property of this dataset is that the generated motion of the body drives the camera, producing diverse
and natural looking camera motions. We get similar motions for BEDLAM2.0 by directly capturing
them from an Apple Vision Pro or handheld device.

7.8.1 Focal Length Distribution Comparison

In addition to synthetic datasets, we compare the distribution of camera intrinsics in BEDLAM2.0
against real-world images from the Flickr HumanFOV dataset introduced in CameraHR [38]. To
minimize the domain gap between synthetic and real world cameras, BEDLAM2.0 is designed
to cover the space of FOVs observed in the Flickr dataset (see Fig. 11). While the Flickr HFOV
(Horizontal Field of View) values are derived from real EXIF metadata and capture natural camera
usage patterns, BEDLAM2.0 samples HFOV values synthetically.

Note that the Flickr data has distinct “spikes” for common focal lengths. BEDLAM2.0 is quite
different in that it is a video dataset and many sequences include changing focal lengths, i.e. zooming
during the camera motion. This results in a more even distribution of HFOVs.

7.9 Human motions and bodies

To construct our pool of moving bodies, we repeatedly sample bodies from a set of 1,615 body shapes
and assign them a motion from our set of 4,643 motions, whose composition is shown in Figure 12.
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Figure 11: HFOV comparison between BEDLAM2.0 and real Flickr data from [38]. (top
percentage of HFOVs. (bottom) absolute number of HFOVs.

As mentioned in subsection 7.5, we do not run clothing simulation for the 171 motions in the MOYO
dataset. We obtain a total of 10,592 motions with clothing simulation that are used multiple times
across different render sequences with varied clothing textures.

We use the SMPL-X neutral body with the locked head – no hair bun and 16 β shape parameters. This
differs from the version in BEDLAM. The original BEDLAM uses a version of SMPL-X without the
locked head, which can produce a hair “bun”. This bun produces a bump at the back of the head with
female body shapes, and this makes it difficult to simulate strand-based hair realistically; for hair
simulation, we need a proper scalp shape. Moreover, the bodies in BEDLAM are represented with
only 10 β shape parameters.

We provide a version of the original BEDLAM ground truth in the format of B2, making it easy for
people to train HPS models using a combination of B1 and B2 data.

Train-test split. We reserve a holdout test set of body shapes and motions. The test set is composed
by 161 body shapes (10% of the total) and 597 motions (13% of the total). Note that these bodies and
motions may appear in the training set images, but their ground truth SMPL-X parameters are not
provided. This prevents people from training on these characters.

Note also that the motions come from AMASS so, theoretically, people could exploit this to gain an
advantage in accuracy. However, since we retarget these motions to new body shapes, they are not
identical to the AMASS motions.

The BMI distributions for the training and test bodies can be seen in Figure 13, while the numbers of
motions sampled from each dataset is shown in Figure 14. The number of unique motion sequences
with clothing simulation that are part of the test set amounts to 641 (6.61% of the total); these are
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Figure 12: Motion pool Number of motions sampled from each dataset, including BEAT2, MOYO
and a subset of the datasets in AMASS.

Figure 13: Train-test body split. Left: BMI distribution of body samples in the training set
before (top) and after (bottom) oversampling high-BMI examples to balance the dataset. Right:
Corresponding BMI distribution in the test set, shown for comparison.

used to generate 1,824 new render sequences across five novel environments, featuring only test
bodies and motions, resulting in a total of 449,061 test images.

7.10 Body occlusion

Our dataset covers the following common occlusion phenomena frequently observed in real-world
scenarios: frame occlusion, scene occlusion, self occlusion, person-person occlusion and occlusion
caused by 3D clothing. See Figure 15 for some examples.

7.11 Visualizing the dataset

Figure 16 shows a few example frames from the dataset together with ground truth bodies.
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Figure 14: Train-test motion split. Left: number of motions from each motion dataset in the training
set. Right: Corresponding numbers of motions sampled for the test set.

Figure 15: Body occlusion examples. Top row: camera frame occlusion, top right: self occlusion,
bottom left: scene occlusion, bottom right: person-person occlusion. All images also show occlusion
caused by clothing.

