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ABSTRACT

Despite their impressive capabilities, LLMs exhibit a basic generalization fail-
ure known as the Reversal Curse, where they struggle to learn reversible factual
associations. Understanding why this occurs could help identify weaknesses in
current models and advance their generalization and robustness. In this paper, we
conjecture that the Reversal Curse in LLMs is a manifestation of the long-standing
binding problem in cognitive science, neuroscience and AI. Specifically, we hy-
pothesize two primary causes of the Reversal Curse stemming from transformers’
limitations in conceptual binding: the inconsistency and entanglements of concept
representations. We perform a series of experiments that support these conjec-
tures. Our exploration leads to a model design based on JEPA (Joint-Embedding
Predictive Architecture) that for the first time breaks the Reversal Curse without
side-stepping it with specialized data augmentation or non-causal masking, and
moreover, generalization could be further improved by incorporating special mem-
ory layers that support disentangled concept representations. Our research opens
up the broader fundamental challenge of designing models capable of learning
systematic conceptual binding with less human scaffolding.

1 INTRODUCTION

Current large language models (LLMs) exhibit a notable failure of basic generalization known as the
Reversal Curse (Berglund et al., 2024), where they struggle to learn rules of inversion over parametric
knowledge and form reversible factual associations. For instance, after internalizing the fact “Tom
Smith’s wife is Mary Stone”, LLMs fail badly at recalling “Tom Smith” when asked “Mary Stone’s
husband is ”.1 Reversal is not confined to natural language; it represents a class of basic operations
across various domains such as mathematics/logic and numerous scientific disciplines, where inverse
relationships are commonplace. Given that LLMs are trained on web-scale corpora containing data
more than enough for inducing these rules, it is clear that there are missing inductive biases in current
transformer-based language models (Vaswani et al., 2017; Brown et al., 2020; Chowdhery et al.,
2023; Touvron et al., 2023) that hinder this kind of generalization. The simplicity of the rules also
suggests their limitations in learning more complex skills and principles, which could hurt both their
general abilities and potential to specialize into domain experts.

There are several pieces of work trying to understand or mitigate the Reversal Curse. Zhu et al.
(2024) theoretically shows that reversal cannot be learned for transformers under special settings
and assumptions. Lin et al. (2024) shows that the issue may be related to inherent biases in LLMs’
factual recall. Golovneva et al. (2024); Guo et al. (2024); Lu et al. (2024); Lv et al. (2024); Kitouni
et al. (2024) propose specialized data augmentation strategies (e.g., reversing/permuting sentence
segments) or non-causal training objectives, which circumvent the problem and reduce generalization
demands on models. Overall, existing solutions are ad-hoc and fall short of uncovering the potentially
more foundational issues behind such a curse—in fact, the very first question still remains a mystery:

Are conventional (autoregressive) transformers fundamentally doomed for learning reversal?

1A special case is when the involved relations are symmetric, which leads to examples like “A is B” then “B
is A”, a popular reference to the Reversal Curse.
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Figure 1: (a) We find that Transformers can learn reversal when inputs are represented and perceived
at the abstract concept level. (b) Two conjectured causes of the Reversal Curse underlying surface-
level predictions, both upon transformers’ limitations in conceptual binding: 1) representational
inconsistency when entities switch roles between perceived subjects and predicted objects (left); 2)
representational entanglements cause interferences on the learning dynamics and impede generaliza-
tion (right). Details in §2 and §3.

Surprisingly, the answer is “No”. Our first major finding is that standard transformers can learn
reversal without any specialized data augmentation or modifications to the architecture or objective,
when the inputs are represented and perceived at the abstract concept level (Figure 1(a)). We then
focus on the gap between abstract and real settings, where inputs are instead at the surface form level.
Our investigations lead us to hypothesize that the Reversal Curse is fundamentally a manifestation of
the long-standing binding problem in cognitive science, neuroscience and AI, which is concerned
with the mechanisms for natural or artificial neural networks to combine information distributed
throughout the network to form integrated percepts and knowledge (Roskies, 1999; Engel & Singer,
2001; Zimmer et al., 2006; Greff et al., 2020). Specifically, we conjecture that the Reversal Curse
is primarily caused by two limitations of conceptual binding in transformers, the inconsistency and
entanglements of concept representations:

• Inconsistency. While many existing studies show that LLMs could form internal concepts and
even “world models” from surface-level predictions (Meng et al., 2022; Geva et al., 2023; Lad
et al., 2024; Kaplan et al., 2025; Li et al., 2023; Gurnee & Tegmark, 2024), we hypothesize that
they are still unable to adequately learn consistent concept representations across various places
within the network under different contexts. Specific to reversal, we conjecture that transformers
fail to bind representations of the same underlying entity when it switches roles between perceived
subjects and predicted objects (Figure 1(b), Left), which makes the model’s acquired knowledge
fragmented and impedes the learning of reversal.

