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Abstract

Graph-based collaborative filtering has been established as a prominent approach
in recommendation systems, leveraging the inherent graph topology of user-item
interactions to model high-order connectivity patterns and enhance recommenda-
tion performance. Recent advances in Graph Contrastive Learning (GCL) have
demonstrated promising potential to alleviate data sparsity issues by improving
representation learning through contrastive view generation and mutual informa-
tion maximization. However, existing approaches lack effective data augmentation
strategies. Structural augmentation risks distorting fundamental graph topology,
while feature-level perturbation techniques predominantly employ uniform noise
scales that fail to account for node-specific characteristics. To solve these chal-
lenges, we propose Diffusion-augmented Contrastive Learning (DGCL), an inno-
vative framework that integrates diffusion models with contrastive learning for
enhanced collaborative filtering. Our approach employs a diffusion process that
learns node-specific Gaussian distributions of representations, thereby generating
semantically consistent yet diversified contrastive views through reverse diffusion
sampling. DGCL facilitates adaptive data augmentation based on reconstructed
representations, considering both semantic coherence and node-specific features.
In addition, it explores unrepresented regions of the latent sparse feature space,
thereby enriching the diversity of contrastive views. Extensive experimental results
demonstrate the effectiveness of DGCL on three public datasets. Code is available
athttps://github.com/huangfan0/DGCL.

1 Introduction

Collaborative Filtering (CF) is fundamental to recommendation systems, predicting user preferences
from historical user-item interactions |Su and Khoshgoftaar|[2009], [Koren et al.|[2021]]. Traditional
methods primarily used node embedding techniques such as matrix factorization (MF) |Koren et al.
[2009] or graph-based approaches like DeepWalk [Perozzi et al.|[2014]. More recently, graph neural
networks (GNNs), especially graph convolutional networks (GCN) Kipf and Welling| [2016], have
transformed the field through recursive neighborhood aggregation. GNN-based CF models including
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NGCF Wang et al.|[2019] and LightGCN [He et al.|[2020]] explicitly encode multi-hop connectivity via
message passing, effectively capturing higher-order collaborative signals beyond direct interactions.

Despite these advances, graph-based collaborative filtering faces data sparsity, leading to suboptimal
representations with poor generalization beyond observed interactions. To address this, GCL |Jaiswal
et al.|[2020], Yu et al.| [2023]], Jiang et al.|[2023]] has emerged as a promising self-supervised paradigm
that mitigates popularity bias and improves generalization. For example, SimGCL [Yu et al.| [2022]
perturbs node embeddings with uniform noise to regularize representation uniformity and reduce
bias. Existing GCL methods mainly adopt two augmentation strategies: structural augmentation
(e.g., node/edge dropout, subgraph sampling) and feature augmentation (e.g., feature masking, noise
injection, or clustering).

However, conventional augmentations face two key limitations. Structural perturbations risk disrupt-
ing critical topological dependencies (e.g., key nodes or user-item interactions), while feature-level
methods like uniform noise addition ignore nodes’ heterogeneous semantics and unique features|Yang
et al.| [2023]] by applying identical distortion to both popular and long-tail items. This generates
semantically inconsistent views that impair representation learning, making it a challenge to design
augmentations that preserve graph semantics while diversifying views.

To address this, we propose a Diffusion-augmented Graph Contrastive Learning (DGCL) framework
that leverages diffusion models to generate adaptive augmentations. Specifically, DGCL models
node-specific Gaussian distributions in the embedding space, allowing adaptive view sampling
conditioned on each node’s semantic context. A forward diffusion process adds controlled noise, while
reverse denoising produces diverse yet semantically consistent contrastive views. This node-adaptive
mechanism synthesizes high-quality augmentations that preserve semantic coherence. Moreover,
the diffusion process uncovers latent information in sparse interaction data, enabling exploration of
under-represented regions without altering graph topology. This enhances both the diversity and
quality of contrastive pairs. Thus, DGCL maintains structural integrity while providing granular,
node-specific augmentations—overcoming key limitations of conventional GCL. Experiments show
that DGCL effectively balances robustness and semantic coherence, advancing the state-of-the-art in
graph-based collaborative filtering. The main contributions of this work are summarized as follows:

e We propose a novel Diffusion-augmented Graph Contrastive Learning (DGCL) framework,
which incorporates the diffusion model into contrastive learning for collaborative filtering.

e We design a data augmentation scheme, in which the diffusion model was used to generate
high-quality contrastive views that consider semantic correlation and node-specific features.

e Experiments on three public datasets confirm the superior effectiveness of the DGCL.

