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Abstract. Subcellular RNA localization is a critical mechanism for the
spatial control of gene expression. Its mechanism and precise functional
role is not yet very well understood. Single Molecule Fluorescence in
Situ Hybridization (smFISH) images allow for the detection of individ-
ual RNA molecules with subcellular accuracy. In return, smFISH requires
robust methods to quantify and classify RNA spatial distribution. Here,
we present PointFISH, a novel computational approach for the recog-
nition of RNA localization patterns. PointFISH is an attention-based
network for computing continuous vector representations of RNA point
clouds. Trained on simulations only, it can directly process extracted co-
ordinates from experimental smFISH images. The resulting embedding
allows scalable and flexible spatial transcriptomics analysis and matches
performance of hand-crafted pipelines.

Keywords: smFISH, RNA localization, Point cloud, Transfer learning,
Simulation, Spatial transcriptomics

1 Introduction

Localization of messenger RNAs (mRNAs) are of functional importance for gene
expression and in particular its spatial control. RNA localization can be related
to RNA metabolism (to store untranslated mRNAs or degrade them) or protein
metabolism (to localize translations). RNA localization is not a limited phe-
nomenon but a common mechanism throughout the transcriptome, which might
also concern non-coding RNAs [1, 2]. Despite the importance of this process, it is
still poorly understood, and adequate tools to study this process are still lacking.

The spatial distribution of RNA can be investigated with sequence or image-
based techniques. We focus on the latter, since they provide substantially better
spatial resolution. In particular, we focus on developments around different Flu-
orescence in Situ Hybridization (FISH) procedures, and more precisely on Single
Molecule FISH (smFISH) images [3]. In smFISH, individual RNA molecules of a
given RNA species are targeted with several several fluorescently labeled oligonu-
cleotides and appear as bright diffraction-limited spots under a microscope. Cou-
pled with additional fluorescent markers to label relevant cell structures (cyto-
plasm, nucleus, centrosomes, . . . ), individual RNA spots can be detected with
subcellular accuracy, membranes segmented and cells identified. From such a
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(a) Foci (b) Intranuclear (c) Nuclear edge (d) Perinuclear (e) Protrusion

Fig. 1: RNA localization patterns from [4]. (Top) Typical smFISH images with
different RNA localization patterns. (Bottom) Coordinate representations with
RNA spots (red), cell membrane (black) and nuclear membrane (blue). Detection
and segmentation results are extracted and visualized with FISH-quant [5]

multi-channel microscopy image, we can obtain a coordinate representation of
each individual cell and its RNAs as illustrated in Figure 1.

RNA localization results in several, distinct patterns, which can in general
be defined by a local overcrowded subcellular region. In the literature [4], several
patterns have been described, even for a simple biological system such as HeLa
cells: a random default pattern where RNAs localize uniformly within the cell,
RNA clusters (foci), a high density of transcript along the nuclear membrane
(nuclear edge), inside the nucleus itself (intranuclear), in cell extensions (protru-
sion), or a polarization within the cell, like RNA localizing towards the nucleus
(perinuclear).

It is still an open problem to statistically classify and automatically detect
RNA localization patterns and represent its point cloud distribution. Previous
approaches relied essentially on handcrafted features, quantifying RNA distri-
bution within subcellular regions [6–8].

Here, we intend to address the challenge to detect RNA localization patterns
with a deep learning approach. The idea is to replace the feature engineering
problem by a training design problem. Instead of manually crafting features, we
propose a training procedure to learn them and be able to efficiently address the
recognition of RNA localization patterns in a more general setting.

2 Related Work

Recognition of RNA Localization Pattern In previous studies, hand-
crafted features to classify RNA localization patterns were developed [4, 7–9].
Their design has been inspired by literature on spatial statistics [10] and adapted



090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ECCV

#10
ECCV

#10

ECCV-22 submission ID 10 3

from analysis pipelines for fluorescence microscopy images [11, 12]. Several pack-
ages already implement modules to perform smFISH analysis and compute these
hand-crafted features [5, 13–15]. However, these approaches require to carefully
design a set of features corresponding to the concrete biological question under
study. For a different study a new set of features is necessary. Here, we aim to
investigate a more general approach to build localization features.

