
Under review as a conference paper at ICLR 2023

ON THE IMPORTANCE OF ARCHITECTURES AND HYPER-
PARAMETERS FOR FAIRNESS IN FACE RECOGNITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Face recognition systems are deployed across the world by government agencies
and contractors for sensitive and impactful tasks, such as surveillance and database
matching. Despite their widespread use, these systems are known to exhibit bias
across a range of sociodemographic dimensions, such as gender and race. Nonethe-
less, an array of works proposing pre-processing, training, and post-processing
methods have failed to close these gaps. Here, we take a very different approach
to this problem, identifying that both architectures and hyperparameters of neural
networks are instrumental in reducing bias. We first run a large-scale analysis
of the impact of architectures and training hyperparameters on several common
fairness metrics and show that the implicit convention of choosing high-accuracy
architectures may be suboptimal for fairness. Motivated by our findings, we run
the first neural architecture search for fairness, jointly with a search for hyperpa-
rameters. We output a suite of models which Pareto-dominate all other competitive
architectures in terms of accuracy and fairness. Furthermore, we show that these
models transfer well to other face recognition datasets with similar and distinct
protected attributes. We release our code and raw result files so that researchers and
practitioners can replace our fairness metrics with a bias measure of their choice.

1 INTRODUCTION

Face recognition is regularly deployed across the world by government agencies for tasks including
surveillance, employment, and housing decisions. However, recent studies have shown that face
recognition systems exhibit disparity in accuracy based on race and gender (Grother et al., 2019; Raji
et al., 2020; Raji & Fried, 2021; Learned-Miller et al., 2020). For example, some face recognition
models were 10 or 100 times more likely to give false positives for Black or Asian people, compared
to white people (Allyn, 2020). This bias has already led to multiple false arrests and jail time for
innocent Black men in the USA (Hill, 2020a).

Motivated by the discovery of bias in face recognition and other models deployed in real-world
applications, dozens of definitions for fairness have been proposed (Verma & Rubin, 2018), and many
pre-processing, training, and post-processing techniques have been developed to mitigate model bias.
However, these techniques have fallen short of de-biasing face recognition systems, and training fair
models in this setting demands addressing several technical challenges (Cherepanova et al., 2021b).

While existing methods for de-biasing face recognition systems use a fixed neural network architecture
and training hyperparameter setting, we instead ask a fundamental question which has received little
attention: does model-bias stem from the architecture and hyperparameters? We further ask whether
we can we exploit the extensive research in the fields of neural architecture search (NAS) (Elsken
et al., 2019) and hyperparameter optimization (HPO) (Feurer & Hutter, 2019) to search for models
that achieve a desired trade-off between model-bias and accuracy.

In this work, we take the first step towards answering these questions. To this end, we conduct the first
large-scale analysis of the relationship between hyperparameters, architectures, and bias. We train a
diverse set of 29 architectures, ranging from ResNets (He et al., 2016b) to vision transformers (Doso-
vitskiy et al., 2020; Liu et al., 2021) to Gluon Inception V3 (Szegedy et al., 2016) to MobileNetV3
(Howard et al., 2019) on CelebA (Liu et al., 2015), for a total of 88 493 GPU hours. We train each
of these architectures across different head, optimizer, and learning rate combinations. Our results
show that different architectures learn different inductive biases from the same dataset. We conclude
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Figure 1: Overview of our methodology.

that the implicit convention of choosing the highest-accuracy architectures can be detrimental to
fairness, and suggest that architecture and hyperparameters play a significant role in determining the
fairness-accuracy tradeoff.

Next, we exploit this observation in order to design architectures with a better fairness-accuracy
tradeoff. We initiate the study of NAS for fairness; specifically, we run NAS+HPO to jointly
optimize fairness and accuracy. To tackle this problem, we construct a search space based on
the highest-performing architecture from our analysis. We use the Sequential Model-based Al-
gorithm Configuration method (SMAC (Lindauer et al., 2022)), for multi-objective architecture
and hyperparameter search. We discover a Pareto frontier of face recognition models that outper-
form existing state-of-the-art models on both accuracy and multiple fairness metrics. An overview
of our methodology can be found in Figure 1. We release all of our code and raw results at
https://anonymous.4open.science/r/FR-NAS-92EC so that users can adapt our work
to any bias measure of their choice.

Our contributions We summarize our main contributions below:

• We provide a new bias mitigation strategy which identifies that architectures have a profound
influence on fairness, and then exploits that insight in order to design more fair architectures via
Neural Architecture Search and Hyperparameter Optimization.

• We conduct a large-scale study of 29 architectures, each trained across a variety of hyperparam-
eters, totalling 88 493 GPU hours, showing that architectures and hyperparameters have a big
impact on fairness. We then conduct the first neural architecture search for fairness, jointly with
hyperparameter optimization and optimizing for accuracy — culminating in a set of architectures
which Pareto-dominate all models in a large set of modern architectures.

• Our new architectures outperform the current state of the art architecture, ArcFace (Deng et al.,
2019), when training and testing CelebA and VGGFace2, and when training on CelebA and testing
on other face recognition datasets (LFW, CFP-FP, CPLFW, AgeDB, and CALFW). Furthermore
our architectures transfer well across different protected attributes Section 4.3.1.

