
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LEARNING PHYSICAL SIMULATION WITH HISTORICAL
MESSAGE-PASSING INTEGRATION TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning methods for mesh-based physical simulation have achieved
significant success in recent years. (Reviewer ZnqH) We propose the Histori-
cal Message-Passing Integration Transformer (HMIT), an architecture based on
Graph Neural Networks that incorporates a message passing framework and ap-
plies Graph Fourier Loss (GFL) for model optimization. (Reviewer ZnqH) To
mitigate over-squashing, capture fine-grained details, and scale linearly with node
count, we introduce Historical Message-Passing Attention (HMPA), which in-
tegrates multi-step historical message-passing information for each node with
feature-wise softmax and employs a decoder-only architecture. Additionally, to
modulate loss at specific frequencies and handle varying energy levels, we in-
troduce GFL, which uses a frequency-domain energy adjustment schedule. To
improve computational efficiency, we precompute the graph’s Laplacian eigen-
vectors before training. Our architecture achieves significant accuracy improve-
ments in shart- and long-term rollouts for both Lagrangian and Eulerian dynamical
systems compared to current methods.

1 INTRODUCTION

In recent advancements in physical systems simulation, an increasing number of neural network-
based methods are challenging traditional numerical solvers. These methods, notable for being sev-
eral orders of magnitude faster and maintaining low error rates, have garnered substantial attention
from researchers (1; 2; 3; 4). Graph Neural Networks (GNNs) have garnered widespread inter-
est and research attention due to their unique features, including node-wise independent updates
and aggregation operations that closely resemble iterations in traditional simulations. Additionally,
particle-based and mesh-based simulations can be easily converted into graphs through neighbor in-
teractions (4) and topology structures (5). This growing body of research can be collectively termed
as GNN for Simulation (GNN4Sim) (6; 7; 8; 9).

Unlike the fields of Natural Language Processing (NLP) and Computer Vision (CV), physical sys-
tems are more complex and unstable, where every piece of information is crucial. This implies
that issues like over-smoothing and over-squashing might be more pertinent in physical simulations
(10). A common solution to mitigate these issues is mapping the original information to a high-
dimensional latent space for processing. This approach has become a widely used architecture in
most GNN4Sim applications (11; 5; 12; 4; 13), known as the encoder-processor-decoder (EPD),
which, due to its focus on nodes and edges rather than graph structure, has a broad range of applica-
tions.

Since the Attention mechanism achieved significant success in the Natural Language Processing
(NLP) domain (14), many Transformer-based network architectures have been developed in com-
puter vision (15; 16), Social and Information Networks (17), (Reviewer ZnqH, Reviewer L6SR,
Reviewer G8Yr) and physical simulation (18; 19; 20). Universal architectures for graph-based
learning have also emerged, such as GraphGPS (21), Graph Attention Networks (GAT) (22), and
Graph MLP-Mixer (23). However, physical simulations pose unique challenges that require tailored
solutions.

To address these challenges, we propose Historical Message-Passing Attention (HMPA), a novel
mechanism designed to solve three key issues commonly encountered in physical simulations:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

1. Mitigating over-squashing: Over-squashing occurs when important information from dis-
tant nodes fails to propagate effectively (24), leading to poor long-range dependencies. To
address this, HMPA integrates multi-step historical message-passing information for each
node, enabling nodes to aggregate and retain context from earlier message-passing steps.
This facilitates the effective propagation of critical information across varying distances.

2. Capturing fine-grained details: Physical simulations often involve intricate dynamics that
require precise modeling of feature importance (10). HMPA applies feature-dimensional
softmax combined with Hadamard products, which assigns attention weights to individual
feature dimensions rather than sequence positions. This fine-grained weighting enhances
the model’s ability to focus on the most relevant features for each node, improving accuracy.

3. Scaling linearly with node count: Standard self-attention mechanisms suffer from
quadratic complexity with respect to the number of nodes, limiting their applicability to
large-scale systems. HMPA adopts a decoder-only design, which ensures linear scalability
with the number of nodes, making it efficient and suitable for large physical simulations.

Incorporating theoretical methodologies from graph signal processing, we have innovatively applied
the Graph Fourier Transform (GFT) (25; 26) to the domain of physical simulations through our in-
troduction of Graph Fourier Loss (GFL). This novel loss function optimizes model performance by
leveraging the unique spectral properties of graphs. Rather than applying a Fourier Transform di-
rectly to the model, we employ preprocessing Laplacian eigenvector matrix within the loss function,
thereby keeping the model’s inference time nearly unchanged.

2 RELATED WORK

Neural Approaches in Physical Systems Simulation In recent years, Several neural-based meth-
ods have achieved great research interest in physical systems simulation due to their high com-
putational speed and low error rates. Among these, Convolutional Neural Networks (CNNs)
(27; 28; 29; 30; 31; 32) have been utilized to infer the dynamics of physical systems, demonstrat-
ing the capability of neural networks in accurately and efficiently simulating complex phenomena.
Physics-Informed Neural Networks (PINNs) (3; 33; 34; 35; 36) , which leverage implicit represen-
tations and physical condition constraints, can be trained without traditional datasets, illustrating a
groundbreaking approach to model training that is particularly valuable in scenarios where empiri-
cal data is scarce or difficult to obtain. Neural operators (2; 37; 38; 39) offer a novel methodology
for predicting the physical state at any given time step directly from initial conditions. This rep-
resents a significant shift from traditional simulation methods, enabling more efficient and flexible
simulations across various scales and conditions. Graph Neural Networks (GNNs) (4; 5; 40; 41) fa-
cilitate information exchange between nodes through message passing. This mechanism effectively
captures the interactions within physical systems, allowing for the detailed simulation of complex
dynamics. Closely related is differentiable simulation, which emerge as a powerful tool to address
optimization applications in different applications, including fluids (42), cloth (43; 44), deformable
objects (45), articulated bodies (46), and solid-fluid coupling systems (47; 48; 49).

Advancements in GNN Architectures for Simulation Recent studies in GNN4Sim have intro-
duced various improvements. Multiscale methods (50; 51; 52; 53) , benefiting from simplified latent
graph structures, have significantly accelerated training and inference while maintaining quality. At
its core, this involves enhancing the efficiency of message passing, which entails modifying the
topological structure of the graph. This change aims to concurrently increase processing speed and
enhance accuracy in the simulations. Similarly, FIGNet (54) by adding face-face edges, changes the
graph structure to improve collision accuracy. Han et al. (55) through uniform sampling, simplifies
the graph structure, applying scaled dot-product attention to the entire graph but requires multiple
prior temporal steps information. TIE (56) streamlines interaction modeling in Message Passing
Neural Networks, utilizing a modified attention mechanism to efficiently process particle dynamics
without explicit edge representations. LAMP (57) uses reinforcement learning to adapt to the vary-
ing relative importance of the trade-off between error and computation at inference time. C-GNS
(58) focus on model the constraints of the physical system.

Bridging Graph Theory and Signal Processing Graph Signal Processing (GSP) extends tradi-
tional signal processing techniques to signals defined on graphs (59; 60) , a paradigm shift that has

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

unlocked new avenues in analyzing complex data structures. Bruna et al. (61) introducing Spectral
Networks for graph data learning, establishing foundational techniques for GNNs. Sandryhaila and
Moura (25) and Hammond et al. (26) introduced the concept of applying wavelet transforms on
graphs, offering a powerful tool for signal analysis and processing on irregular domains. Further,
the development of Graph Convolutional Networks (GCNs) (62; 63; 64) , simplified the applica-
tion of convolutional neural networks to graph data, enabling efficient learning of graph-structured
data. These foundational studies emphasize the significance of spectral methods in understanding
and leveraging the inherent structure of data represented as graphs.

3 PROBLEM FORMULATION AND PRELIMINARIES

This section introduces the problem formulation and the necessary preliminary concepts. It begins
with the representation of physical systems using graph structures and the optimization goal for a
learnable simulator in Section 3.1. It then delves into the Graph Fourier Transform (GFT), which
facilitates the analysis of graph signals in the spectral domain in Section 3.2.

3.1 PROBLEM FORMULATION

(Reviewer G8Yr) We consider graph Gt = (V t, Et) to represent a physical system with t taking
discrete values t = 0, 1, . . ., where V t denotes the set of nodes with node attributes vti for each
vti ∈ V t, and Et denotes the set of edges with edge attributes etij for each etij ∈ Et. We also define
a total of M Message Passing iterations, with k = 0, 1, . . . ,M . During the k-th Message Passing
iteration, the attributes of nodes and edges are denoted by vtk,i and etk,ij .

The learnable simulator fθ, parameterized by θ, can be optimized towards training objective. The
goal of the learnable simulator is to predict the next state of the system, Gt+1, based on the previous
prediction of graph Gt at time step t, denoted by Gt+1 = fθ(G

t), or G0 → G1 → · · · → Gt.