• Entanglements. Since concepts are activations in transformers, their representations can only be
indirectly updated by altering the lower-level weights in the recognition module mapping surface-
form names to concepts. We conjecture that transformers with gradient-based optimizations face
difficulties in maintaining the separation of distinct concepts during learning due to represen-
tational entanglements (Figure 1(b), Right), which impacts the training dynamics and hinders
generalization.

A series of quantitative experiments support our hypotheses, and inform two novel designs for
mitigating the Reversal Curse: 1) performing autoregressive prediction at the concept level, akin
to Joint-Embedding Predictive Architectures (JEPA) (LeCun, 2022) and concept models (Barrault
et al., 2024), and 2) building dedicated recognition modules which support disentangled concept
representations. We show that 1) a model design based on JEPA and in-batch contrastive learning
could, for the first time to our knowledge, break the Reversal Curse with non-trivial performance
without circumventing the problem, but suffers from entanglements that scale with model depth; 2)
incorporating special memory layers (Sukhbaatar et al., 2015; Berges et al., 2024) into the recognition
module could further boost generalization. We also demonstrate that the reversal skill unlocks a new
kind of parametric memory integration, which allows models to perform parametric forward-chaining
during information internalization to solve large-scale arithmetic reasoning problems with impressive
performance, outperforming frontier LLMs based on non-parametric memory.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

|EA| = 2.5K |EA| = 10K |EA| = 50K |EA| = 100K

#Layer = 1 0.823 0.861 0.947 0.964
#Layer = 6 0.890 0.858 0.951 0.861
#Layer = 12 0.810 0.878 0.951 0.960
#Layer = 18 0.823 0.850 0.944 0.975

Table 1: Mean reciprocal rank (MRR) achieved by standard transformers in the abstract setting, where
inputs are represented at the concept level.

To summarize, our work 1) contributes towards understanding and addressing the Reversal Curse, and
more importantly, 2) connects the Reversal Curse with the more foundational problem of improving
conceptual binding and generalization in AI models, rigorously establishing the concrete challenges
for the broader research community.

2 LEARNING REVERSAL AT THE CONCEPT LEVEL

Humans think and learn at the concept level. When reading a sentence, we (usually subconsciously)
parse and map the words into concepts, and update the concept representations and associations upon
encountering new information (Collins & Loftus, 1975; Jackendoff, 1995). While transformers fail to
learn reversal in real settings, do they first have appropriate inductive biases to learn reversal at the
abstract concept level?

Concepts in reversal. Reversal is a simple and clean task involved with some of the most basic
low-level concepts: entities and relations. Take “Tom Smith’s wife is Mary Stone” as an example:
each fact consists of the subject entity (“Tom Smith”), relation (“’s wife”), and the object entity
(“Mary Stone”). At the concept level, each fact is hence (e1, r, e2), and its reverse is (e2, r−1, e1)
which contains the same piece of information. If a model acquires reversal, then after internalizing
a certain fact in one direction, i.e., its parameters are changed s.t. p(e2|e1, r, ?) is large, the model
should also assign a high probability p(e1|e2, r−1, ?) to its reverse direction.

Setup. We prepare a set of relation pairs {(ri, r−1
i ) | i = 1, . . . , N}, and two disjoint sets of entities

EA (for learning) and EB (for testing). We focus on one-to-one relations that give a unique object
entity for each fact. We synthesize facts separately over EA and EB by randomly pairing the entities
for each (ri, r

−1
i ), and form a pair of facts which are reverses of each other over each entity pair.

Through this, we obtain two sets of facts DA and DB over EA and EB respectively. The training data
contains all of DA (for the model to induce the rules) and one random direction from each pair of
facts in DB , where its reverse goes into the test set. We set N = 6, and vary |EA| while keeping the
ratio |EA| : |EB | = 5 : 3. Importantly, each concept (entity/relation) is directly represented by its
own learnable embedding, without attaching to surface-level names. We train standard decoder-only
transformers as in GPT-2 (Radford et al., 2019) (with 768 hidden dimensions and 12 attention heads)
to predict the object entity in each fact, with cross-entropy loss over embeddings of all concepts. We
train models for a large number of steps (3e6) and report the highest mean reciprocal rank (MRR) on
the test examples achieved among different model checkpoints. More training details are included in
Appendix A.

Transformers can learn reversal at the concept level. Results are in Table 1. Surprisingly, in
contrast with the negative results and views in previous studies, we find that transformers can learn
reversal with high performance without any specialized training objectives or data augmentation.
Models with different depths could all strongly generalize, where the performance overall increases
with |EA|.2 Despite being extremely straightforward, this positive result becomes one of the major
findings in this work. The critical question then arises: If transformers can learn reversal at the
abstract concept level, why do they fail in realistic settings?

