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ABSTRACT

Machine learning methods for mesh-based physical simulation have achieved
significant success in recent years. (Reviewer ZnqH) We propose the Histori-
cal Message-Passing Integration Transformer (HMIT), an architecture based on
Graph Neural Networks that incorporates a message passing framework and ap-
plies Graph Fourier Loss (GFL) for model optimization. (Reviewer ZnqH) To
mitigate over-squashing, capture fine-grained details, and scale linearly with node
count, we introduce Historical Message-Passing Attention (HMPA), which in-
tegrates multi-step historical message-passing information for each node with
feature-wise softmax and employs a decoder-only architecture. Additionally, to
modulate loss at specific frequencies and handle varying energy levels, we in-
troduce GFL, which uses a frequency-domain energy adjustment schedule. To
improve computational efficiency, we precompute the graph’s Laplacian eigen-
vectors before training. Our architecture achieves significant accuracy improve-
ments in shart- and long-term rollouts for both Lagrangian and Eulerian dynamical
systems compared to current methods.

1 INTRODUCTION

In recent advancements in physical systems simulation, an increasing number of neural network-
based methods are challenging traditional numerical solvers. These methods, notable for being sev-
eral orders of magnitude faster and maintaining low error rates, have garnered substantial attention
from researchers (1; 2; 3; 4). Graph Neural Networks (GNNs) have garnered widespread inter-
est and research attention due to their unique features, including node-wise independent updates
and aggregation operations that closely resemble iterations in traditional simulations. Additionally,
particle-based and mesh-based simulations can be easily converted into graphs through neighbor in-
teractions (4) and topology structures (5). This growing body of research can be collectively termed
as GNN for Simulation (GNN4Sim) (6; 7; 8; 9).

Unlike the fields of Natural Language Processing (NLP) and Computer Vision (CV), physical sys-
tems are more complex and unstable, where every piece of information is crucial. This implies
that issues like over-smoothing and over-squashing might be more pertinent in physical simulations
(10). A common solution to mitigate these issues is mapping the original information to a high-
dimensional latent space for processing. This approach has become a widely used architecture in
most GNN4Sim applications (11; 5; 12; 4; 13), known as the encoder-processor-decoder (EPD),
which, due to its focus on nodes and edges rather than graph structure, has a broad range of applica-
tions.

Since the Attention mechanism achieved significant success in the Natural Language Processing
(NLP) domain (14), many Transformer-based network architectures have been developed in com-
puter vision (15; 16), Social and Information Networks (17), (Reviewer ZnqH, Reviewer L6SR,
Reviewer G8Yr) and physical simulation (18; 19; 20). Universal architectures for graph-based
learning have also emerged, such as GraphGPS (21), Graph Attention Networks (GAT) (22), and
Graph MLP-Mixer (23). However, physical simulations pose unique challenges that require tailored
solutions.

To address these challenges, we propose Historical Message-Passing Attention (HMPA), a novel
mechanism designed to solve three key issues commonly encountered in physical simulations:
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1. Mitigating over-squashing: Over-squashing occurs when important information from dis-
tant nodes fails to propagate effectively (24), leading to poor long-range dependencies. To
address this, HMPA integrates multi-step historical message-passing information for each
node, enabling nodes to aggregate and retain context from earlier message-passing steps.
This facilitates the effective propagation of critical information across varying distances.

2. Capturing fine-grained details: Physical simulations often involve intricate dynamics that
require precise modeling of feature importance (10). HMPA applies feature-dimensional
softmax combined with Hadamard products, which assigns attention weights to individual
feature dimensions rather than sequence positions. This fine-grained weighting enhances
the model’s ability to focus on the most relevant features for each node, improving accuracy.

3. Scaling linearly with node count: Standard self-attention mechanisms suffer from
quadratic complexity with respect to the number of nodes, limiting their applicability to
large-scale systems. HMPA adopts a decoder-only design, which ensures linear scalability
with the number of nodes, making it efficient and suitable for large physical simulations.

Incorporating theoretical methodologies from graph signal processing, we have innovatively applied
the Graph Fourier Transform (GFT) (25; 26) to the domain of physical simulations through our in-
troduction of Graph Fourier Loss (GFL). This novel loss function optimizes model performance by
leveraging the unique spectral properties of graphs. Rather than applying a Fourier Transform di-
rectly to the model, we employ preprocessing Laplacian eigenvector matrix within the loss function,
thereby keeping the model’s inference time nearly unchanged.

2 RELATED WORK

Neural Approaches in Physical Systems Simulation In recent years, Several neural-based meth-
ods have achieved great research interest in physical systems simulation due to their high com-
putational speed and low error rates. Among these, Convolutional Neural Networks (CNNs)
(27; 28; 29; 30; 31; 32) have been utilized to infer the dynamics of physical systems, demonstrat-
ing the capability of neural networks in accurately and efficiently simulating complex phenomena.
Physics-Informed Neural Networks (PINNs) (3; 33; 34; 35; 36) , which leverage implicit represen-
tations and physical condition constraints, can be trained without traditional datasets, illustrating a
groundbreaking approach to model training that is particularly valuable in scenarios where empiri-
cal data is scarce or difficult to obtain. Neural operators (2; 37; 38; 39) offer a novel methodology
for predicting the physical state at any given time step directly from initial conditions. This rep-
resents a significant shift from traditional simulation methods, enabling more efficient and flexible
simulations across various scales and conditions. Graph Neural Networks (GNNs) (4; 5; 40; 41) fa-
cilitate information exchange between nodes through message passing. This mechanism effectively
captures the interactions within physical systems, allowing for the detailed simulation of complex
dynamics. Closely related is differentiable simulation, which emerge as a powerful tool to address
optimization applications in different applications, including fluids (42), cloth (43; 44), deformable
objects (45), articulated bodies (46), and solid-fluid coupling systems (47; 48; 49).

Advancements in GNN Architectures for Simulation Recent studies in GNN4Sim have intro-
duced various improvements. Multiscale methods (50; 51; 52; 53) , benefiting from simplified latent
graph structures, have significantly accelerated training and inference while maintaining quality. At
its core, this involves enhancing the efficiency of message passing, which entails modifying the
topological structure of the graph. This change aims to concurrently increase processing speed and
enhance accuracy in the simulations. Similarly, FIGNet (54) by adding face-face edges, changes the
graph structure to improve collision accuracy. Han et al. (55) through uniform sampling, simplifies
the graph structure, applying scaled dot-product attention to the entire graph but requires multiple
prior temporal steps information. TIE (56) streamlines interaction modeling in Message Passing
Neural Networks, utilizing a modified attention mechanism to efficiently process particle dynamics
without explicit edge representations. LAMP (57) uses reinforcement learning to adapt to the vary-
ing relative importance of the trade-off between error and computation at inference time. C-GNS
(58) focus on model the constraints of the physical system.