3.2 GRAPH FOURIER TRANSFORM

The Graph Fourier Transform (GFT) transforms signals on a graph from the spatial vertex domain to
the spectral frequency domain. For a signal defined on the vertices of the graph, GFT leverages the
eigenvectors of the graph’s Laplacian matrix, projecting the signal onto the orthogonal basis formed
by these eigenvectors. This projection allows us to analyze and process the signal in a domain where
convolution and filtering can be performed algebraically.

3.2.1 MATHEMATICAL DEFINITIONS

(Reviewer wc4g) The adjacency matrix of G is denoted by A, where Aij = 1 if there is an edge
between vertices i and j, and Aij = 0 otherwise. The degree matrix D is a diagonal matrix where
Dii =

∑
j Aij . The Laplacian matrix of the graph is defined as L = D −A.

The eigenvalues and eigenvectors of L are denoted by λi and ui, respectively, where i = 1, 2, . . . , N ,
and N is the number of vertices in the graph.

Given a signal x ∈ RN defined on the vertices of the graph, the GFT of x is given by

x̂ = UTx

where U = [u1, u2, . . . , uN] is the matrix of eigenvectors of L, and UT is its transpose. The signal
x can be reconstructed from its GFT x̂ using the inverse GFT, given by

x = Ux̂

4 METHOD

In Section 4.1, we present the overall architecture of the model, followed by a detailed descrip-
tion of the Historical Message-Passing Attention and Graph Fourier Loss in Sections 4.2 and 4.3,
respectively. The Historical Message-Passing Attention is introduced to address aggregation bias
and enable more fine-grained feature processing. The Graph Fourier Loss is introduced to balance
the high-energy and low-energy components in the spectral domain, thereby enhancing the model’s
capacity to learn complex physical phenomena.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 1: Model Architecture of the Historical Message-Passing Integration Transformer, visual-
izing the information processing procedure for the first of four Message Passing (k = 0,M = 4)
times. The encoder module transposes inputs into a latent space and the decoder predicts future
states by extrapolating these encoded representations. The processor unit conducts numerous itera-
tions, each treated as a regression problem, to refine node and edge attributes. The highly complex
physical details make the model sensitive to noise, so the dynamic modulation of the frequency
domain energy using Graph Fourier Loss (GFL) attenuates the impact of noise. GFL leverages the
spectral properties of graphs to enhance model inference efficacy.

4.1 HISTORICAL MESSAGE-PASSING INTEGRATION TRANSFORMER

The Historical Message-Passing Integration Transformer architecture incorporates a Message Pass-
ing framework, employs an Encoder-Processor-Decoder structure, and utilizes Graph Fourier Loss
for model optimization. Figure. 1 visualizes the computational process of the model.

Encoder The node and edge attributes are transformed into a latent space by f1 and f2, respec-
tively.

vt0,i ← f1(v
t
i), et0,ij ← f2(e

t
ij)

Processor The edge features are updated by f3, incorporating features from adjacent nodes. Node
features are then updated by f4, which aggregates information across multiple tokens using Histor-
ical Message-Passing Attention. Each token represents node and aggregated edge features from a
particular Message Passing iteration:

etk+1,ij ← f3(e
t
k,ij , v

t
k,i, v

t
k,j), vtk+1,i ← f4

vtk,i,

k⊕
m=0

vtm,i,
∑
j

etm,ij


where

⊕
denotes the sequential concatenation of tokens

(
vtm,i,

∑
j e

t
m,ij

)
for each m from 0 to k,

forming the input sequence for f4.

We choose to use historical Message Passing (MP) steps as sequence inputs instead of traditional
temporal features because our model focuses on single-step prediction—using information at time t
to predict the state at time t+1. Different MP steps capture various aspects of node states, enriching
the feature representation at each iteration. This approach aligns with models like MeshGraphNet
(5), which utilize independent MLPs for each MP step due to the unique information each step pro-
vides. (Reviewer ZnqH) By leveraging historical MP step features as context for the current MP
step, we mitigate over-squashing by enabling the model to propagate information across multiple
MP steps, capturing broader dependencies in complex physical environments. The processor treats
node updates as an autoregressive problem, using past message-passing attributes for keys (K) and
values (V) and the current state as the query (Q). (Reviewer ZnqH) This decoder-only design en-
sures efficient information aggregation, scaling linearly with the number of nodes, while preserving
critical features for robust predictions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Decoder After M times Message Passing, the latent node features are mapped back to the original
attribute space by f5, culminating in the update of the graph state to the next time step.

vt+1
i ← f5(v

t
M,i), Gt+1 = UPDATE

(
Gt, vt+1

i

)
Here, f1, f2, f3, and f5 are all shallow MLPs. During training, finally, we compute the model loss
using our Graph Fourier Loss and update the weights accordingly.

4.2 SCALED HISTORICAL MESSAGE-PASSING ATTENTION

To address effectively sidestepping the aggregation bias introduced by the summation operations
typical of matrix multiplication, we introduce the Scaled Historical Message-Passing Attention
(HMPA) mechanism. HMPA utilizes element-wise multiplication followed by a linear transfor-
mation to finalize the attention computation, (Reviewer ZnqH) enabling the model to capture fine-
grained details by focusing on the relative importance of individual feature dimensions. This design
ensures that nuanced information is preserved and emphasized during message-passing updates,
leading to more accurate and expressive representations.

Our attention mechanism is tailored for inputs with a finite maximum sequence length, enabling
more nuanced processing of the relative importance of features within the message passing frame-
work of the processor. Let vk,i ∈ Rd denote the feature vector of the current node attribute at
iteration k for node i, and

∑
j ek,ij ∈ Rd represent the aggregated edge attributes associated with

node i at iteration k. We construct the key and value matrices K,V ∈ Rs×d by concatenating the
sequences of node attributes and their corresponding aggregated edge attributes from iterations 0 to
k:

K = V =

k⊕
m=0

vm,i,
∑
j

em,ij

 = [v0,i,
∑
j

e0,ij , . . . , vk,i,
∑
j

ek,ij]

Here, s = 2(k + 1) is the sequence length, and d is the feature dimension.

The corresponding attention weights a ∈ Rs×d are computed by applying a scaled Hadamard prod-
uct between the current node attribute v and the key matrix K, followed by a softmax operation
along the feature dimension:

a = softmax
(
v ⊙K√

d

)
where ⊙ denotes element-wise multiplication between v (broadcasted to match the dimensions of
K) and K, and the softmax function is applied over the feature dimension d for each sequence
position. Consequently, the contribution of each dimension to the Value vector’s computation is
determined by its relative importance across the dimension, not by its position within the sequence.
Specifically, the element-by-element representation of matrix a is:

ap,q =
exp

(
vq·Kp,q√

d

)
∑d

q′=1 exp
(

vq′ ·Kp,q′√
d

)
Subsequently, the attention weights a are applied to the value matrix V through element-wise mul-
tiplication, yielding the weighted value matrix w ∈ Rs×d, which undergoes a linear transformation
to reshape it back to a dimension of d.

Our methodological shift fundamentally reorients the attention mechanism from focusing on se-
quence positions to emphasizing feature dimensions. Unlike the traditional Scaled Dot-Product
Attention, which assigns scalar attention weights to each position in the sequence, our Scaled His-
torical Message-Passing Attention allocates weights across each feature dimension. By applying
the softmax function along the feature dimension d rather than the sequence dimension s, HMPA
capture the relative importance of individual features in contributing to the node updates. Channel
mixing is then performed by the linear transformation.

For cases requiring multiple attention heads, we extend HMPA to its multihead version, Multihead
Historical Message-Passing Attention, in a manner similar to the multihead extension of Scaled
Dot-Product Attention, allowing the model to attend to different feature dimensions simultaneously.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

4.2.1 COMPLEXITY ANALYSIS

(Reviewer YBDW) The floating-point operations (FLOPs) for the HMPA mechanism are calculated
with N representing the number of nodes, s as the sequence length, and d as the feature dimen-
sion. Constructing the key and value matrices K and V requires linear transformations across each
sequence step, amounting to 2Nsd2 FLOPs. The calculation of attention weights a, including the
element-wise product and softmax operation, requires 2Nsd FLOPs. The element-wise multiplica-
tion of a and V , followed by a linear transformation to reshape the result back to dimension d, adds
Nsd+Nsd2 FLOPs. Summing these components, the total FLOPs for HMPA is:

FLOPs = 3Nsd2 + 3Nsd.

This complexity scales linearly with the number of nodes N , with a fixed sequence length s. Com-
pared to a global self-attention mechanism, our decoder-only architecture avoids the O(N2) com-
plexity, making it especially efficient and advantageous for large-scale simulations.