2Note that with a larger |EA|, while there are more training data which benefits learning, it is also harder to
achieve higher performance since the prediction is contrasted with a larger population.
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3 THE BINDING PROBLEM UNDERLYING SURFACE-LEVEL PREDICTIONS

The main difference in realistic settings is that the model perceives surface-form names instead of
processing concepts directly, where the “curse” somehow arises. In this section, we analyze the
main challenges of learning reversal through surface-level predictions, accompanied with quantitative
experiments supporting our conjectures.

The binding problem. Our central thesis is that the Reversal Curse is a manifestation of the long-
standing binding problem in cognitive science, neuroscience and AI, which is concerned with the
mechanisms for natural or artificial neural networks to bind information distributed throughout the
network and form integrated percepts and knowledge (Roskies, 1999; Engel & Singer, 2001; Zimmer
et al., 2006; Greff et al., 2020). The binding problem could be divided into two major types: percep-
tual binding and conceptual binding. Perceptual binding refers to the combination of features from
raw inputs into cohesive concepts, typically occurring during low-level perception/recognition (Von
Der Malsburg, 1994; Tallon-Baudry & Bertrand, 1999; Singer, 2007; Palmigiano et al., 2017). Con-
ceptual binding is centered around forming unified and integrated long-term knowledge, which occurs
during high-level semantic processing and memory consolidation (McNorgan et al., 2011; Opitz,
2010; Murre et al., 2006; Patterson et al., 2007; Ralph et al., 2017).

Numerous studies show that LLMs have no trouble learning perceptual binding through surface-level
predictions. For instance, prior work finds that detokenization is typically carried out in a “recognition
module” within the lower layers, where subword tokens are combined and mapped into cohesive
concept representations at the end of surface names (Meng et al., 2022; Geva et al., 2023; Lad et al.,
2024; Yang et al., 2024; Kaplan et al., 2025); in upper layers, tokens of the output surface name
beyond the immediate next token are also usually (often-times, linearly) encoded in the hidden
states (Pal et al., 2023; Belrose et al., 2023; Wu et al., 2024; Cai et al., 2024). Complementary studies
tracing the evolvement of LLMs’ internal states during inference suggest that, beyond perceptual
binding, they also “think” in an abstract concept space within a “semantic module” in the middle
layers (Geva et al., 2022; Wendler et al., 2024; Lad et al., 2024; Sun et al., 2025). An illustration is in
Figure 1(b). These findings indicate that the issues lie not in perceptual binding, but in the specific
representations learned under surface-level prediction. Upon closer examination, we identify two key
potential factors contributing to the failure in learning reversal, both stemming from transformers’
deficiency in conceptual binding: inconsistency and entanglements.

3.1 INCONSISTENCY OF CONCEPT REPRESENTATIONS

We conjecture that one major cause of the Reversal Curse is that transformers lack inductive biases
to learn consistent concept representations when they emerge across different contexts. This skill
is performed seamlessly by humans; for example, when separately reading “the city that held the
2024 Summer Olympics” and “the center of political change during the French Revolution”, despite
activating from and carrying different contexts (sports and history), the representations formed in
our mind are bound and connect to the same underlying concept “Paris” instead of being isolated
from each other.3 Concretely for reversal, inconsistency instantiates into the failure of binding entity
representations when they switch roles between the perceived subjects and the predicted objects,
which emerge at the lower and upper layers within the model respectively (Figure 1(b), Left). Due
to this, facts that are reverses of each other cannot be well integrated as one piece, impeding the
induction of reversal.

Conceptual consistency is challenging to learn well within the design of current transformers even
with an abundance of data, due to the dynamic and open-ended nature of concepts. Firstly, concepts in
transformers could emerge at various locations/subspaces, necessitating a mechanism for dynamically
tracking and connecting the concept representations across different regions of the network. Secondly,
concepts are continuously assimilated instead of coming from a fixed vocabulary, which requires
a systematic design that can establish the binding of newly acquired concepts automatically. This
level of systematicity is not achieved even for the much simpler problem of binding tokens at the

3Consistency of concept representations is also the central thesis of the Hub-and-Spoke model, a prominent
framework for human semantic memory (Patterson et al., 2007; Ralph et al., 2017) supported by evidence from
neuroanatomy and studies on memory-impaired patients, which proposes that different experiences bind through
a shared central ‘hub’ storing core concept representations, allowing knowledge integration and conceptual
generalization.
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input/output levels, especially for models with untied input/output embeddings (which is common in
most LLMs today)–—when new tokens are introduced to the vocabulary, transformers still have to
rely on dedicated data to establish their binding.

3.2 ENTANGLEMENTS OF CONCEPT REPRESENTATIONS

Whereas consistency is involved with connecting representations of the same concept, problems
also arise on the other side of the same coin—separating representations of distinct concepts.
We conjecture that transformers lack inductive biases to decouple abstract mental concepts from
direct perceptions during learning, an issue which we call entanglement. The inability to maintain
the separation of distinct concepts could influence the training dynamics and negatively affect
generalization.