Bridging Graph Theory and Signal Processing Graph Signal Processing (GSP) extends tradi-
tional signal processing techniques to signals defined on graphs (59; 60) , a paradigm shift that has
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unlocked new avenues in analyzing complex data structures. Bruna et al. (61) introducing Spectral
Networks for graph data learning, establishing foundational techniques for GNNs. Sandryhaila and
Moura (25) and Hammond et al. (26) introduced the concept of applying wavelet transforms on
graphs, offering a powerful tool for signal analysis and processing on irregular domains. Further,
the development of Graph Convolutional Networks (GCNs) (62; 63; 64) , simplified the applica-
tion of convolutional neural networks to graph data, enabling efficient learning of graph-structured
data. These foundational studies emphasize the significance of spectral methods in understanding
and leveraging the inherent structure of data represented as graphs.

3 PROBLEM FORMULATION AND PRELIMINARIES

This section introduces the problem formulation and the necessary preliminary concepts. It begins
with the representation of physical systems using graph structures and the optimization goal for a
learnable simulator in Section 3.1. It then delves into the Graph Fourier Transform (GFT), which
facilitates the analysis of graph signals in the spectral domain in Section 3.2.

3.1 PROBLEM FORMULATION

(Reviewer G8Yr) We consider graph Gt = (V t, Et) to represent a physical system with t taking
discrete values t = 0, 1, . . ., where V t denotes the set of nodes with node attributes vti for each
vti ∈ V t, and Et denotes the set of edges with edge attributes etij for each etij ∈ Et. We also define
a total of M Message Passing iterations, with k = 0, 1, . . . ,M . During the k-th Message Passing
iteration, the attributes of nodes and edges are denoted by vtk,i and etk,ij .

The learnable simulator fθ, parameterized by θ, can be optimized towards training objective. The
goal of the learnable simulator is to predict the next state of the system, Gt+1, based on the previous
prediction of graph Gt at time step t, denoted by Gt+1 = fθ(G

t), or G0 → G1 → · · · → Gt.

3.2 GRAPH FOURIER TRANSFORM

The Graph Fourier Transform (GFT) transforms signals on a graph from the spatial vertex domain to
the spectral frequency domain. For a signal defined on the vertices of the graph, GFT leverages the
eigenvectors of the graph’s Laplacian matrix, projecting the signal onto the orthogonal basis formed
by these eigenvectors. This projection allows us to analyze and process the signal in a domain where
convolution and filtering can be performed algebraically.

3.2.1 MATHEMATICAL DEFINITIONS

(Reviewer wc4g) The adjacency matrix of G is denoted by A, where Aij = 1 if there is an edge
between vertices i and j, and Aij = 0 otherwise. The degree matrix D is a diagonal matrix where
Dii =

∑
j Aij . The Laplacian matrix of the graph is defined as L = D −A.

The eigenvalues and eigenvectors of L are denoted by λi and ui, respectively, where i = 1, 2, . . . , N ,
and N is the number of vertices in the graph.

Given a signal x ∈ RN defined on the vertices of the graph, the GFT of x is given by

x̂ = UTx

where U = [u1, u2, . . . , uN ] is the matrix of eigenvectors of L, and UT is its transpose. The signal
x can be reconstructed from its GFT x̂ using the inverse GFT, given by

x = Ux̂

4 METHOD

In Section 4.1, we present the overall architecture of the model, followed by a detailed descrip-
tion of the Historical Message-Passing Attention and Graph Fourier Loss in Sections 4.2 and 4.3,
respectively. The Historical Message-Passing Attention is introduced to address aggregation bias
and enable more fine-grained feature processing. The Graph Fourier Loss is introduced to balance
the high-energy and low-energy components in the spectral domain, thereby enhancing the model’s
capacity to learn complex physical phenomena.
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Figure 1: Model Architecture of the Historical Message-Passing Integration Transformer, visual-
izing the information processing procedure for the first of four Message Passing (k = 0,M = 4)
times. The encoder module transposes inputs into a latent space and the decoder predicts future
states by extrapolating these encoded representations. The processor unit conducts numerous itera-
tions, each treated as a regression problem, to refine node and edge attributes. The highly complex
physical details make the model sensitive to noise, so the dynamic modulation of the frequency
domain energy using Graph Fourier Loss (GFL) attenuates the impact of noise. GFL leverages the
spectral properties of graphs to enhance model inference efficacy.

4.1 HISTORICAL MESSAGE-PASSING INTEGRATION TRANSFORMER

The Historical Message-Passing Integration Transformer architecture incorporates a Message Pass-
ing framework, employs an Encoder-Processor-Decoder structure, and utilizes Graph Fourier Loss
for model optimization. Figure. 1 visualizes the computational process of the model.

Encoder The node and edge attributes are transformed into a latent space by f1 and f2, respec-
tively.

vt0,i ← f1(v
t
i), et0,ij ← f2(e

t
ij)

Processor The edge features are updated by f3, incorporating features from adjacent nodes. Node
features are then updated by f4, which aggregates information across multiple tokens using Histor-
ical Message-Passing Attention. Each token represents node and aggregated edge features from a
particular Message Passing iteration:

etk+1,ij ← f3(e
t
k,ij , v

t
k,i, v

t
k,j), vtk+1,i ← f4

vtk,i,

k⊕
m=0

vtm,i,
∑
j

etm,ij


where

⊕
denotes the sequential concatenation of tokens

(
vtm,i,

∑
j e

t
m,ij

)
for each m from 0 to k,

forming the input sequence for f4.

We choose to use historical Message Passing (MP) steps as sequence inputs instead of traditional
temporal features because our model focuses on single-step prediction—using information at time t
to predict the state at time t+1. Different MP steps capture various aspects of node states, enriching
the feature representation at each iteration. This approach aligns with models like MeshGraphNet
(5), which utilize independent MLPs for each MP step due to the unique information each step pro-
vides. (Reviewer ZnqH) By leveraging historical MP step features as context for the current MP
step, we mitigate over-squashing by enabling the model to propagate information across multiple
MP steps, capturing broader dependencies in complex physical environments. The processor treats
node updates as an autoregressive problem, using past message-passing attributes for keys (K) and
values (V ) and the current state as the query (Q). (Reviewer ZnqH) This decoder-only design en-
sures efficient information aggregation, scaling linearly with the number of nodes, while preserving
critical features for robust predictions.
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Decoder After M times Message Passing, the latent node features are mapped back to the original
attribute space by f5, culminating in the update of the graph state to the next time step.

vt+1
i ← f5(v

t
M,i), Gt+1 = UPDATE

(
Gt, vt+1

i

)
Here, f1, f2, f3, and f5 are all shallow MLPs. During training, finally, we compute the model loss
using our Graph Fourier Loss and update the weights accordingly.