The Supplemental Video provides a quick overview of all the dataset components and camera
motions: https://youtu.be/ylyqHnwhpsY.

Besides PNG image sequences, we also provide all 27480 dataset video sequences in much smaller
MP4 video format on our project website (https://bedlam2.is.tuebingen.mpg.de/). Small
dataset samples for various camera motion types are also available for download.

7.12 Experiments

Shape Evaluation of image-based methods. We train the image-based human pose and shape
estimation method CameraHMR [38] on the B1, B2, and B1+B2 datasets. Since standard image-
based human pose and shape (HPS) benchmarks exhibit limited shape variability, we use the B2
test set to evaluate shape accuracy. To isolate shape error from pose error, we report results using
the PVE-T-SC metric [44], which computes the Per-Vertex Error (PVE) after bringing the predicted
and ground-truth meshes to a T-pose and performing scale alignment. As shown in Table 3, training
on BEDLAM2.0 reduces the PVE-T-SC error by approximately 20%, demonstrating a substantial
improvement in shape estimation accuracy.

Training of video-based methods. We train GVHMR [45] and PromptHMR [59] using only the
AMASS [34], B1, and B2 datasets during the video training phase. Both models are trained for 500
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Figure 16: Ground truth bodies. Example frames from the dataset along with the ground truth
bodies projected into the frame.

Table 3: Shape accuracy comparison using PVE-T-SC.

Model PVE-T-SC ↓ Improvement (%)

BEDLAM1 8.85 –
BEDLAM2 7.20 18.6
BEDLAM1+2 7.44 15.9

epochs, and we report results from the final checkpoint. To improve global motion stability, we apply
foot skating post-processing to both methods, which leverages foot contact predictions to reduce
unrealistic sliding artifacts.

Image-space evaluation of video-based methods. We use B1 and B2 to train two of the recent
SOTA methods that estimate human motion from video, GVHMR [45] and PromptHMR [59]. Table 4
shows the results using the camera-space metrics (PA-MPJPE, MPJPE, and PVE). These errors are
lower than for the single-image method except for PA-MPJPE on RICH. B2 or a combination B1 and
B2 provides the best results for all but the MPJPE and PVE on the RICH dataset where B1 is best.

Evaluation of video-based methods on BEDLAM2.0 test set. We evaluate GVHMR[45] and
PromptHMR [59] on the B2 test set. The world coordinate metrics show that B2 is more challenging
than existing benchmarks like EMDB [25] and RICH [22].

See the main paper, Table 2, for the evaluation of the video-based methods on real video benchmarks.

A key property of the B2 test set is varying focal lengths within sequences; e.g. dolly zoom. This
creates difficulties for SLAM-based approaches, which typically assume static camera intrinsics.
PromptHMR [59] relies on a metric SLAM method [21, 48] to transform human motion from camera
to world coordinates. Therefore, PromptHMR fails more often than GVHMR on sequences with focal
length variations. GVHMR is more robust because it only uses the angular velocity of camera motion,
making it less sensitive to focal length changes. This highlights that BEDLAM2.0 is sufficiently
challenging to drive the field to develop robust methods that cope with natural camera movements.
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Table 4: Camera-space evaluation of video-based methods.

Dataset 3DPW [54] EMDB [25] RICH [22]

PA-MPJPE ↓ MPJPE ↓ PVE↓ PA-MPJPE↓ MPJPE↓ PVE↓ PA-MPJPE ↓ MPJPE↓ PVE↓
GVHMR [45] - B1 39.8 60.7 73.9 45.5 75.3 87.7 42.0 70.1 78.7
GVHMR [45] - B2 38.4 58.6 70.4 44.0 72.2 84.1 37.9 67.4 76.5
GVHMR [45] - B1+B2 37.6 57.2 70.4 44.0 74.8 87.0 37.2 65.3 74.3

PHMR [59] - B1 38.2 57.5 69.2 42.1 80.5 92.7 38.5 62.1 70.4
PHMR [59] - B2 37.0 57.3 67.5 40.2 73.5 84.2 37.8 69.0 78.4
PHMR [59] - B1+B2 37.2 57.6 68.3 40.2 69.2 80.2 37.3 66.2 75.2

Table 5: World and camera space evaluation of video-based methods on B2 test set.