2 Related Work

2.1 Graph Recommendation

Contrastive learning is a key self-supervised learning (SSL) Yu et al.| [2023]] method for addressing
data sparsity and popularity bias in recommendation systems [Lin et al.|[2022]] [Wang et al.|[2022]].
LightGCN [He et al.|[2020] simplified graph convolution by removing non-linear transformations and
focusing on high-order neighborhood aggregation. SGL|Wu et al.|[2021]] enhanced robustness through
structural augmentations such as stochastic node/edge dropout, contrasting multiple subgraph views
via a shared encoder. SImGCL |Yu et al.| [2022] further improved bias reduction and representation
uniformity by perturbing embeddings with uniform noise. Despite exhibiting the versatility of GCL,
these methods still face challenges in data augmentation and constructing effective contrastive views.

2.2 Diffusion-based Graph Learning

The diffusion model has emerged as a leading approach in image generation, spurred by advances
in denoising diffusion probabilistic models (DDPM) |[Ho et al.|[2020] and Score-based Generative
Models (SGM) [Song et al.| [2020]]. Recently, these models have inspired innovative frameworks for
recommendation systems. Early efforts, such as DiffRec [Wang et al.|[2023]], reformulated user-item
interactions as a denoising process to preserve personalized signals through noise injection and
reconstruction. Subsequent extensions enhanced its scalability. CF-Diff Hou et al.|[2024] improved
upon DiffRec by explicitly modeling high-order graph connectivity via multi-step denoising to
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Figure 1: Overall framework of DGCL.

capture collaborative patterns. BSPM introduced an image-inspired blurring-and-
sharpening paradigm to extract noise-robust signals, DiffKG [Jiang et al|[2024] integrated knowledge
graphs to leverage semantic information, and GiffCF|[Zhu et al.|[2024]] defined a diffusion process
over item-item graphs to model interaction distributions. SCONE [Lee et al.|[2025] employed SGM
in recommender systems to generate dynamic contrastive views and diverse hard negative samples
through stochastic sampling processes. Different from the above diffusion-based graph learning,
our DGCL model focuses on data augmentation and generates semantically consistent yet diverse
contrastive views in collaborative filtering.

3 Methods

As illustrated in Figure[I] the proposed DGCL framework comprises three modules: graph collab-
orative learning, diffusion-based augmentation, and contrastive learning. The graph collaborative
learning module employs a LightGCN encoder to capture high-order neighbor information and learn
latent embeddings, incorporating a novel negative sampling strategy to improve discriminative power.
The diffusion augmentation module applies a dual diffusion process: Gaussian noise is systematically
injected via forward diffusion, and contrastive views are generated by sampling from the learned
posterior distributions. Finally, the contrastive learning module facilitates cross-view comparison
between users and items through a dual-channel architecture. The entire framework is optimized with
a joint loss, combining collaborative filtering and contrastive objectives.

3.1 Graph Collaborative Relation Learning

Given initial user and item embeddings e,, and e;, LightGCN learns node representations through
iterative message propagation and aggregation across layers. To improve negative sample quality, we
incorporate positive mixing|[Huang et al.| [2021]], which generates challenging synthetic negatives by
blending positive and negative embeddings:

e;(,l) = a(l)eg? + (1 — a(l)> e(l,),a(l) € (0,1), @)

i
where eg? and ez(.l,) denote the positive and negative item embeddings at layer [, respectively. This
produces harder negatives closer to positives in the embedding space, improving the model’s discrim-
inative power and ranking accuracy. Independent layer-wise mixing introduces multi-level semantic
interference, further enhancing robustness.