2 BACKGROUND AND RELATED WORK

While our work is the first to leverage neural architecture search (NAS) to build fair models, a body
of prior work exists in the fields of NAS and face recognition, and we discuss it here.

Face Recognition. Face recognition tasks fall into two categories: verification and identification.
Verification asks whether the person in a source image is the same person as in the target image; this
is a one-to-one comparison. Identification instead asks whether a given person in a source image
appears within a gallery composed of many target identities and their associated images; this is a
one-to-many comparison. Novel techniques in face recognition tasks, such as ArcFace (Wang et al.,
2018), CosFace (Deng et al., 2019), and MagFace (Meng et al., 2021), use deep networks (often
called the backbone) to extract feature representations of faces and then compare those to match
individuals (with mechanisms called the head). Generally, backbones take the form of image feature
extractors and heads resemble MLPs with specialized loss functions. Often, the term “head” refers
to both the last layer of the network and the loss function. We focus our analysis on identification,
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and we focus our evaluation on examining how close images of similar identities are in the feature
space of trained models, since the technology relies on this feature representation to differentiate
individuals. An overview of recent research on these topics can be found in Wang & Deng (2018).

Sociodemographic Disparities in Face Recognition. The existence of differential performance
of face recognition on population groups and subgroups has been explored in a variety of settings.
Earlier work (e.g., Klare et al., 2012; O’Toole et al., 2012) focuses on single-demographic effects
(specifically, race and gender) in pre-deep-learning face detection and recognition. Buolamwini
& Gebru (2018) uncover unequal performance at the phenotypic subgroup level in, specifically,
a gender classification task powered by commercial systems. That work, typically referred to as
“Gender Shades”, continues to be hugely impactful both within academia and at the industry level.
Indeed, Raji & Buolamwini (2019) provide a follow-up analysis – exploring the impact of the public
disclosures in Buolamwini & Gebru (2018) – where they find that named companies (IBM, Microsoft,
and Megvii) updated their APIs within a year to address some concerns that had surfaced. Further
research continues to show that commercial face recognition systems still have sociodemogrpahic
disparities in many complex and pernicious ways (Drozdowski et al., 2020; Dooley et al., 2021;
Jaiswal et al., 2022; Dooley et al., 2022; Jaiswal et al., 2022).

In this work, we focus on measuring the sociodemographic disparities across neural architectures
and hyperparameter settings, and finding the Pareto frontier of face recognition performance and
bias for current and novel architectures. Our work searches for architectures and hyperparameters
which improve the undesired disparities. Previous work focuses on “fixing” unfair systems and can
be split into three (or arguably four (Savani et al., 2020)) focus areas: preprocessing (e.g., Feldman
et al., 2015; Ryu et al., 2018; Quadrianto et al., 2019; Wang & Deng, 2020), inprocessing (e.g., Zafar
et al., 2017; 2019; Donini et al., 2018; Goel et al., 2018; Padala & Gujar, 2020; Wang & Deng, 2020;
Martinez et al., 2020; Nanda et al., 2021; Diana et al., 2020; Lahoti et al., 2020), and post-processing
(e.g., Hardt et al., 2016; Wang et al., 2020b).

Neural Architecture Search (NAS) and Hyperparameter Optimization (HPO). Deep learning
derives its success from the manually designed feature extractors which automate the feature engi-
neering process. Neural architecture search (NAS) (Elsken et al., 2019), on the other hand, aims at
automating the very design of network architectures for a task at hand. NAS can be seen as a subset
of HPO (Feurer & Hutter, 2019), which refers to the automated search for optimal hyperparameters,
such as learning rate, batch size, dropout, loss function, optimizer, and architectural choices. Rapid
and extensive research on NAS for image classification and object detection has been witnessed as of
late (Liu et al., 2018; Zela et al., 2019; Xu et al., 2019; Pham et al., 2018; Cai et al., 2018). Deploying
NAS techniques in face recognition systems has also seen a growing interest (Zhu, 2019; Wang,
2021). For example, reinforcement learning-based NAS strategies (Xu et al., 2019) and one-shot
NAS methods (Wang, 2021) have been deployed to search for an efficient architecture for face
recognition with low error. However, in a majority of these methods, the training hyperparameters for
the architectures are fixed, which we observe should be reconsidered in order to obtain the fairest
possible face recognition systems.

A few works have applied hyperparameter optimization to mitigate bias in models for tabular datasets.
Perrone et al. (2021) recently introduced a Bayesian optimization framework to optimize accuracy
of models while satisfying a bias constraint. The concurrent works of Schmucker et al. (2020) and
Cruz et al. (2020) extend Hyperband (Li et al., 2017) to the multi-objective setting and show its
applications to fairness. The former was later extended to the asynchronous setting (Schmucker
et al., 2021). Lin et al. (2022) proposes de-biasing face recognition models through model pruning.
However, they consider just two architectures and just one set of hyperparameters. To the best of our
knowledge, no prior work uses any AutoML technique (NAS, HPO, or joint NAS and HPO) to design
fair face recognition models, and no prior work uses NAS to design fair models for any application.