To illustrate, consider the last MLP layer in the recognition module before concept representations
are formed, as shown in Figure 1(b), Right. Suppose we have two activated concepts a and b in the
current learning step, which have MLP hidden activations α, β respectively. Let the output projection
matrix be V where vi is its i-th column, and hence a =

∑
i αivi, b =

∑
i βivi.4 During learning

when the loss is L, the negative gradients −∂L/∂a and −∂L/∂b represent the “desired directions”
for updating a and b. Assuming for now that α, β remain constant, we could compute the updates of
concept representations ∆a and ∆b after a gradient descent step with step size η:

∂L

∂vi
= αi

∂L

∂a
+ βi

∂L

∂b
,

∆a =
∑
i

αi(vi − η
∂L

∂vi
)− a = −η||α||2 ∂L

∂a
− ηαTβ

∂L

∂b
,

∆b =
∑
i

βi(vi − η
∂L

∂vi
)− b = −η||β||2 ∂L

∂b
− ηαTβ

∂L

∂a
.

We can see that each concept is not updated in the direction of its negative gradient; rather, the
updates are mixed with gradients from other concepts, where the level of entanglements is decided
by αTβ, i.e., how strong the hidden activations of a and b overlap (red neurons in Figure 1(b),
Right).5 This overlap is in turn determined by the surface form names of a, b and the configuration of
lower-level weights, which are also subject to change and could add further complications. This is
very problematic, especially given that concept names could be almost arbitrary and exhibit all kinds
of correlations. For example, imagine two different people with somewhat similar names. While there
are pattern overlaps during recognition, after it is complete, they should become two distinct objects,
and the information that we wish to store on each should be stored independently and not interfere.
However, as we can see, for transformers with gradient-based optimization, the overlaps in activation
patterns effectively cause the learning of different concepts to “mix”, which could adversely influence
the training dynamics and generalization.

We note that the entanglements here are problematic only during learning. It is entirely fine and often
beneficial for different concept representations to share latent structures, which can lead to more
efficient storage and retrieval. However, it is undesirable for these shared structures, which inherit the
arbitrariness of surface-form names and other correlations, to disrupt the learning itself.

3.3 EXPERIMENTS

We perform a series of experiments to ground the above analysis. Scientific-wise, the experiments
support the previous conjectures and arguments. Practical-wise, the explorations lead to a model
design based on Joint-Embedding Predictive Architectures (JEPA) (LeCun, 2022) which breaks the
Reversal Curse with high performance given prior knowledge of the location of concept representa-
tions. This also unlocks a new kind of parametric memory integration that could solve large-scale
arithmetic reasoning problems better than LLMs based on non-parametric memory, which we discuss
in §4.

4Here we ignore the residual connection and bias terms for simplicity.
5These entanglements clearly extend to momentum-based updates in modern optimizers.
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Figure 2: Illustration of JEPA with in-batch contrastive learning.
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Figure 3: Performance for JEPA with in-batch contrastive loss. Left: performance across varying
depths of the recognition module (#Rec) and semantic module (#Sem). JEPA unlocks highly
non-trivial generalization, but suffers from entanglements whose effects scale with model depth.
Right: impact of multiplicity across different model configurations. Performance consistently and
significantly degrades as multiplicity increases.

Attaching surface-level names to concepts. We build upon the setup in the abstract setting (§2) with
|EA| = 50K and attach a unique surface-form name for each concept, where the inputs now become
regular token sequences concatenating the concept names. Our preliminary experiments show that
the names of relations do not affect the result. For the entities, we choose not to use real-world entity
names since they typically do not emit meaningful statistics to experiment with. Instead, we use a
simple controllable way to create overlapping names inspired by human names. Specifically, each
entity name has two tokens (resembling the first name and last name of a person) belonging separately
to two disjoint sets, where each entity is randomly assigned a unique (ordered) pair of tokens. We
define multiplicity to be the number of entities who share the same first/last token, which controls the
overall degree of surface name overlaps. We keep the same multiplicity for each unique token. While
there are distances from realistic settings, we believe that the notion of multiplicity here is a good
abstraction for the overlaps in real-world entity names. By default, we experiment with a multiplicity
of 10, and also examine how varying the multiplicity affects the model’s learning.

We first conduct a series of experiments on models trained with standard language modeling objectives
at the surface level, and confirm that transformers fail entirely to learn reversal from surface-level
predictions, regardless of architectural variants (e.g., depth, tied vs. untied embeddings). These
findings align with prior work (Golovneva et al., 2024; Allen-Zhu, 2024).

Next, we study the impact of inconsistency and entanglements by deliberately scaffolding targeted
modifications into the model architecture.