BEDLAM2

Models PA-MPJPE MPJPE PVE WA-MPJPE W-MPJPE RTE Jitter Foot-Sliding

GVHMR [45] - B1 57.2 98.6 83.3 240.6 502.2 6.3 16.1 3.0
GVHMR [45] - B2 38.8 66.1 55.7 203.9 444.1 5.3 16.0 2.5
GVHMR [45] - B1 + B2 36.4 62.0 52.0 195.3 440.3 4.8 14.1 2.4

PHMR [59] - B1 35.1 63.0 54.7 220.8 781.6 6.1 16.1 3.0
PHMR [59] - B2 33.5 57.2 48.6 230.3 801.5 6.4 16.4 3.3
PHMR [59] - B1 + B2 32.0 55.7 47.5 223.2 781.2 6.0 16.0 3.0

7.13 Computational costs

Rendering. To render the entire training dataset, it took approximately 467 hours (383 hours for
the image (PNG) files and 84 hours for the depth maps). We initially rendered with an NVIDIA RTX
3090 GPU (60% of generated PNG images) and later switched to a new PC with an RTX 4090 GPU
(40% of generated PNG images). Consequently, the overall time needed to re-render the dataset on a
RTX 4090 GPU would be less than reported here. The observed GPU utilization varied from 30%
to 100%, with HDRI renders in combination with complex hair grooms having the highest GPU
utilization and benefiting the most from the RTX 4090 upgrade.

Clothing simulation. The clothing simulations were performed using CLO fashion design software
on machines equipped with Intel Xeon CPUs operating at frequencies between 2.0 and 2.5 GHz. Each
simulation utilized 12 CPU cores, as using a higher number of cores was found to degrade perfor-
mance. Under this configuration, simulations—ranging from 120 to 480 frames in length—required
an average of 0.8 hours to complete. A total of 10,592 simulations were generated for the training
and test datasets, resulting in approximately 8,579 CPU hours on 12-core, 2.0–2.5 GHz processors.

7.14 Assets

Table 6 describes all third-party assets used in making the dataset. Note that some of the 3D
environment assets may have a “no-GenAI” restriction. BEDLAM2.0 does not use GenAI in its
creation and is designed to further research on human pose and shape estimation. We imagine that
there will be other uses (e.g. generative ones) of the dataset beyond what we designed it for. Users
are responsible for ensuring that their use case aligns with the asset licensees.
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Table 6: Third-party assets used for rendering BEDLAM2.0. Most 3D environments were purchased
from Unreal Marketplace and its successor fab.com. Evermotion indoor assets were purchased
directly from the vendor as a bundle. Please check individual vendor licenses for further details on
Generative AI usage permissions.