Learning Representations Neural network learn powerful representations
that can often be used for transfer learning. The idea is to pretrain a network
and thereby to obtain a generic representation by solving a pretext task on a
large annotated dataset, before addressing a more difficult or specific task with
sometimes limited data. Often the representation optimized to solve the pretext
task can also be useful for the more specific task. Such a model can be then used
as a feature extractor by computing features from one of its intermediate layers.
The computer vision community progressively replaces hand-crafted features [16,
17] by deep learning features to analyze images. For instance, convolutional neu-
ral networks pretrained on large and general classification challenges [18–21] are
used as backbone or feature extractor for more complex tasks like face recogni-
tion, detection or segmentation. The NLP community follows this trend as well
with a heavy use of word embeddings [22, 23] or the more recent transformers
models. The same strategy has also been applied to graphs: node2vec [24] learns
”task-independent representations” for nodes in networks.

Such embeddings can be a continuous and numerical representation of a non-
structured data like a text or a graph. In spage2vec [25], the model learned a low
dimensional embedding of local spatial gene expression (expressed as graphs).
Authors then identified meaningful gene expression signatures by computing this
embedding for tissue datasets.

Convolutional Features Since we analyze imaging data, a first intuition would
be to build a convolutional neural network to directly classify localization pat-
terns from these fluorescent images. Such an approach has already been suc-
cessfully used for protein localization images. Unlike RNAs, proteins are usually
very difficult to resolve at the single molecule level. They rather appear as a
characteristic texture in the fluorescent image and thus the representation of
subcellular protein localization often relies on texture and intensity features.
Initial studies [26] then computed a set of features from the microscopy image
before training a classifier. With the advent of deep learning, protein localization
is now tackled with convolutional neural networks, but still framed as a texture
classification problem. After crowdsourcing annotations for the Human Protein
Atlas dataset [27], researchers trained a machine learning model (Loc-CAT) from
hand-crafted features to predict subcellular localization patterns of proteins [28].
More recently, an online challenge [29] was organized, where the majority of top-
ranking solutions were based on convolutional neural networks. In summary, for
protein localization the shift from hand-crafted features to learned representa-
tions allows for more accurate and robust pipelines.
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A recent perspective paper [30] suggests the increased use of deep learning
models also for RNA localization analysis. The authors emphasize the recent
successes and flexibility of neural nets with different types of input, and therefore
the possibility to design a multimodal pipeline. However, in contrast to images
of proteins, smFISH images have clearly distinguishable spots corresponding to
individual RNA molecules, which can easily be detect and a texture classification
approach seems suboptimal for this reason.

Point Cloud Models We postulate that learning to classify RNA localization
patterns directly from detected spot coordinates could be an efficient approach.
A point cloud has an unordered and irregular structure. Projecting the point
coordinates into images or voxels [31] transforms the problem as an easier vision
challenge, but it comes along with some input degradations and dramatically
increases the memory needed to process the sample. Also, relevant spatial infor-
mation can be lost. In case of RNA point cloud, it makes the recognition of 3D
localization patterns harder [32].

PointNet [33] is a seminal work that opened the way for innovative models to
address shape classification. It directly processes point clouds with shared MLPs
and a max pooling layer, making the network invariant to input permutation.
However, the pooling step is the only way for the model to share information be-
tween close points, which ultimately limits its performance. Yet, recent research
dramatically improves point cloud modelling and especially the capture of local
information.

PointNet++ [34] learns local geometric structures by recursively applying
PointNet to different regions of the point cloud, in a hierarchical manner. This
way, local information can be conveyed through the network more efficiently.
DGCNN [35] proposes a new EdgeConv layer where edge features are computed
between a point and its neighbors. Some models propose to adapt convolutions
to point clouds by designing new weighting functions or kernel operations like
PointCNN [36], PointConv [37] or KPConv [38]. Another inspiration from the
computer vision or NLP literature is the attention-based model. To this end,
PointTransformer [39] proposes an attention layer to be applied to local regions
within the point cloud. Finally, PointMLP [40] proposes a simple but efficient
network with a pure deep hierarchical MLP architecture.

