
IDS-Agent: An LLM Agent for Explainable Intrusion
Detection in IoT Networks

Yanjie Li ∗

University of Illinois Urbana-Champaign
yjl.zju@gmail.com

Zhen Xiang
University of Georgia

zhen.xiang.lance@gmail.com

Nathaniel D. Bastian
United States Military Academy

nathaniel.bastian@westpoint.edu

Dawn Song
University of California Berkeley
dawnsong@cs.berkeley.edu

Bo Li
University of Chicago
bol@uchicago.edu

Abstract

Emerging threats to IoT networks have accelerated the development of intrusion
detection systems (IDSs), characterized by a shift from traditional approaches
based on attack signatures or anomaly detection to approaches based on machine
learning (ML). However, current ML-based IDSs often fail to explicitly integrate
domain knowledge, lack explainability, and struggle to address zero-day attacks.
In this paper, we propose IDS-Agent, the first AI agent powered by large lan-
guage models (LLMs) for intrusion detection. IDS-Agent predicts whether an
input network traffic ios benign or malicious, with an explanation of the prediction
results. The workflow of IDS-Agent involves a sequence of actions generated by
its core LLM based on reasoning over the state observations. The action space of
IDS-Agent includes data extraction and preprocessing, classification, knowledge,
and memory retrieval, and results aggregation – these actions will be executed
using abundant tools, mostly specialized for IDS. Furthermore, IDS-Agent is
equipped with a memory and knowledge base that retains information from current
and previous sessions, along with IDS-related documents, enhancing its reasoning
and action generation capabilities. The system prompts of IDS-Agent can be
easily customized to adjust detection sensitivity or identify previously unknown
types of attacks. In our experiments, we demonstrate the strong detection capa-
bilities of IDS-Agent compared with ML-based IDSs and an IDS based on LLM
with prompt engineering. IDS-Agent outperforms these SOTA baselines on the
ACI-IoT and CIC-IoT benchmarks, with 0.97 and 0.75 detection F1 scores, re-
spectively. IDS-Agent also achieves a recall of 0.61 in detecting zero-day attacks,
outperforming previous approaches specially designed for this task.

1 Introduction

In recent years, the Internet of Things (IoT) has emerged as a transformative technology, increas-
ingly adopted across a wide range of applications [8]. Alongside its rapid development, security
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concerns have arisen within IoT networks due to the typically large number of devices with potential
trustworthiness issues [3]. Therefore, the deployment of Intrusion Detection Systems (IDSs) has
become essential, as they play a critical role in monitoring network traffic and identifying malicious
activities [19]. Many traditional IDSs employ signature-based methods, which rely on databases
that store signatures of known attacks [16, 26, 4]. They suffer from high false negative rates when
variations in attack methodologies do not exactly match the existing signatures. Alternatively, IDS
can also be designed as an anomaly detector to identify distributional deviations from normal traf-
fic [18, 17]. However, defining the normal behavior in a network can be challenging, especially in
diverse and dynamic environments where normal activity can change over time. Machine learning
(ML)-based IDS was then proposed to address these problems by leveraging the representation power
of ML models, such as deep neural networks (DNNs), to capture complex attack patterns from
extensive training data [23]. However, ML-based IDS still face limitations due to constraints in
the model architecture and training data, which hinder their detection capabilities, especially when
addressing zero-day attacks [31]. Furthermore, the detection results from ML-based IDS often lack
clear explanations, which can diminish their credibility, particularly in safety-critical IoT scenarios
where understanding the rationale behind alerts is crucial [7, 2].

Recently, AI agents empowered by large language models (LLMs) have been created to handle
complicated tasks in various application domains [37, 1, 29, 21, 10, 15, 40, 34]. These agents are
characterized by their integrated capabilities to interact with the environment, conduct knowledge-
assisted reasoning, and then take appropriate actions according to the user’s requests. Typically, LLM
agents are equipped with a knowledge/memory base for the retrieval of task-related information
and a toolbox that includes tools such as local functions and third-party APIs. They utilize one or
more LLMs for reasoning and the subsequent generation of actions, such as the selection of the most
appropriate tools. The intelligence of LLM agents in reasoning (as well as analysis and criticism [30])
makes them both powerful operators and effective intermediaries between task execution and the
environment/users.

In this paper, we propose IDS-Agent, the first LLM agent designed for intrusion detection, featur-
ing its integration of external knowledge, and the capabilities for explanation, customization, and
adaptation to zero-day attacks. IDS-Agent takes an input request for intrusion detection with a
target raw data flow, and outputs detection results with a detailed explanation. The agent adopts a
reasoning-followed-by-action pipeline ( [36]) with a specialized action space for intrusion detection.
Specifically, knowledge-enabled reasoning based on long-term memory from previous sessions is
performed by the core LLM of the agent to decide the optimal tools (and their settings/parameters)
for data extraction, preprocessing, classification, and results aggregation. Compared with existing
ML-based IDSs, IDS-Agent achieves a stronger detection performance and better interpretability
by harnessing the power of multiple ML models and external knowledge in a comprehensive way.
It aggregates the classification results from multiple ML models by prompting an LLM with the
top-k label predictions and the confidence scores for each model. The prompt also includes external
knowledge (e.g. regarding particular attack types) obtained by calling a search engine and additional
instructions, for example, to customize detection sensitivity or to reveal unseen attack types. The
LLM is instructed to produce structured outputs, including detection results and an explanation. Our
main technical contributions are summarized below:

• We propose IDS-Agent, the first LLM-powered agent for intrusion detection, featured by its
capabilities of explicit knowledge integration, explanation, detection customization, and revealing
of zero-day attacks.

• We propose a reasoning-followed-by-action pipeline for IDS-Agent with an action space and
toolbox specialized for network traffic processing, knowledge retrieval and integration, and intrusion
detection results aggregation.

