
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV

#10
ECCV

#10

PointFISH: Learning Point Cloud
Representations for RNA Localization Patterns

Anonymous ECCV submission

Paper ID 10

Abstract. Subcellular RNA localization is a critical mechanism for the
spatial control of gene expression. Its mechanism and precise functional
role is not yet very well understood. Single Molecule Fluorescence in
Situ Hybridization (smFISH) images allow for the detection of individ-
ual RNA molecules with subcellular accuracy. In return, smFISH requires
robust methods to quantify and classify RNA spatial distribution. Here,
we present PointFISH, a novel computational approach for the recog-
nition of RNA localization patterns. PointFISH is an attention-based
network for computing continuous vector representations of RNA point
clouds. Trained on simulations only, it can directly process extracted co-
ordinates from experimental smFISH images. The resulting embedding
allows scalable and flexible spatial transcriptomics analysis and matches
performance of hand-crafted pipelines.

Keywords: smFISH, RNA localization, Point cloud, Transfer learning,
Simulation, Spatial transcriptomics

1 Introduction

Localization of messenger RNAs (mRNAs) are of functional importance for gene
expression and in particular its spatial control. RNA localization can be related
to RNA metabolism (to store untranslated mRNAs or degrade them) or protein
metabolism (to localize translations). RNA localization is not a limited phe-
nomenon but a common mechanism throughout the transcriptome, which might
also concern non-coding RNAs [1, 2]. Despite the importance of this process, it is
still poorly understood, and adequate tools to study this process are still lacking.

The spatial distribution of RNA can be investigated with sequence or image-
based techniques. We focus on the latter, since they provide substantially better
spatial resolution. In particular, we focus on developments around different Flu-
orescence in Situ Hybridization (FISH) procedures, and more precisely on Single
Molecule FISH (smFISH) images [3]. In smFISH, individual RNA molecules of a
given RNA species are targeted with several several fluorescently labeled oligonu-
cleotides and appear as bright diffraction-limited spots under a microscope. Cou-
pled with additional fluorescent markers to label relevant cell structures (cyto-
plasm, nucleus, centrosomes, . . . ), individual RNA spots can be detected with
subcellular accuracy, membranes segmented and cells identified. From such a



045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV

#10
ECCV

#10

2 ECCV-22 submission ID 10

(a) Foci (b) Intranuclear (c) Nuclear edge (d) Perinuclear (e) Protrusion

Fig. 1: RNA localization patterns from [4]. (Top) Typical smFISH images with
different RNA localization patterns. (Bottom) Coordinate representations with
RNA spots (red), cell membrane (black) and nuclear membrane (blue). Detection
and segmentation results are extracted and visualized with FISH-quant [5]

multi-channel microscopy image, we can obtain a coordinate representation of
each individual cell and its RNAs as illustrated in Figure 1.

RNA localization results in several, distinct patterns, which can in general
be defined by a local overcrowded subcellular region. In the literature [4], several
patterns have been described, even for a simple biological system such as HeLa
cells: a random default pattern where RNAs localize uniformly within the cell,
RNA clusters (foci), a high density of transcript along the nuclear membrane
(nuclear edge), inside the nucleus itself (intranuclear), in cell extensions (protru-
sion), or a polarization within the cell, like RNA localizing towards the nucleus
(perinuclear).

It is still an open problem to statistically classify and automatically detect
RNA localization patterns and represent its point cloud distribution. Previous
approaches relied essentially on handcrafted features, quantifying RNA distri-
bution within subcellular regions [6–8].

Here, we intend to address the challenge to detect RNA localization patterns
with a deep learning approach. The idea is to replace the feature engineering
problem by a training design problem. Instead of manually crafting features, we
propose a training procedure to learn them and be able to efficiently address the
recognition of RNA localization patterns in a more general setting.

2 Related Work

Recognition of RNA Localization Pattern In previous studies, hand-
crafted features to classify RNA localization patterns were developed [4, 7–9].
Their design has been inspired by literature on spatial statistics [10] and adapted



090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ECCV

#10
ECCV

#10

ECCV-22 submission ID 10 3

from analysis pipelines for fluorescence microscopy images [11, 12]. Several pack-
ages already implement modules to perform smFISH analysis and compute these
hand-crafted features [5, 13–15]. However, these approaches require to carefully
design a set of features corresponding to the concrete biological question under
study. For a different study a new set of features is necessary. Here, we aim to
investigate a more general approach to build localization features.