3.2 Diffusion Augmentation Module

Unlike conventional diffusion methods that perturb adjacency matrices, our approach applies diffusion
in the latent embedding space to produce augmented contrastive views. The module comprises two
phases: a forward noise injection process and a parameterized reverse generation process.

Forward Diffusion Process. Given nodes representation e, including the user representation e,, and

item representation e;, we inject Gaussian noise over 7' steps according to a variance schedule Btthl.
The forward process is a Markov chain defined as:

T
qlerr leo) = [Jale ] ermn), 2
t=1

where e represents the original nodes” embedding and e denotes the noise-perturbed representation.
The specific condition distribution for each step is:

q (et | etfl) =N (€t§ vV 1 — Brei—1, /BtI) , 3)

where (3 controls the Gaussian noise scales at each time step ¢, N refers to the Gaussian distribution.
By exploiting the reparameterization trick [Kingma et al.|[2013]], the noised representation can be
expressed as e; = v/azeg ++/1 — quep, where oy = 1 — By, &y = Hi’:l ay, and € ~ N (0, T). For
large T', er approaches standard Gaussian noise. The noisy embeddings are used to train the model
and estimate Gaussian parameters.

Reverse Diffusion Process. The reverse process generates data through iterative denoising, modeled
as a parameterized Markov chain where each step follows a Gaussian distribution:

polec—1ler) = N (er—1; poler, t),02) 4)
where 19,0, are the learned parameters.We use a two-layer Transformer [Vaswani et al.| [2017]
encoder with multi-head attention and feed-forward networks. To incorporate temporal information,
diffusion time steps are embedded using sinusoidal positional encoding:

PE(t,2i) = sin( ), PE(t,2i+ 1) = cos(

t t
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Time embeddings are integrated into the feature space via feature-wise linear modulation [Perez et al.
[2018]], which can be formulated as:

v,n = TimeMLP(t),h = (y+ 1)e + 7 (6)
Denoised user/item representations are then obtained through self-attention and feed-forward layers:
R+ = LayerNorm(h®Y) 4 Multi_Attention(h(®)) (7)
. QKT )
Attention(Q, K, V) = softmax ( V, ®)
@8V V@

where Q = Wgoh, K = Wgh,V = Wyh. This allows the model to predict Gaussian noise
parameters that reconstruct node representations throughout the diffusion process.

Diffusion Loss. The diffusion augmentation module learns the parameters of the Gaussian distribution
of latent user and item embeddings ey. Instead of directly predicting noise, DGCL recovers the
original embedding structure. The objective of DGCL is:

Laifr(0) = Eqe, {Heo - f9(et7t)H2:| : )

where fy is the mapping function that predicts augmented representations. Training pseudo-code is
provided in appendix A Algorithm ]

Contrastive View Inference. The embedding encoder f(x,t), derived from the diffusion process,
generates augmented contrastive view embeddings. Our model estimates distribution parameters to
iteratively approximate the posterior pg(e;—1]|e:), from which refined representations are inferred.
The posterior mean and covariance are computed as:

1
Me(et,t) = \/77 (et - 1ﬁ_tat€6(€t7t)> , (10)
9 B 1—ap_q
Ut(t)_ilfdt Bt- (11)



Therefore, the augmented contrastive user views e, and item views e; are iteratively generated via:

1 B
611 = —— | et — —=¢y(es,t) | + 0s2, 12
- @<t L) + o (12)
This produces high-quality synthetic views that preserve semantic and personalized features while un-
covering underrepresented regions of the embedding space, thereby mitigating sparsity and increasing
view diversity. The full inference process is described in Appendix A Algorithm 2]

3.3 Contrastive Learning Module

In DGCL, we employ separate diffusion augmentation modules to produce diverse contrastive views
for users and items. Each augmented embedding remains aligned with its original node’s feature
space. The user and item contrastive losses are:

exp(e/ el /) I exp(eTe} /1)
EUl = —log u _ul L, = —log LSt Wi (13)
‘ Z Zjegu exp(e;feg’/ﬁ) e gz; Ejegi exp(egTeg’/Tl) ’

uEB,,

where T3 is the temperature hyperparameter, scaling the similarity scores between embeddings.