• We demonstrate the effectiveness of IDS-Agent on two IDS benchmarks, ACI-IoT’23 and CIC-
IoT’23. IDS-Agent achieves higher detection accuracy compared with the latest LLM-based
method, various ML models, and the ensemble of ML models based on majority vote.

• Experiments show that when classifiers produce discrepancy predictions, IDS-Agent can utilize
inherent and external knowledge to help the decision-making. IDS-Agent also demonstrates clearly
better performance than existing approaches in detecting zero-day attacks. Moreover, we find that
IDS-Agent effectively follows the sensitivity instructions without requiring expert intervention or
additional tuning.
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2 Related Work

Conventional IDS An Intrusion Detection System (IDS) is designed to detect malicious activities
on computer systems, helping to ensure system security [19]. IDSs are generally classified into
two main types: Signature-based Intrusion Detection Systems (SIDS) and Anomaly-based Intrusion
Detection Systems (AIDS). SIDS relies on pattern-matching techniques to identify known attacks
[16, 26, 4]. However, the rise in zero-day attacks has increasingly diminished the effectiveness of
SIDS, as these new attacks lack existing signatures [31]. In contrast, AIDS constructs a model of
normal system behavior using machine learning, statistical, or knowledge-based techniques. Any
significant deviation from the constructed model is flagged as an anomaly, potentially indicating
an intrusion [18, 17]. However, in a dynamically changing environment, a time-consuming regular
update on the knowledge base is needed.

ML-based IDS Many machine learning models, such as MLP [5], KNN [22], Decision Tree [13],
SVM [25], have been explored for anomaly-based intrusion detection. For IoT intrusion detection,
Verma et al. [32] conducted a comprehensive comparison of ensemble and individual classifiers,
including Random Forest (RF), AdaBoost (AB), and Gradient Boosted Machines (GBM). Roy et
al. [28] proposed a lightweight IDS model utilizing machine learning to detect cyber-attacks and
anomalies in resource-constrained IoT systems. Davis et al. [9] advanced this line of research by
applying a quantum-annealing approach for feature selection in IoT intrusion detection. Compared
with ML-based IDSs, our IDS-Agent not only achieves better empirical performance but also
provides a detailed explanation of each intrusion detection result.

LLM-based IDS Large language models (LLMs), especially generative pre-trained commercial
transformers, like GPTs, have recently demonstrated outstanding ability in information comprehen-
sion and reasoning tasks. This has motivated some studies in applying LLMs to abnormal detection
tasks, such as compiler optimization [12] and software vulnerability detection [14]. Zhang et al. [38]
is the first to use LLMs for IDS by employing a straightforward in-context learning approach with
GPT-4, which provides it with a few labeled examples. Their method achieved over 90% accuracy
on a simple dataset containing only five types of attacks. However, in this paper, we demonstrate
that the performance of their method drops significantly when tested on more complex and diverse
datasets. Different from this LLM-based IDS, our IDS-Agent uses LLM for reasoning and action
planning, with integration of external knowledge and tools, leading to a huge performance gain on
diverse datasets.

3 Method
IDS-Agent is designed to produce a prediction result with an explanation for each user request for
IoT traffic inference, i.e., to determine if the traffic is benign or belongs to any particular attack
type. We also allow IDS-Agent to handle requests for customized detection sensitivities or to detect
new attack categories from the given IoT traffic flow. IDS-Agent is equipped with a) an abundant
toolbox containing special IDS tools such as ML models for classification and general tools such
as search engines to retrieve external knowledge and b) a memory and knowledge base storing the
current session information, long-term memory from previous sessions, and supportive documents.
These tools, memory, and external knowledge will be integrated to guide the decision-making of
IDS-Agent in a structured manner, as detailed in the sequel.

3.1 Pipeline of IDS-Agent

The pipeline of our IDS-Agent is inspired by the ReAct agent [36]. The user request is fulfilled
by executing a sequence of action steps {a1, a2, · · · }, where each action step is generated by a core
LLM based on previous reasoning and observations. For any input user request for intrusion detection
and a traffic flow to be inspected, an initial observation o0 is constructed by concatenating the user
request with a system prompt, including a description for each available tool. This initial observation
serves as the context for the agent to understand the task, facilitating subsequent reasoning and action
generation.

Specifically, IDS-Agent iterates over the following three steps:
1) Reasoning: The core LLM generates a thought (in plain text) about the next action by ri =
LLM(si), where si = {o0, {r1, a1, o1}, · · · , {ri−1, ai−1, oi−1}} is the short-term memory of the
current session up to the (i − 1)-th iteration (with s1 = {o0}). Reasoning can optionally adopt
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Figure 1: Top (framework of IDS-Agent): IDS-Agent adopts a core LLM to generate thoughts
(i.e. reasoning) and actions based on input traffic and user prompt. It is equipped with a toolbox
for action execution and a memory base for knowledge retrieval. IDS-Agent iteratively conducts
thought generation, action generation and execution, and observation update. Bottom (an example
reasoning trace): in this example, several classifiers are adopted by the agent, with same number
of classifiers predicting the input traffic as ‘Benign’ and ‘MITM-ArpSpoofing’. Based on this
observation, IDS-Agent decides to perform ‘Knowledge Retrieval’ and ‘Memory Retrival’, and
finally aggregate these observations, which leads to correct attack detection.

long-term memory from previous sessions for in-context demonstration.
2) Action generation: The action is generated based on the reasoning/thought by ai = LLM(ri, si).
Notably, each action we generate is a structured JSON file containing an action name and an action
input. The action input consists of the name of the tool(s) to be used and the associated settings or
parameters of each tool. Such a structured generation of the action allows its efficient and accurate
execution using the specified tools. For example, if the action is to adopt a classifier, the action name
will be “Classification” and the action input will be the model name and the associated settings.
3) Observation update: After executing the generated action ai, we obtain a new observation oi by
converting the outputs of the tool(s) into plain text. For example, the the observation after applying a
classifier will be the top-k labels and their corresponding prediction confidences.
The iterations terminate when the observation is updated by a ‘final answer’ headline followed by
a JSON file. This JSON file, which encapsulates the final prediction on the traffic data and related
analysis and explanation, will be the output of IDS-Agent.