4.2.2 SELECTIVE FEATURE AGGREGATION

HMPA enhances the message-passing process by concentrating on feature-level adjustments, avoid-
ing the homogenization of information often seen in traditional attention mechanisms that aggregate
over sequence positions. The element-wise multiplication and feature-dimension-specific softmax
prevent less informative features from overshadowing crucial ones, maintaining the unique contri-
butions of each feature to the node updates. As a result, nodes can selectively aggregate the most
relevant features from their neighbors, leading to richer and more discriminative node embeddings
that better capture the underlying graph structure.

4.3 GRAPH FOURIER LOSS

While the Scaled Historical Message-Passing Attention (HMPA) mechanism enhances the model’s
ability to focus on critical feature dimensions during message passing, it is equally important to
ensure that the learned representations capture the essential spectral properties of the graph data. To
this end, we introduce the Graph Fourier Loss (GFL), which complements HMPA by promoting a
balanced learning of both high-energy and low-energy components in the spectral domain. Together,
HMPA and GFL jointly optimize the model’s performance by addressing feature importance in both
the spatial and spectral domains.

Preprocessing When the model does not alter the graph’s topological structure, the inherent topo-
logical properties of the graph, such as the Laplacian matrix and its eigenvalues and eigenvectors,
remain unaltered throughout the training process. To avoid the substantial increase in computation
time caused by calculating eigendecompositions in each forward pass of our model, we preprocess
the training set before commencing model training. For each time step, the graph’s Laplacian matrix
is calculated and subsequently decomposed into eigenvectors U . Consequently, during training, we
only need to call the eigenvectors to calculate the loss, and during inference, the eigenvectors are
not required at all.

Compute Graph Fourier Loss during training To circumvent the significant computational
overhead of calculating eigenvectors during inference, we propose the Graph Fourier Loss (GFL) as
the loss function. This strategy ensures the inference speed of the model remains unaffected.

Initially, we perform GFT on both the model’s output ytrain ∈ RN×d and the target output y ∈ RN×d,
transforming the signals from the time domain to the frequency domain:

ŷ = UT y, ŷtrain = UT ytrain

Subsequently, we calculate the energy of each dimension of the transformed signals and sum them
up to obtain the total energy for each signal across all nodes and dimensions:

E =

d∑
k=1

|ŷ:,k|2, Etrain =

d∑
k=1

|ŷtrain
:,k |2

E and Etrain represent the total energy of the target and model output signals in the frequency domain,
respectively.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

The energy E are then sorted, and using the hyperparameter segment rate sr, it is divided into high
Ehigh and low Elow energy components. An adjustment factor α is computed based on the mean
energy of these partitions:

α =

√
mean(Ehigh)

mean(Elow) + ϵ
· λ

The constant ϵ is employed to prevent division by zero, while the regularization parameter λ controls
the strength of the adjustment. When α > 1, high-energy regions are amplified, resulting in the
model emphasizing high-energy components. Conversely, when α < 1, this emphasis is reduced.
Both manual setting of the regularization parameter λ and incorporation it as a learnable parameter
have been tested, found in Experiment 5.4

Finally, we adjust the signals and compute the mean squared error (MSE) directly in the spectral
domain:

ŷ′ = adjust(ŷ, α), ŷtrain′ = adjust(ŷtrain, α),

where the adjust(·) function operates on the spectral signals and scales their low-energy components
by α, leaving high-energy components unchanged:

adjust(ŷ, α)i =
{
α · ŷi, if i ∈ low-energy components,
ŷi, if i ∈ high-energy components.

The Graph Fourier Loss is then defined as:

GFL =
1

N
∥ŷ′ − ŷtrain′∥22.

By integrating GFL with HMPA, the model effectively captures essential information in both the
spatial and spectral domains, leading to improved predictive performance in complex physical en-
vironments. In Appendix A, we analyze the gradient with respect to λ and explain why λ does not
converge to zero. The presence of both positive and negative terms in the derivative suggests the
existence of an optimal λ > 0 that minimizes the loss. In Appendix C, we provide a theoretical
analysis of why GFL is effective. The adjustment factor α serves as a frequency-specific weight,
modulating the importance of each frequency component. Additionally, by incorporating ∂ŷi

∂θ , the
model integrates frequency domain information, improving its ability to capture meaningful pat-
terns across frequencies. The interaction between α and the error terms ensures an adaptive learning
process that shifts focus towards the most relevant frequency components.

5 EXPERIMENTS

Figure 2: Comparison of RMSE of velocity norm between the Lagrangian system FlagSimple and
the Eulerian system CylinderFlow using our HMIT and MeshGraphNet (MGN) (5).

In Section 5.1, we describe the datasets and implementation details, followed by an analysis of
the precomputation costs associated with GFL in Section 5.3. Subsequently, we present the baseline
models used for comparison and discuss the evaluation results, along with ablation studies conducted
to assess the contributions of specific model components in Sections 5.2 and 5.4. We also visualize
the RMSE of a Lagrangian system and an Eulerian system respectively, as shown in Figure 2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

5.1 TASK SETUPS

Datasets Description We evaluated our method in the representation of both Lagrangian and Eu-
lerian dynamical systems. The Lagrangian systems involve the datasets FlagSimple and Deforming-
Plate, while the Eulerian systems include CylinderFlow and Airfoil, with all datasets sourced from
MeshGraphNet (5).

• FlagSimple models a flag blowing in the wind, utilizing a static Lagrangian mesh with a
static topology structure and ignores collisions.

• DeformingPlate Utilizes a quasi-static simulator to model the deformation of a hyper-
elastic plate by a kinematic actuator. The dataset is structured with a Lagrangian tetrahedral
mesh.

• CylinderFlow simulates the flow of an incompressible fluid around a fixed cylinder in a 2D
Eulerian mesh.

• Airfoil focuses on the aerodynamics around an airfoil wing section, employing a 2D Eule-
rian mesh to monitor the evolution of momentum and density.

Implementation Our framework is built using PyTorch (65) and PyG (PyTorch Geometric) (66).
The entire model is trained and inferred on a single Nvidia RTX 4090. Detailed information, includ-
ing network hyperparameters, input and output formats, and noise injection methods, can be found in
appendix E. Our datasets and code are publicly available at https://github.com/Heiyanyan/Learning-
Physical-Simulation-with-Message-Passing-Transformer.

Measurements Dataset HMIT (ours) MGN (5) BSMS (50) TIE (56)
Mesh

Transformer (67)
Graph

MLP-Mixer (23)

RMSE-1 [1E-2] Cylinder 2.03E-01 5.24E-01 5.09E-01 4.21E-01 3.05E-01 4.12E-01
Airfoil 2.61E+02 3.14E+02 2.94E+02 3.17E+02 2.96E+02 3.05E+02
Plate 1.00E-02 2.69E-02 2.83E-02 3.56E-02 2.38E-02 3.28E-02
Flag 1.12E-02 6.47E-02 6.51E-02 5.48E-02 4.73E-02 6.89E-02

RMSE-50 [1E-2] Cylinder 6.32E-01 1.40 3.25 6.85 1.07 4.61
Airfoil 4.08E+02 5.36E+02 1.34E+03 5.72E+03 5.21E+02 6.32E+02
Plate 9.25E-02 1.73E-01 2.81E-01 3.61E-01 1.30E-01 6.19E-01
Flag 1.87 2.29 2.46 2.19 2.04 3.90

RMSE-all [1E-2] Cylinder 3.78 4.32 1.36E+01 2.68E+01 4.26 2.05E+01
Airfoil 1.64E+03 2.08E+03 1.01E+04 1.27E+05 2.00E+03 3.97E+03
Plate 1.09 1.61 4.52 9.62 1.28 8.22
Flag 2.05 2.45 3.28 1.24E+01 2.32 7.25

Table 1: RMSE of our method, MeshGraphNet (MGN), Bi-Stride Multi-Scale GNN (BSMS-GNN),
Transformer with Implicit Edges (TIE), Mesh Transformer and Graph MLP-Mixer for different
rollout steps. Our method achieves state-of-the-art in all datasets.

5.2 COMPARISON WITH BASELINES

Baselines In our evaluation, we compared against several state-of-the-art GNNs. The Bi-Stride
Multi-Scale Graph Neural Network (BSMS) (50) introduces multiscale methods to enhance the
efficiency of message passing. MeshGraphNet (MGN) (5) leverages a mesh-based approach for
graph representation. The Transformer with Implicit Edges (TIE) model (56) streamlines interac-
tion modeling in Message Passing Neural Networks by utilizing a modified attention mechanism
to efficiently process particle dynamics without explicit edge representations. (Reviewer L6SR,
Reviewer YBDW, Reviewer ZnqH) Mesh Transformer (67) incorporates global attention and hier-
archical pooling mechanisms to capture long-range dependencies on non-uniform meshes. Graph
MLP-Mixer (23) uses Hadamard-Product Attention between local patch encodings.