4.2 SCALED HISTORICAL MESSAGE-PASSING ATTENTION

To address effectively sidestepping the aggregation bias introduced by the summation operations
typical of matrix multiplication, we introduce the Scaled Historical Message-Passing Attention
(HMPA) mechanism. HMPA utilizes element-wise multiplication followed by a linear transfor-
mation to finalize the attention computation, (Reviewer ZnqH) enabling the model to capture fine-
grained details by focusing on the relative importance of individual feature dimensions. This design
ensures that nuanced information is preserved and emphasized during message-passing updates,
leading to more accurate and expressive representations.

Our attention mechanism is tailored for inputs with a finite maximum sequence length, enabling
more nuanced processing of the relative importance of features within the message passing frame-
work of the processor. Let vk,i ∈ Rd denote the feature vector of the current node attribute at
iteration k for node i, and

∑
j ek,ij ∈ Rd represent the aggregated edge attributes associated with

node i at iteration k. We construct the key and value matrices K,V ∈ Rs×d by concatenating the
sequences of node attributes and their corresponding aggregated edge attributes from iterations 0 to
k:

K = V =

k⊕
m=0

vm,i,
∑
j

em,ij

 = [v0,i,
∑
j

e0,ij , . . . , vk,i,
∑
j

ek,ij ]

Here, s = 2(k + 1) is the sequence length, and d is the feature dimension.

The corresponding attention weights a ∈ Rs×d are computed by applying a scaled Hadamard prod-
uct between the current node attribute v and the key matrix K, followed by a softmax operation
along the feature dimension:

a = softmax
(
v ⊙K√

d

)
where ⊙ denotes element-wise multiplication between v (broadcasted to match the dimensions of
K) and K, and the softmax function is applied over the feature dimension d for each sequence
position. Consequently, the contribution of each dimension to the Value vector’s computation is
determined by its relative importance across the dimension, not by its position within the sequence.
Specifically, the element-by-element representation of matrix a is:

ap,q =
exp

(
vq·Kp,q√

d

)
∑d

q′=1 exp
(

vq′ ·Kp,q′√
d

)
Subsequently, the attention weights a are applied to the value matrix V through element-wise mul-
tiplication, yielding the weighted value matrix w ∈ Rs×d, which undergoes a linear transformation
to reshape it back to a dimension of d.

Our methodological shift fundamentally reorients the attention mechanism from focusing on se-
quence positions to emphasizing feature dimensions. Unlike the traditional Scaled Dot-Product
Attention, which assigns scalar attention weights to each position in the sequence, our Scaled His-
torical Message-Passing Attention allocates weights across each feature dimension. By applying
the softmax function along the feature dimension d rather than the sequence dimension s, HMPA
capture the relative importance of individual features in contributing to the node updates. Channel
mixing is then performed by the linear transformation.

For cases requiring multiple attention heads, we extend HMPA to its multihead version, Multihead
Historical Message-Passing Attention, in a manner similar to the multihead extension of Scaled
Dot-Product Attention, allowing the model to attend to different feature dimensions simultaneously.
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4.2.1 COMPLEXITY ANALYSIS

(Reviewer YBDW) The floating-point operations (FLOPs) for the HMPA mechanism are calculated
with N representing the number of nodes, s as the sequence length, and d as the feature dimen-
sion. Constructing the key and value matrices K and V requires linear transformations across each
sequence step, amounting to 2Nsd2 FLOPs. The calculation of attention weights a, including the
element-wise product and softmax operation, requires 2Nsd FLOPs. The element-wise multiplica-
tion of a and V , followed by a linear transformation to reshape the result back to dimension d, adds
Nsd+Nsd2 FLOPs. Summing these components, the total FLOPs for HMPA is:

FLOPs = 3Nsd2 + 3Nsd.

This complexity scales linearly with the number of nodes N , with a fixed sequence length s. Com-
pared to a global self-attention mechanism, our decoder-only architecture avoids the O(N2) com-
plexity, making it especially efficient and advantageous for large-scale simulations.

4.2.2 SELECTIVE FEATURE AGGREGATION

HMPA enhances the message-passing process by concentrating on feature-level adjustments, avoid-
ing the homogenization of information often seen in traditional attention mechanisms that aggregate
over sequence positions. The element-wise multiplication and feature-dimension-specific softmax
prevent less informative features from overshadowing crucial ones, maintaining the unique contri-
butions of each feature to the node updates. As a result, nodes can selectively aggregate the most
relevant features from their neighbors, leading to richer and more discriminative node embeddings
that better capture the underlying graph structure.

4.3 GRAPH FOURIER LOSS

While the Scaled Historical Message-Passing Attention (HMPA) mechanism enhances the model’s
ability to focus on critical feature dimensions during message passing, it is equally important to
ensure that the learned representations capture the essential spectral properties of the graph data. To
this end, we introduce the Graph Fourier Loss (GFL), which complements HMPA by promoting a
balanced learning of both high-energy and low-energy components in the spectral domain. Together,
HMPA and GFL jointly optimize the model’s performance by addressing feature importance in both
the spatial and spectral domains.

Preprocessing When the model does not alter the graph’s topological structure, the inherent topo-
logical properties of the graph, such as the Laplacian matrix and its eigenvalues and eigenvectors,
remain unaltered throughout the training process. To avoid the substantial increase in computation
time caused by calculating eigendecompositions in each forward pass of our model, we preprocess
the training set before commencing model training. For each time step, the graph’s Laplacian matrix
is calculated and subsequently decomposed into eigenvectors U . Consequently, during training, we
only need to call the eigenvectors to calculate the loss, and during inference, the eigenvectors are
not required at all.

Compute Graph Fourier Loss during training To circumvent the significant computational
overhead of calculating eigenvectors during inference, we propose the Graph Fourier Loss (GFL) as
the loss function. This strategy ensures the inference speed of the model remains unaffected.