3.2 Action Space and Tool Design

Our IDS-Agent is designed with a comprehensive action space, allowing it to handle various tasks
in the pipeline of data processing and classification through iterative reasoning and execution. The
action space includes the key actions described below.
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Data Extraction: The goal is to accurately extract network traffic records x specified in the user
request from the data flow (a dataset in our experiments) for further analysis. We design the data
extraction tool as a function that takes the given flow ID (or line number for stored traffic dataset) as
the input and outputs a structured traffic sample.

Preprocessing: The goal is to clean, normalize, and transform the extracted data into a standard
format for subsequence processing, especially for classification. Our preprocessing tools are designed
as functions for diverse data analysis operations, including feature scaling, data encoding, handling
missing values, and selecting important features for classification.

Classification: This action applies machine learning models to the preprocessed data to obtain
classification results, i.e., to predict whether the traffic is benign or falling into any malicious category.
The inputs to the classification tool include the preprocessed traffic features and a classifier, while the
outputs include the top-k labels and their corresponding confidence scores. Note that our classification
tool is not merely an ML model; it advances ML-based IDS by adaptively considering diverse model
types and incorporating more information from the classification results into the inference procedure.
The types of classifiers used by IDS-Agent include Random Forest, SVM, MLP, Decision Tree, KNN,
etc. It is important to note that our classification toolbox is extensible. In real-world deployments,
users can easily add new classifiers to the toolbox without the need for any LLM fine-tuning. This
flexibility allows for easy updates and adaptation to new attack patterns or changes in the network
environment. Moreover, the classifiers can also be open-sourced models trained by third parties
(callable through APIs), or models locally trained based on the data collected by the user.

Knowledge Retrieval: This action aims to obtain knowledge regarding the particular types of attacks
predicted by the classifiers. The knowledge can be external that is retrieved by calling search engines
such as Google and Wikipedia API, or stored locally in the knowledge base. The retrieval from the
local knowledge follows the RAG approach [20]. The retrieved knowledge will be used to guide the
aggregation of classification results from the individual ML models.

Long-Term Memory Retrieval: Long-Term Memory carries information from previous sessions
(will be discussed in Sec. 3.3) that can inform the decision making of IDS-Agent in the current
session. The retrieval of long-term memory can be activated optionally by adding a specific instruction
in the system prompt in o0.

Aggregation: This action aims to comprehensively integrate the results from multiple steps of
classification action (based on different classifiers) to generate a structured final inference decision.
The core of the aggregation tool is an LLM where the prompt is designed to include 1) the detailed
results from the classifiers, 2) the short-term memory, and 3) demonstrative inputs and outputs
aggregated by the LLM from previous sessions. Note that the short-term memory also includes the
external knowledge previously extracted and the system prompts in o0. This system prompt, as shown
in Fig. 3, includes a specification for the detection sensitivity; it can also include an instruction for
revealing new attack categories. Compared to naive aggregation, such as majority voting, our method
incorporates more information to resolve any discrepancies between different model outputs in a
more comprehensive way.

3.3 Memory and Knowledge Base

The memory and knowledge base of IDS-Agent stores 1) the short-term memory, 2) the long-term
memory, and 3) supportive documents for IDS from the external. Short-term Memory (STR). The
STR, as described in Sec. 3.1, includes the historical reasoning trace, actions, and observations of the
current session in a structured format, and is renewed after each observation update. The major goal
of the STM here is to track the agent’s iterative reasoning process and ensure consistency between
steps in real-time.

Long-term Memory (LTM). The LTM consists of agent decisions and contextual information from
previous use cases [33, 41]. Here, a structured LTM example is defined by ϕ = {t, x,R,A,O, ŷ},
where t is a timestamp, x is the feature vector after preprocessing, R = [r1, · · · , rn] is the reasoning
trace, A = [a1, · · · , an] contains all the action steps, O = [o1, · · · , on] are the observations, and ŷ is
the final label prediction. The long-term memory base can be initialized by running the agent on a
validation dataset. During the inference, only sessions with correct agent decisions will be stored in
the long-term memory base. In a real-world intrusion detection scenario, such correctness can be
validated by human experts.
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In our framework, LTM retrieval provides the agent with additional information while aggregating the
results for individual classifiers. Here, we set the LTM retriever input as the current timestamp t and ob-
servations from previous data processing and classification actions, denoted by Õ = [o1, . . . , om−1],
where m is an arbitrary iteration where the LTM retrieval kicks in. The retriever obtains the top-k
relevant final reasoning based on the weighted sum of timestamp distance and the cosine similarity
between the embedding of Õ and the observation embeddings O(j) of previous LTM examples
{ϕ(1), · · · , ϕ(L)}. Specifically, we obtain the top-k solutions to

argmaxj [λ1r(t, t
(j)) + λ2cosim(E(Õ), E(O(j)))], (1)

where E(·) is the encoder. r(t, t(j)) = 1−(t−t(j))/maxk(t−t(k)) is the recency of the memory. The
equation ensures that both recent observations and content-wise similar observations are considered
to address the evolving nature of intrusion data. Then, the observation om for the iteration m contains
the input-prediction pairs (x(j), ŷ(j)) of each retrieved ϕ(j). In our experiments, we set k = 5 to
retrieve the top-5 relevant structured LTM examples.