Learning Representations Neural network learn powerful representations
that can often be used for transfer learning. The idea is to pretrain a network
and thereby to obtain a generic representation by solving a pretext task on a
large annotated dataset, before addressing a more difficult or specific task with
sometimes limited data. Often the representation optimized to solve the pretext
task can also be useful for the more specific task. Such a model can be then used
as a feature extractor by computing features from one of its intermediate layers.
The computer vision community progressively replaces hand-crafted features [16,
17] by deep learning features to analyze images. For instance, convolutional neu-
ral networks pretrained on large and general classification challenges [18–21] are
used as backbone or feature extractor for more complex tasks like face recogni-
tion, detection or segmentation. The NLP community follows this trend as well
with a heavy use of word embeddings [22, 23] or the more recent transformers
models. The same strategy has also been applied to graphs: node2vec [24] learns
”task-independent representations” for nodes in networks.

Such embeddings can be a continuous and numerical representation of a non-
structured data like a text or a graph. In spage2vec [25], the model learned a low
dimensional embedding of local spatial gene expression (expressed as graphs).
Authors then identified meaningful gene expression signatures by computing this
embedding for tissue datasets.

Convolutional Features Since we analyze imaging data, a first intuition would
be to build a convolutional neural network to directly classify localization pat-
terns from these fluorescent images. Such an approach has already been suc-
cessfully used for protein localization images. Unlike RNAs, proteins are usually
very difficult to resolve at the single molecule level. They rather appear as a
characteristic texture in the fluorescent image and thus the representation of
subcellular protein localization often relies on texture and intensity features.
Initial studies [26] then computed a set of features from the microscopy image
before training a classifier. With the advent of deep learning, protein localization
is now tackled with convolutional neural networks, but still framed as a texture
classification problem. After crowdsourcing annotations for the Human Protein
Atlas dataset [27], researchers trained a machine learning model (Loc-CAT) from
hand-crafted features to predict subcellular localization patterns of proteins [28].
More recently, an online challenge [29] was organized, where the majority of top-
ranking solutions were based on convolutional neural networks. In summary, for
protein localization the shift from hand-crafted features to learned representa-
tions allows for more accurate and robust pipelines.



135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV

#10
ECCV

#10

4 ECCV-22 submission ID 10

A recent perspective paper [30] suggests the increased use of deep learning
models also for RNA localization analysis. The authors emphasize the recent
successes and flexibility of neural nets with different types of input, and therefore
the possibility to design a multimodal pipeline. However, in contrast to images
of proteins, smFISH images have clearly distinguishable spots corresponding to
individual RNA molecules, which can easily be detect and a texture classification
approach seems suboptimal for this reason.

Point Cloud Models We postulate that learning to classify RNA localization
patterns directly from detected spot coordinates could be an efficient approach.
A point cloud has an unordered and irregular structure. Projecting the point
coordinates into images or voxels [31] transforms the problem as an easier vision
challenge, but it comes along with some input degradations and dramatically
increases the memory needed to process the sample. Also, relevant spatial infor-
mation can be lost. In case of RNA point cloud, it makes the recognition of 3D
localization patterns harder [32].

PointNet [33] is a seminal work that opened the way for innovative models to
address shape classification. It directly processes point clouds with shared MLPs
and a max pooling layer, making the network invariant to input permutation.
However, the pooling step is the only way for the model to share information be-
tween close points, which ultimately limits its performance. Yet, recent research
dramatically improves point cloud modelling and especially the capture of local
information.

PointNet++ [34] learns local geometric structures by recursively applying
PointNet to different regions of the point cloud, in a hierarchical manner. This
way, local information can be conveyed through the network more efficiently.
DGCNN [35] proposes a new EdgeConv layer where edge features are computed
between a point and its neighbors. Some models propose to adapt convolutions
to point clouds by designing new weighting functions or kernel operations like
PointCNN [36], PointConv [37] or KPConv [38]. Another inspiration from the
computer vision or NLP literature is the attention-based model. To this end,
PointTransformer [39] proposes an attention layer to be applied to local regions
within the point cloud. Finally, PointMLP [40] proposes a simple but efficient
network with a pure deep hierarchical MLP architecture.

3 Problem Statement

We want to train a model, where we can provide directly the point cloud co-
ordinates as an input and compute a continuous vector representation. This
representation can then be used for classification of different RNA localization
patterns. Such a deep learning model might require a large volume of annotated
data to reach a satisfying performance. To generate such a large data sets, we
used simulated data to train our point cloud model and then use it as a trained
feature extractor. Eventually we evaluate these learned features on a real dataset.