Initially, we perform GFT on both the model’s output ytrain ∈ RN×d and the target output y ∈ RN×d,
transforming the signals from the time domain to the frequency domain:

ŷ = UT y, ŷtrain = UT ytrain

Subsequently, we calculate the energy of each dimension of the transformed signals and sum them
up to obtain the total energy for each signal across all nodes and dimensions:

E =

d∑
k=1

|ŷ:,k|2, Etrain =

d∑
k=1

|ŷtrain
:,k |2

E and Etrain represent the total energy of the target and model output signals in the frequency domain,
respectively.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

The energy E are then sorted, and using the hyperparameter segment rate sr, it is divided into high
Ehigh and low Elow energy components. An adjustment factor α is computed based on the mean
energy of these partitions:

α =

√
mean(Ehigh)

mean(Elow) + ϵ
· λ

The constant ϵ is employed to prevent division by zero, while the regularization parameter λ controls
the strength of the adjustment. When α > 1, high-energy regions are amplified, resulting in the
model emphasizing high-energy components. Conversely, when α < 1, this emphasis is reduced.
Both manual setting of the regularization parameter λ and incorporation it as a learnable parameter
have been tested, found in Experiment 5.4

Finally, we adjust the signals and compute the mean squared error (MSE) directly in the spectral
domain:

ŷ′ = adjust(ŷ, α), ŷtrain′ = adjust(ŷtrain, α),

where the adjust(·) function operates on the spectral signals and scales their low-energy components
by α, leaving high-energy components unchanged:

adjust(ŷ, α)i =
{
α · ŷi, if i ∈ low-energy components,
ŷi, if i ∈ high-energy components.

The Graph Fourier Loss is then defined as:

GFL =
1

N
∥ŷ′ − ŷtrain′∥22.

By integrating GFL with HMPA, the model effectively captures essential information in both the
spatial and spectral domains, leading to improved predictive performance in complex physical en-
vironments. In Appendix A, we analyze the gradient with respect to λ and explain why λ does not
converge to zero. The presence of both positive and negative terms in the derivative suggests the
existence of an optimal λ > 0 that minimizes the loss. In Appendix C, we provide a theoretical
analysis of why GFL is effective. The adjustment factor α serves as a frequency-specific weight,
modulating the importance of each frequency component. Additionally, by incorporating ∂ŷi

∂θ , the
model integrates frequency domain information, improving its ability to capture meaningful pat-
terns across frequencies. The interaction between α and the error terms ensures an adaptive learning
process that shifts focus towards the most relevant frequency components.

5 EXPERIMENTS

Figure 2: Comparison of RMSE of velocity norm between the Lagrangian system FlagSimple and
the Eulerian system CylinderFlow using our HMIT and MeshGraphNet (MGN) (5).

In Section 5.1, we describe the datasets and implementation details, followed by an analysis of
the precomputation costs associated with GFL in Section 5.3. Subsequently, we present the baseline
models used for comparison and discuss the evaluation results, along with ablation studies conducted
to assess the contributions of specific model components in Sections 5.2 and 5.4. We also visualize
the RMSE of a Lagrangian system and an Eulerian system respectively, as shown in Figure 2.
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5.1 TASK SETUPS

Datasets Description We evaluated our method in the representation of both Lagrangian and Eu-
lerian dynamical systems. The Lagrangian systems involve the datasets FlagSimple and Deforming-
Plate, while the Eulerian systems include CylinderFlow and Airfoil, with all datasets sourced from
MeshGraphNet (5).

• FlagSimple models a flag blowing in the wind, utilizing a static Lagrangian mesh with a
static topology structure and ignores collisions.

• DeformingPlate Utilizes a quasi-static simulator to model the deformation of a hyper-
elastic plate by a kinematic actuator. The dataset is structured with a Lagrangian tetrahedral
mesh.

• CylinderFlow simulates the flow of an incompressible fluid around a fixed cylinder in a 2D
Eulerian mesh.

• Airfoil focuses on the aerodynamics around an airfoil wing section, employing a 2D Eule-
rian mesh to monitor the evolution of momentum and density.

Implementation Our framework is built using PyTorch (65) and PyG (PyTorch Geometric) (66).
The entire model is trained and inferred on a single Nvidia RTX 4090. Detailed information, includ-
ing network hyperparameters, input and output formats, and noise injection methods, can be found in
appendix E. Our datasets and code are publicly available at https://github.com/Heiyanyan/Learning-
Physical-Simulation-with-Message-Passing-Transformer.

Measurements Dataset HMIT (ours) MGN (5) BSMS (50) TIE (56)
Mesh

Transformer (67)
Graph

MLP-Mixer (23)

RMSE-1 [1E-2] Cylinder 2.03E-01 5.24E-01 5.09E-01 4.21E-01 3.05E-01 4.12E-01
Airfoil 2.61E+02 3.14E+02 2.94E+02 3.17E+02 2.96E+02 3.05E+02
Plate 1.00E-02 2.69E-02 2.83E-02 3.56E-02 2.38E-02 3.28E-02
Flag 1.12E-02 6.47E-02 6.51E-02 5.48E-02 4.73E-02 6.89E-02

RMSE-50 [1E-2] Cylinder 6.32E-01 1.40 3.25 6.85 1.07 4.61
Airfoil 4.08E+02 5.36E+02 1.34E+03 5.72E+03 5.21E+02 6.32E+02
Plate 9.25E-02 1.73E-01 2.81E-01 3.61E-01 1.30E-01 6.19E-01
Flag 1.87 2.29 2.46 2.19 2.04 3.90

RMSE-all [1E-2] Cylinder 3.78 4.32 1.36E+01 2.68E+01 4.26 2.05E+01
Airfoil 1.64E+03 2.08E+03 1.01E+04 1.27E+05 2.00E+03 3.97E+03
Plate 1.09 1.61 4.52 9.62 1.28 8.22
Flag 2.05 2.45 3.28 1.24E+01 2.32 7.25

Table 1: RMSE of our method, MeshGraphNet (MGN), Bi-Stride Multi-Scale GNN (BSMS-GNN),
Transformer with Implicit Edges (TIE), Mesh Transformer and Graph MLP-Mixer for different
rollout steps. Our method achieves state-of-the-art in all datasets.

5.2 COMPARISON WITH BASELINES

Baselines In our evaluation, we compared against several state-of-the-art GNNs. The Bi-Stride
Multi-Scale Graph Neural Network (BSMS) (50) introduces multiscale methods to enhance the
efficiency of message passing. MeshGraphNet (MGN) (5) leverages a mesh-based approach for
graph representation. The Transformer with Implicit Edges (TIE) model (56) streamlines interac-
tion modeling in Message Passing Neural Networks by utilizing a modified attention mechanism
to efficiently process particle dynamics without explicit edge representations. (Reviewer L6SR,
Reviewer YBDW, Reviewer ZnqH) Mesh Transformer (67) incorporates global attention and hier-
archical pooling mechanisms to capture long-range dependencies on non-uniform meshes. Graph
MLP-Mixer (23) uses Hadamard-Product Attention between local patch encodings.