Supportive Documents from the External. In addition to the external knowledge obtained by
calling search engines, such as Google and Wikipedia, IDS-Agent is also equipped with a vector
database {ψ(1), · · · , ψ(K)} containing related research papers and intrusion detection blogs (both
parsed into chunks with fixed token length). The retrieval from this knowledge base is similar to
the retrieval of LTM. We obtain the top-k solutions to argmaxjcosim(E(q), E(ψ(j))), where q is the
query generated by the core LLM (based on the reasoning) as the action input to action step am for
an arbitrary iteration m for knowledge retrieval. The retrieved document chunks are summarized
(for compression) using an LLM (may be the same as the core LLM or an independent LLM) and
are used to update the observation om. The definition, characteristics, and detection methods for
various attacks recorded in the retrieved chunks will facilitate IDS-Agent to better understand the
potential risks while aggregating the classification results for the ML models. For example, if an
attack type can potentially lead to catastrophic results, IDS-Agent will be more sensitive to it when
any classifier makes such a prediction.

4 Experiments
4.1 Experiment Settings

Dataset. This paper focuses on intrusion detection in the IoT environment, which presents more
complexities and challenges than traditional networks. We consider the following two datasets
commonly used in previous works.
1) ACI-IoT’23 [6]: This dataset contains both benign and malicious network traffic captured from
a variety of IoT devices. The dataset includes simulations of several attack types, such as Recon-
naissance (e.g., Host Discovery, OS Scan, Ping Sweep, and Port Scan), DoS (e.g., ICMP Flood,
SYN Flood, UDP Flood, and Slowloris) and Brute Force (e.g., Dictionary Attacks). We randomly
select 10% of the data to train the ML-models for classification. For evaluation, we construct a test
dataset from the remaining samples in ACI-IoT’23 by randomly selecting 200 benign samples and 20
samples per attack category.
2) CIC-IoT 2023 [27]: This dataset simulates large-scale, real-time IoT environments and comprises
33 distinct types of attacks, which is even more difficult for intrusion detection than ACI-IoT’23.
The dataset includes network traffic from a broad IoT topology with 105 devices. From the dataset,
we selected the 24 most common attack types along with benign samples to create our training and
testing datasets. The remaining 9 attack types were excluded from the training data and designated as
unknown attacks for evaluating zero-day attack detection performance. Again, we use 10% of the
data for training the machine learning classifiers. The test dataset is constructed with 100 benign
samples and 10 samples for each attack type.

Evaluation Metrics. We are interested in the performance of IDS-Agent in both the binary
classification of benign and malicious flows and the multi-classification that also requires recognizing
the specific attack type when a flow is deemed malicious. For binary classification, we use accuracy,
and false alarm rate (FAR) as the evaluation metrics. Accuracy is the ratio of correctly predicted
samples over the total number of samples in the dataset, measuring the overall effectiveness of the
IDS-Agent in detecting both benign and malicious flows. FAR measures the proportion of false
positives (benign flow incorrectly classified as malicious).
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For multi-classification, we treat each attack category (and also the benign category) as a class. We
use the per-class precision, recall, and F1-score as the evaluation metrics. Detailed results for the
detection of each attack category are deferred to the appendix due to space limitations. In the main
paper, we report the macro-averaged precision, recall, and F1-score across all classes as the overall
performance of the IDS being evaluated. This macro-average is computed by averaging the metric
over all classes with equal weights.

4.2 Implementation Details

The core LLM. We consider three LLM choices: GPT-3.5-Turbo, GPT-4o-mini, and GPT-4o.

Tool Design. 1) Data preprocessing tool. We implement Python functions that will be sequentially
called for data preprocessing. First, we remove from each flow the fields irrelevant to the traffic
features, including the label, time-stamp, and flow ID. Second, we encode the non-numeral fields
into numbers, including the connection type and protocol type. Third, we conduct feature selection
based on an F-test for linear dependency between features and labels. Finally, the extracted features
are standardized. 2) Classification tool. The core of the classification tool is an ML model for
intrusion detection, which can be self-trained or an off-the-shelf model trained by a third party. Here,
we pretrained six (multi-)classifiers, including random forest (RF), K-Nearest Neighbors (KNN),
logistic regression (LR), decision tree (DT), multi-layer perceptrons (MLP), and support vector
classifier (SVC) using the training set from our benchmarks. The output of the classification tool is
the top-3 label predictions with their confidence scores. 3) Knowledge retrieval tool. We construct a
knowledge base for various IoT attacks by collecting 50 online blogs and 50 research papers. These
documents are then split into chunks of 1000 tokens with an overlap of 200 tokens. These chunks
were embedded using the OpenAI encoder and stored in a vector database powered by ChromaDB.

4.3 Baselines

1) Machine learning methods. We compare IDS-Agent with the state-of-the-art ML-based IDS,
which uses a quantum-annealing method for feature selection [9]. In Appendix A.3, we also compare
our IDS-Agent with six IDSs using the six ML models we pretrained, respectively.

2) LLM-based methods. We compared our IDS-Agent with the latest GPT-4-based intrusion detec-
tion approach [38], which leverages the model’s reasoning capabilities and in-context demonstrations.
The authors particularly demonstrate that providing GPT-4 with a few labeled examples can improve
the accuracy of intrusion detection. We further improve the performance of this baseline by first
clustering their in-context examples using a Gaussian Mixture Model (GMM) and then selecting
in-context examples from different clusters to cover as many attack cases as possible. Compared
to this baseline with a fixed set of demonstrations, IDS-Agent retrieves LTM for demonstration
dynamically based on input similarity.

3) Ensemble learning methods (majority vote). We create a strong baseline by ensemble the results
from the six ML models we pretrained through majority voting.