3.4 Model Training

DGCL involves two independent training objectives: one for learning the diffusion process to
generate augmented contrastive views, optimized via Eq.[9] and another for jointly optimizing the
recommendation and contrastive modules. The overall objective combines these through a joint loss:

Ejoint = £rec + A‘Cclu (14)
where the L,... is the Bayesian Personalized Ranking (BPR) loss:
Lree = —log (a (ezei —ezej)) , (15)

and L.; denotes the contrastive loss which includes the Egl and Lil as defined in the Eq.

4 Theoretical Analysis

In this section, we provide an elaborate theoretical analysis on why diffusion provides semantic but
diverse augmentation views. For detail proof, please refer to the Appendix B.

theorem 4.1 (Manifold Reconstruction). Suppose the reverse model satisfies pg(e:—1 | e:) = q(ez—1 |
et, eq) for all t and that the prior used at t = T equals q(er). Then the marginal distribution of the
reconstructed samples equals the data distribution:pg(éo) = Paaa(€0). Consequently, the support of
po(éo) coincides with the semantic manifold M.

theorem 4.2 (Semantic Consistency). Under the assumed forward process and with the reverse
model matching the true posterior, the sampled augmented embedding é satisfies E[€y | eg] = eq i.e,
the reverse-sampled view is mean-unbiased for the original embedding. Moreover, the conditional
mean-squared error equals the posterior variance trace: E[||éy — eol|* | o] = Tr(Var(eo | €))
The posterior variance can be bounded in terms of the diffusion schedule 5y, in particular there exists

a constant C(d) such that E [||éy — eo|?] < C(d) Zthl Bt.

proposition 4.3 (Controlled Diversity). Let éél) and éé2) be two independent samples drawn from

the reverse model conditioned on the same ey. Then E [Hé(()l) - égf) % | eo] =2Tr(Var(éy | ep)) -

In particular, when the posterior variance is nonzero the reverse process produces distinct views in
expectation, and the magnitude of diversity is controlled by the posterior covariance. Because DGCL
estimates node-adaptive posterior covariances, diversity is node-adaptive.



5 Experiments

In this section, we conduct extensive experiments to evaluate the performance of DGCL on three
benchmark datasets and analyze the key module of the model.

5.1 Experimental Setup
Datasets. The experience employs three public datasets in different scenarios. (1) Douban-Book |Yu

et al.| [2023]. (2) Gowall:ﬂ Wang et al.| [2022]. (3) Amazon-Kindle Yu et al.| [2023]]. For detail
experiment parameters and hyper-parameter sensitivity Analysis, please refer to Appendix C.

Table 1: DGCL Performance Comparison with different methods on three datasets.

Douban-Book Gowalla Amazon-Kindle
Models R@10 N@I0 R@20 N@20 | R@l0 N@I0 R@20 N@20 | R@l0 N@I0 R@20 N@20

BPR-MF|Koren et al.[[2009] | 0.0869  0.0949  0.1296  0.1045 | 0.1158  0.0833  0.1695  0.0988 | 0.10873  0.0801  0.14949  0.0923
LighGCN|He et al.[|2020 0.1042 0.1195  0.1516  0.1278 | 0.1262  0.0876 ~ 0.1776  0.1152 | 0.1425 0.1063  0.1906  0.1208

SGL|Wu et al.[[2021 0.1103  0.1357  0.1551  0.1419 | 0.1255  0.1371 0.1783  0.1517 | 0.1445  0.1054  0.1974 0.12138
NCL|Lin et al. |[2022] 0.1121  0.1377  0.1576  0.1439 | 0.1272  0.1384 0.181 0.1535 | 0.1384  0.1005  0.1867  0.1152
BUIR|Lee et al.|[|2021 0.0640  0.0736  0.1036  0.0824 | 0.0842  0.0940 0.1216  0.1040 | 0.0551 0.0373  0.0830  0.0458