180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV

#10
ECCV

#10

ECCV-22 submission ID 10 5

(a) 10% perinuclear RNA (b) 50% perinuclear RNA (c) 90% perinuclear RNA

Fig. 2: Perinuclear pattern simulations with increasing pattern strength. Simu-
lated with FISH-quant [5]

Table 1: Annotated real dataset

Pattern # of cells
Random 372

Foci 198
Intranuclear 73
Nuclear edge 87
Perinuclear 64
Protrusion 83

Simulated Dataset Using a Python frame-
work FISH-quant [5], we simulate a dataset
with 8 different localization patterns: random,
foci, intranuclear, extranuclear, nuclear edge,
perinuclear (Figure 2), cell edge and pericellu-
lar. We choose these patterns since they rep-
resent a diverse panel of localization patterns
in different cellular subregions. We simulate
for each pattern 20,000 cells with 50 to 900
RNAs per cell, resulting in a full dataset of
160,000 simulated cells. Except for the ran-
dom pattern, every simulated pattern has a
proportion of RNAs with preferential localization ranging from 60% to 100%.
In order to test how our trained features generalize to unknown localization
patterns, we did not simulate RNA localization in protrusions. However, these
localization class is present in the experimental data.

We split our dataset between train, validation and test, with 60%, 20% and
20% respectively. FISH-quant simulates point clouds from a limited number of
real image templates. To avoid overfitting, we make sure simulations from the
same cell template can’t be assigned to different splits. Finally, point clouds are
augmented with random rotations along the up-axis, centered and normalized
into the unit sphere.

Real Dataset To further validate the learned feature representation on sim-
ulated images, we use a previously published experimental dataset [4]. These
images are extracted from a smFISH study in HeLa cells targeting 27 different
genes. After data cleaning, this dataset consists of 9710 individual cells, with
cropped images and coordinates extracted. Cells have on average 346 RNAs and
90% of them have between 39 and 1307 transcripts. Furthermore, 810 cells have
manually annotated localization patterns, as detailed in table 1, providing a



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV

#10
ECCV

#10

6 ECCV-22 submission ID 10

ground-truth for validation. Importantly, these patterns are not mutually exclu-
sive since cells can display several patterns at the same time, e.g. foci with a
perinuclear distribution.

4 PointFISH

4.1 Input Preparation

Besides the original RNA point cloud, we can use an optional second input
vector containing additional information with our model. Let X ∈ RN×3 be
the original input point cloud with N the number of RNAs. We define our
second input vector as X̃ ∈ RN×d with d ∈ {1, 2, 3, 4, 5}. The latter is composed
of three contextual inputs. First, we integrate morphological information by
merging RNA point cloud with 2D coordinates from the cell and the nucleus
membranes. Such coordinates are localized to the average height of the RNA
point cloud (0 if it is centered). This morphological input substantially increases
the size of the original point cloud, because we subsample 300 nodes from the cell
membrane and 100 nodes from the nuclear membrane. We also define an extra
boolean vector to indicate the cell nodes and a second vector to label the nuclear
nodes. By construction, each RNA in the point cloud has then two False values.

We end up with X ∈ RÑ×3 (with Ñ = N + 300 + 100) and X̃ ∈ {0, 1}Ñ×2
as inputs. Second, we compute the distance from cell and nucleus for every
RNA node. This adds an extra input X̃ ∈ RN×2. Third, we leverage the cluster
detection algorithm from FISH-quant [5] in order to label each RNA node as
clustered or not. It gives us a boolean X̃ ∈ {0, 1}N×1 to indicate if a RNA
belongs to a RNA cluster of not. Depending on whether or not we choose to
add the morphological information, the clustering or the distance information,
we can exploit up to 5 additional dimensions of input.

4.2 Model Architecture

We adopt the generic architecture introduced by PointNet [33]: successive point-
wise representations with increasing depth followed by a max pooling operation
to keep the network invariant by input permutation. We incorporate state-of-
the-art modules to learn efficient local structures within the point cloud. As
illustrated in Figure 3, we also adapt the network to the specificity of RNA
point clouds.