Evaluation Table 1 demonstrates the superiority of our model across all datasets. We randomly
selected three seeds to initialize the models and reported the mean RMSE values with their respective
variance in the table. The CylinderFlow dataset at RMSE-1 reveals a pronounced improvement with
our model, which shows a reduction in error by 33.4% compared to Mesh Transformer, the nearest
competitor. At RMSE-50 and RMSE-all, our model continues to exhibit superior performance,

8

https://github.com/Heiyanyan/Learning-Physical-Simulation-with-Message-Passing-Transformer
https://github.com/Heiyanyan/Learning-Physical-Simulation-with-Message-Passing-Transformer

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

showing a reduction in error by 40.9% at RMSE-50 and by 11.3% at RMSE-all when compared to
Mesh Transformer.

In the context of the Airfoil dataset, our model remains state-of-the-art. At the RMSE-50 condi-
tion, the model’s error rate is reduced by 21.6% compared to Mesh Transformer. This illustrates
the model’s capacity to maintain accuracy over prolonged sequences, which is an essential feature
for simulations requiring stability over extended temporal spans. At RMSE-all, the improvement
reaches 18%.

For the DeformingPlate and FlagSimple datasets, our model displays similar trends. In the Plate
dataset, the RMSE-1 shows an improvement of 57.9% over Mesh Transformer, with continued dom-
inance in longer simulations, indicated by a 28.8% error reduction at RMSE-50. For the FlagSim-
ple dataset, while the improvements are more significant, our model consistently outperforms other
methods across all metrics, with the most notable reduction being 76.7% at RMSE-1.

5.3 PRECOMPUTATION COST

Dataset Eigen Time per Sample (s) Total Time (s)
Cylinder 0.026 27.21
Airfoil 0.204 218.34
Plate 0.016 19.19
Flag 0.020 21.82

Table 2: Preprocessing costs for Graph Laplacian eigen decomposition.

(Reviewer G8Yr, Reviewer L6SR, Reviewer wc4g, Reviewer YBDW, Reviewer ZnqH) To provide
clarity on preprocessing costs, we evaluate both the eigen decomposition time for the Graph Lapla-
cian and the total preprocessing time across datasets. These computations only occur once and are
considered part of the dataset generation process. For static graph topologies, eigen decomposition
is only performed at t = 0. For datasets with dynamic topologies, eigen decomposition is conducted
at each time step. This approach eliminates the computational complexity that would otherwise be
incurred during training, while ensuring that the inference speed remains unaffected. The maximum
preprocessing time across all datasets is only 3 minutes, which is negligible compared to the training
duration.

5.4 ABLATION STUDIES

Measurements Dataset
Without

HMPA and GFL
HMPA

only
GFL
only

HMPA + GFL
(ours)

RMSE-1 [1e-2] Cylinder 5.83E-1 2.64E-1 2.27E-1 2.03E-1
Flag 6.47E-2 1.51E-2 2.29E-2 1.12E-2

RMSE-50 [1e-2] Cylinder 1.42 9.10E-1 6.96E-1 6.32E-1
Flag 2.29 1.97 2.03 1.87

RMSE-all [1e-2] Cylinder 4.32 3.94 3.89 3.78
Flag 2.45 2.16 2.21 2.05

Table 3: Ablation study conducted on the CylinderFlow and (Reviewer wc4g) FlagSimple datasets
to evaluate the contributions of individual components within our architecture. We test the effects
of Historical Message-Passing Attention (HMPA), Graph Fourier Loss (GFL), and their combina-
tion. Results indicate that integrating both HMPA and GFL leads to reductions in error. (Reviewer
ZnqH)When GFL is not used as the loss function, we replace it with MSE.

To rigorously evaluate the influence of specific model components and configurations on overall
performance, systematic ablation studies were undertaken. These included: (1) Evaluating the con-
tributions of individual components by comparing the effects of Historical Message-Passing Atten-
tion (HMPA) and Graph Fourier Loss (GFL), (2) comparing Dot-Product Attention with Historical
Message-Passing Attention, (3) assessing the efficacy of learnable lambda parameters λ versus man-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ual setting of λ, and (4) investigating how varying segmentation rates sr affect model performance.
More experimental analysis of GFL can be found in Appendix B.

(a) (b) (c)

Figure 3: (a) Comparison of Dot-Product Attention and Historical Message-Passing Attention in
CylinderFlow. HMPA demonstrates a lower average RMSE across all rollout steps compared to the
Dot-Product Attention. (b) Comparison of learnable and manual λ settings in FlagSimple. Learnable
λ achieves lower error compared to manual settings. (c) The impact of varying segmentation rates
sr in FlagSimple. Different segmentation rates do not significantly impact the final results.

Effectiveness of Graph Fourier Loss and Historical Message-Passing Attention We test the
effects of our each component in Table 3. In terms of predictive accuracy, the model without HMPA
and GFL performed the worst, demonstrating significantly higher error rates across all RMSE mea-
sures. The integration of both HMPA and GFL demonstrated the highest improvement in reducing
error rates across all RMSE measures when compared to standalone implementations of GFL and
HMPA.

Effectiveness of Historical Message-Passing Attention Figure 3a compares the performance of
Dot-Product Attention (14) and Historical Message-Passing Attention (HMPA) on the CylinderFlow
dataset. HMPA consistently outperforms Dot-Product Attention across all rollout steps, demonstrat-
ing a lower average RMSE. This indicates that HMPA’s finer-grained feature dimension weighting
is more effective in capturing the dynamics of the system, leading to more accurate predictions.

Effectiveness of Learnable λ Figure 3b compares the performance of models with learnable λ
settings against manual λ settings in the FlagSimple dataset. The results show that the learnable λ
achieves a lower final average RMSE compared to manual settings. This highlights the advantage
of allowing the model to adaptively adjust λ during training, leading to better overall performance.

Segmentation Rate Selection In Figure 3c, we investigate the impact of varying segmentation
rates sr on the FlagSimple dataset. The results indicate that different segmentation rates do not
significantly impact the final results. This robustness to segmentation rate selection demonstrates
that our model can maintain high performance regardless of the specific value of sr, simplifying the
hyperparameter tuning process.

6 CONCLUSION AND LIMITATION

The Historical Message-Passing Integration Transformer (HMIT) has achieved notable advance-
ments in the accuracy of physical system simulations by effectively integrating Historical Message-
Passing Attention (HMPA) and Graph Fourier Loss (GFL). HMPA mitigates over-squashing, cap-
tures fine-grained details and scales linearly with node count, while GFL ensures the model’s ro-
bustness by focusing on spectral balance. This synergy between HMPA and GFL results in a model
that excels in long-term rollouts, providing accurate and reliable physical simulations. Continued
development of HMIT could lead to broader applications in dynamic system modeling and enhance
its utility in scientific and engineering fields, advancing the capabilities of learnable simulation tech-
nologies.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

[1] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential
equations,” Advances in neural information processing systems, vol. 31, 2018.

[2] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. liu, K. Bhattacharya, A. Stuart, and
A. Anandkumar, “Fourier neural operator for parametric partial differential equations,”
in International Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=c8P9NQVtmnO

[3] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0021999118307125

[4] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia, “Learning
to simulate complex physics with graph networks,” in International conference on machine
learning. PMLR, 2020, pp. 8459–8468.

[5] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. Battaglia, “Learning mesh-based
simulation with graph networks,” in International Conference on Learning Representations,
2021. [Online]. Available: https://openreview.net/forum?id=roNqYL0 XP

[6] P. Battaglia, J. B. C. Hamrick, V. Bapst, A. Sanchez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gulcehre, F. Song, A. Ballard,
J. Gilmer, G. E. Dahl, A. Vaswani, K. Allen, C. Nash, V. J. Langston, C. Dyer, N. Heess,
D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu, “Relational
inductive biases, deep learning, and graph networks,” arXiv, 2018. [Online]. Available:
https://arxiv.org/pdf/1806.01261.pdf

[7] A. Sanchez-Gonzalez, N. M. O. Heess, J. T. Springenberg, J. Merel, M. A. Riedmiller,
R. Hadsell, and P. W. Battaglia, “Graph networks as learnable physics engines for inference
and control,” in International Conference on Machine Learning, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:46929424

[8] F. D. A. Belbute-Peres, T. Economon, and Z. Kolter, “Combining differentiable pde solvers
and graph neural networks for fluid flow prediction,” in international conference on machine
learning. PMLR, 2020, pp. 2402–2411.

[9] H. Gao and S. Ji, “Graph u-nets,” in international conference on machine learning. PMLR,
2019, pp. 2083–2092.