3 A LARGE-SCALE ANALYSIS OF ARCHITECTURES AND FAIRNESS

In this section, we seek to address the following question: are architectures and hyperparameters
important for fairness? To this end, we conduct an exploration of many different model architectures
using different hyperparameter combinations. We find strong evidence that accuracy is not predictive
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of fairness metrics, which provides strong motivation for using NAS techniques to optimize fairness
and accuracy jointly, which we explore in Section 4.

Experimental Setup. We train and evaluate each model configuration on a gender-balanced subset
of the CelebA dataset (Liu et al., 2015). CelebA is a large-scale face attributes dataset with more than
200K celebrity images and a total of 10 177 gender-labeled identities. The dataset distribution has
about 60% images labeled females and 40% labeled males. While this work analyzes phenotypic
metadata (perceived gender), the reader should not interpret our findings absent a social lens of what
these demographic groups mean inside society. We guide the reader to Hamidi et al. (2018) and
Keyes (2018) for a look at these concepts for gender.

We use a balanced set of male and female identities, as is common practice in fairness research in
face recognition work (Cherepanova et al., 2021b; Zhang & Deng, 2020). To study the importance of
architectures and hyperparamters for fairness, we use the following training pipeline – ultimately
conducting 355 training runs with different combinations of 29 architectures from the Pytorch Image
Model (timm) database (Wightman, 2019) and hyperparameters. We conduct training runs with
both the default hyperparameters as well as hyperparameters which are standardized across all
architecutres, e.g., AdamW with lr=0.001 and SGD with lr=0.1. For each model, we use the default
learning rate and optimizer that was published with that model. We then conduct a training run
with these hyperparameters and each of three heads, ArcFace (Wang et al., 2018), CosFace (Deng
et al., 2019), and MagFace (Meng et al., 2021). Next, we use that default learning rate with both
AdamW (Loshchilov & Hutter, 2019) and SGD optimizers (again with each head). Finally, we also
conduct training routines with AdamW and SGD with unifed learning rates (SGD with lr=0.1 and
AdamW with lr=0.001). In total, we run a single architecture between 9 and 13 times (9 times if the
default optimizer and learning rates were the same as the standardized, and 13 times otherwise). All
other hyperparameters were the same for each model training run.

Evaluation procedure. When evaluating the performance of our models, we choose the standard
approach in face identification tasks to evaluate the performance of the learned representations. Recall
that face recognition models usually learn representations with an image backbone and then learn a
mapping from those representations onto identities of individuals with the head of the model. As
is commonplace (Cherepanova et al., 2021a; 2022), evaluating the learned feature representations
allows us to better isolate the impact of the image backbone architecture and transfer this learned
feature extractor onto other datasets (see Section 4.3.1).

The main performance metric for the models will be representation error, which we will henceforth
simply refer to as Error. Recall that we pass each test image through a trained model and save the
learned representation. To compute Error, we merely ask, for a given probe image/identity, whether
the closest image in feature space is not of the same person based on l2 distance.

We use a common fairness metric in face recognition which is explored in the NIST FRVT (Grother
et al., 2010) and which we call rank disparity. To compute the rank of a given image/identity, we ask
how many images of a different identity are closer to the image in feature space. We define this index
as the Rank of a given image under consideration. Thus, Rank(image) = 0 if and only if Error(image)
= 0; Rank(image) > 0 if and only if Error(image) = 1. We examine the rank disparity which is the
absolute difference of the average ranks for each perceived gender in a dataset D:

Rank Disparity =

∣∣∣∣∣ 1

|Dmale|
∑

x∈Dmale

Rank (x)− 1

|Dfemale|
∑

x∈Dfemale

Rank(x)

∣∣∣∣∣.
We focus on rank disparity throughout this section and Section 4, and we explore other forms of
fairness metrics in face recognition in Appendix A.3.

Results and Discussion. By plotting the performance of each training run with the error on the
x-axis and rank disparity on the y-axis in Figure 2, we can easily conclude two main points. First,
optimizing for error does not also optimize for fairness, and second, different architectures have
different fairness properties.

On the first point, a search for architectures and hyperparameters which have high performance on
traditional metrics does not translate to high performance on fairness metrics. We see that within
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Figure 2: Error-Rank Disparity Pareto front of the architectures with lowest error (< 0.3). Models
in the lower left corner are better. The Pareto front is notated with a dashed line. Other points
are architecture and hyperparameter combinations which are not Pareto-optimal. DPN, ReXNet,
EseVovNet, TNT, and Inception architectures are Pareto-optimal.
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Figure 3: Depending on the fairness metric, different architectures are Pareto-optimal. On the left,
we plot the metric Ratio of Ranks which admit DPN, ReXNet, HRNet, MobileNet, EseVovNet, and
Inceptions as Pareto-optimal. On the right, we plot the metric Ratio of Errors where DPN, ReXNet,
EseVovNet, ResNet-RS, and VGG19 are Pareto-optimal.

models with lowest error – those models which are most interesting to the community – there is low
correlation between error and rank disparity (ρ = −.113 for models with error < 0.3). In Figure 2,
we see that Pareto optimal models are versions of DPN, TNT, ReXNet, VovNet, and ResNets (in
increasing error and decreasing fairness). We conclude that both architectures and hyperparameters
play a significant role in determining the accuracy and fairness trade-off, motivating their joint
optimization in Section 4.