Point-wise Block Instead of shared MLPs like PointNet, we implement a
multi-head attention layer based on point transformer layer [39]. First, we as-
sign to each datapoint xi its 20 nearest neighbors X(i) ⊂ X, based on the
euclidean distance in the features space. We also compute a position encoding
δij = θ(xi−xj) for every pair within these neighborhoods, with θ a MLP. Three
sets of point-wise features are computed for each datapoint, with shared linear
projections φ, ψ and α. Relative weights between datapoints γ(φ(xi) − ψ(xj))



270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

ECCV

#10
ECCV

#10

ECCV-22 submission ID 10 7

Input

MLP Block

Point-wise 
BlockAlignment

Contextual 
Input

MLP Block

P
oo

lin
g

M
LP

 B
lo

ck

O
ut

pu
t

(N, 3) (N, 3)

(N, 16)

(N, 1024) (1, 1024)

(1, 256)

(1, 8)

C

(N, 1 - 5)

(N, 16)

Repeat x 4

Length

Fe
at
ur
es

Fig. 3: PointFISH architecture. Width and height of boxes represent output
length and dimension, respectively. Tuples represent output shapes

are computed with the subtraction relation (instead of dot product as in the
seminal attention paper [41]) and a MLP γ. These attention weights are then
normalized by softmax operation ρ. Eventually, datapoint’s feature yi is com-
puted as weighted sum of neighbors value α(xj), weighted by attention. With
the position encoding added to both the attention weights and the feature value,
the entire layer can be summarized such that:

yi =
∑

xj∈X(i)

ρ(γ(φ(xi)− ψ(xj) + δij))� (α(xj) + δij) (1)

For a multi-head attention layer, the process is repeated in parallel with
independent layers, before a last linear projection merge multi-head outputs. A
shortcut connection and a layer normalization [42] define the final output of our
multi-head attention layer.

Alignment Module Albeit optional, this module is critical. Some papers stress
the necessity to preprocess the input point cloud by learning a projection to align
the input coordinates in the right space [33, 35]. In addition, density heterogene-
ity across the point cloud and irregular local geometric structures might require
local normalization. To this end, we reuse the geometric affine module described
in PointMLP [40] which transforms local datapoints to a normal distribution.
With {xi,j}j=1,...,20 ∈ R20×3, the neighborhood’s features of xi, we compute:

{xi,j} = α� {xi,j} − xi
σ + ε

+ β (2)



315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV

#10
ECCV

#10

8 ECCV-22 submission ID 10

where α ∈ R3 and β ∈ R3 are learnable parameters, σ is the feature deviation
across all local neighborhoods and ε is a small number for numerical stability.

Contextual Inputs Our RNA point cloud does not include all the necessary in-
formation for a localization pattern classification. Especially, information about
the morphological properties of the cell and nucleus are lacking. To this end,
deep learning architectures allows flexible insertions. Several contextual inputs
X̃ can feed the network through a parallel branch, before concatenating RNA
and contextual point-wise features. Our best model exploits cluster and distance
information in addition to RNA coordinates.

5 Experiment

5.1 Training on Simulated Patterns

We train PointFISH on the simulated dataset. Our implementation is based on
TensorFlow [43]. We use ADAM optimizer [44] with a learning rate from 0.001
to 0.00001 and an exponential decay (decay rate of 0.5 every 20,000 steps).
Model is trained for a maximum of 150 epochs, with a batch size of 32, but early
stopping criterion is implemented if validation loss does not decrease after 10
consecutive epochs. Usually, the model converges after 50 epochs. We apply a
10% dropout for the last layer and classifications are evaluated with a categorical
cross entropy loss. Even if localization patterns are not necessarily exclusive, for
the simulations we trained the model to predict only one pattern per cell. For this
reason, we did not simulate mixed patterns and assume it could help the model
to learn disentangled representations. Training takes 6 to 8 hours to converge
with a Tesla P100 GPU.

A first evaluation can be performed on the simulated test dataset. With our
best PointFISH models, we obtain a general F1-score of 95% over the different
patterns.

5.2 Embedding Extraction

From a trained PointFISH model we can remove the output layer to get a feature
extractor that computes a 256-long embedding from a RNA point cloud.

Learned Embedding We compute the embedding for the entire cell popula-
tion studied in [4]. All the 9170 cells can be visualized in 2D using a UMAP
projection [45]. In Figure 4 each point represents a cell. Among the 810 anno-
tated cells, those with a unique pattern are colored according to the localization
pattern observed in their RNA point cloud. The rest of the dataset remains
gray. Overall, PointFISH embedding discriminates well the different localization
patterns. Intranuclear, nuclear edge and perinuclear cells form distinct clusters,
despite their spatial overlap, as well as protrusions. Cells with foci can be found



360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV

#10
ECCV

#10

ECCV-22 submission ID 10 9

in a separated clusters as well, but also mix with nuclear and perinuclear pat-
terns. This confusion is not surprising as a large number of cells in the dataset
present a nuclear-related foci pattern (i.e. cells have RNAs clustered in foci,
which in turn are close to the nuclear envelope, in which case the cell would be
labeled with both patterns).