[10] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view,” in Proceedings of
the AAAI conference on artificial intelligence, vol. 34, no. 04, 2020, pp. 3438–3445.

[11] Y. Huang, W. Lu, J. Robinson, Y. Yang, M. Zhang, S. Jegelka, and P. Li, “On
the stability of expressive positional encodings for graphs,” 2024. [Online]. Available:
https://arxiv.org/abs/2310.02579

[12] Y.-Y. Yu, J. Choi, W. Cho, K. Lee, N. Kim, K. Chang, C.-S. Woo, I. Kim, S.-W. Lee, J.-Y. Yang
et al., “Learning flexible body collision dynamics with hierarchical contact mesh transformer,”
arXiv preprint arXiv:2312.12467, 2023.

[13] X. Luo, H. Wang, Z. Huang, H. Jiang, A. Gangan, S. Jiang, and Y. Sun, “Care:
Modeling interacting dynamics under temporal environmental variation,” in Advances in
Neural Information Processing Systems, A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, Eds., vol. 36. Curran Associates, Inc., 2023, pp.
4034–4054. [Online]. Available: https://proceedings.neurips.cc/paper files/paper/2023/file/
0c7ca207a051228f978971447a56464a-Paper-Conference.pdf

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30,
2017.

11

https://openreview.net/forum?id=c8P9NQVtmnO
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://openreview.net/forum?id=roNqYL0_XP
https://arxiv.org/pdf/1806.01261.pdf
https://api.semanticscholar.org/CorpusID:46929424
https://arxiv.org/abs/2310.02579
https://proceedings.neurips.cc/paper_files/paper/2023/file/0c7ca207a051228f978971447a56464a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0c7ca207a051228f978971447a56464a-Paper-Conference.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

[15] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby,
“An image is worth 16x16 words: Transformers for image recognition at scale,”
in International Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=YicbFdNTTy

[16] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer:
Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF in-
ternational conference on computer vision, 2021, pp. 10 012–10 022.

[17] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph transformer networks,” Advances
in neural information processing systems, vol. 32, 2019.

[18] B. Alkin, A. Fürst, S. Schmid, L. Gruber, M. Holzleitner, and J. Brandstetter, “Universal
physics transformers,” arXiv preprint arXiv:2402.12365, 2024.

[19] H. Wu, H. Luo, H. Wang, J. Wang, and M. Long, “Transolver: A fast transformer solver for
pdes on general geometries,” in International Conference on Machine Learning, 2024.

[20] M. Herde, B. Raonić, T. Rohner, R. Käppeli, R. Molinaro, E. de Bézenac, and S. Mishra,
“Poseidon: Efficient foundation models for pdes,” 2024.

[21] L. Rampášek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf, and D. Beaini, “Recipe for a
general, powerful, scalable graph transformer,” Advances in Neural Information Processing
Systems, vol. 35, pp. 14 501–14 515, 2022.

[22] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention
networks,” arXiv preprint arXiv:1710.10903, 2017.

[23] X. He, B. Hooi, T. Laurent, A. Perold, Y. LeCun, and X. Bresson, “A generalization of vit/mlp-
mixer to graphs,” in International conference on machine learning. PMLR, 2023, pp. 12 724–
12 745.

[24] J. Topping, F. Di Giovanni, B. P. Chamberlain, X. Dong, and M. M. Bronstein, “Understanding
over-squashing and bottlenecks on graphs via curvature,” arXiv preprint arXiv:2111.14522,
2021.

[25] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs,” IEEE Transactions
on Signal Processing, vol. 61, no. 7, pp. 1644–1656, 2013.

[26] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph
theory,” Applied and Computational Harmonic Analysis, vol. 30, no. 2, pp. 129–150, 2011.

[27] Y. Afshar, S. Bhatnagar, S. Pan, K. Duraisamy, and S. Kaushik, “Prediction of aerodynamic
flow fields using convolutional neural networks,” Computational Mechanics, vol. 64, pp. 525
– 545, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:170078767

[28] Y. Zhang, W. J. Sung, and D. N. Mavris, “Application of convolutional neural network to
predict airfoil lift coefficient,” in 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics,
and materials conference, 2018, p. 1903.

[29] A. G. Özbay, A. Hamzehloo, S. Laizet, P. Tzirakis, G. Rizos, and B. Schuller,
“Poisson cnn: Convolutional neural networks for the solution of the poisson equation
on a cartesian mesh,” Data-Centric Engineering, vol. 2, 2021. [Online]. Available:
http://dx.doi.org/10.1017/dce.2021.7

[30] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin, “Accelerating eulerian fluid simula-
tion with convolutional networks,” in International Conference on Machine Learning. PMLR,
2017, pp. 3424–3433.

[31] X. Guo, W. Li, and F. Iorio, “Convolutional neural networks for steady flow approximation.”
New York, NY, USA: Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2939672.2939738

12

https://openreview.net/forum?id=YicbFdNTTy
https://api.semanticscholar.org/CorpusID:170078767
http://dx.doi.org/10.1017/dce.2021.7
https://doi.org/10.1145/2939672.2939738

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

[32] J. Liu, Y. Chen, B. Ni, W. Ren, Z. Yu, and X. Huang, “Fast fluid simulation via dynamic multi-
scale gridding,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 2,
2023, pp. 1675–1682.

[33] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli, “Scientific
machine learning through physics–informed neural networks: Where we are and what’s next,”
Journal of Scientific Computing, vol. 92, no. 3, p. 88, 2022.

[34] Y. Guo, X. Cao, B. Liu, and M. Gao, “Solving partial differential equations using deep
learning and physical constraints,” Applied Sciences, vol. 10, no. 17, 2020. [Online].
Available: https://www.mdpi.com/2076-3417/10/17/5917

[35] Y. Wang and L. Zhong, “Nas-pinn: neural architecture search-guided physics-informed neural
network for solving pdes,” Journal of Computational Physics, vol. 496, p. 112603, 2024.

[36] S. Wang, Y. Teng, and P. Perdikaris, “Understanding and mitigating gradient flow pathologies
in physics-informed neural networks,” SIAM Journal on Scientific Computing, vol. 43, no. 5,
pp. A3055–A3081, 2021.

[37] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, “Learning nonlinear
operators via deeponet based on the universal approximation theorem of operators,”
Nature Machine Intelligence, vol. 3, pp. 218 – 229, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:233822586

[38] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and A. Anand-
kumar, “Neural operator: Learning maps between function spaces with applications to pdes,”
Journal of Machine Learning Research, vol. 24, no. 89, pp. 1–97, 2023.

[39] G. Gupta, X. Xiao, and P. Bogdan, “Multiwavelet-based operator learning for differential equa-
tions,” Advances in neural information processing systems, vol. 34, pp. 24 048–24 062, 2021.

[40] R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, F. Alet, S. Ravuri,
T. Ewalds, Z. Eaton-Rosen, W. Hu et al., “Learning skillful medium-range global weather
forecasting,” Science, vol. 382, no. 6677, pp. 1416–1421, 2023.

[41] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell, and
P. Battaglia, “Graph networks as learnable physics engines for inference and control,” in Inter-
national conference on machine learning. PMLR, 2018, pp. 4470–4479.

[42] P. Holl, V. Koltun, K. Um, and N. Thuerey, “phiflow: A differentiable pde solving framework
for deep learning via physical simulations,” in Advances in Neural Information Processing
Systems (NeurIPS) Workshop, 2022.

[43] Y. Li, T. Du, K. Wu, J. Xu, and W. Matusik, “Diffcloth: Differentiable cloth
simulation with dry frictional contact,” ACM Trans. Graph., mar 2022. [Online]. Available:
https://doi.org/10.1145/3527660

[44] Y. Li, H.-y. Chen, E. Larionov, N. Sarafianos, W. Matusik, and T. Stuyck, “DiffAvatar:
Simulation-ready garment optimization with differentiable simulation,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Los Alamitos, CA, USA: IEEE Computer Society, June 2024. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CVPR52733.2024.00418

[45] Y. Qiao, J. Liang, V. Koltun, and M. Lin, “Differentiable simulation of soft multi-body sys-
tems,” Advances in Neural Information Processing Systems, vol. 34, 2021.

[46] Y.-L. Qiao, J. Liang, V. Koltun, and M. C. Lin, “Efficient differentiable simulation of articu-
lated bodies,” in International Conference on Machine Learning. PMLR, 2021, pp. 8661–
8671.

[47] T. Takahashi, J. Liang, Y.-L. Qiao, and M. C. Lin, “Differentiable fluids with solid coupling
for learning and control,” in AAAI, 2021.