Additionally, we observe that the Pareto curve is dependent upon what fairness metric we consider.
For example, in Figure 3, we demonstrate that a very different set of architectures are Pareto optimal
if instead of rank disparity (rank difference between perceived genders) we consider the ratio of ranks
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Table 1: Searchable hyperparameter choices.

Hyperparameter Choices
Architecture Head/Loss MagFace, ArcFace, CosFace
Optimizer Type Adam, AdamW, SGD
Learning rate (conditional) Adam/AdamW → [1e− 4, 1e− 2], SGD → [0.09, 0.8]

between the two perceived genders or the ratio of the errors. Specifically, on the ratio of ranks metric,
the Pareto frontier contains versions of HRNet, MobileNet, VovNet, and ResNet whereas the Pareto
frontier under the ratio of errors metric includes versions of NesT, ResNet-RS, and VGG19.

Further, different architectures exhibit different optimal hyperparameters. For example, the Xcep-
tion65 architecture finds SGD with ArcFace and AdamW with ArcFace are Pareto-optimal whereas
the Inception-ResNet architecture finds MagFace and CosFace optimal with SGD. This illustrates the
care that needs to be taken when choosing a model – optimizing architectures and hyperparameters
for error alone will not lead to fair models.

Finally, existing architectures and hyperparameters do not yield models which simultaneously exhibit
both low error and low disparity. For example, in Figure 2 there is a significant area under the Pareto
curve. While there are models with very low error, in order to improve the disparity metric, one
must sacrifice significant performance. However, in Section 4, we will see that our joint NAS+HPO
experiments for rank disparity ultimately find a model convincingly in the area to the left of this
Pareto curve – that is, we find a model with low error and disparity.

4 JOINT NAS+HPO FOR FAIRNESS

In this section, we employ joint NAS+HPO to find better architectures. Inspired by our findings on
the importance of architecture and hyperparameters for fairness in Section 3, we initiate the first joint
NAS+HPO study for fairness in face recognition. We start by describing our search space and search
strategy. We then present a comparison between the architectures obtained from multi-objective joint
NAS+HPO and the handcrafted image classification models studied in Section 3. We conclude that
our joint NAS+HPO indeed discovers simultaneously accurate and fair architectures.

4.1 SEARCH SPACE DESIGN

We design our search space based on our analysis in Section 3. In particular, our search space is
inspired by Dual Path Networks (Chen et al., 2017) due to its strong trade-off between rank disparity
and accuracy as seen in Figure 2.

Hyperparameter Search Space Design. We choose three categories of hyperparameters for
NAS+HPO: the architecture head/loss, the optimizer, and the learning rate, depicted in Table 1.
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Architecture Search Space Design. Dual Path Networks (Chen et al., 2017) for image classification
share common features (ResNets (He et al., 2016a)) while possessing the flexibility to explore
new features (Huang et al., 2017) through a dual path architecture. We replace the repeating
1x1_conv-3x3_conv-1x1_conv block with a simple recurring searchable block depicted in
Figure 4. Furthermore, we stack multiple such searched blocks to closely follow the architecture
of Dual Path Networks. We have nine possible choices for each of the three operations in the
DPN block as depicted in Table 2. The choices include a vanilla convolution, a convolution with
pre-normalization and a convolution with post-normalization.

To summarize, our search space consists of a choice among 81 different architecture types, 3 different
head types, 3 different optimizers, and a possibly infinite number of choices for the learning rate.

4.2 SEARCH STRATEGY

We navigate the search space using Black-Box-Optimization (BBO) with the following desiderata:

Multi-fidelity optimization. A single function evaluation for our use-case corresponds to training
a deep neural network on a given dataset. This is generally quite expensive for traditional deep neural
networks on moderately large datasets. Hence we would like to use cheaper approximations to speed
up the black-box algorithm with multi-fidelity optimization techniques (Schmucker et al., 2021; Li
et al., 2017; Falkner et al., 2018), e.g., by evaluating many configurations based on short runs with
few epochs and only investing more resources into the better-performing ones.

Multi-objective optimization. We want to observe a trade-off between the accuracy of the face
recognition system and the fairness objective of choice, so our joint NAS+HPO algorithm supports
multi-objective optimization (Paria et al., 2020; Davins-Valldaura et al., 2017; Mao-Guo et al., 2009).

The SMAC3 package (Lindauer et al., 2022) offers a robust and flexible framework for Bayesian
Optimization with few evaluations. SMAC3 offers a SMAC4MF facade for multi-fidelity optimization
to use cheaper approximations for expensive deep learning tasks like ours. We choose ASHA
(Schmucker et al., 2021) for cheaper approximations with the initial and maximum fidelities set to 25
and 100 epochs, respectively, and η = 2. Every architecture-hyperparameter configuration evaluation
is trained using the same training pipeline as in Section 3. For the sake of simplicity, we use the
ParEGO (Davins-Valldaura et al., 2017) algorithm for multi-objective optimization with ρ set to 0.05.