We begin with explicitly encouraging conceptual consistency in reversal. One key observation is that
the well-known Joint-Embedding Predictive Architecture (JEPA) (LeCun, 2022), which conducts
predictions at the abstract representation space instead of raw input space, could perfectly serve this
purpose if the abstract representations for prediction are at the concept level. This is somewhat a
“coincidence” since the original motivation of JEPA is to ignore unpredictable/unimportant information
in the inputs, which is not related to the focus here. We experiment with a simple instantiation of JEPA
based on in-batch contrastive learning, illustrated in Figure 2. Here, autoregressive prediction is done
at the concept level encoded by the recognition module, where the representations of other “activated”
concepts within the same batch (besides the ground truth) serve as negatives for the standard InfoNCE
contrastive loss (van den Oord et al., 2019). We evaluate the quality of learned representations by
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Figure 4: Mitigating the effect of entanglements by increasing the model width (left) and using
special memory layers for the recognition module (right). It can be seen that increasing the model
width only brings incremental improvements, while memory layers,which eliminate entanglements
by design, could boost generalization by a large margin.

comparing the predicted state against representations of all concepts. We experiment with different
configurations of the model in terms of the depth of the recognition module (#Rec) and the depth of
the semantic module (#Sem), the semantic processing component on top of the recognition module.

JEPA unlocks generalization, but suffers from entanglements. Results are in Figure 3 (Left). By
simply encouraging conceptual consistency (with JEPA), the model can achieve highly non-trivial
generalization. To our knowledge, this is the first-ever model design that breaks the reversal curse
without side-stepping the core problem. Another important observation is that the performance
decreases when the model becomes deeper. Specifically, generalization consistently worsens when
increasing either 1) the depth ratio between the semantic and recognition module, or 2) the overall
depth of the model while keeping the ratio fixed. This strongly indicates that the effect of entan-
glements scales with model depth. This is intuitive since the representational distortions caused by
entanglements accumulate throughout the layers. We also examine the impact of multiplicity, where
the results are in Figure 3 (Right). It could be seen that increasing the multiplicity severely hurts
generalization, especially with deeper models whose performance could drop to near zero with a
mere multiplicity of 20. Overall, the results here suggest that current models likely learn a low degree
of conceptual consistency, and even if not, it is still challenging for them to learn reversal due to the
effects of entanglements.

Mitigating entanglements. We next explore how mitigating entanglements affects generalization,
based on the JEPA design above. A straightforward strategy is to increase the width of the model.
Intuitively, with larger hidden dimensions and more hidden units, there should be a greater chance
for different concept representations to be more separated from each other. To investigate this, we
train models with hidden dimensions increased from 768 to 1280, and 20 attention heads. Another
approach is to build specialized recognition modules with more discriminative hidden activations.
Memory layers (Sukhbaatar et al., 2015; Berges et al., 2024) exactly exemplify this approach,
featuring ultra-wide hidden layers with top-k sparsity and softmax activations. In particular, if we
use a memory layer with small k and/or high softmax temperature to replace the last MLP layer, the
recognition module effectively reduces to having separate learnable embeddings for concepts with
distinct names (same as the abstract setting (§2)), eliminating entanglements.6 We experiment with
this setup to see its effect on model performance.

It can be observed that increasing the width does aid generalization, but only incrementally (Figure 4,
Left). Meanwhile, the specially designed memory layer could significantly enhance performance,
though generalization still mildly declines with more semantic layers (Figure 4, Right). These
results also confirm that the limited generalization observed with standard transformer layers as
the recognition module is not due to insufficient capacity, since the module with two 1280-width
transformer layers already has nearly the same amount of effective parameters as the memory
layer (61.1M vs. 61.4M). Overall, these results underscore the importance of thoughtful designs
in addressing the issue of entanglements apart from scaling. Our findings also provide a concrete
example that memory layers can improve generalization, corroborating recent efforts on scaling
memory layers that report enhanced performance on general-domain tasks (Berges et al., 2024).

6Note that with the memory layer here, the depth of the recognition module does not matter.
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Figure 5: Left: illustration of the parametric variable binding enabled by models with reversal skills.
Right: performance on the large-scale arithmetic reasoning task with various branching factors. “(P)”:
Parametric Memory. “(NP)”: Non-Parametric Memory.

4 PARAMETRIC FORWARD-CHAINING FOR LARGE-SCALE ARITHMETIC
REASONING

Our high-level goal is to improve the parametric memory of current AI models, which we believe
is important for handling difficult knowledge and reasoning tasks. While our previous explorations
expose obstacles and pathways for models to break the Reversal Curse (and beyond), the benefits
towards tackling more ambitious challenges seem rather unclear—take reversal as an example, a
natural question would be: What exactly can be achieved if the model does acquire reversal, other
than knowing some more simple facts that we could have just retrieved from somewhere else?