4.4 Experiment Results

Quantitative Analysis. The quantitative results on the ACI-IoT’23 dataset are summarized in Table
1. Our IDS-Agent achieves the best general performance when GPT-4o is used as the core LLM.
Comparable performance is achieved when GPT-4o-mini is used as the core LLM, which is over
60% more cost-effective than GPT-3.5 Turbo. IDS-Agent also shows a clearly better recall than
the baselines. The detailed results for IDS-Agent in detecting each attack category of ACI-IoT’23
compared with the baselines are shown in Appendix A.3. In particular, when detecting UDP flood
attacks, IDS-Agent achieves a recall of 0.80 compared with 0.20 for the LLM baseline (GPT-4o) and
0.55 for the majority voting baseline. We also found that for some attack types such as DNS-Flood,
Slowloris, and Dictionary attacks, IDS-Agent demonstrates slightly lower precision than majority
voting. This decrease in precision is due to the IDS-Agent’s heightened sensitivity to high-threat
attacks, leading it to classify a sample as an attack even with less than 50% voting from the classifiers
involved.
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Table 1: Binary-classification and multi-classification performance of IDS-Agent compared with
baseline approaches on the ACI-IoT’23 and CIC-IoT’23 datasets. We compare our method with
vanilla GPT-4o-based method enhanced by in-context learning [38], a Random Forest classifier that
uses a quantum-annealing method for feature selection [9], and a strong baseline of majority voting
by six ML classifiers.
Dataset Metric

Types
Metrics GPT-4o RF Majority

Vote
IDS-Agent
(GPT-3.5)

IDS-Agent
(GPT-4o-
mini)

IDS-Agent
(GPT-4o)

ACI-IoT’23

Binary-Class
Binary-Class Accuracy ↑ 0.721 0.890 0.960 0.954 0.963 0.965
FAR ↓ 0.497 0.060 0.020 0.050 0.041 0.030

Multi-Class

Multi-Class Accuracy ↑ 0.678 0.790 0.980 0.972 0.976 0.980
Macro Avg Precision ↑ 0.682 0.785 0.980 0.971 0.980 0.982
Macro Avg Recall ↑ 0.754 0.760 0.961 0.952 0.972 0.972
Macro Avg F-Score ↑ 0.682 0.750 0.962 0.923 0.974 0.975

CIC-IoT’23

Binary-Class
Binary-Class Accuracy ↑ 0.750 0.825 0.882 0.876 0.894 0.904
FAR ↓ 0.144 0.050 0.040 0.050 0.030 0.030

Multi-Class

Multi-Class Accuracy ↑ 0.610 0.751 0.771 0.762 0.788 0.795
Macro Avg Precision ↑ 0.580 0.755 0.760 0.759 0.790 0.800
Macro Avg Recall ↑ 0.450 0.692 0.700 0.694 0.723 0.733
Macro Avg F-Score ↑ 0.510 0.680 0.699 0.700 0.722 0.750

It is worth noting that the vanilla GPT-4o-based method [38], despite enhancements through in-context
learning, performs unsatisfactorily. Moreover, when there are more attack categories, more in-context
demonstrations will be required (to effectively inform all attack categories) for their method, posing a
significant challenge due to GPT-4o’s limited token input length and the increase in cost. Our method
integrates ML models and utilizes RAG to retrieve the most related knowledge from the memories,
significantly reducing the token cost.

Table 1 also presents the evaluation results on the CIC-IoT’23 dataset. Powered by both reasoning
ability and tool calls, IDS-Agent achieves higher accuracy than the LLM baseline and majority
voting method. Moreover, IDS-Agent achieves high detection accuracy on some very challenging
attacks, such as ArpSpoofing and Host Discovery. The detailed results for each attack type are
deferred to the Appendix A.3.

Case study While the majority voting baseline shows relatively strong performance, their classifi-
cation results usually lack interpretability [35]. In contrast, we leverages the reasoning capabilities of
LLMs to enhance interpretability which helps to improve the detection performance. One example is
illustrated on the right of Figure 1 where the IDS-Agent concludes that the MITM ARP-Spoofing
classification is more likely, as it appears in three classifiers’ top-3 predictions with significant confi-
dence in general. Another case for the decision-making is shown in Figure 2, with the ground truth
label being ‘reconnaissance activities’. Despite 3 out of 6 machine learning models predicting the
traffic as benign, IDS-Agent accurately labels it as a reconnaissance attack. This decision is rooted in
the IDS-Agent’s understanding that both Host Discovery and OS Scanning belong to reconnaissance
attacks. By considering the relationship between these types of attacks, the IDS-Agent demon-
strates its ability to detect subtle patterns that individual classifiers may overlook, thus improving
the overall detection accuracy. Additional examples are provided in the appendix to demonstrate its
decision-making process further.

4.5 Zero-Day Attack

We find that IDS-Agent not only excels in detecting known attacks but also shows promise in
identifying zero-day threats. Table 2 presents the detection results on the CIC-IoT’23 dataset,
comparing IDS-Agent with two recent zero-day intrusion detection methods: ACGAN [39] and
RealNVP [24]. We reproduced ACGAN using its official code and RealNVP based on the FrEIA
framework, training separate normalizing flows for benign and malicious samples. We set the
detection threshold of RealNVP at the 90th percentile of the negative log-likelihood from the INN
model; samples exceeding this threshold are considered unknown attacks or out-of-distribution (OOD).
We selected nine attack types from the CIC-IoT’23 dataset as ‘unseen’ for evaluation, excluding
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Figure 2: A case study of IDS-Agent successfully detecting reconnaissance activities. Despite
most machine learning models classifying the traffic as benign, IDS-Agent ultimately predicts a
reconnaissance attack. This decision is based on its understanding that both Host Discovery and OS
Scan belong to reconnaissance activities.

them from training data. Each attack type was evaluated with 50 samples. IDS-Agent’s classifiers
were trained on data from other known attack categories. Additionally, we enhanced the system
prompt with specific instructions to classify ambiguous samples as “Unknown” if most classifiers’
confidence was below a certain threshold. We set the threshold as 0.7 in our experiments. The recall
for IDS-Agent in predicting an ‘unknown attack’ from these unseen classes was measured, achieving
a top-1 recall of 0.61. Notably, IDS-Agent showed high recall for Vulnerability Scan and SQL
Injection attacks, likely due to their distinct deviation from the training data distribution, resulting
in low classification confidence. This indicates IDS-Agent’s capability to detect unknown attacks,
particularly when diverse machine learning models yield divergent results with low confidence or
when traffic features are anomalous. The recall for benign examples decreased from 0.91 to 0.86 after
introducing the zero-day detection prompt. This drop is attributed to the tendency of the model to
classify OOD benign examples as unknown attacks.