unlabelled
intranuclear
nuclear
perinuclear
protrusion
foci
random

Fig. 4: UMAP embedding with learned features. Each point is a cell from
dataset [4]. Manually annotated cells are colored according to their localization
pattern

Supervised Classification Because PointFISH already return meaningful em-
beddings, we can apply a simple classifier on top of these features to learn local-
ization patterns. We use the 810 manually annotated cells from the real dataset.
We compare the 15 hand-crafted features selected in [4] with our learned embed-
ding. Every set of features is rescaled before feeding a classifier. Expert features
includes:

– The number of foci and the proportion of clustered RNA.
– The average foci distance from nucleus and cell.
– The proportion or RNA inside nucleus.
– The average RNA distance from nucleus and cell.
– The number of RNAs detected in cell extensions and a peripheral dispersion

index [12].
– The number of RNAs within different relevant subcellular regions.



405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

ECCV

#10
ECCV

#10

10 ECCV-22 submission ID 10

Hand-crafted features Learned features
0.0

0.2

0.4

0.6

0.8

1.0
SVC

Foci
Intranuclear
Nuclear edge
Perinuclear
Protrusion

Fig. 5: F1-score distribution with localization pattern classification (SVC model)

We design 5 binary classification tasks, one per localized pattern (random
pattern is omitted). The classifier is a SVC model [46]. For evaluation purpose,
we apply a nested cross-validation scheme. First, a test dataset is sampled (20%),
then the remaining cells are used for a gridsearch to find an optimal SVC model
(with another 20% validation split). Parameters grid includes the choice between
a linear or a RBF kernel and the strength of the regularization. The entire
process is repeated 50 times, with different test split, and F1-score for each
classification task is returned. This full evaluation pipeline is implemented with
scikit-learn [47]. F1-score’s distribution over 50 splits are summarized in Figure 5.
Learned features match performances of hand-crafted features selected for the
tasks. While the recognition of localization in protrusions is slightly worse, it is
important to point out that we did not include simulations of this patterns in
the training dataset.

5.3 Ablation Studies

We perform ablation studies to evaluate the impact of different components in
PointFISH model.

Additional Input We compare the use of RNA point cloud as unique input
or the inclusion of contextual information through a parallel branch. RNA co-
ordinates do not carry any morphological information about the cell. In table 2,
this design logically returns the lowest F1-score. Three additional inputs are
available: RNA distance from cell and nucleus (distance), RNA clustering flag
(cluster) and the integration of cell and nucleus membrane coordinates (mor-
phology). Best performances are reached when using at least distance and cluster
information. Cell and nucleus coordinates do not increase significantly the clas-
sification and dramatically increase the computation time of the model (we need
to process a larger point cloud). In particular, cluster information greatly im-
proves the recognition of the foci pattern while morphological distances boost
others localization patterns.



450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

ECCV

#10
ECCV

#10

ECCV-22 submission ID 10 11

Table 2: Impact of contextual inputs.
F1-score is averaged over 4 trainings
with different random seeds. Best model
is in bold. Reference model is labelled
with ∗

Distance Cluster Morphology F1-score
7 7 7 0.42
X 7 7 0.74
7 X 7 0.45
X X 7 0.81∗

X X X 0.82

Alignment Module and Point-
wise Block To measure the impact
of the geometric affine module [40], we
compare it with the TNet module im-
plemented in PointNet [33]. We also
design a variant of TNetEdge where
MLP layers extracting point-wise in-
dependent features are replaced with
EdgeConv layers [35]. Results are re-
ported in table 3. An alignment block
seems critical at the beginning of the
network. In addition, geometric affine
module is both more efficient (F1-
score of 0.81) and much lighter than
TNet and TNetEdge.

Inspired by PointNet and DGCNN, we also compare the use of their re-
spective point-wise blocks with our multi-head attention layer. As expected,
EdgeConv blocks convey a better information than PointNet by exploiting local
neighborhood within point cloud (F1-score of 0.78 and 0.75 respectively). Yet,
they do not match the performance of multi-head attention layer.

Concerning these layers, we evaluate how the number of parallel heads can
influence the performance of PointFISH. By default, we use 3 parallel attention
heads to let the model specialized its attentions vectors, but we also test 1, 6
and 9 parallel heads. In table 3, we only observe a slight benefit between the
original point transformer layer [39] (with one attention head) and its augmented
implementations.