3 Problem Statement

We want to train a model, where we can provide directly the point cloud co-
ordinates as an input and compute a continuous vector representation. This
representation can then be used for classification of different RNA localization
patterns. Such a deep learning model might require a large volume of annotated
data to reach a satisfying performance. To generate such a large data sets, we
used simulated data to train our point cloud model and then use it as a trained
feature extractor. Eventually we evaluate these learned features on a real dataset.
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(a) 10% perinuclear RNA (b) 50% perinuclear RNA (c) 90% perinuclear RNA

Fig. 2: Perinuclear pattern simulations with increasing pattern strength. Simu-
lated with FISH-quant [5]

Table 1: Annotated real dataset

Pattern # of cells
Random 372

Foci 198
Intranuclear 73
Nuclear edge 87
Perinuclear 64
Protrusion 83

Simulated Dataset Using a Python frame-
work FISH-quant [5], we simulate a dataset
with 8 different localization patterns: random,
foci, intranuclear, extranuclear, nuclear edge,
perinuclear (Figure 2), cell edge and pericellu-
lar. We choose these patterns since they rep-
resent a diverse panel of localization patterns
in different cellular subregions. We simulate
for each pattern 20,000 cells with 50 to 900
RNAs per cell, resulting in a full dataset of
160,000 simulated cells. Except for the ran-
dom pattern, every simulated pattern has a
proportion of RNAs with preferential localization ranging from 60% to 100%.
In order to test how our trained features generalize to unknown localization
patterns, we did not simulate RNA localization in protrusions. However, these
localization class is present in the experimental data.

We split our dataset between train, validation and test, with 60%, 20% and
20% respectively. FISH-quant simulates point clouds from a limited number of
real image templates. To avoid overfitting, we make sure simulations from the
same cell template can’t be assigned to different splits. Finally, point clouds are
augmented with random rotations along the up-axis, centered and normalized
into the unit sphere.

Real Dataset To further validate the learned feature representation on sim-
ulated images, we use a previously published experimental dataset [4]. These
images are extracted from a smFISH study in HeLa cells targeting 27 different
genes. After data cleaning, this dataset consists of 9710 individual cells, with
cropped images and coordinates extracted. Cells have on average 346 RNAs and
90% of them have between 39 and 1307 transcripts. Furthermore, 810 cells have
manually annotated localization patterns, as detailed in table 1, providing a
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ground-truth for validation. Importantly, these patterns are not mutually exclu-
sive since cells can display several patterns at the same time, e.g. foci with a
perinuclear distribution.

4 PointFISH

4.1 Input Preparation

Besides the original RNA point cloud, we can use an optional second input
vector containing additional information with our model. Let X ∈ RN×3 be
the original input point cloud with N the number of RNAs. We define our
second input vector as X̃ ∈ RN×d with d ∈ {1, 2, 3, 4, 5}. The latter is composed
of three contextual inputs. First, we integrate morphological information by
merging RNA point cloud with 2D coordinates from the cell and the nucleus
membranes. Such coordinates are localized to the average height of the RNA
point cloud (0 if it is centered). This morphological input substantially increases
the size of the original point cloud, because we subsample 300 nodes from the cell
membrane and 100 nodes from the nuclear membrane. We also define an extra
boolean vector to indicate the cell nodes and a second vector to label the nuclear
nodes. By construction, each RNA in the point cloud has then two False values.

We end up with X ∈ RÑ×3 (with Ñ = N + 300 + 100) and X̃ ∈ {0, 1}Ñ×2
as inputs. Second, we compute the distance from cell and nucleus for every
RNA node. This adds an extra input X̃ ∈ RN×2. Third, we leverage the cluster
detection algorithm from FISH-quant [5] in order to label each RNA node as
clustered or not. It gives us a boolean X̃ ∈ {0, 1}N×1 to indicate if a RNA
belongs to a RNA cluster of not. Depending on whether or not we choose to
add the morphological information, the clustering or the distance information,
we can exploit up to 5 additional dimensions of input.

4.2 Model Architecture

We adopt the generic architecture introduced by PointNet [33]: successive point-
wise representations with increasing depth followed by a max pooling operation
to keep the network invariant by input permutation. We incorporate state-of-
the-art modules to learn efficient local structures within the point cloud. As
illustrated in Figure 3, we also adapt the network to the specificity of RNA
point clouds.