Table 2: IDS-Agent outperforms existing approaches specially designed for detecting zero-day
attacks, with higher recalls in detecting all ten categories of “unseen” attacks.
Methods Backdoor DNS

Spoofing
Uploading
Attack

XSS Dictionary
BruteForce

Command
Injection

VulScan Browser
Hijacking

SQL Avg Recall

ACGAN 0.38 0.35 0.59 0.32 0.36 0.42 0.88 0.05 0.38 0.41
RealNVP 0.45 0.37 0.68 0.49 0.42 0.45 0.89 0.03 0.45 0.47

IDS-Agent 0.64 0.46 0.74 0.65 0.45 0.55 0.95 0.15 0.86 0.61

4.6 Ablation Study

We conduct an ablation study focusing on two key modules: the Knowledge Retrieval Module and
the Long-Term Memory Module. We evaluate how each module affects the detection performance on
two settings: 1) ‘in-distribution’ setting with all attack labels known and 2) zero-day attack setting
in Section 4.5 with a subset of unknown attacks. We also evaluate the performance under different
detection sensitivities.

Effect of Knowledge Retrieval Module The Knowledge Retrieval Module is designed to augment
the classifiers’ outputs with relevant information from an external knowledge base, enhancing the
agent’s understanding of complex attack patterns. To assess its impact, we disable this module and
compare the performance of the modified agent with the original IDS-Agent. Table 3 summarizes
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the detection performance with and without the Knowledge Retrieval Module. When the module is
removed, we observe significant decrements in the detection accuracy for both settings. Specifically,
the recall for detecting zero-day attacks drops from 0.61 to 0.42. This indicates that without access to
external knowledge, the agent has a diminished ability to recognize patterns that are not represented
in the training data.

Table 3: Importance of knowledge retrieval.

Recall With KRM Without KRM

In-Distribution 0.733 0.710
Zero-Day 0.610 0.420

Table 4: Importance of long-term memory.

Recall With LMM Without LMM

In-Distribution 0.733 0.702
Zero-Day 0.610 0.560

Effect of Long-Term Memory Module The Long-Term Memory Module allows IDS-Agent to
maintain a history of previous observations and decisions, which is essential for detecting attacks
exhibiting temporal dependencies and utilizing previous success experiences. To evaluate its effect,
we disable the Long-Term Memory Module and assess the agent’s performance on the same evaluation
set. We set the λ1 and λ2 as 0.5 in Eq. 1 to balance the recency similarity to retrieve the most relevant
past examples from the agent’s LTM. As presented in Table 4, the removal of the Long-Term Memory
Module leads to a degradation in detection performance, particularly for attacks that unfold over time,
such as Brute Force and Distributed Denial of Service (DDoS) attacks. The overall detection accuracy
decreases from 0.733 to 0.702, and the recall for zero-day attacks drops to 0.56. The decrease in
performance underscores the importance of the Long-Term Memory Module in capturing temporal
features and improving the agent’s ability to detect attacks that evolve over time. By retaining
historical information, IDS-Agent can identify suspicious patterns that may not be apparent when
considering individual events in isolation.

Detection Sensitivity. Sensitive configuration is a critical function of intrusion detection systems
(IDS). In signature-based IDS, experts need to manually adjust detection sensitivity, which can be
both costly and time-consuming [11]. In contrast, the detection sensitivity of our IDS-Agent can be
easily adjusted through input prompts. Here, we can optionally instruct the IDS-Agent to operate
under three different sensitivity levels: aggressive, balanced, and conservative. This sensitivity level
controls the trade-off between the false alarm rate and the missed detection rate. The results are
shown in Table 5. For the aggressive detection, the IDS-Agent achieves high recall for attacks (0.97)
but lower recall for benign examples (0.90). Conversely, conservative detection shows relatively
lower recall for attacks (0.85) but higher recall for benign examples (0.98). The complete prompts
and detection results are shown in Appendix A.4.

Table 5: The classification results of IDS-Agent on the ACI-IoT’23 dataset for three different
detection sensitivities. The core LLM of IDS-Agent is GPT-4o. Aggressive detection leads to high
recall for attacks, while conservative detection results in higher recall for benign examples.