In this section, we show that reversal enables a new kind of parametric memory integration that
allows models to solve large-scale arithmetic reasoning problems with much better performance than
frontier LLMs based on non-parametric memory.

We are inspired by recent work that formalizes and scales the complexity of arithmetic reasoning
problems in similar styles with popular benchmarks such as GSM8K (Ye et al., 2024; Zhou et al.,
2025). An important observation is that reversal is a key skill needed for a kind of parametric
variable binding that allows the model to infer and implicitly chain different pieces of information in
parametric memory. To illustrate, imagine we are given three pieces of information: “X equals 5”,

“Y equals 3”, and “X plus Y equals Z”. Here, X,Y, Z could be any phrase that corresponds to a
numerical value (prevalent in arithmetic problems), such as “Tom’s id” or “the amount of apples
Bruce has”. Given these facts and basic arithmetic knowledge, we could naturally know “Z equals
8”. Importantly, this simple skill requires reversal to perform if we wish to store this information
parametrically, since after retrieving and adding the values of X and Y (5 + 3 = 8), a reversal step
is needed to go from “8 equals Z” to “Z equals 8” (Figure 5, Left). Here, the recognition module
effectively acts as a variable-binding module, which maps a variable name to its value.

The significance of this skill lies in its ability to not only infer unknown values, but also propagate
these inferences through a chain of deductions: when the inferred value is properly bound to the
variable, it can then serve as a stepping stone for uncovering additional unknowns that the variable
connects with, triggering a cascading effect. This enables the model to perform parametric forward-
chaining while internalizing the information, allowing it to bridge increasingly distant knowledge
gaps over multiple steps in parametric memory.

Synthesizing complex arithmetic reasoning problems. We first conduct experiments in similar
styles as in earlier sections, where we verify that the same design with JEPA and memory layers
could achieve high performance on basic single-step deductions, whereas standard transformers
fail completely. We then synthesize large-scale arithmetic reasoning problems to test the model’s
reasoning inspired by Zhou et al. (2025). Specifically, we create search trees where nodes represent
variables and edges connect variables via addition. The target (unknown) variable is 3 hops away
from variables with known values, and we control the problem complexity via a custom branching
factor for the search tree (more details are included in Appendix C). We vary the branching factor
among 10, 20, 30, 40, corresponding to 0.4K, 1.6K, 3.7K, 6.5K facts on average for each problem
instance. We also test frontier LLMs including o3-Mini (high reasoning effort) and Gemini-2.5-Pro
based on non-parametric memory and prolonged explicit reasoning, where the facts are randomly
concatenated and put in context.
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Results. As shown in Figure 5 (Right), with JEPA and memory layers, the model could achieve
impressive performance higher than LLMs based on non-parametric memory. In particular, when the
problem size scales, the performance drop is mild with parametric memory, while LLMs with non-
parametric memory suffer more significantly. On the other hand, as expected, standard transformers
consistently fail. Overall, the results here showcase the potential of well-designed parametric memory
for complex reasoning problems.

5 RELATED WORK

The Reversal Curse is coined by Berglund et al. (2024), which discovers that state-of-the-art
(SoTA) LLMs fail at forming reversible factual associations under both direct testing and fine-tuning
settings. Similar observations are also made in Grosse et al. (2023); Allen-Zhu & Li (2025). Ma et al.
(2024) finds that LLMs cannot update their knowledge in the reverse direction of knowledge editing,
reinforcing this limitation. Several studies attempt to mitigate this issue through non-causal training
objectives or data augmentation strategies like reversing or permuting sentence segments (Lv et al.,
2024; Kitouni et al., 2024; Golovneva et al., 2024; Guo et al., 2024; Lu et al., 2024), however, these
approaches side-step the fundamental problem since the two directions are still not stored as one
integrated piece. Lin et al. (2024) shows that the issue may be related to inherent biases in LLMs’
factual recall. Zhu et al. (2024) theoretically proves that transformers cannot learn reversal under
specific settings and assumptions. Our work examines the Reversal Curse at a basic level, and to our
knowledge, presents the first architectural design that truly overcomes this limitation.

The binding problem is a long-standing challenge in cognitive science, neuroscience, and AI. The
cognitive science and neuroscience research focuses on explaining how the human brain solves this
problem (Roskies, 1999; Engel & Singer, 2001; Zimmer et al., 2006), while AI studies investigate
how to achieve adequate binding in artificial neural networks (Greff et al., 2020). There are two
major types of binding: perceptual binding and conceptual binding; related literature is discussed in
§3. Extensive research demonstrates that transformers effectively learn perceptual binding (Meng
et al., 2022; Geva et al., 2023; Lad et al., 2024; Yang et al., 2024; Feng & Steinhardt, 2024; Kaplan
et al., 2025; Pal et al., 2023; Belrose et al., 2023; Wu et al., 2024; Cai et al., 2024). In this work, we
identify two major limitations in transformers’ conceptual binding that potentially cause the Reversal
Curse, and demonstrate that explicitly addressing them through targeted designs enables models to
break the Reversal Curse with high performance.