13

https://www.mdpi.com/2076-3417/10/17/5917
https://api.semanticscholar.org/CorpusID:233822586
https://doi.org/10.1145/3527660
https://doi.ieeecomputersociety.org/10.1109/CVPR52733.2024.00418

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

[48] Y. Li, T. Du, S. Grama Srinivasan, K. Wu, B. Zhu, E. Sifakis, and W. Matusik, “Fluidic
topology optimization with an anisotropic mixture model,” ACM Trans. Graph., nov 2022.
[Online]. Available: https://doi.org/10.1145/3550454.3555429

[49] Y. Li, Y. Sun, P. Ma, E. Sifakis, T. Du, B. Zhu, and W. Matusik, “Neuralfluid: Neural fluidic
system design and control with differentiable simulation,” 2024.

[50] Y. Cao, M. Chai, M. Li, and C. Jiang, “Efficient learning of mesh-based physical simula-
tion with bi-stride multi-scale graph neural network,” in International Conference on Machine
Learning. PMLR, 2023, pp. 3541–3558.

[51] M. Lino, C. D. Cantwell, A. A. Bharath, and S. Fotiadis, “Simulating continuum mechanics
with multi-scale graph neural networks,” ArXiv, vol. abs/2106.04900, 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:235376839

[52] J. Liu, Y. Chen, B. Ni, W. Ren, Z. Yu, and X. Huang, “Fast fluid simulation via
dynamic multi-scale gridding,” in AAAI Conference on Artificial Intelligence, 2023. [Online].
Available: https://api.semanticscholar.org/CorpusID:259736558

[53] S. Barwey, V. Shankar, V. Viswanathan, and R. Maulik, “Multiscale graph neural network
autoencoders for interpretable scientific machine learning,” ArXiv, vol. abs/2302.06186, 2023.
[Online]. Available: https://api.semanticscholar.org/CorpusID:256827700

[54] K. R. Allen, Y. Rubanova, T. Lopez-Guevara, W. F. Whitney, A. Sanchez-Gonzalez, P. W.
Battaglia, and T. Pfaff, “Learning rigid dynamics with face interaction graph networks,” ArXiv,
vol. abs/2212.03574, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:
254366406

[55] X. Han, H. Gao, T. Pfaff, J.-X. Wang, and L. Liu, “Predicting physics in mesh-reduced space
with temporal attention,” in International Conference on Learning Representations, 2022.
[Online]. Available: https://openreview.net/forum?id=XctLdNfCmP

[56] Y. Shao, C. C. Loy, and B. Dai, “Transformer with implicit edges for particle-based physics
simulation,” in Computer Vision - ECCV 2022 - 17th European Conference, 2022.

[57] T. Wu, T. Maruyama, Q. Zhao, G. Wetzstein, and J. Leskovec, “Learning controllable
adaptive simulation for multi-resolution physics,” in The Eleventh International Conference
on Learning Representations, 2023. [Online]. Available: https://openreview.net/forum?id=
PbfgkZ2HdbE

[58] Y. Rubanova, A. Sanchez-Gonzalez, T. Pfaff, and P. Battaglia, “Constraint-based
graph network simulator,” 2022. [Online]. Available: https://openreview.net/forum?id=
Uxppuphg5ZL

[59] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing, vol. 17, pp.
395–416, 2007.

[60] F. R. K. Chung, Spectral Graph Theory. American Mathematical Society, 1997.

[61] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally connected
networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

[62] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” in International Conference on Learning Representations, 2017. [Online].
Available: https://openreview.net/forum?id=SJU4ayYgl

[63] J. Chen, T. Ma, and C. Xiao, “Fastgcn: Fast learning with graph convolutional
networks via importance sampling,” International Conference on Learning Representations,
vol. abs/1801.10247, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:
22191393

[64] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs
with fast localized spectral filtering,” Advances in neural information processing systems,
vol. 29, 2016.

14

https://doi.org/10.1145/3550454.3555429
https://api.semanticscholar.org/CorpusID:235376839
https://api.semanticscholar.org/CorpusID:259736558
https://api.semanticscholar.org/CorpusID:256827700
https://api.semanticscholar.org/CorpusID:254366406
https://api.semanticscholar.org/CorpusID:254366406
https://openreview.net/forum?id=XctLdNfCmP
https://openreview.net/forum?id=PbfgkZ2HdbE
https://openreview.net/forum?id=PbfgkZ2HdbE
https://openreview.net/forum?id=Uxppuphg5ZL
https://openreview.net/forum?id=Uxppuphg5ZL
https://openreview.net/forum?id=SJU4ayYgl
https://api.semanticscholar.org/CorpusID:22191393
https://api.semanticscholar.org/CorpusID:22191393

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

[65] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative
style, high-performance deep learning library,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
Eds., vol. 32. Curran Associates, Inc., 2019. [Online]. Available: https://proceedings.neurips.
cc/paper files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[66] M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch geometric,” arXiv
preprint arXiv:1903.02428, 2019.

[67] S. Janny, A. Beneteau, M. Nadri, J. Digne, N. Thome, and C. Wolf, “Eagle: Large-scale learn-
ing of turbulent fluid dynamics with mesh transformers,” arXiv preprint arXiv:2302.10803,
2023.

[68] L. Yining, C. Yingfa, and Z. Zhen, “Cfdbench: A large-scale benchmark for machine learning
methods in fluid dynamics,” 2023. [Online]. Available: https://arxiv.org/abs/2310.05963

15

https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://arxiv.org/abs/2310.05963

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A ANALYSIS OF LEARNABLE λ IN GRAPH FOURIER LOSS

Experiments revealed a notable phenomenon: when using a learnable λ within the Graph Fourier
Loss (GFL) framework, λ did not tend to zero. Conversely, when applying a similar adjustment
directly to the mean squared error (MSE) in the frequency domain, the value of λ quickly diminished
to zero. This appendix provides a comprehensive analysis of this observation and elucidates the
underlying reasons.

The key difference between the GFL approach and direct MSE adjustment lies in the interaction
of λ with the frequency domain energy components. In GFL, λ is indirectly involved through the
calculation of an adjustment factor α, which is applied separately to the model’s output ytrain and the
target output y. This can be expressed as:

GFL =
1

N

∥∥adjust(U⊤ytrain, α)− adjust(U⊤y, α)
∥∥2
2
,

where

adjust(ŷ, α)i =
{
α · ŷi, if i ∈ Lŷ,

ŷi, if i ∈ Hŷ,

and Lŷ and Hŷ denote the indices of the low- and high-energy components of ŷ, respectively.

The adjustment factor α is defined as:

α = λ ·

√
mean(Ehigh)

mean(Elow) + ϵ
,

where Ehigh and Elow represent the energies of the high- and low-frequency components, respec-
tively, and ϵ is a small constant to prevent division by zero. The parameter λ helps balance the energy
distribution across different frequency components, ensuring that it remains non-zero to maintain the
desired balance between high- and low-frequency components.

A.1 COMPUTATION OF ∂GFL
∂λ

To understand why λ does not tend to zero in GFL, the partial derivative of GFL with respect to λ is
computed. Denote:

ŷadj = adjust(U⊤ytrain, α), yadj = adjust(U⊤y, α),

and define the error vector:
e = ŷadj − yadj.

Then, GFL can be expressed as:

GFL =
1

N
∥e∥22 =

1

N

N∑
i=1

e2i .

Since the adjustment is applied separately to ytrain and y, and the division into low- and high-energy
components may differ between them, different cases must be considered when computing the
derivative.

A.1.1 ADJUSTMENT CASES

Four cases are defined based on the indices of the components:

Case 1: i ∈ Lŷ ∩ Ly: Both adjusted as low-energy components.
ei = α(ŷi − yi).

Case 2: i ∈ Lŷ ∩Hy: Model output is low-energy, ground truth is high-energy.
ei = αŷi − yi.

Case 3: i ∈ Hŷ ∩ Ly: Model output is high-energy, ground truth is low-energy.
ei = ŷi − αyi.

Case 4: i ∈ Hŷ ∩Hy: Both are high-energy components.
ei = ŷi − yi.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A.1.2 DERIVATIVE COMPUTATION

The derivative of α with respect to λ is computed:

∂α

∂λ
=

√
mean(Ehigh)

mean(Elow) + ϵ
=

α

λ
.

Substituting the expressions for ei and ∂ei
∂λ , the total derivative can be expressed as:

Case 1:

∂GFL1

∂λ
=

2

N

∑
i∈Lŷ∩Ly

(α(ŷi − yi)) ·
(
(ŷi − yi) ·

∂α

∂λ

)
=

2α

N

∂α

∂λ

∑
i∈Lŷ∩Ly

(ŷi − yi)
2.

Case 2:
∂GFL2

∂λ
=

2

N

∑
i∈Lŷ∩Hy

(αŷi − yi) ·
(
ŷi ·

∂α

∂λ

)
.