4.3 RESULTS

We follow the evaluation scheme of Section 3 to compare the models discovered by joint NAS+HPO
with the handcrafted image classification models. In Figure 5, we compare the set of models
discovered by joint NAS+HPO vs. the models on the Pareto front studied in Section 3. We train each
of these models for 4 seeds to study the robustness of error and disparity for the models. As seen in
Figure 5, we Pareto-dominate all other models with above random accuracy on the validation set. On
the test set, we still Pareto-dominate all highly competitive models (with Error < 0.1), but due to
differences between the two dataset splits, one of the original configurations (DPN with Magface)
also becomes Pareto-optimal. However, the error of this architecture is 0.13, which is significantly
higher than the the best original model (0.05) and the SMAC models (0.03-0.04). Furthermore, from
Figure 5 it is also apparent that some models such as VoVNet and DenseNet show very large standard
errors across seeds. Hence, it becomes very important to also study the robustness of the models
across seeds along with the accuracy and disparity Pareto front. We also compare to the current
state of the art baseline ArcFace (Deng et al., 2019), which, using our training pipeline on CelebA
data with face identification as our task, achieves an error of 4.35%. We however, outperform this
architecture with our best performing novel architecture achieving an error of 3.10%.

In the work of Cherepanova et al. (2021b), they studied bias mitigation techniques for face recognition
for the state of the art ArcFace models. The best technique from this work achieves an accuracy
on males of 93.% and accuracy on females of 89.1% with a performance gap of 4.3%. Our novel
architecture achieves accuracies of 96-98% on both males and females which means that our technique
outperforms those reported in Cherepanova et al. (2021b) by a significant margin.
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(b)(a)

Figure 5: Pareto front of the models discovered by SMAC and the rank-1 models from timm for the
(a) validation and (b) test sets on CelebA. Each point corresponds to the mean and standard error of
an architecture after training for 4 seeds. The SMAC models Pareto-dominate the top performing
timm models (Error < 0.1).

4.3.1 TRANSFER ACROSS FACE RECOGNITION DATASETS

Inspired by our findings on the CelebA dataset, we now study the accuracy-disparity trade-off of the
models studied in Section 3 and the searched models from Section 4 on two different datasets. The
first face recognition dataset we use is VGGFace2 (Cao et al., 2018), which is based on the same
protected attribute (perceived gender) that has served as the focus of our study. The second dataset,
Racial Faces in the Wild (RFW) (Wang et al., 2019a), consists of four different racial identities:
Caucasian, Indian, Asian, and African. We compute the rank disparity within different ethnicities,
i.e., a different attribute than the perceived gender studied in previous sections. With this dataset, we
aim to study the generalization of the fair representations learned by the models across a different
protected attribute. However, we caution the reader that the labels of these datasets rely on socially
constructed concepts of gender presentation and ethnicity. The intention here is to study how the
models discovered by SMAC generalize to these datasets and compare to the other handcrafted timm
(Wightman, 2019) architectures.

To evaluate our models on these datasets, we directly transfer our models to the two test sets. That
is, we use the models trained on CelebA, without re-training or fine-tuning the models on the new
datasets. As observed in Figure 6, the models discovered using joint NAS+HPO still remain Pareto-
optimal on both datasets. In the case of VGGFace2, the models found by SMAC are the only ones to
have an error below 0.5, where the next-best model has an error above 0.7. In the case of RFW, the
models found by SMAC have considerably lower rank disparity and error than the standard models
studied in Section 3. This might be due to the optimized architectures learning representations that
are intrinsically fairer than those of standard architectures, but it requires further study to test this
hypothesis and determine in precisely which characteristics these architectures differ.

Additionally, we trained our novel architectures on VGGFace2 and find that we outperform the
ArcFace baseline with both error and fairness metrics; See Table 5. We observe that while the
ArcFace model has low error, it has high disparity, whereas our model with best error is a 36%
increase in performance over the ArcFace Baseline and an 85% improvement in fairness. We also see
that our best model by Rank Disparity, is not significantly worse than ArcFace, and we have a model
that achieves similar performance to the ArcFace baseline and yields a 91% improvement in fairness.

Finally, when we test our trained models (on CelebA) on the test sets of other common face recognition
datasets, our newly found SMAC models outperform the competitors in all cases. See Table 4.

5 CONCLUSION, FUTURE WORK AND LIMITATIONS

We conducted the first large-scale analysis of the relationship among hyperparameters and architec-
tural properties, and accuracy, bias, and disparity in predictions. We trained a set of 29 architectures
totalling 355 models and 88 493 GPU hours across different loss functions and architecture heads on
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Figure 6: Pareto front of the models on (a) the VGGFace2 test set with perceived gender as the
protected attribute and (b) the RFW test set with perceived ethnicity as the protected attribute. The
SMAC models discovered by joint NAS+HPO Pareto-dominate the timm models.