Point-wise Block Instead of shared MLPs like PointNet, we implement a
multi-head attention layer based on point transformer layer [39]. First, we as-
sign to each datapoint xi its 20 nearest neighbors X(i) ⊂ X, based on the
euclidean distance in the features space. We also compute a position encoding
δij = θ(xi−xj) for every pair within these neighborhoods, with θ a MLP. Three
sets of point-wise features are computed for each datapoint, with shared linear
projections φ, ψ and α. Relative weights between datapoints γ(φ(xi) − ψ(xj))
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Fig. 3: PointFISH architecture. Width and height of boxes represent output
length and dimension, respectively. Tuples represent output shapes

are computed with the subtraction relation (instead of dot product as in the
seminal attention paper [41]) and a MLP γ. These attention weights are then
normalized by softmax operation ρ. Eventually, datapoint’s feature yi is com-
puted as weighted sum of neighbors value α(xj), weighted by attention. With
the position encoding added to both the attention weights and the feature value,
the entire layer can be summarized such that:

yi =
∑

xj∈X(i)

ρ(γ(φ(xi)− ψ(xj) + δij))� (α(xj) + δij) (1)

For a multi-head attention layer, the process is repeated in parallel with
independent layers, before a last linear projection merge multi-head outputs. A
shortcut connection and a layer normalization [42] define the final output of our
multi-head attention layer.

Alignment Module Albeit optional, this module is critical. Some papers stress
the necessity to preprocess the input point cloud by learning a projection to align
the input coordinates in the right space [33, 35]. In addition, density heterogene-
ity across the point cloud and irregular local geometric structures might require
local normalization. To this end, we reuse the geometric affine module described
in PointMLP [40] which transforms local datapoints to a normal distribution.
With {xi,j}j=1,...,20 ∈ R20×3, the neighborhood’s features of xi, we compute:

{xi,j} = α� {xi,j} − xi
σ + ε

+ β (2)
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where α ∈ R3 and β ∈ R3 are learnable parameters, σ is the feature deviation
across all local neighborhoods and ε is a small number for numerical stability.

Contextual Inputs Our RNA point cloud does not include all the necessary in-
formation for a localization pattern classification. Especially, information about
the morphological properties of the cell and nucleus are lacking. To this end,
deep learning architectures allows flexible insertions. Several contextual inputs
X̃ can feed the network through a parallel branch, before concatenating RNA
and contextual point-wise features. Our best model exploits cluster and distance
information in addition to RNA coordinates.

5 Experiment

5.1 Training on Simulated Patterns

We train PointFISH on the simulated dataset. Our implementation is based on
TensorFlow [43]. We use ADAM optimizer [44] with a learning rate from 0.001
to 0.00001 and an exponential decay (decay rate of 0.5 every 20,000 steps).
Model is trained for a maximum of 150 epochs, with a batch size of 32, but early
stopping criterion is implemented if validation loss does not decrease after 10
consecutive epochs. Usually, the model converges after 50 epochs. We apply a
10% dropout for the last layer and classifications are evaluated with a categorical
cross entropy loss. Even if localization patterns are not necessarily exclusive, for
the simulations we trained the model to predict only one pattern per cell. For this
reason, we did not simulate mixed patterns and assume it could help the model
to learn disentangled representations. Training takes 6 to 8 hours to converge
with a Tesla P100 GPU.

A first evaluation can be performed on the simulated test dataset. With our
best PointFISH models, we obtain a general F1-score of 95% over the different
patterns.

5.2 Embedding Extraction

From a trained PointFISH model we can remove the output layer to get a feature
extractor that computes a 256-long embedding from a RNA point cloud.

Learned Embedding We compute the embedding for the entire cell popula-
tion studied in [4]. All the 9170 cells can be visualized in 2D using a UMAP
projection [45]. In Figure 4 each point represents a cell. Among the 810 anno-
tated cells, those with a unique pattern are colored according to the localization
pattern observed in their RNA point cloud. The rest of the dataset remains
gray. Overall, PointFISH embedding discriminates well the different localization
patterns. Intranuclear, nuclear edge and perinuclear cells form distinct clusters,
despite their spatial overlap, as well as protrusions. Cells with foci can be found
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in a separated clusters as well, but also mix with nuclear and perinuclear pat-
terns. This confusion is not surprising as a large number of cells in the dataset
present a nuclear-related foci pattern (i.e. cells have RNAs clustered in foci,
which in turn are close to the nuclear envelope, in which case the cell would be
labeled with both patterns).