Sensitivity Aggressive Balanced Conservative

Metrics Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Benign 0.96 0.90 0.92 0.87 0.96 0.91 0.60 0.98 0.75
Attack (Macro Avg) 0.97 0.97 0.97 0.98 0.95 0.96 0.95 0.85 0.87

5 Conclusion
In this paper, we propose IDS-Agent, the first LLM-powered agent for intrusion detection. We
design an iterative reasoning-followed-by-action pipeline for IDS-Agent to extract data from the
network traffic, preprocess the data, consult different machine learning models for classification
results and details, retrieve both internal and external knowledge, and summarize the final detection
inference. These agent actions are facilitated by a memory module and a wide array of tools for
intrusion detection and general purposes. Empirically, IDS-Agent outperforms diverse types of
SOTA IDSs on ACI-IoT’23 and CIC-IoT’23. We find that when classifiers produce discrepancy
predictions, IDS-Agent can utilize inherent and external knowledge to assist decision-making.
Moreover, IDS-Agent can be easily adapted to detect zero-day attacks, exhibiting better performance
than existing methods. Finally, we find that IDS-Agent effectively follows the sensitivity instructions
in detection without requiring expert intervention or additional tuning.
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A Appendix A

A.1 General Prompt and Reasoning Trace of IDS-Agent

The general prompt of the IDS-Agent is illustrated in Figure 3. The process begins with instructing
the IDS-Agent to load network traffic data and perform feature preprocessing. Afterward, we utilize
a range of classifiers to analyze the data. To enhance decision-making, the IDS-Agent retrieves prior
successful examples from its knowledge base for comparison. In cases where discrepancies arise
between the predictions of different models, we prompt the IDS-Agent to consult internal or external
knowledge bases for additional insights to resolve the conflict. Finally, the IDS-Agent consolidates
the findings and presents the result in a structured JSON format. Figure 4 provides an example of the
reasoning trace produced by the IDS-Agent during this process.

A.2 Additional Case Studies

The cases in Figure 5 and Figure 6 highlight the enhanced reasoning ability of IDS-Agent with
the knowledge retriever. It is shown that IDS-Agent not only considers the top-1 predictions but
also the second and third predictions and their confidences. Moreover, in these examples, when
the models have discrepancies in the predictions, the IDS-Agent automatically accesses external
databases to extract additional knowledge, aiding in feature analysis and supporting its final decision.
By leveraging these external knowledge sources, the IDS-Agent gains a deeper understanding of
complex attack patterns and anomalies, enhancing both accuracy and decision-making. This dynamic
capability allows the IDS-Agent to better adapt to new or evolving threats in the IoT environment.

A.3 The Performance of Different ML Classifiers

Table 6 shows the F-score of different ML classifiers on the ACI-IoT’23 dataset as well as our method.
Among the six classifiers, MLP achieves the highest F-score of 0.96. The IDS-Agent outperforms
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Figure 3: General prompt and user input

Figure 4: An example of the reasoning trace and final answer.

all six classifiers and the majority vote method. Moreover, we achieve a high F-score on the UDP
Flood attack, while the majority method only has an F-score of 0.55.

Table 7 shows the F-score of different ML classifiers on the CIC-IoT’23 dataset as well as our method.
Among the six classifiers, Random Forest achieves the highest F-score of 0.75. For the IDS-Agent,
we use the GPT-4o as the core LLM. It is shown that our attack achieved a higher F-score compared
with the majority vote classifier. Moreover, we achieved a higher F-score on the benign traffic
compared with six classifiers and the majority vote method, which means our method has a lower
false alarm rate, which is an important metric for intrusion detection. Figure 7 shows the confusion
matrix of the majority voting classifier and IDS-Agent.
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Table 6: The F-score of different ML classifiers on the ACI-IoT’23 dataset. For the IDS-Agent, we
use the GPT-4o as the core LLM.

Model RF LR KNN MLP DT SVC Majority Vote IDS-Agent

Benign 0.90 0.59 0.91 0.91 0.91 0.80 0.91 0.91
DNS Flood 0.95 0.10 0.80 0.95 0.91 0.91 1.00 0.95

Dictionary Attack 1.00 0.71 0.98 0.95 1.00 0.92 1.00 1.00
ICMP Flood 1.00 0.98 0.98 1.00 0.95 0.98 0.98 0.98

OS Scan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ping Sweep 0.98 0.98 0.97 0.98 0.97 0.98 1.00 1.00
Port Scan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SYN Flood 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00
Slowloris 1.00 0.43 1.00 1.00 1.00 0.97 1.00 1.00

UDP Flood 0.60 0.00 0.45 0.74 0.50 0.00 0.55 0.80
Vulnerability Scan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Macro Avg 0.95 0.71 0.92 0.96 0.93 0.87 0.96 0.97

Table 7: The F-score of different ML classifiers on the CIC-IoT’23 dataset. For the IDS-Agent, we
use the GPT-4o as the core LLM.

Model DT KNN LR MLP RF SVC Majority Vote IDS-Agent

BenignTraffic 0.79 0.77 0.79 0.75 0.75 0.73 0.74 0.84
DDoS-ACK_Fragmentation 0.98 0.95 0.95 0.93 0.95 0.98 0.95 1.00

DDoS-HTTP_Flood 0.58 0.53 0.24 0.79 0.68 0.38 0.69 0.70
DDoS-ICMP_Flood 0.98 0.95 0.98 0.95 1.00 1.00 1.00 1.00

DDoS-ICMP_Fragmentation 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DDoS-PSHACK_Flood 1.00 1.00 0.98 1.00 1.00 1.00 1.00 0.95
DDoS-RSTFINFlood 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DDoS-SYN_Flood 0.72 0.08 0.63 0.73 0.76 0.64 0.75 0.75
DDoS-SlowLoris 0.76 0.74 0.00 0.89 0.79 0.44 0.79 0.82

DDoS-SynonymousIP_Flood 0.70 0.74 0.70 0.72 0.74 0.65 0.74 0.78
DDoS-TCP_Flood 0.69 0.08 0.66 0.67 0.69 0.67 0.67 0.71
DDoS-UDP_Flood 0.71 0.23 0.77 0.75 0.71 0.74 0.71 0.74

DDoS-UDP_Fragmentation 0.97 0.95 0.95 0.97 0.97 0.97 0.97 0.95
DoS-HTTP_Flood 0.65 0.79 0.73 0.85 0.76 0.89 0.83 0.84
DoS-SYN_Flood 0.62 0.57 0.31 0.72 0.76 0.37 0.72 0.80
DoS-TCP_Flood 0.32 0.60 0.00 0.00 0.32 0.00 0.17 0.33
DoS-UDP_Flood 0.53 0.65 0.55 0.52 0.48 0.46 0.48 0.46