CelebA face recognition, analyzing their inductive biases for fairness and accuracy. We also initiated
the study of neural architecture search (NAS) for fairness. We constructed a search space based on
the best architectures from the initial analysis, and, based on using SMAC3 for joint NAS+HPO,
release a set of architectures that Pareto-dominate the most accurate models with respect to accuracy
and rank disparity. By releasing all of our code and raw results, users can repeat all of our analyses
and experiments with their fairness metric of interest.

Future Work. Since our work lays the foundation for studying NAS+HPO for fairness in face
recognition, it opens up a plethora of opportunities for future work. We expect the future work in
this direction to focus on studying different multi-objective algorithms (Fu & Liu, 2019; Laumanns
& Ocenasek, 2002) and NAS techniques (Liu et al., 2018; Zela et al., 2019; White et al., 2021) to
search for inherently fairer models. Further, it would be interesting to study how the properties of the
architectures discovered translate across different demographics and populations. Another potential
direction of future work is including priors and beliefs about fairness in the society from experts to
further improve and aid NAS+HPO methods for fairness by integrating expert knowledge. Finally,
given the societal importance of fairness, it would be interesting to study how our findings translate
to real-life face recognition systems under deployment.

Limitations. While our work is a step forward in both studying the relationship among architectures,
hyperparameters, and bias, and in using NAS techniques to mitigate bias in face recognition models,
there are important limitations to keep in mind. Since we have studied our findings on only a
few datasets, these may not generalize to other datasets and fairness metrics. Secondly, since face
recognition applications span government surveillance (Hill, 2020b), target identification from drones
(Marson & Forrest, 2021), and identification in personal photo repositories (Google, 2021), our
findings need to be studied thoroughly across different demographics before they could be deployed
in real-life face recognition systems. Further, it is important to consider how the mathematical notions
of fairness used in research translate to those actually impacted (Saha et al., 2020), which is a broad
concept without a concise definition. Before deploying a particular system that is meant to improve
fairness in a real-life application, we should always critically ask ourselves whether doing so would
indeed prove beneficial to those impacted by the given sociotechnical system under consideration
or whether it falls into one of the traps described by Selbst et al. (2019). In contrast to some other
works, we do, however, feel, that our work helps to overcome the portability trap since it empowers
domain experts to optimize for the right fairness metric, in connection with public policy experts, for
the problem at hand rather than only narrowly optimizing one specific metric.
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6 ETHICS STATEMENT

Face recognition systems are being used for more and more parts of daily lives, from government
surveillance (Hill, 2020b), to target identification from drones (Marson & Forrest, 2021), to iden-
tification in personal photo repositories (Google, 2021). It is also increasingly evident that many
of these models are biased based on race and gender (Grother et al., 2019; Raji et al., 2020; Raji &
Fried, 2021). If left unchecked, these technologies, which make biased decision for life-changing
events, will only deepen existing societal harms. Our work seeks to better understand and mitigate
the negative effects that biased face recognition models have on society. By conducting the first
large-scale study of the effect of architectures and hyperparameters on bias, and by developing and
open-sourcing face recognition models that are more fair than all other competitive models, we
provide a resource for practitioners to understand inequalities inherent in face recognition systems
and ultimately advance fundamental understandings of the harms and technological ills of these
systems.

That said, we would like to address potential ethical challenges of our work. We believe that the
main ethical challenge of this work centers on our use of certain datasets. We acknowledge that the
common academic datasets which we used to evaluate our research questions, CelebA (Liu et al.,
2015), VGGFace2 (Cao et al., 2018), and RFW (Wang et al., 2019b), are all datasets of images scraped
from the web without the informed consent of those whom are depicted. This ethical challenge is
one that has plagued the research and computer vision community for the last decade (Peng et al.,
2021; Paullada et al., 2021) and we are excited to see datasets being released which have fully
informed consent of the subjects, such as the Casual Conversations Dataset (Hazirbas et al., 2021).
Unfortunately, this dataset in particular has a rather restrictive license, much more restrictive than
similar datasets, which prohibited its use in our study.

We also acknowledge that while our study is intended to be constructive in performing the first
neural architecture search experiments with fairness considerations, the specific ethical challenge we
highlight is that of unequal or unfair treatment by the technologies. We note that our work could be
taken as a litmus test which could lead to the further proliferation of facial recognition technology
which could cause other harms. If a system demonstrates that it is less biased than other systems, this
could be used as a reason for the further deployment of facial technologies and could further impinge
upon unwitting individual’s freedoms and perpetuate other technological harms.

Experiments were conducted using a private infrastructure, which has a carbon efficiency of 0.373
kgCO2eq/kWh. A cumulative of 88 493 hours of computation was performed on hardware of type
RTX 2080 Ti (TDP of 250W). Total emissions are estimated to be 8,251.97 kgCO2eq of which
0% was directly offset. Estimations were conducted using the MachineLearning Impact calculator
presented in Lacoste et al. (2019). By releasing all of our raw results, code, and models, we hope that
our results will be widely beneficial to researchers and practitioners with respect to designing fair
face recognition systems.