Latent Dimensions The second part of PointFISH architecture is standard-
ized: a first MLP block, a max pooling operation, a second MLP block and the
output layer. We quantify the impact of additional MLP layers within these
blocks. Our reference model returns an embedding with 256 dimensions (before
the output layer). In a MLP block, we use ReLU activation and layer normaliza-
tion, but also increase or decrease the depth by a factor 2 between layers. Before
the pooling layer, the first MLP block includes 4 layers with an increasing depth
(128, 256, 512 and 1024). After the pooling layer, the second MLP block includes
2 layers with a decreasing depth (512 and 256). Similarly, to return 128, 64 or 32
long embeddings, we implement 6 (128, 256, 512, pooling, 256 and 128), 5 (128,
256, pooling, 128 and 64) or 4 final layers (128, pooling, 64 and 32). We observe
in table 3 a reduction in performance for the lowest dimensional embedding (64
and 32). This hyperparameter is also critical to design lighter models, with a
division by 4 in terms of trainable parameters between a 256 and a 128 long
embedding.



495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

ECCV

#10
ECCV

#10

12 ECCV-22 submission ID 10

Table 3: Ablation studies on real dataset [4]. F1-score is averaged over 4 trainings
with different random seeds. Best models are bold. Reference model is labelled
with ∗

Alignment Point-wise block # heads # dimensions # parameters F1-score

- Attention layer 3 256 1,372,608 0.73
TNet Attention layer 3 256 1,712,521 0.74

TNetEdge Attention layer 3 256 1,589,321 0.74

Affine MLP - 256 1,374,526 0.75
Affine EdgeConv - 256 1,387,006 0.78

Affine Attention layer 9 256 1,403,334 0.82
Affine Attention layer 6 256 1,387,974 0.82
Affine Attention layer 3 256 1,372,614 0.81∗

Affine Attention layer 1 256 1,362,374 0.81

Affine Attention layer 3 128 352,966 0.81
Affine Attention layer 3 64 97,094 0.77
Affine Attention layer 3 32 32,646 0.75

6 Discussion

We have presented a generic method of quantifying RNA localization patterns
acting directly on the extracted point coordinates, without the need to design
handcrafted features. For this, we leverage coordinates of simulated localization
patterns to train a specifically designed neural network taking as input a list of
points and associated features that greatly enhance generalization capabilities.
We show that this method is on par with carefully designed, handcrafted feature
sets.

Being able to directly process list of points provides the community with a
tool to integrate large datasets obtained with very different techniques on differ-
ent model systems. While the actual image data might look strikingly different
between such projects, they can all be summarized by segmentation maps of nu-
clei and cytoplasm, and a list of coordinates of RNA locations. Having methods
that act directly on point clouds is therefore a strategic advantage.

The idea of training on simulated data provides us the opportunity to query
datasets with respect to new localization patterns that have not yet been ob-
served, and for which we do not have real examples so far. In addition, this
strategy allows us to control for potential confounders, such as cell morphology,
or number of RNAs. Here, we provide a generic method that can leverage these
simulations, without the tedious process of handcrafting new features. Of note,
it is not necessary that the simulated patterns are optimized as to resemble real
data: they rather serve as a pretext task. If a network is capable of distinguishing
the simulated patterns, chances are high that the corresponding representation is
also informative for slightly or entirely different patterns, in the same way as rep-
resentations trained on ImageNet can be used for tumor detection in pathology
images. We show this by omitting the protrusion pattern from the simulation.



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

ECCV
#10

ECCV
#10

ECCV-22 submission ID 10 13

We see in Figure 4 that the protrusion patterns live in a particular region of the
feature space, without specific training. Moreover, we see in Figure 4, that the
overall separation between patterns in this exploratory way coincides to a large
extent with the figure that has been proposed by the authors of the original
paper [4].

7 Conclusion

In this work, we introduce a new approach for the quantification and classifica-
tion of RNA localization patterns. On the top of existing solutions to extract
RNA spots and cell morphology coordinates, we propose to directly process the
resulting point clouds. Recent advances in point cloud analysis through deep
learning models allows us to build a flexible and scalable pipeline that matches
results obtained with specific hand-crafted features.

Overall, with the increasing interest on subcellular RNA localization in the
field of spatial transcriptomics, we expect that this approach will be of great
use to the scientific community, and that it will contribute to the deciphering of
some of the most fundamental processes in life.