Evaluation Table 1 demonstrates the superiority of our model across all datasets. We randomly
selected three seeds to initialize the models and reported the mean RMSE values with their respective
variance in the table. The CylinderFlow dataset at RMSE-1 reveals a pronounced improvement with
our model, which shows a reduction in error by 33.4% compared to Mesh Transformer, the nearest
competitor. At RMSE-50 and RMSE-all, our model continues to exhibit superior performance,
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showing a reduction in error by 40.9% at RMSE-50 and by 11.3% at RMSE-all when compared to
Mesh Transformer.

In the context of the Airfoil dataset, our model remains state-of-the-art. At the RMSE-50 condi-
tion, the model’s error rate is reduced by 21.6% compared to Mesh Transformer. This illustrates
the model’s capacity to maintain accuracy over prolonged sequences, which is an essential feature
for simulations requiring stability over extended temporal spans. At RMSE-all, the improvement
reaches 18%.

For the DeformingPlate and FlagSimple datasets, our model displays similar trends. In the Plate
dataset, the RMSE-1 shows an improvement of 57.9% over Mesh Transformer, with continued dom-
inance in longer simulations, indicated by a 28.8% error reduction at RMSE-50. For the FlagSim-
ple dataset, while the improvements are more significant, our model consistently outperforms other
methods across all metrics, with the most notable reduction being 76.7% at RMSE-1.

5.3 PRECOMPUTATION COST

Dataset Eigen Time per Sample (s) Total Time (s)
Cylinder 0.026 27.21
Airfoil 0.204 218.34
Plate 0.016 19.19
Flag 0.020 21.82

Table 2: Preprocessing costs for Graph Laplacian eigen decomposition.

(Reviewer G8Yr, Reviewer L6SR, Reviewer wc4g, Reviewer YBDW, Reviewer ZnqH) To provide
clarity on preprocessing costs, we evaluate both the eigen decomposition time for the Graph Lapla-
cian and the total preprocessing time across datasets. These computations only occur once and are
considered part of the dataset generation process. For static graph topologies, eigen decomposition
is only performed at t = 0. For datasets with dynamic topologies, eigen decomposition is conducted
at each time step. This approach eliminates the computational complexity that would otherwise be
incurred during training, while ensuring that the inference speed remains unaffected. The maximum
preprocessing time across all datasets is only 3 minutes, which is negligible compared to the training
duration.

5.4 ABLATION STUDIES

Measurements Dataset
Without

HMPA and GFL
HMPA

only
GFL
only

HMPA + GFL
(ours)

RMSE-1 [1e-2] Cylinder 5.83E-1 2.64E-1 2.27E-1 2.03E-1
Flag 6.47E-2 1.51E-2 2.29E-2 1.12E-2

RMSE-50 [1e-2] Cylinder 1.42 9.10E-1 6.96E-1 6.32E-1
Flag 2.29 1.97 2.03 1.87

RMSE-all [1e-2] Cylinder 4.32 3.94 3.89 3.78
Flag 2.45 2.16 2.21 2.05

Table 3: Ablation study conducted on the CylinderFlow and (Reviewer wc4g) FlagSimple datasets
to evaluate the contributions of individual components within our architecture. We test the effects
of Historical Message-Passing Attention (HMPA), Graph Fourier Loss (GFL), and their combina-
tion. Results indicate that integrating both HMPA and GFL leads to reductions in error. (Reviewer
ZnqH)When GFL is not used as the loss function, we replace it with MSE.

To rigorously evaluate the influence of specific model components and configurations on overall
performance, systematic ablation studies were undertaken. These included: (1) Evaluating the con-
tributions of individual components by comparing the effects of Historical Message-Passing Atten-
tion (HMPA) and Graph Fourier Loss (GFL), (2) comparing Dot-Product Attention with Historical
Message-Passing Attention, (3) assessing the efficacy of learnable lambda parameters λ versus man-
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ual setting of λ, and (4) investigating how varying segmentation rates sr affect model performance.
More experimental analysis of GFL can be found in Appendix B.

(a) (b) (c)

Figure 3: (a) Comparison of Dot-Product Attention and Historical Message-Passing Attention in
CylinderFlow. HMPA demonstrates a lower average RMSE across all rollout steps compared to the
Dot-Product Attention. (b) Comparison of learnable and manual λ settings in FlagSimple. Learnable
λ achieves lower error compared to manual settings. (c) The impact of varying segmentation rates
sr in FlagSimple. Different segmentation rates do not significantly impact the final results.

Effectiveness of Graph Fourier Loss and Historical Message-Passing Attention We test the
effects of our each component in Table 3. In terms of predictive accuracy, the model without HMPA
and GFL performed the worst, demonstrating significantly higher error rates across all RMSE mea-
sures. The integration of both HMPA and GFL demonstrated the highest improvement in reducing
error rates across all RMSE measures when compared to standalone implementations of GFL and
HMPA.

Effectiveness of Historical Message-Passing Attention Figure 3a compares the performance of
Dot-Product Attention (14) and Historical Message-Passing Attention (HMPA) on the CylinderFlow
dataset. HMPA consistently outperforms Dot-Product Attention across all rollout steps, demonstrat-
ing a lower average RMSE. This indicates that HMPA’s finer-grained feature dimension weighting
is more effective in capturing the dynamics of the system, leading to more accurate predictions.

Effectiveness of Learnable λ Figure 3b compares the performance of models with learnable λ
settings against manual λ settings in the FlagSimple dataset. The results show that the learnable λ
achieves a lower final average RMSE compared to manual settings. This highlights the advantage
of allowing the model to adaptively adjust λ during training, leading to better overall performance.

Segmentation Rate Selection In Figure 3c, we investigate the impact of varying segmentation
rates sr on the FlagSimple dataset. The results indicate that different segmentation rates do not
significantly impact the final results. This robustness to segmentation rate selection demonstrates
that our model can maintain high performance regardless of the specific value of sr, simplifying the
hyperparameter tuning process.

6 CONCLUSION AND LIMITATION

The Historical Message-Passing Integration Transformer (HMIT) has achieved notable advance-
ments in the accuracy of physical system simulations by effectively integrating Historical Message-
Passing Attention (HMPA) and Graph Fourier Loss (GFL). HMPA mitigates over-squashing, cap-
tures fine-grained details and scales linearly with node count, while GFL ensures the model’s ro-
bustness by focusing on spectral balance. This synergy between HMPA and GFL results in a model
that excels in long-term rollouts, providing accurate and reliable physical simulations. Continued
development of HMIT could lead to broader applications in dynamic system modeling and enhance
its utility in scientific and engineering fields, advancing the capabilities of learnable simulation tech-
nologies.
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A ANALYSIS OF LEARNABLE λ IN GRAPH FOURIER LOSS

Experiments revealed a notable phenomenon: when using a learnable λ within the Graph Fourier
Loss (GFL) framework, λ did not tend to zero. Conversely, when applying a similar adjustment
directly to the mean squared error (MSE) in the frequency domain, the value of λ quickly diminished
to zero. This appendix provides a comprehensive analysis of this observation and elucidates the
underlying reasons.