7 REPRODUCIBILITY STATEMENT

We ensure that all of our experiments are reproducible by releasing our code and raw data files at
https://anonymous.4open.science/r/FR-NAS-92EC. We also release the instructions
to reproduce our results with the code. Furthermore, we release all of the configuration files for all of
the models trained. Our experimental setup is described in Section 3 and Appendix A.1. We provide
clear documentation on the installation and system requirements in order to reproduce our work. This
includes information about the computing environment, package requirements, dataset download
procedures, and license information. We have independently verified that the experimental framework
is reproducible which should make our work and results and experiments easily accessible to future
researchers and the community.
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A FURTHER DETAILS ON EXPERIMENTAL DESIGN AND RESULTS

A.1 EXPERIMENTAL SETUP

The list of the models we study from timm are: coat_lite_small (Xu et al., 2021),
convit_base (d’Ascoli et al., 2021), cspdarknet53 (Wang et al., 2020a), dla102x2
(Yu et al., 2018), dpn107 (Chen et al., 2017), ese_vovnet39b (Lee & Park, 2020),
fbnetv3_g (Dai et al., 2021), ghostnet_100 (Han et al., 2020b), gluon_inception_v3
(Szegedy et al., 2016), gluon_xception65 (Chollet, 2017), hrnet_w64 (Sun et al.,
2019), ig_resnext101_32x8d (Xie et al., 2016), inception_resnet_v2 (Szegedy
et al., 2017), inception_v4 (Szegedy et al., 2017), jx_nest_base (Zhang et al.,
2021), legacy_senet154 (Hu et al., 2018), mobilenetv3_large_100 (Howard
et al., 2019), resnetrs101 (Bello et al., 2021), rexnet_200 (Han et al., 2020a),
selecsls60b (Mehta et al., 2019), swin_base_patch4_window7_224 (Liu et al., 2021),
tf_efficientnet_b7_ns’ (Tan & Le, 2019), ’tnt_s_patch16_224(Han et al., 2021),
twins_svt_large (Chu et al., 2021) , vgg19 (Simonyan & Zisserman, 2014), vgg19_bn
(Simonyan & Zisserman, 2014), visformer_small (Chen et al., 2021), xception and
xception65 (Chollet, 2017).

We study at most 13 configurations per model ie 1 default configuration corresponding to the original
model hyperparameters with CosFace as head. Further, we have at most 12 configs consisting of the
3 heads (CosFace, ArcFace, MagFace) × 2 learning rates(0.1,0.001) × 2 optimizers (SGD, AdamW).
All the other hyperparameters are held constant for training all the models. All model configurations
are trained with a total batch size of 64 on 8 RTX2080 GPUS for 100 epochs each.

A.2 OBTAINED ARCHITECTURES AND HYPERPARAMETER CONFIGURATIONS FROM
BLACK-BOX-OPTIMIZATION

In Figure 7 we present the architectures and hyperparameters discovered by SMAC. Particularly
we observe that conv 3x3 followed batch norm is a preferred operation and CosFace is the
preferred head/loss choice.

Figure 7: SMAC discovers the above building blocks with (a) corresponding to architecture with
CosFace, with SGD optimizer and learning rate of 0.2813 as hyperparamters (b) corresponding to
CosFace, with SGD as optimizer and learning rate of 0.32348 and (c) corresponding to CosFace, with
AdamW as optimizer and learning rate of 0.0006

A.3 ANALYSIS OF THE PARETO-FRONT OF DIFFERENT FAIRNESS METRICS

In this section, we include additional plots that support and expand on the main paper. Primarily, we
provide further context of the Figures in the main body in two ways. First, we provide replication
plots of the figures in the main body but for all models. Recall, the plots in the main body only show
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Table 2: Operation choices and definitions.

Operation Definition
BnConv1x1 Batch Normalization → Convolution with 1x1 kernel
Conv1x1Bn Convolution with 1x1 kernel → Batch Normalization
Conv1x1 Convolution with 1x1 kernel

BnConv3x3 Batch Normalization → Convolution with 3x3 kernel
Conv3x3Bn Convolution with 3x3 kernel → Batch Normalization
Conv3x3 Convolution with 3x3 kernel

BnConv5x5 Batch Normalization → Convolution with 5x5 kernel
Conv5x5Bn Convolution with 5x5 kernel → Batch Normalization
Conv5x5 Convolution with 5x5 kernel

Table 3: Fairness Metrics Overview

Fairness Metric Equation
Disparity |Accuracy(male)−Accuracy(female)|
Rank Disparity |Rank(male)−Rank(female)|
Ratio |1− Accuracy(male)

Accuracy(female) |
Rank Ratio |1− Rank(male)

Rank(female) |
Error Ratio |1− Error(male)

Error(female) |
BPC (Dhar et al., 2021) Bias−Biasdeb

Bias − TPR−TPRdeb

TPR
StdAcc |Std(Acc(male))− Std(Acc(female))|

models with Error<0.3, since high performing models are the most of interest to the community.
Second, we also show figures which depict other fairness metrics used in facial recognition. The
formulas for these additional fairness metrics can be found in Table 3.

We replicate Figure 2 in Figure 8; Figure 3 in Figure 9; Figure 6 in Figure 10 and Figure 11. We add
additional metrics with Disparity being plotted in Figure 12, Ratio being plotted in Figure 13, BPC
being plotted in Figure 14, and StdAcc being plotted in Figure 15.