References

1. Lécuyer, E., Yoshida, H., Parthasarathy, N., Alm, C., Babak, T., Cerovina, T.,
Hughes, T.R., Tomancak, P., Krause, H.M.: Global analysis of mRNA localization
reveals a prominent role in organizing cellular architecture and function. Cell
131(1) (2007) 174–187

2. Buxbaum, A.R., Haimovich, G., Singer, R.H.: In the right place at the right time:
visualizing and understanding mRNA localization. Nature Reviews Molecular Cell
Biology 16(2) (2015) 95–109

3. Tsanov, N., Samacoits, A., Chouaib, R., Traboulsi, A.M., Gostan, T., Weber, C.,
Zimmer, C., Zibara, K., Walter, T., Peter, M., Bertrand, E., Mueller, F.: smiFISH
and FISH-quant – a flexible single RNA detection approach with super-resolution
capability. Nucleic Acids Research 44(22) (2016) e165–e165

4. Chouaib, R., Safieddine, A., Pichon, X., Imbert, A., Kwon, O.S., Samacoits, A.,
Traboulsi, A.M., Robert, M.C., Tsanov, N., Coleno, E., Poser, I., Zimmer, C.,
Hyman, A., Le Hir, H., Zibara, K., Peter, M., Mueller, F., Walter, T., Bertrand,
E.: A dual protein-mrna localization screen reveals compartmentalized translation
and widespread co-translational rna targeting. Developmental Cell 54(6) (2020)
773–791.e5

5. Imbert, A., Ouyang, W., Safieddine, A., Coleno, E., Zimmer, C., Bertrand, E.,
Walter, T., Mueller, F.: FISH-quant v2: a scalable and modular tool for smFISH
image analysis. RNA 10(6) (2022) 786–795

6. Battich, N., Stoeger, T., Pelkmans, L.: Image-based transcriptomics in thou-
sands of single human cells at single-molecule resolution. Nature Methods 10(11)
(November 2013) 1127–1133 Number: 11 Publisher: Nature Publishing Group.

7. Stoeger, T., Battich, N., Herrmann, M.D., Yakimovich, Y., Pelkmans, L.: Com-
puter vision for image-based transcriptomics. Methods 85 (September 2015) 44–53



585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

ECCV
#10

ECCV
#10

14 ECCV-22 submission ID 10

8. Samacoits, A., Chouaib, R., Safieddine, A., Traboulsi, A.M., Ouyang, W., Zimmer,
C., Peter, M., Bertrand, E., Walter, T., Mueller, F.: A computational framework
to study sub-cellular RNA localization. Nature Communications 9(1) (2018) 4584

9. Battich, N., Stoeger, T., Pelkmans, L.: Image-based transcriptomics in thousands
of single human cells at single-molecule resolution. Nature Methods 10(11) (2013)
1127–1133

10. Ripley, B.: Spatial Statistics. Wiley Series in Probability and Statistics. Wiley
(2005)

11. Lagache, T., Sauvonnet, N., Danglot, L., Olivo-Marin, J.C.: Statistical analysis of
molecule colocalization in bioimaging. Cytometry Part A 87(6) (2015) 568–579

12. Stueland, M., Wang, T., Park, H.Y., Mili, S.: RDI Calculator: An Analysis Tool
to Assess RNA Distributions in Cells. Scientific Reports 9(1) (2019) 8267

13. Mueller, F., Senecal, A., Tantale, K., Marie-Nelly, H., Ly, N., Collin, O., Basyuk,
E., Bertrand, E., Darzacq, X., Zimmer, C.: FISH-quant: automatic counting of
transcripts in 3D FISH images. Nature Methods 10(4) (2013) 277–278

14. Savulescu, A.F., Brackin, R., Bouilhol, E., Dartigues, B., Warrell, J.H., Pi-
mentel, M.R., Dallongeville, S., Schmoranzer, J., Olivo-Marin, J.C., Gomes, E.R.,
Nikolski, M., Mhlanga, M.M.: DypFISH: Dynamic Patterned FISH to Inter-
rogate RNA and Protein Spatial and Temporal Subcellular Distribution (2019)
https://www.biorxiv.org/content/10.1101/536383v1.

15. Mah, C.K., Ahmed, N., Lam, D., Monell, A., Kern, C., Han, Y., Ces-
nik, A.J., Lundberg, E., Zhu, Q., Carter, H., Yeo, G.W.: Bento:
A toolkit for subcellular analysis of spatial transcriptomics data (2022)
https://www.biorxiv.org/content/10.1101/2022.06.10.495510v1.

16. Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of
the Seventh IEEE International Conference on Computer Vision. (1999) 1150–1157

17. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In:
Computer Vision – ECCV 2006. (2006) 404–417

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (2016)

19. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). (2016)

20. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neu-
ral networks. In: Proceedings of the 36th International Conference on Machine
Learning. (2019) 6105–6114

21. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). (2017)

22. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space (2013) https://arxiv.org/abs/1301.3781.

23. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification (2016) https://arxiv.org/abs/1607.01759.

24. Grover, A., Leskovec, J.: Node2vec: Scalable feature learning for networks. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. (2016) 855–864

25. Partel, G., Wählby, C.: Spage2vec: Unsupervised representation of localized spatial
gene expression signatures. The FEBS Journal 288(6) (2021) 1859–1870



630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

ECCV
#10

ECCV
#10

ECCV-22 submission ID 10 15

26. Boland, M.V., Markey, M.K., Murphy, R.F.: Automated recognition of patterns
characteristic of subcellular structures in fluorescence microscopy images. Cytom-
etry 33(3) (1998) 366–375

27. Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu,
A., Åsa Sivertsson, Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I., Edlund, K.,
Lundberg, E., Navani, S., Szigyarto, C.A.K., Odeberg, J., Djureinovic, D., Taka-
nen, J.O., Hober, S., Alm, T., Edqvist, P.H., Berling, H., Tegel, H., Mulder, J.,
Rockberg, J., Nilsson, P., Schwenk, J.M., Hamsten, M., von Feilitzen, K., Forsberg,
M., Persson, L., Johansson, F., Zwahlen, M., von Heijne, G., Nielsen, J., Pontén,
F.: Tissue-based map of the human proteome. Science 347(6220) (2015) 1260419

28. Sullivan, D.P., Winsnes, C.F., Åkesson, L., Hjelmare, M., Wiking, M., Schutten,
R., Campbell, L., Leifsson, H., Rhodes, S., Nordgren, A., Smith, K., Revaz, B.,
Finnbogason, B., Szantner, A., Lundberg, E.: Deep learning is combined with
massive-scale citizen science to improve large-scale image classification. Nature
Biotechnology 36(9) (2018) 820–828

29. Ouyang, W., Winsnes, C.F., Hjelmare, M., Cesnik, A.J., Åkesson, L., Xu, H.,
Sullivan, D.P., Dai, S., Lan, J., Jinmo, P., Galib, S.M., Henkel, C., Hwang, K.,
Poplavskiy, D., Tunguz, B., Wolfinger, R.D., Gu, Y., Li, C., Xie, J., Buslov, D.,
Fironov, S., Kiselev, A., Panchenko, D., Cao, X., Wei, R., Wu, Y., Zhu, X., Tseng,
K.L., Gao, Z., Ju, C., Yi, X., Zheng, H., Kappel, C., Lundberg, E.: Analysis of the
Human Protein Atlas Image Classification competition. Nature Methods 16(12)
(2019) 1254–1261

30. Savulescu, A.F., Bouilhol, E., Beaume, N., Nikolski, M.: Prediction of rna sub-
cellular localization: Learning from heterogeneous data sources. iScience 24(11)
(2021) 103298

31. Maturana, D., Scherer, S.: Voxnet: A 3d convolutional neural network for real-time
object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). (2015) 922–928

32. Dubois, R., Imbert, A., Samacöıts, A., Peter, M., Bertrand, E., Müller, F., Walter,
T.: A Deep Learning Approach To Identify mRNA Localization Patterns. In:
2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI). (2019)
1386–1390

33. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). (2017)

34. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In: Advances in Neural Information
Processing Systems. Volume 30. (2017)

35. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. ACM Trans. Graph. 38(5) (2019)

36. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: Convolution on
x-transformed points. In: Advances in Neural Information Processing Systems.
Volume 31. (2018)

37. Wu, W., Qi, Z., Fuxin, L.: Pointconv: Deep convolutional networks on 3d point
clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). (2019)

38. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.:
Kpconv: Flexible and deformable convolution for point clouds. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV). (2019)



675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

ECCV

#10
ECCV

#10

16 ECCV-22 submission ID 10

39. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
(2021) 16259–16268

40. Ma, X., Qin, C., You, H., Ran, H., Fu, Y.: Rethinking network design and local
geometry in point cloud: A simple residual MLP framework. In: International
Conference on Learning Representations. (2022)

41. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L.u., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems. Volume 30. (2017)

42. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization (2016)
http://arxiv.org/abs/1607.06450.

43. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015)
https://www.tensorflow.org/.

44. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR (2015)
45. McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approx-

imation and projection. Journal of Open Source Software 3(29) (2018) 861
46. Chang, C.C., Lin, C.J.: Libsvm: A library for support vector machines. ACM

transactions on intelligent systems and technology (TIST) 2(3) (2011) 1–27
47. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12 (2011) 2825–2830