The key difference between the GFL approach and direct MSE adjustment lies in the interaction
of λ with the frequency domain energy components. In GFL, λ is indirectly involved through the
calculation of an adjustment factor α, which is applied separately to the model’s output ytrain and the
target output y. This can be expressed as:

GFL =
1

N

∥∥adjust(U⊤ytrain, α)− adjust(U⊤y, α)
∥∥2
2
,

where

adjust(ŷ, α)i =
{
α · ŷi, if i ∈ Lŷ,

ŷi, if i ∈ Hŷ,

and Lŷ and Hŷ denote the indices of the low- and high-energy components of ŷ, respectively.

The adjustment factor α is defined as:

α = λ ·

√
mean(Ehigh)

mean(Elow) + ϵ
,

where Ehigh and Elow represent the energies of the high- and low-frequency components, respec-
tively, and ϵ is a small constant to prevent division by zero. The parameter λ helps balance the energy
distribution across different frequency components, ensuring that it remains non-zero to maintain the
desired balance between high- and low-frequency components.

A.1 COMPUTATION OF ∂GFL
∂λ

To understand why λ does not tend to zero in GFL, the partial derivative of GFL with respect to λ is
computed. Denote:

ŷadj = adjust(U⊤ytrain, α), yadj = adjust(U⊤y, α),

and define the error vector:
e = ŷadj − yadj.

Then, GFL can be expressed as:

GFL =
1

N
∥e∥22 =

1

N

N∑
i=1

e2i .

Since the adjustment is applied separately to ytrain and y, and the division into low- and high-energy
components may differ between them, different cases must be considered when computing the
derivative.

A.1.1 ADJUSTMENT CASES

Four cases are defined based on the indices of the components:

Case 1: i ∈ Lŷ ∩ Ly: Both adjusted as low-energy components.
ei = α(ŷi − yi).

Case 2: i ∈ Lŷ ∩Hy: Model output is low-energy, ground truth is high-energy.
ei = αŷi − yi.

Case 3: i ∈ Hŷ ∩ Ly: Model output is high-energy, ground truth is low-energy.
ei = ŷi − αyi.

Case 4: i ∈ Hŷ ∩Hy: Both are high-energy components.
ei = ŷi − yi.
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A.1.2 DERIVATIVE COMPUTATION

The derivative of α with respect to λ is computed:

∂α

∂λ
=

√
mean(Ehigh)

mean(Elow) + ϵ
=

α

λ
.

Substituting the expressions for ei and ∂ei
∂λ , the total derivative can be expressed as:

Case 1:

∂GFL1

∂λ
=

2

N

∑
i∈Lŷ∩Ly

(α(ŷi − yi)) ·
(
(ŷi − yi) ·

∂α

∂λ

)
=

2α

N

∂α

∂λ

∑
i∈Lŷ∩Ly

(ŷi − yi)
2.

Case 2:
∂GFL2

∂λ
=

2

N

∑
i∈Lŷ∩Hy

(αŷi − yi) ·
(
ŷi ·

∂α

∂λ

)
.

Case 3:
∂GFL3

∂λ
=

2

N

∑
i∈Hŷ∩Ly

(ŷi − αyi) ·
(
−yi ·

∂α

∂λ

)
.

Case 4:
∂GFL4

∂λ
= 0.

Combining all cases, the total derivative is:

∂GFL
∂λ

=
2α

N

∂α

∂λ

∑
i∈Lŷ∩Ly

(ŷi − yi)
2 +

2

N

∂α

∂λ

 ∑
i∈Lŷ∩Hy

(αŷi − yi)ŷi −
∑

i∈Hŷ∩Ly

(ŷi − αyi)yi

 .

Substituting ∂α
∂λ = α

λ , the expression becomes:

∂GFL
∂λ

=
2α2

Nλ

 ∑
i∈Lŷ∩Ly

(ŷi − yi)
2 +

∑
i∈Lŷ∩Hy

(αŷi − yi)
ŷi
α
−

∑
i∈Hŷ∩Ly

(ŷi − αyi)
yi
α

 .

A.1.3 ANALYSIS: WHY λ DOES NOT TEND TO ZERO

The derivative ∂GFL
∂λ indicates how changes in λ affect the loss. The key observations are:

• Balance of Frequency Components: A non-zero λ ensures that α adjusts the low-
frequency components appropriately, maintaining a balance between high- and low-
frequency energies.

• Preventing Vanishing α: If λ tends to zero, α also tends to zero, causing the adjusted low-
frequency components to vanish. This would ignore important low-frequency information,
degrading model performance.

• Optimal λ: The derivative includes both positive and negative terms due to the different
cases. This suggests the existence of an optimal λ > 0 that minimizes the loss, rather than
pushing λ toward zero.

Therefore, during optimization, λ is adjusted to balance the contribution of low-frequency compo-
nents without diminishing them entirely.
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A.2 DIRECT APPLICATION OF λ TO FREQUENCY DOMAIN MSE

Conversely, when λ is directly applied to the MSE in the frequency domain using the combined error
ytrain − y, the lack of separate intermediate adjustments for ytrain and y leads to a different effect.
This can be expressed as:

Adjusted MSE =
1

N

∥∥adjust(U⊤(ytrain − y), α)
∥∥2
2
.

In this formulation, the adjustment is applied after computing the error between the model output
and the ground truth. The adjustment function modifies the error vector directly:

adjust(e, α)i =
{
α · ei, if i ∈ Le,

ei, if i ∈ He,

where Le and He denote the low- and high-energy components of the error vector e = U⊤(ytrain−y).

A.2.1 COMPUTATION OF ∂ADJUSTED MSE
∂λ

Since the adjustment is applied to the error vector as a whole, λ affects the loss differently. The
derivative is computed as:

∂Adjusted MSE
∂λ

=
2

N

N∑
i=1

adjust(e, α)i ·
∂adjust(e, α)i

∂λ
.

However, since α adjusts the error vector and α depends on λ, the derivative becomes:

∂adjust(e, α)i
∂λ

=

{
ei · ∂α∂λ , if i ∈ Le,

0, if i ∈ He.

Substituting ∂α
∂λ = α

λ , the expression simplifies to:

∂Adjusted MSE
∂λ

=
2

N

∑
i∈Le

(αei) ·
(
ei ·

α

λ

)
=

2α2

Nλ

∑
i∈Le

e2i .