6 DISCUSSION & CONCLUSION

We conjecture that the Reversal Curse in LLMs is caused by inconsistency and entanglements of
concept representations, two aspects of the long-standing binding problem in cognitive science,
neuroscience and AI. A series of experiments supports our hypotheses, and leads to model designs
that could break the Reversal Curse with high performance. It is important to note, however, that
these fundamental issues underlying the Reversal Curse that we identify are far from being resolved,
since our current solutions rely heavily on human scaffolding and are specifically tailored to the
reversal task, which only deals with the most basic concepts. For instance, we need prior knowledge
of the concept locations for the JEPA design to promote consistency, and the design only fosters
consistency in a highly restricted manner (where concepts emerge as perceived subjects and predicted
objects). Similarly, the memory layer design leverages our prior knowledge that each unique name
indeed corresponds to a unique concept in our setting, and it would impede learning in cases where
synonymy exists. Overall, the more fundamental challenge lies in designing models capable of
learning systematic conceptual binding mechanisms with less human scaffolding, applicable to more
abstract concepts and complex skills (Sutton, 2019). Our explorations expose and rigorously establish
these challenges, and bring them to the attention of the broader community. Finally, to demonstrate
the potential of well-designed parametric memory for complex reasoning, we show that the skill
of reversal unlocks a kind of parametric forward-chaining that enables models to solve large-scale
arithmetic reasoning problems better than frontier LLMs based on non-parametric memory.
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ETHICS STATEMENT

The research presented in this paper adheres to the ICLR Code of Ethics. Our work is foundational,
focusing on a specific limitation of transformer models known as the Reversal Curse. We do not use
any datasets that contain private, sensitive, or personally identifiable information. The study does
not involve human subjects, and we do not foresee any direct negative societal impacts or ethical
concerns arising from our methodology or findings.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we have provided detailed descriptions of our experi-
mental setup throughout the paper. The source code used for all experiments will be made publicly
available upon publication.

• Data Generation: The procedure for generating the training and evaluation datasets for the reversal
task is detailed in §2 and §3.3. The method for synthesizing the large-scale arithmetic reasoning
problems is described in §4, with further details in Appendix C.

• Model Architecture: We describe the architectures of the models used, including standard trans-
formers, JEPA-based models, and models incorporating memory layers, in §2 and §3.

• Training Details: training details and hyperparameters for our experiments are provided in
Appendix A.
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A HYPERPARAMETERS AND TRAINING DETAILS

We use the standard transformer architecture as in GPT-2 (Radford et al., 2019), with 768 hidden
dimension, 12 attention heads and no positional encoding unless otherwise specified. For optimization,
we use the AdamW optimizer (Loshchilov & Hutter, 2019) with 2000 warm-up steps, learning rate
1e − 4, weight decay 0.25. For experiments on reversal curse (§2, §3), we use batch size 512
or 1024 and evaluate the models every 50000 optimization steps. For experiments on arithmetic
reasoning (§4), we use batch size 128 and evaluate the models every 20000 optimization steps. All
implementations are based on PyTorch (Paszke et al., 2019) and Huggingface Transformers (Wolf
et al., 2020). Model trainings are done on NVIDIA A6000 and A100 GPUs.

B JEPA

Here we provide some complementary discussion on JEPA (Joint-Embedding Predictive Architecture),
proposed by LeCun (2022). The main departure from conventional architectures is that JEPA performs
prediction in the abstract representation space of encoded inputs rather than in raw input space. This
is motivated by the observation that precisely reconstructing raw inputs is often unnecessary or
impossible, and that human learning typically focuses on structures within high-level abstractions.
While JEPA has been predominantly applied to vision domains such as images and videos (Assran
et al., 2023; Bardes et al., 2024), recent work also explores similar ideas in language domains (Barrault
et al., 2024).

C ARITHMETIC REASONING

C.1 LEARNING BASIC ARITHMETIC DEDUCTIONS

We first test whether models can learn to perform single-step arithmetic deductions as described in
§4. To reiterate here, for variables X,Y, Z (whose “names” are now phrases which correspond to
numerical values), we hope that the model could learn “Z equals 8” after internalizing “X equals
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5”, “Y equals 3” and “X plus Y equals Z” (apparently, also for other numerical values). Note
that the key challenge here is not the numerical calculations, rather, it is the variable binding which
requires reversal to perform.