Case 3:
∂GFL3

∂λ
=

2

N

∑
i∈Hŷ∩Ly

(ŷi − αyi) ·
(
−yi ·

∂α

∂λ

)
.

Case 4:
∂GFL4

∂λ
= 0.

Combining all cases, the total derivative is:

∂GFL
∂λ

=
2α

N

∂α

∂λ

∑
i∈Lŷ∩Ly

(ŷi − yi)
2 +

2

N

∂α

∂λ

 ∑
i∈Lŷ∩Hy

(αŷi − yi)ŷi −
∑

i∈Hŷ∩Ly

(ŷi − αyi)yi

 .

Substituting ∂α
∂λ = α

λ , the expression becomes:

∂GFL
∂λ

=
2α2

Nλ

 ∑
i∈Lŷ∩Ly

(ŷi − yi)
2 +

∑
i∈Lŷ∩Hy

(αŷi − yi)
ŷi
α
−

∑
i∈Hŷ∩Ly

(ŷi − αyi)
yi
α

 .

A.1.3 ANALYSIS: WHY λ DOES NOT TEND TO ZERO

The derivative ∂GFL
∂λ indicates how changes in λ affect the loss. The key observations are:

• Balance of Frequency Components: A non-zero λ ensures that α adjusts the low-
frequency components appropriately, maintaining a balance between high- and low-
frequency energies.

• Preventing Vanishing α: If λ tends to zero, α also tends to zero, causing the adjusted low-
frequency components to vanish. This would ignore important low-frequency information,
degrading model performance.

• Optimal λ: The derivative includes both positive and negative terms due to the different
cases. This suggests the existence of an optimal λ > 0 that minimizes the loss, rather than
pushing λ toward zero.

Therefore, during optimization, λ is adjusted to balance the contribution of low-frequency compo-
nents without diminishing them entirely.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

A.2 DIRECT APPLICATION OF λ TO FREQUENCY DOMAIN MSE

Conversely, when λ is directly applied to the MSE in the frequency domain using the combined error
ytrain − y, the lack of separate intermediate adjustments for ytrain and y leads to a different effect.
This can be expressed as:

Adjusted MSE =
1

N

∥∥adjust(U⊤(ytrain − y), α)
∥∥2
2
.

In this formulation, the adjustment is applied after computing the error between the model output
and the ground truth. The adjustment function modifies the error vector directly:

adjust(e, α)i =
{
α · ei, if i ∈ Le,

ei, if i ∈ He,

where Le and He denote the low- and high-energy components of the error vector e = U⊤(ytrain−y).

A.2.1 COMPUTATION OF ∂ADJUSTED MSE
∂λ

Since the adjustment is applied to the error vector as a whole, λ affects the loss differently. The
derivative is computed as:

∂Adjusted MSE
∂λ

=
2

N

N∑
i=1

adjust(e, α)i ·
∂adjust(e, α)i

∂λ
.

However, since α adjusts the error vector and α depends on λ, the derivative becomes:

∂adjust(e, α)i
∂λ

=

{
ei · ∂α∂λ , if i ∈ Le,

0, if i ∈ He.

Substituting ∂α
∂λ = α

λ , the expression simplifies to:

∂Adjusted MSE
∂λ

=
2

N

∑
i∈Le

(αei) ·
(
ei ·

α

λ

)
=

2α2

Nλ

∑
i∈Le

e2i .

Since ei = ŷi−yi, the sum
∑

i∈Le
e2i is always non-negative. Therefore, the derivative ∂Adjusted MSE

∂λ
is non-negative.

A.2.2 ANALYSIS: WHY λ TENDS TO ZERO

The non-negative derivative implies that increasing λ will increase the loss:

∂Adjusted MSE
∂λ

≥ 0.

During optimization, the algorithm seeks to minimize the loss, leading to a reduction in λ. Con-
sequently, λ is pushed towards zero. As λ approaches zero, α also approaches zero, effectively
diminishing the adjusted low-frequency error components.

This behavior contrasts with the GFL approach because:

• Lack of Separate Adjustments: By adjusting the combined error rather than the individual
outputs, the model cannot balance the adjustments between ytrain and y.

• Unidirectional Influence: The derivative being non-negative means that the optimization
consistently pushes λ downward without reaching an optimal balancing point.

• Over-suppression of Low-Frequency Errors: As λ decreases, low-frequency errors are
suppressed, potentially ignoring important discrepancies in the low-frequency components.

Therefore, directly applying λ to the MSE in the frequency domain results in λ tending to zero,
leading to suboptimal adjustments of the frequency components.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

B EXPERIMENTAL ANALYSIS OF GRAPH FOURIER LOSS

In Cylinderflow, we conducted additional analyses to examine the effects of Graph Fourier Loss
(GFL).

Figure 4: Adjustment Factors Visualization with Smoothed Trend. The scatter plot shows the ad-
justment factors over time, with a smoothed trend line in red demonstrating the convergence towards
0.5.

We visualized the adjustment factors, as shown in Figure 4. The adjustment factors rapidly con-
verged to approximately 0.5, indicating that GFL reduces the emphasis on low-energy components
in the loss function. This mechanism allows the model to prioritize high-energy components during
optimization, improving both the overall signal quality and the model’s robustness.

Figure 5: Original vs Adjusted Signal Distribution. The blue points represent the original signal
values, and the red points represent the signal values after adjustment by GFL. Equal points are
shown in gray, emphasizing areas where the original and adjusted signals coincide.

Additionally, we visualized the frequency domain information post-GFL application in Figure 5.
The x-axis represents frequency (low to high), and the y-axis represents energy magnitude. The
adjustment factors scale the low-energy components, while the high-energy components remain un-
affected. The visualization demonstrates that the adjusted signals (depicted by red dots) exhibit
significant energy alterations in the low-energy region, resulting in a smoother and more concen-
trated signal performance in the frequency domain.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 6: Sorted Average Signal Difference Across Different Frequencies. The plot shows the sorted
absolute average signal difference across all samples, highlighting how GFL impacts frequency
domain signals.

To quantify the impact of this adjustment, we calculated the average difference in frequency domain
information before and after applying GFL, over 100,000 steps following model convergence. The
results, presented in Figure 6, show an average difference of 0.067 compared to an original signal
mean of 0.72. This indicates that GFL significantly alters the signal representation. The first half of
the figure illustrates a straight line, corresponding to the unaltered high-energy components.

Edge Removal (%) High Energy Mean Low Energy Mean Energy Ratio
1 3.3886 ± 0.0147 3.3913 ± 0.0150 1.0008 ± 0.0004
5 3.3876 ± 0.0142 3.3897 ± 0.0145 1.0006 ± 0.0004
10 3.3872 ± 0.0140 3.3894 ± 0.0143 1.0007 ± 0.0004

Table 4: Energy distributions under varying graph connectivity.

(Reviewer ZnqH) To evaluate GFL’s robustness under varying graph connectivity, we simulate edge
perturbations and measure energy distribution (Table 4). GFL operates on energy distributions rather
than precise eigenvectors, ensuring robustness to small connectivity changes. The stable energy ratio
confirms its generalization across dynamic graph structures.

C THEORETICAL ANALYSIS OF GRAPH FOURIER LOSS

The GFL is defined as:

GFL(θ) =
1

N

∥∥adjust(U⊤ytrain(θ), α)− adjust(U⊤y, α)
∥∥2
2
=

1

N
∥e∥22 =

1

N

N∑
i=1

e2i .

Use the Chain Rule:
∂GFL
∂θ

=
2

N

∑
i

ei ·
∂ei
∂θ

.

Calculate ∂e
∂θ : Based on different cases:

Case 1 (i ∈ Lŷ ∩ Ly):

ei = α(ŷi − yi)⇒
∂ei
∂θ

= α
∂ŷi
∂θ

.

Case 2 (i ∈ Lŷ ∩Hy):

ei = αŷi − yi ⇒
∂ei
∂θ

= α
∂ŷi
∂θ

.

Case 3 (i ∈ Hŷ ∩ Ly):

ei = ŷi − αyi ⇒
∂ei
∂θ

=
∂ŷi
∂θ
− yi

∂α

∂θ
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Case 4 (i ∈ Hŷ ∩Hy):

ei = ŷi − yi ⇒
∂ei
∂θ

=
∂ŷi
∂θ

.

By synthesizing the above steps, we have:

∂GFL
∂θ

=
2

N

∑
i

ei·
∂ei
∂θ

=
2

N

 ∑
i∈Lŷ∩Ly

αei
∂ŷi
∂θ

+
∑

i∈Lŷ∩Hy

αei
∂ŷi
∂θ

+
∑

i∈Hŷ∩Ly

(ei − αyi)
∂ŷi
∂θ

 .