Asset Type Name Source

Body Textures Bald Head Versions Meshcapade GmbH, https://meshcapade.com, CC BY-NC 4.0
Clothing Textures B1 WowPatterns BEDLAM, https://bedlam.is.tuebingen.mpg.de/
Environment - HDRI Various HDRIs Poly Haven, https://polyhaven.com/hdris, CC0 Public Domain
Environment - 3D ai0805 Archinteriors for UE, https://evermotion.org/
Environment - 3D ai0901 Archinteriors for UE, https://evermotion.org/
Environment - 3D ai1004 Archinteriors for UE, https://evermotion.org/
Environment - 3D ai1101 Archinteriors for UE, https://evermotion.org/
Environment - 3D ai1102 Archinteriors for UE, https://evermotion.org/
Environment - 3D ai1105 Archinteriors for UE, https://evermotion.org/
Environment - 3D archmodelsvol8 https://www.fab.com/listings/910a05ca-4f7a-4aac-9c1b-c0bf7aabfbd8
Environment - 3D busstation https://www.fab.com/listings/55c97991-d732-4f63-a831-d38843fb5fb0
Environment - 3D chemicalplant https://www.fab.com/listings/a70632d1-f2d2-4b4d-a621-0dc5c3b259fd
Environment - 3D citysample https://www.fab.com/listings/4898e707-7855-404b-af0e-a505ee690e68
Environment - 3D middleeast https://www.fab.com/listings/b46926e1-fe3c-4c20-83f0-8be8ee5e8de5
Environment - 3D rome https://www.fab.com/listings/12ccee26-1515-4ae9-80a2-cd6402346447
Environment - 3D stadium https://www.fab.com/listings/d7cfc283-bf41-46a0-b7cd-789476c3263d
Environment - 3D yakohama https://www.fab.com/listings/b46926e1-fe3c-4c20-83f0-8be8ee5e8de5
Environment - 3D yogastudio https://www.fab.com/listings/ba2d42c5-c9de-49f4-a681-9d0c8970a670
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately describe the dataset and its contents.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: These are discussed in the conclusions and future work section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This dataset paper does not make a theoretical contribution.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The dataset is made available for research purposes and all assets that we
control will be made available so others can replicate the work. For assets from third parties
that prohibit redistribution, we provide links so people can obtain them. This was a key
principle of the BEDLAM dataset and several groups have used the BEDLAM assets to
render their own specialized datasets, e.g for egocentric vision. With BEDLAM, the hair was
the only body-related asset that could not be shared for license reasons. So for BEDLAM2.0,
we hired a graphics art firm to create high-quality strand-based hair grooms and we can
share these.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The dataset is submitted with the paper since this paper is in the dataset and
benchmarks track. The dataset is usable as released. We will release more support code
when the dataset is made public to make it easier to use, e.g. for training HPS regressors. As
uses evolve, so will our support code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details of how the dataset is constructed are provided in main paper and the
Supplementary Material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: For the dataset itself, which is our core contribution, the question does not
apply. For the evaluation of the dataset, we follow the standard methodology of the field
which, sadly, does not include statistical significance testing. The tables of results comparing
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with prior methods often rely on the results reported in papers and it is impossible for us to
compute variances since these were not reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe the details of the software and hardware used to create the dataset.
We do not provide details for the HPS methods we evaluate the dataset on since these are
not our contributions. We make no claims about these previously published methods.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: While the dataset contains people, it is purely synthetic with no real people;
there are no privacy issues. The textures used span the gamut of human skin tones. We
explicitly include a diverse range of body shapes including both high and low BMI bodies.
We have been careful to only use assets to which we have the rights.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper makes available a synthetic dataset of humans in motion. The
synthetic nature of the dataset means that it does not violate privacy. This is a huge
advantage over most real-video datasets, many of which are scraped from the internet
without permission. The dataset should facilitate research on topics related to 3D humans
by obviating, or reducing, the need for images/videos of real people.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Because of the nature of the data (people), we release it with a custom license
that prohibits its use for pornographic, military, or surveillance, purposes. It also prohibits
the use to to create fake, libelous, misleading, or defamatory content of any kind excluding
analyses in peer-reviewed scientific research.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We mention and respect licenses, as evidenced in our previous BEDLAM
dataset release. All 3D Unreal scenes are purchased from commercial vendors. We list
all the purchase links in SupMat for users who want to recreate our data. We release only
the parts of the dataset where we are the copyright owner under our custom BEDLAM2.0
license, free for non-commercial use and similar to BEDLAM. Our shoe representation is
derivative work and will be released under the same license as the source data license (CC
BY 4.0). We are the owner of the hair grooms, clothing garments, and body shapes. The
motions from the AMASS dataset are all available for research with individual licenses for
each subset of AMASS (all used subsets are cited here). The skin textures are provided by
Meshcapade GmbH under CC BY-NC 4.0 for research purposes.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The details of the assets are provided in the Supplemental Material and in the
download area of the project website (https://bedlam2.is.tuebingen.mpg.de/).

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: We do not use crowdsourcing and this is not human subjects research. We do
not collect any data from humans in this work. We rely on existing datasets like CAESAR
and AMASS together with the SMPL-X body model. These are all widely established
datasets and models.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We use no human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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