MITM-ArpSpoofing 0.54 0.58 0.09 0.60 0.58 0.58 0.62 0.67
Mirai-greeth_flood 0.95 0.98 0.90 0.97 0.97 1.00 0.97 0.95
Mirai-greip_flood 0.98 0.97 0.89 0.98 0.98 1.00 0.98 0.95

Mirai-udpplain 0.95 0.98 1.00 0.98 0.98 1.00 0.98 1.00
Recon-HostDiscovery 0.54 0.45 0.40 0.48 0.55 0.39 0.47 0.53

Recon-OSScan 0.30 0.30 0.08 0.00 0.15 0.10 0.17 0.15
Recon-PortScan 0.41 0.36 0.24 0.31 0.44 0.31 0.37 0.31

Macro Avg 0.74 0.68 0.62 0.73 0.75 0.68 0.70 0.75
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Figure 5: Additional case study on the DDoS attacks of the IDS-Agent. From the final analysis, it is
shown that the IDS-Agent not only considers the predicted labels but also considers the confidence
of different classifiers.

A.4 Details for sensitivity Customization

We adjust the detection sensitivity by prompting the core LLM with "Summarize the classification
with {sensitivity} sensitivity, {sensitivity details}". Here, ‘sensitivity details’ will be ‘discover the
attack as the priority’, ‘balance the false alarm rate and the missing alarm rate’, and ‘do not alert
unless you are very sure’, for ‘sensitivity’ being ‘aggressive’, ‘balanced’ and ‘conservative’. The
detection performances of IDS-Agent for different detection sensitivities are shown in Table 8. It is
shown that the ‘Aggressive’ command achieves a higher recall on the attacks while the ‘Conservative’
command achieves a higher recall on the benign examples. The classification results, detailed in
Table 8 of the appendix, show that the IDS-Agent effectively follows these sensitivity instructions
without requiring expert intervention or additional tuning.

A.5 The Zero-day Attack Detection Details

We prompt GPT-4o to classify an example as an unknown attack if multiple classifiers output low
confidence for their top predictions or if there are conflicting predictions among different classifiers.
This is based on our observation that, for unknown attacks, machine learning models typically exhibit
relatively low confidence levels, as shown in Figure 8. Specifically, we instruct the LLM to consider
an example as a potential unknown attack if more than two models have low confidence (e.g., below
a threshold of 0.7). Moreover, if more than two models have low confidence or if different models
produce significantly divergent predictions, we direct IDS-Agent to search the knowledge base for
characteristics of the most probable predicted attacks. If the traffic features do not match these attack
characteristics, we confirm the example as an unknown attack and provide this as the final output.

A.6 The Influence of Hyperparameters

To assess the influence of different values of λ1 and λ2 in Eq. 1, we conducted experiments by
varying these parameters and measuring the impact on retrieval effectiveness and overall classification
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Figure 6: Additional case study on the MITM attacks of the IDS-Agent. From the final analysis, it is
shown that the IDS-Agent not only considers the top 1 prediction but also considers the second and
third predictions.

Table 8: The classification results of different detection sensitivities.
Sensitivity Aggressive Balance Conservative

Metrics Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Benign 0.96 0.90 0.92 0.87 0.96 0.91 0.60 0.98 0.75
DNS Flood 0.91 1.00 0.95 0.91 1.00 0.95 0.94 0.80 0.86

Dictionary Attack 0.91 1.00 0.95 1.00 1.00 1.00 1.00 0.65 0.79
ICMP Flood 0.95 1.00 0.89 0.95 1.00 0.98 0.95 1.00 0.98

OS Scan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ping Sweep 0.95 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00
Port Scan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SYN Flood 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Slowloris 0.95 1.00 0.98 1.00 1.00 1.00 1.00 0.40 0.57

UDP Flood 1.00 0.80 0.89 1.00 0.53 0.69 1.00 0.47 0.64
Vulnerability Scan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Macro Avg 0.97 0.97 0.97 0.98 0.95 0.96 0.95 0.85 0.87

performance. Table 9 summarizes the results of our experiments. The experimental results indicate
that both recency and content similarity are crucial for effective LTM retrieval. A balanced approach,
where λ1 and λ2 are equal, provides the best performance, suggesting that the agent benefits from
considering both embedding similarity and recency.

Table 9: Performance metrics for different values of λ1 and λ2.

λ1 λ2 Accuracy (%) Precision (%) Recall (%)

0.1 0.9 97.2 97.2 96.5
0.5 0.5 98.0 98.2 97.2
0.9 0.1 97.3 97.1 96.1
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A.7 Excution Time of IDS-Agent

In this section, we evaluate the execution time of the proposed IDS-Agent and compare it with
the in-context-learning-based GPT-4 approach. We conducted the execution time experiments with
the Intel Core i7 CPU of 3.8GHz. The operating system is MacOS 14.6. As shown in Table 10,
the IDS-Agent balances performance and efficiency, averaging 8.65 seconds per instance. We use
GPT-4o API as the core LLM of IDS-Agent. The additional time compared to the GPT-4 method is
due to the knowledge retrieval and aggregation process, but it remains well within acceptable limits
for real-time applications.

Table 10: Execution time comparison between different methods.

Method GPT-4 IDS-Agent

Average Time per Instance (s) 3.36 8.65
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(a) Confusion matrix of majority voting classifer

(b) Confusion matrix of IDS-Agent

Figure 7: The confusion matrix of majority voting classifier and IDS-Agent on the CIC-IoT’23
dataset.
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Figure 8: The confidence distributions of difference classifiers on the in-distribution dataset and
out-of-distribution dataset.
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