C.1 RESULT ANALYSIS

• Weight Adjustment: The adjustment factor α serves as a frequency-specific weight, mod-
ulating the contribution of each frequency component based on its relative importance.

• Frequency Domain Learning: By including ∂ŷi

∂θ , the gradient integrates frequency do-
main information, allowing the model to better capture meaningful patterns across different
frequencies.

• Adaptive Learning: The interaction between α and the error terms ensures that the learn-
ing process adaptively shifts focus towards the most relevant frequency components for the
task at hand.

D DATASET DETAILS

(a) Flag Simple (b) Deforming Plate

(c) Cylinder Flow (d) Airfoil

Figure 7: Visualization of different datasets.

Table 5: Dataset Specifications

Dataset System Mesh Type Dimensions # Steps time step ∆t

FlagSimple Lagrangian triangle 3D 400 0.02
DeformingPlate Lagrangian tetrahedral 3D 400 —
CylinderFlow Eulerian triangle 2D 600 0.01
Airfoil Eulerian triangle 2D 600 0.008

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Dataset Specifications Our models are trained and evaluated across four distinct datasets:
FlagSimple, DeformingPlate, CylinderFlow, and Airfoil. Each dataset consists of 1000 training
trajectories, 100 validation trajectories, and 100 test trajectories, with each trajectory comprising
between 250 to 600 time steps. The FlagSimple dataset models a flag fluttering in the wind using a
static Lagrangian mesh with a fixed topology, ignoring collision effects. The DeformingPlate dataset
simulates the deformation of a hyper-elastic plate driven by a kinematic actuator with a quasi-static
simulator, structured on a Lagrangian tetrahedral mesh. The CylinderFlow dataset involves the sim-
ulation of incompressible The Airfoil dataset focuses on the aerodynamic properties around an airfoil
section, utilizing a 2D Eulerian mesh to track changes in momentum and density over time. Table 5
details for each dataset include: System, indicating whether the simulation is Lagrangian for solid
mechanics or Eulerian for fluid dynamics; Mesh Type, specifying the geometric configuration such
as triangular or tetrahedral; Dimensions, indicating whether the simulation is in 2D or 3D; and #
Steps, the total number of simulation steps in each trajectory reflecting the depth of time-dependent
analysis. The time step ∆t column specifies the simulation time increment between each step.

E MODEL DETAILS

Model Hyperparameters We employ a batch size of 1 but gradient accumulation of 20 for train-
ing and set the Message Passing (MP) time to 15 steps. These configurations are directly adapted
from the MGN model, as our model is a further improvement based on MGN. Unlike MGN, which
was trained for 10 million steps, we found that our model converged with the above settings in just
5 million steps, allowing us to reduce the training duration. The Adam optimizer is used with an
initial learning rate of 10−4, which decays exponentially to 10−6 over the course of 2 million train-
ing steps, out of a total of 5 million steps. The model comprises four functions: f1, f2, f3, and
f5, each configured as a ReLU-activated two-hidden-layer MLP. All the layers are sized at 128, the
same as other baselines. The Historical Message-Passing Attention mechanism implemented uses
four heads and includes a dropout rate of 0.1. The segmentation rate, denoted by sr, is set at 0.5.
Rather than employing a manual setting of the parameter λ, we have chosen to utilize learnable
lambda parameters. These settings are consistently applied across all datasets. Other models utilize
the default configurations from their respective papers.

Table 6: Model Input and Output Specifications

Dataset edge inputs eMij edge inputs eWij node inputs vi output

FlagSimple xm,ij , |xm,ij |,xw,ij , |xw,ij | xw,ij , |xw,ij | ni, ẋi ẍi

DeformingPlate xm,ij , |xm,ij |,xw,ij , |xw,ij | xw,ij , |xw,ij | ni ẋi, σi

CylinderFlow xw,ij , |xw,ij | – ni, wi ẇi

Airfoil xw,ij , |xw,ij | – ni, wi, ρi ẇi, σ̇i

Model Input and Output In table 6, several specific terms and symbols define the structure of
input and output data for each dataset involved in the simulations. The edge inputs eMij and eWij
represent interactions associated with edges between nodes i and j, where xm,ij denotes the world
edge position and xw,ij indicates the mesh edge position. The node inputs vi include ni, representing
node types, and xi, indicating node positions. Other node-specific properties include momentum
(wi) and density (ρi), while outputs encompass acceleration (ẍi), velocity (ẋi), and von Mises stress
(σi).

Table 7: Noise Scale and World Edge Radius Specifications

Dataset Noise Scale World Edge Radius rw

FlagSimple pos: 1e-3 —
DeformingPlate pos: 3e-3 0.03
CylinderFlow momentum: 2e-2 —

Airfoil momentum: 1e1, density: 1e-2 —

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Noise Injection and World Edge Radius Settings To enhance the robustness of our model against
noisy inputs and to simulate real-world data conditions more accurately, we implemented a strategy
for noise injection into the training process. These noise scales are consistent with the settings
used in MeshGraphNet (5), as detailed in Table 7. Additionally, the world edge radius rw column
specifies the radius used for defining mesh interactions in the DeformingPlate dataset. (Reviewer
YBDW) GFL uses the original topology from the dataset so rw do not participate in the Laplacian
eigendecomposition. This ensures that the precomputation remains efficient and does not incur
additional unnecessary overhead.

F MEMORY CONSUMPTION AND COMPUTATIONAL SPEED

Measurements MGN (5)
HMIT
(ours)

optimized HMIT
(ours)

ttrain/step [ms] 4.59 8.12 5.24
tinfer/step [ms] 1.91 3.37 1.95
Train RAM [GB] 1.50 4.45 1.92
Infer RAM [GB] 0.61 0.79 0.64

Table 8: Comparative study on the CylinderFlow dataset, evaluating computational efficiency and
memory usage across methods. (Reviewer ZnqH) The integration of KV cache and dynamic
weighted value selection significantly improves computational speed and reduces memory consump-
tion.

Despite the promising advancements offered by the Historical Message-Passing Integration Trans-
former (HMIT) in simulating physical systems, its initial implementation faced notable limitations
in computational speed and memory consumption. To address these challenges, we incorporated
two key optimizations. First, KV Cache eliminates redundant computations by caching key and
value matrices, reducing the attention complexity from O(3Nsd2 + 3Nsd) to O(Nsd2 + 3Nsd).
Second, Dynamic Weighted Value Selection dynamically selects the first m rows of the weighted
value matrix w ∈ Rs×d, where m corresponds to the current message-passing step, further enhanc-
ing computational efficiency. As shown in Table 8, these optimizations significantly reduce training
and inference times while decreasing memory requirements.

G PERFORMANCE OF HMIT ON DAM FLOW

Measurements HMIT (ours) MGN (5) BSMS (50) TIE (56)

RMSE-1 1.08 E-01 2.25 E-01 1.87 E-01 1.62 E-01
RMSE-50 2.57 E-01 6.03 E-01 5.34 E-01 5.71 E-01
RMSE-all 4.63 E-01 9.25 E-01 8.36 E-01 8.49 E-01

Table 9: Comparison of HMIT with MGN, BSMS, and TIE on the Dam Flow dataset. HMIT
demonstrates superior performance across all metrics.

(Reviewer L6SR) We additionally conducted an experiment on the Dam Problem from the CFD-
Bench (68) benchmark, which models the rapid release of water from a column collapse and repre-
sents complex free-surface flows with varying velocities. Our method outperforms previous methods
(MGN, BSMS, and TIE) across all three RMSE metrics—RMSE-1, RMSE-50, and RMSE-all—by
33% to 57%.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

H ROLLOUT VISUALIZATIONS

Figure 8: Flag Simple Visualization

Figure 9: Plate Visualization

Figure 10: Cylinder Visualization

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 11: Airfoil Visualization

25

	Introduction
	Related Work
	Problem Formulation and Preliminaries
	Problem Formulation
	Graph Fourier Transform
	Mathematical Definitions

	Method
	Historical Message-Passing Integration Transformer
	Scaled Historical Message-Passing Attention
	Complexity Analysis
	Selective Feature Aggregation

	Graph Fourier Loss

	Experiments
	Task setups
	Comparison with Baselines
	Precomputation Cost
	Ablation Studies

	Conclusion and Limitation
	Analysis of Learnable in Graph Fourier Loss
	Computation of GFL
	Adjustment Cases
	Derivative Computation
	Analysis: Why Does Not Tend to Zero

	Direct Application of to Frequency Domain MSE
	Computation of Adjusted MSE
	Analysis: Why Tends to Zero

	Experimental analysis of Graph Fourier Loss
	Theoretical Analysis of Graph Fourier Loss
	Result Analysis

	Dataset Details
	Model Details
	Memory Consumption and Computational Speed
	Performance of HMIT on Dam Flow
	Rollout Visualizations