Since ei = ŷi−yi, the sum
∑

i∈Le
e2i is always non-negative. Therefore, the derivative ∂Adjusted MSE

∂λ
is non-negative.

A.2.2 ANALYSIS: WHY λ TENDS TO ZERO

The non-negative derivative implies that increasing λ will increase the loss:

∂Adjusted MSE
∂λ

≥ 0.

During optimization, the algorithm seeks to minimize the loss, leading to a reduction in λ. Con-
sequently, λ is pushed towards zero. As λ approaches zero, α also approaches zero, effectively
diminishing the adjusted low-frequency error components.

This behavior contrasts with the GFL approach because:

• Lack of Separate Adjustments: By adjusting the combined error rather than the individual
outputs, the model cannot balance the adjustments between ytrain and y.

• Unidirectional Influence: The derivative being non-negative means that the optimization
consistently pushes λ downward without reaching an optimal balancing point.

• Over-suppression of Low-Frequency Errors: As λ decreases, low-frequency errors are
suppressed, potentially ignoring important discrepancies in the low-frequency components.

Therefore, directly applying λ to the MSE in the frequency domain results in λ tending to zero,
leading to suboptimal adjustments of the frequency components.
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B EXPERIMENTAL ANALYSIS OF GRAPH FOURIER LOSS

In Cylinderflow, we conducted additional analyses to examine the effects of Graph Fourier Loss
(GFL).

Figure 4: Adjustment Factors Visualization with Smoothed Trend. The scatter plot shows the ad-
justment factors over time, with a smoothed trend line in red demonstrating the convergence towards
0.5.

We visualized the adjustment factors, as shown in Figure 4. The adjustment factors rapidly con-
verged to approximately 0.5, indicating that GFL reduces the emphasis on low-energy components
in the loss function. This mechanism allows the model to prioritize high-energy components during
optimization, improving both the overall signal quality and the model’s robustness.

Figure 5: Original vs Adjusted Signal Distribution. The blue points represent the original signal
values, and the red points represent the signal values after adjustment by GFL. Equal points are
shown in gray, emphasizing areas where the original and adjusted signals coincide.

Additionally, we visualized the frequency domain information post-GFL application in Figure 5.
The x-axis represents frequency (low to high), and the y-axis represents energy magnitude. The
adjustment factors scale the low-energy components, while the high-energy components remain un-
affected. The visualization demonstrates that the adjusted signals (depicted by red dots) exhibit
significant energy alterations in the low-energy region, resulting in a smoother and more concen-
trated signal performance in the frequency domain.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 6: Sorted Average Signal Difference Across Different Frequencies. The plot shows the sorted
absolute average signal difference across all samples, highlighting how GFL impacts frequency
domain signals.

To quantify the impact of this adjustment, we calculated the average difference in frequency domain
information before and after applying GFL, over 100,000 steps following model convergence. The
results, presented in Figure 6, show an average difference of 0.067 compared to an original signal
mean of 0.72. This indicates that GFL significantly alters the signal representation. The first half of
the figure illustrates a straight line, corresponding to the unaltered high-energy components.

Edge Removal (%) High Energy Mean Low Energy Mean Energy Ratio
1 3.3886 ± 0.0147 3.3913 ± 0.0150 1.0008 ± 0.0004
5 3.3876 ± 0.0142 3.3897 ± 0.0145 1.0006 ± 0.0004
10 3.3872 ± 0.0140 3.3894 ± 0.0143 1.0007 ± 0.0004

Table 4: Energy distributions under varying graph connectivity.

(Reviewer ZnqH) To evaluate GFL’s robustness under varying graph connectivity, we simulate edge
perturbations and measure energy distribution (Table 4). GFL operates on energy distributions rather
than precise eigenvectors, ensuring robustness to small connectivity changes. The stable energy ratio
confirms its generalization across dynamic graph structures.

C THEORETICAL ANALYSIS OF GRAPH FOURIER LOSS

The GFL is defined as:

GFL(θ) =
1

N

∥∥adjust(U⊤ytrain(θ), α)− adjust(U⊤y, α)
∥∥2
2
=

1

N
∥e∥22 =

1

N

N∑
i=1

e2i .

Use the Chain Rule:
∂GFL
∂θ

=
2

N

∑
i

ei ·
∂ei
∂θ

.

Calculate ∂e
∂θ : Based on different cases:

Case 1 (i ∈ Lŷ ∩ Ly):

ei = α(ŷi − yi)⇒
∂ei
∂θ

= α
∂ŷi
∂θ

.

Case 2 (i ∈ Lŷ ∩Hy):

ei = αŷi − yi ⇒
∂ei
∂θ

= α
∂ŷi
∂θ

.

Case 3 (i ∈ Hŷ ∩ Ly):

ei = ŷi − αyi ⇒
∂ei
∂θ

=
∂ŷi
∂θ
− yi

∂α

∂θ
.
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Case 4 (i ∈ Hŷ ∩Hy):

ei = ŷi − yi ⇒
∂ei
∂θ

=
∂ŷi
∂θ

.

By synthesizing the above steps, we have:

∂GFL
∂θ

=
2

N

∑
i

ei·
∂ei
∂θ

=
2

N

 ∑
i∈Lŷ∩Ly

αei
∂ŷi
∂θ

+
∑

i∈Lŷ∩Hy

αei
∂ŷi
∂θ

+
∑

i∈Hŷ∩Ly

(ei − αyi)
∂ŷi
∂θ

 .

C.1 RESULT ANALYSIS

• Weight Adjustment: The adjustment factor α serves as a frequency-specific weight, mod-
ulating the contribution of each frequency component based on its relative importance.

• Frequency Domain Learning: By including ∂ŷi

∂θ , the gradient integrates frequency do-
main information, allowing the model to better capture meaningful patterns across different
frequencies.

• Adaptive Learning: The interaction between α and the error terms ensures that the learn-
ing process adaptively shifts focus towards the most relevant frequency components for the
task at hand.

D DATASET DETAILS

(a) Flag Simple (b) Deforming Plate

(c) Cylinder Flow (d) Airfoil

Figure 7: Visualization of different datasets.