unlabelled
intranuclear
nuclear
perinuclear
protrusion
foci
random

Fig. 4: UMAP embedding with learned features. Each point is a cell from
dataset [4]. Manually annotated cells are colored according to their localization
pattern

Supervised Classification Because PointFISH already return meaningful em-
beddings, we can apply a simple classifier on top of these features to learn local-
ization patterns. We use the 810 manually annotated cells from the real dataset.
We compare the 15 hand-crafted features selected in [4] with our learned embed-
ding. Every set of features is rescaled before feeding a classifier. Expert features
includes:

– The number of foci and the proportion of clustered RNA.
– The average foci distance from nucleus and cell.
– The proportion or RNA inside nucleus.
– The average RNA distance from nucleus and cell.
– The number of RNAs detected in cell extensions and a peripheral dispersion

index [12].
– The number of RNAs within different relevant subcellular regions.
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Hand-crafted features Learned features
0.0
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SVC
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Intranuclear
Nuclear edge
Perinuclear
Protrusion

Fig. 5: F1-score distribution with localization pattern classification (SVC model)

We design 5 binary classification tasks, one per localized pattern (random
pattern is omitted). The classifier is a SVC model [46]. For evaluation purpose,
we apply a nested cross-validation scheme. First, a test dataset is sampled (20%),
then the remaining cells are used for a gridsearch to find an optimal SVC model
(with another 20% validation split). Parameters grid includes the choice between
a linear or a RBF kernel and the strength of the regularization. The entire
process is repeated 50 times, with different test split, and F1-score for each
classification task is returned. This full evaluation pipeline is implemented with
scikit-learn [47]. F1-score’s distribution over 50 splits are summarized in Figure 5.
Learned features match performances of hand-crafted features selected for the
tasks. While the recognition of localization in protrusions is slightly worse, it is
important to point out that we did not include simulations of this patterns in
the training dataset.

5.3 Ablation Studies

We perform ablation studies to evaluate the impact of different components in
PointFISH model.

Additional Input We compare the use of RNA point cloud as unique input
or the inclusion of contextual information through a parallel branch. RNA co-
ordinates do not carry any morphological information about the cell. In table 2,
this design logically returns the lowest F1-score. Three additional inputs are
available: RNA distance from cell and nucleus (distance), RNA clustering flag
(cluster) and the integration of cell and nucleus membrane coordinates (mor-
phology). Best performances are reached when using at least distance and cluster
information. Cell and nucleus coordinates do not increase significantly the clas-
sification and dramatically increase the computation time of the model (we need
to process a larger point cloud). In particular, cluster information greatly im-
proves the recognition of the foci pattern while morphological distances boost
others localization patterns.
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Table 2: Impact of contextual inputs.
F1-score is averaged over 4 trainings
with different random seeds. Best model
is in bold. Reference model is labelled
with ∗

Distance Cluster Morphology F1-score
7 7 7 0.42
X 7 7 0.74
7 X 7 0.45
X X 7 0.81∗

X X X 0.82

Alignment Module and Point-
wise Block To measure the impact
of the geometric affine module [40], we
compare it with the TNet module im-
plemented in PointNet [33]. We also
design a variant of TNetEdge where
MLP layers extracting point-wise in-
dependent features are replaced with
EdgeConv layers [35]. Results are re-
ported in table 3. An alignment block
seems critical at the beginning of the
network. In addition, geometric affine
module is both more efficient (F1-
score of 0.81) and much lighter than
TNet and TNetEdge.

Inspired by PointNet and DGCNN, we also compare the use of their re-
spective point-wise blocks with our multi-head attention layer. As expected,
EdgeConv blocks convey a better information than PointNet by exploiting local
neighborhood within point cloud (F1-score of 0.78 and 0.75 respectively). Yet,
they do not match the performance of multi-head attention layer.

Concerning these layers, we evaluate how the number of parallel heads can
influence the performance of PointFISH. By default, we use 3 parallel attention
heads to let the model specialized its attentions vectors, but we also test 1, 6
and 9 parallel heads. In table 3, we only observe a slight benefit between the
original point transformer layer [39] (with one attention head) and its augmented
implementations.