We follow the setup in §3, with changes on the train/test data. Since our focus (and also the focus of
arithmetic reasoning problems in general) is not on numerical calculations, we add the constraint
that for all additions, at least one of the two left-hand-side arguments must be m or n, which are two
small distinct predetermined integers randomly chosen from [10, 50]. In other words, all calculations
only involve adding m or n (instead of all possible values) to some value. We also operate under
modular arithmetics with P = 10007 to avoid under/overflows. To synthesize the training data for
learning the rules, for each possible value i in [0, P − 1], we prepare 10 distinct variables that are
assigned value i (i.e., adding into the training set the fact “X equals i” for each variable X). Then,
we add a random 30% of all relational facts that satisfy the previous constraint that could be formed
among the variables. For testing, we first randomly select some variable pairs where at least one
variable in each pair has value m or n (s.t. the calculation is “taught” during training). Then for each
variable pair (X,Y ), we create a new variable Z, add “X plus Y equals Z” in the training set and

“Z equals ” in the test set, to evaluate whether the model can infer and store the correct value of
Z. Variable names are generated the same way as in §3 with two tokens each and multiplicity 10.
This name assignment is also conceptually similar to the ones in GSM-∞ (Zhou et al., 2025) such as
entity attributes (e.g., “number of tigers in Hamilton Farm”).

We find that the same design which breaks the Reversal Curse with JEPA and memory layers (§3)
could generalize decently, achieving an MRR of 0.718 with 6 semantic layers. On the other hand,
expectedly, models that predict at the surface level fail to generalize.

C.2 SCALING THE REASONING CHALLENGE

We use a simple way to synthesize problems with different scales, by first generating a complete
tree, and then dropping a portion of the edges to form a search problem (Figure 6).7 Specifically,
the complete tree has a fixed depth 3, where 1) each node represents a variable, where the root node
(at the first layer) is the target with a randomly chosen integer value to be inferred by the model;
2) each edge connects two variables via addition through another variable with a given value m or
n (randomly assigned). The first two layer nodes have a custom branching factor (10, 20, 30, 40)
and the third layer nodes have a fixed branching factor of 6 connecting to leaf nodes with given
values (decided by the variable values along the paths). For each problem instance, we randomly
choose the value of the target node from [200, 800], which ensures that all numerical calculations
involve small positive integers (below 1000) that LLMs can perfectly perform. Note that with the
complete tree, the target value could be inferred by following any path from any leaf node. We drop a
portion of the edges to create a reasoning challenge. Concretely, we “poison” 60% of second and
third layer nodes by breaking paths through them between the target and leaf nodes: for each third
layer node which itself or its parent is poisoned, we randomly drop either the edge connecting it
to its parent, or all edges connecting it to the leaf nodes. Deriving the target value is, in essence, a
“path-finding” problem where the model needs to find paths connecting the target with any of the leaf
nodes (whose values are given). This is simpler than the more general “graph-finding” problem in
arithmetic reasoning problems (Zhou et al., 2025), but still challenging when the search space grows
large.

We synthesize 20 instances for each branching factor for testing. For models with parametric memory,
since we train the models from scratch, we merge the problem facts with the training data in §C.1 with
disjoint variable names to teach the model basic arithmetics and deductions. For testing LLMs with
non-parametric memory, we use a very simple template and match each variable with a distinct human
name, e.g., “Tom’s number is 5” and “Tom’s number plus Amy’s number equals Bob’s number”,
with no commonsense or other implicit knowledge involved. The specific choice of the template
marginally affects LLM performance from preliminary tests.

Errors of LLMs. We examine error cases of LLMs to understand their failure modes. For o3-Mini-
High (which does not return the thinking tokens), the model summarizes the thinking processing
at a high level with statements such as “Every acceptable solution of the many equations forces...”

7Technically, a “tree” is not an accurate description of the network since the “leaf” nodes here could have
multiple parents; we abuse the term for simplicity.
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Value given

Target variable

Ground truth proof(s)

“Poisoned” nodes

Figure 6: Illustration of the problem synthesis for large-scale arithmetic reasoning. For simplicity, we
omit the nodes with given values used for connecting variables via addition.

and “One may check by solving the huge simultaneous network of sum-equations that...”, and hence
it is difficult to pinpoint the specific errors. For Gemini-2.5-Pro, we find that the model never makes
calculation errors, and among 10 random error examples, 7 stem from making (wrong) guesses
without thorough consistency checks, 2 are caused by hallucinating unprovided facts, and 1 from
a copy error. Overall, LLMs seem to struggle with forming integrated/compressed representations
of information provided in context, and have to rely on extensive explicit search to recognize the
connections between different pieces of information. With well-designed parametric memory, on the
other hand, the facts could be more tightly connected and integrated, which enables models to solve
the challenge with better performance and milder performance drop as problem scales increase.

D USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used solely as a general-purpose writing aid in the preparation
of this paper. Specifically, they were used to help polish grammar and improve the clarity of certain
sentences. No LLMs were used for research ideation, experimental design, data analysis, or drawing
conclusions. All substantive contributions to the research and writing were made by the authors.
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