Table 5: Dataset Specifications

Dataset System Mesh Type Dimensions # Steps time step ∆t

FlagSimple Lagrangian triangle 3D 400 0.02
DeformingPlate Lagrangian tetrahedral 3D 400 —
CylinderFlow Eulerian triangle 2D 600 0.01
Airfoil Eulerian triangle 2D 600 0.008
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Dataset Specifications Our models are trained and evaluated across four distinct datasets:
FlagSimple, DeformingPlate, CylinderFlow, and Airfoil. Each dataset consists of 1000 training
trajectories, 100 validation trajectories, and 100 test trajectories, with each trajectory comprising
between 250 to 600 time steps. The FlagSimple dataset models a flag fluttering in the wind using a
static Lagrangian mesh with a fixed topology, ignoring collision effects. The DeformingPlate dataset
simulates the deformation of a hyper-elastic plate driven by a kinematic actuator with a quasi-static
simulator, structured on a Lagrangian tetrahedral mesh. The CylinderFlow dataset involves the sim-
ulation of incompressible The Airfoil dataset focuses on the aerodynamic properties around an airfoil
section, utilizing a 2D Eulerian mesh to track changes in momentum and density over time. Table 5
details for each dataset include: System, indicating whether the simulation is Lagrangian for solid
mechanics or Eulerian for fluid dynamics; Mesh Type, specifying the geometric configuration such
as triangular or tetrahedral; Dimensions, indicating whether the simulation is in 2D or 3D; and #
Steps, the total number of simulation steps in each trajectory reflecting the depth of time-dependent
analysis. The time step ∆t column specifies the simulation time increment between each step.

E MODEL DETAILS

Model Hyperparameters We employ a batch size of 1 but gradient accumulation of 20 for train-
ing and set the Message Passing (MP) time to 15 steps. These configurations are directly adapted
from the MGN model, as our model is a further improvement based on MGN. Unlike MGN, which
was trained for 10 million steps, we found that our model converged with the above settings in just
5 million steps, allowing us to reduce the training duration. The Adam optimizer is used with an
initial learning rate of 10−4, which decays exponentially to 10−6 over the course of 2 million train-
ing steps, out of a total of 5 million steps. The model comprises four functions: f1, f2, f3, and
f5, each configured as a ReLU-activated two-hidden-layer MLP. All the layers are sized at 128, the
same as other baselines. The Historical Message-Passing Attention mechanism implemented uses
four heads and includes a dropout rate of 0.1. The segmentation rate, denoted by sr, is set at 0.5.
Rather than employing a manual setting of the parameter λ, we have chosen to utilize learnable
lambda parameters. These settings are consistently applied across all datasets. Other models utilize
the default configurations from their respective papers.

Table 6: Model Input and Output Specifications

Dataset edge inputs eMij edge inputs eWij node inputs vi output

FlagSimple xm,ij , |xm,ij |,xw,ij , |xw,ij | xw,ij , |xw,ij | ni, ẋi ẍi

DeformingPlate xm,ij , |xm,ij |,xw,ij , |xw,ij | xw,ij , |xw,ij | ni ẋi, σi

CylinderFlow xw,ij , |xw,ij | – ni, wi ẇi

Airfoil xw,ij , |xw,ij | – ni, wi, ρi ẇi, σ̇i

Model Input and Output In table 6, several specific terms and symbols define the structure of
input and output data for each dataset involved in the simulations. The edge inputs eMij and eWij
represent interactions associated with edges between nodes i and j, where xm,ij denotes the world
edge position and xw,ij indicates the mesh edge position. The node inputs vi include ni, representing
node types, and xi, indicating node positions. Other node-specific properties include momentum
(wi) and density (ρi), while outputs encompass acceleration (ẍi), velocity (ẋi), and von Mises stress
(σi).

Table 7: Noise Scale and World Edge Radius Specifications

Dataset Noise Scale World Edge Radius rw

FlagSimple pos: 1e-3 —
DeformingPlate pos: 3e-3 0.03
CylinderFlow momentum: 2e-2 —

Airfoil momentum: 1e1, density: 1e-2 —
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Noise Injection and World Edge Radius Settings To enhance the robustness of our model against
noisy inputs and to simulate real-world data conditions more accurately, we implemented a strategy
for noise injection into the training process. These noise scales are consistent with the settings
used in MeshGraphNet (5), as detailed in Table 7. Additionally, the world edge radius rw column
specifies the radius used for defining mesh interactions in the DeformingPlate dataset. (Reviewer
YBDW) GFL uses the original topology from the dataset so rw do not participate in the Laplacian
eigendecomposition. This ensures that the precomputation remains efficient and does not incur
additional unnecessary overhead.

F MEMORY CONSUMPTION AND COMPUTATIONAL SPEED

Measurements MGN (5)
HMIT
(ours)

optimized HMIT
(ours)

ttrain/step [ms] 4.59 8.12 5.24
tinfer/step [ms] 1.91 3.37 1.95
Train RAM [GB] 1.50 4.45 1.92
Infer RAM [GB] 0.61 0.79 0.64

Table 8: Comparative study on the CylinderFlow dataset, evaluating computational efficiency and
memory usage across methods. (Reviewer ZnqH) The integration of KV cache and dynamic
weighted value selection significantly improves computational speed and reduces memory consump-
tion.

Despite the promising advancements offered by the Historical Message-Passing Integration Trans-
former (HMIT) in simulating physical systems, its initial implementation faced notable limitations
in computational speed and memory consumption. To address these challenges, we incorporated
two key optimizations. First, KV Cache eliminates redundant computations by caching key and
value matrices, reducing the attention complexity from O(3Nsd2 + 3Nsd) to O(Nsd2 + 3Nsd).
Second, Dynamic Weighted Value Selection dynamically selects the first m rows of the weighted
value matrix w ∈ Rs×d, where m corresponds to the current message-passing step, further enhanc-
ing computational efficiency. As shown in Table 8, these optimizations significantly reduce training
and inference times while decreasing memory requirements.

G PERFORMANCE OF HMIT ON DAM FLOW

Measurements HMIT (ours) MGN (5) BSMS (50) TIE (56)

RMSE-1 1.08 E-01 2.25 E-01 1.87 E-01 1.62 E-01
RMSE-50 2.57 E-01 6.03 E-01 5.34 E-01 5.71 E-01
RMSE-all 4.63 E-01 9.25 E-01 8.36 E-01 8.49 E-01

Table 9: Comparison of HMIT with MGN, BSMS, and TIE on the Dam Flow dataset. HMIT
demonstrates superior performance across all metrics.

(Reviewer L6SR) We additionally conducted an experiment on the Dam Problem from the CFD-
Bench (68) benchmark, which models the rapid release of water from a column collapse and repre-
sents complex free-surface flows with varying velocities. Our method outperforms previous methods
(MGN, BSMS, and TIE) across all three RMSE metrics—RMSE-1, RMSE-50, and RMSE-all—by
33% to 57%.
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H ROLLOUT VISUALIZATIONS

Figure 8: Flag Simple Visualization

Figure 9: Plate Visualization

Figure 10: Cylinder Visualization
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Figure 11: Airfoil Visualization
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