Latent Dimensions The second part of PointFISH architecture is standard-
ized: a first MLP block, a max pooling operation, a second MLP block and the
output layer. We quantify the impact of additional MLP layers within these
blocks. Our reference model returns an embedding with 256 dimensions (before
the output layer). In a MLP block, we use ReLU activation and layer normaliza-
tion, but also increase or decrease the depth by a factor 2 between layers. Before
the pooling layer, the first MLP block includes 4 layers with an increasing depth
(128, 256, 512 and 1024). After the pooling layer, the second MLP block includes
2 layers with a decreasing depth (512 and 256). Similarly, to return 128, 64 or 32
long embeddings, we implement 6 (128, 256, 512, pooling, 256 and 128), 5 (128,
256, pooling, 128 and 64) or 4 final layers (128, pooling, 64 and 32). We observe
in table 3 a reduction in performance for the lowest dimensional embedding (64
and 32). This hyperparameter is also critical to design lighter models, with a
division by 4 in terms of trainable parameters between a 256 and a 128 long
embedding.
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Table 3: Ablation studies on real dataset [4]. F1-score is averaged over 4 trainings
with different random seeds. Best models are bold. Reference model is labelled
with ∗

Alignment Point-wise block # heads # dimensions # parameters F1-score

- Attention layer 3 256 1,372,608 0.73
TNet Attention layer 3 256 1,712,521 0.74

TNetEdge Attention layer 3 256 1,589,321 0.74

Affine MLP - 256 1,374,526 0.75
Affine EdgeConv - 256 1,387,006 0.78

Affine Attention layer 9 256 1,403,334 0.82
Affine Attention layer 6 256 1,387,974 0.82
Affine Attention layer 3 256 1,372,614 0.81∗

Affine Attention layer 1 256 1,362,374 0.81

Affine Attention layer 3 128 352,966 0.81
Affine Attention layer 3 64 97,094 0.77
Affine Attention layer 3 32 32,646 0.75

6 Discussion

We have presented a generic method of quantifying RNA localization patterns
acting directly on the extracted point coordinates, without the need to design
handcrafted features. For this, we leverage coordinates of simulated localization
patterns to train a specifically designed neural network taking as input a list of
points and associated features that greatly enhance generalization capabilities.
We show that this method is on par with carefully designed, handcrafted feature
sets.

Being able to directly process list of points provides the community with a
tool to integrate large datasets obtained with very different techniques on differ-
ent model systems. While the actual image data might look strikingly different
between such projects, they can all be summarized by segmentation maps of nu-
clei and cytoplasm, and a list of coordinates of RNA locations. Having methods
that act directly on point clouds is therefore a strategic advantage.

The idea of training on simulated data provides us the opportunity to query
datasets with respect to new localization patterns that have not yet been ob-
served, and for which we do not have real examples so far. In addition, this
strategy allows us to control for potential confounders, such as cell morphology,
or number of RNAs. Here, we provide a generic method that can leverage these
simulations, without the tedious process of handcrafting new features. Of note,
it is not necessary that the simulated patterns are optimized as to resemble real
data: they rather serve as a pretext task. If a network is capable of distinguishing
the simulated patterns, chances are high that the corresponding representation is
also informative for slightly or entirely different patterns, in the same way as rep-
resentations trained on ImageNet can be used for tumor detection in pathology
images. We show this by omitting the protrusion pattern from the simulation.
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We see in Figure 4 that the protrusion patterns live in a particular region of the
feature space, without specific training. Moreover, we see in Figure 4, that the
overall separation between patterns in this exploratory way coincides to a large
extent with the figure that has been proposed by the authors of the original
paper [4].

7 Conclusion

In this work, we introduce a new approach for the quantification and classifica-
tion of RNA localization patterns. On the top of existing solutions to extract
RNA spots and cell morphology coordinates, we propose to directly process the
resulting point clouds. Recent advances in point cloud analysis through deep
learning models allows us to build a flexible and scalable pipeline that matches
results obtained with specific hand-crafted features.

Overall, with the increasing interest on subcellular RNA localization in the
field of spatial transcriptomics, we expect that this approach will be of great
use to the scientific community, and that it will contribute to the deciphering of
some of the most fundamental processes in life.
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