A.4 EVALUATION ON BENCHMARKS

We further evaluate our models pre-trained on CelebA on different face recognition benchmarks
(without fine-tuning) Table 4. We observe that SMAC models are the best or second best for all the
benchmarks.

A.5 TRAINING ON VGGFACE2

We trained our novel architectures on VGGFace-2 and find that we outperform the ArcFace baseline
with both error and fairness metrics; See Table 5. We observe that while the ArcFace model has low
error, it has high disparity, whereas our model with best error (SMAC_680) is a 36% increase in
performance over the ArcFace Baseline and an 85% improvement in fairness. We also see that our
best model by Rank Disparity (SMAC_101, is not significantly worse than ArcFace, and we have
a model (SMAC_000) that achieves similar performance to the ArcFace baseline and yields a 91%
improvement in fairness.
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Figure 8: Replication of Figure 2 with all data points. Error-Rank Disparity Pareto front of the
architectures with any non-trivial error. Models in the lower left corner are better. The Pareto
front is notated with a dashed line. Other points are architecture and hyperparameter combinations
which are not Pareto-dominant. DPN, ReXNet, EseVovNet, TNT, and Inception architectures are
Pareto-dominant.

Figure 9: Replication of Figure 3 with all data points. Depending on the fairness metric, different
architectures are Pareto-optimal. On the left, we plot the metric Ratio of Ranks which admit DPN,
ReXNet, HRNet, MobileNet, EseVovNet, and Inceptions as Pareto-optimal. On the right, we plot the
metric Ratio of Errors where DPN, ReXNet, EseVovNet, ResNet-RS, and VGG19 are architectures
which are Parto-optimal
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Figure 10: Replication of Figure 6 for VGGFace2 with all data points. Pareto front of the models on
VGGFace2 test set with perceived gender as the protected attribute. The SMAC models discovered
by joint NAS and HPO Pareto-dominate the timm models

Figure 11: Replication of Figure 6 for RFW with all data points. Pareto front of the models on RFW
test set with perceived ethnicity as the protected attribute. The SMAC models discovered by joint
NAS and HPO Pareto-dominate the timm models
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Figure 12: Extension of Figure 2 with all data points with the Disparity in accuracy metric. Error-
Disparity Pareto front of the architectures with any non-trivial error. Models in the lower left
corner are better. The Pareto front is notated with a dashed line. Other points are architecture and
hyperparameter combinations which are not Pareto-dominant.

Figure 13: Extension of Figure 2 with all data points with the Ratio in accuracy metric. Error-Ratio
Pareto front of the architectures with any non-trivial error. Models in the lower left corner are better.
The Pareto front is notated with a dashed line. Other points are architecture and hyperparameter
combinations which are not Pareto-dominant.
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Figure 14: Extension of Figure 2 with all data points with the BPC metric. Error-BPC Pareto front of
the architectures with any non-trivial error. Models in the lower left corner are better. The Pareto
front is notated with a dashed line. Other points are architecture and hyperparameter combinations
which are not Pareto-dominant.

Figure 15: Extension of Figure 2 with all data points with the StdAcc metric. Error-StdAcc Pareto
front of the architectures with any non-trivial error. Models in the lower left corner are better.
The Pareto front is notated with a dashed line. Other points are architecture and hyperparameter
combinations which are not Pareto-dominant.
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Figure 16: Replication of Figure Figure 8 with each architecture type represented by colors. Error-
Rank Disparity Pareto front of the architectures with lowest error (< 0.3). Models in the lower left
corner are better. The Pareto front is notated with a dashed line. Other points are architecture and
hyperparameter combinations which are not Pareto-optimal. DPN, ReXNet, EseVovNet, TNT, and
Inception architectures are Pareto-optimal.

Table 4: Evaluations on Face Recognition Benchmarks. The best accuracies are highlighted in red
and the second best in blue.

Architecture(trained on CelebA) LFW CFP_FF CFP_FP AgeDB CALFW CPLFW
Rexnet_200 71.18 73.62 54.07 56.31 61.01 52.22
DPN_CosFace 88.86 90.47 68.53 64.84 76.09 60.66
DPN_MagFace 85.88 89.03 61.30 60.00 73.50 55.53
DenseNet161 81.72 81.88 64.82 55.16 65.7 58.40
Ese_Vovnet39b 73.31 74.42 63.33 50.00 59.86 57.93
ArcFace 73.36 76.30 62.64 57.41 63.62 57.66

SMAC_000 94.98 95.60 74.24 80.23 84.73 64.22
SMAC_010 94.22 95.08 75.14 82.35 85.35 66.26
SMAC_680 87.45 90.34 64.22 61.28 76.16 56.16

Table 5: Comparing our model to ArcFace baselines when trained on VGGFace2 dataset. The best
performance is highlighted in red and the second best in blue.

Architecture Error Rank Disparity

ArcFace 4.50 10.08

SMAC_000 4.70 0.86
SMAC_010 6.77 0.76
SMAC_680 2.89 1.54
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