SSL4Rec|Yao et al.|[[2021 0.0811 0.0849  0.1142  0.0926 | 0.0576  0.0508  0.0958  0.0649 | 0.1491 0.1152  0.1924  0.1283
SelfCF|Zhou et al.|[2023 0.0595 0.0662  0.0944  0.0741 0.0798  0.0909  0.1146  0.0998 | 0.0403  0.0269  0.0642  0.0341
DirectAU|Wang et al.[|2022] | 0.0999  0.1136  0.1365  0.1197 | 0.1091  0.1144  0.1584  0.1295 | 0.1225 0.0882  0.1757  0.1041
SimGCL|Yu et al.||2022 0.1218  0.1470  0.1731  0.1540 | 0.1279  0.1391  0.1823  0.1544 | 0.1449  0.1067  0.1967  0.1222
DGCL 0.1292 0.1593 0.1782 0.1639 | 0.1307 0.1424 0.1855 0.1577 | 0.1495 0.1090 0.2052 0.1259

Table 2: Ablation study of DGCL, DGCL-w/o diff denotes the model variant without diffusion
augmentation, and DGCL-w/o neg represents the variant without negative sampling.

Douban-Book Gowalla Amazon-Kindle
Models R@10 N@10 R@20 N@20 | R@I0 N@l0 R@20 N@20 | R@QlI0 N@I0 R@20 N@20

DGCL - w/o diff | 0.1246  0.1562  0.1740  0.1574 | 0.1294  0.1413  0.1845  0.1486 | 0.1486  0.1082  0.2042  0.1250
DGCL - w/oneg | 0.0796  0.0928  0.1251  0.1015 | 0.0896  0.0994  0.1411  0.1223 | 0.0629  0.0784  0.1643  0.1462
DGCL 0.1292 0.1593 0.1782 0.1639 | 0.1307 0.1424 0.1855 0.1577 | 0.1495 0.1090 0.2052 0.1259

5.2 Experimental Results

As summarized in Table[I] DGCL consistently outperforms baseline methods across three public col-
laborative filtering datasets, demonstrating the efficacy of its diffusion-based augmentation. Notably,
on Douban-Book, it improves N@ 10 and N@20 by 1.23% and 0.99% over SimGCL, and surpasses
SimGCL by 0.85% in R@20 on Amazon-Kindle. Unlike uniform noise that introduces uncorrelated
perturbations and degrades semantic coherence, DGCL employs an iterative denoising process to
generate feature-adaptive augmentations that preserve semantic correlations and diversify contrastive
views. Furthermore, SGL suffers from structural degradation due to random edge or node dropout,
while NCL is limited by prototype quality and clustering reliability—especially in heterogeneous
datasets like Amazon-Kindle. In contrast, DGCL flexibly produces diverse augmentations without
relying on clustering, maintaining topological structure and uncovering underrepresented features
through progressive generation. Thus, DGCL effectively avoids semantic deviation and enhances
representation learning. A limitation of this work, similar to traditional diffusion algorithms, is the
high computational cost during training and inference.

5.3 Ablation Study

In this section, we perform ablation studies to assess two key modules: negative sampling and
diffusion augmentation. Results on three datasets (Table [2]) show that removing diffusion augmen-
tation (DGCL-w/o diff) causes noticeable declines, e.g., 0.31% in N@10 and 0.65% in N@20 on
Douban-Book, demonstrating its ability to uncover latent representations and enrich feature semantics
through diverse sample generation. Removing negative sampling (DGCL-w/o neg) leads to substan-
tial drops across all metrics, underscoring its critical role in providing hard negatives that enhance
discriminative power and complement diffusion. Both modules are pivotal to collaborative filtering
and exhibit a synergistic effect.

*http://snap.stanford.edu/data/loc-gowalla.html



6 Conclusion

This paper proposes DGCL, a Diffusion-augmented Graph Contrastive Learning framework for
collaborative filtering. DGCL integrates diffusion processes with graph contrastive learning to
enhance recommendation through improved data augmentation. The model employs a forward noise-
injection and reverse denoising process via a transformer-based encoder, recovering discriminative
embeddings while maintaining graph topology. Augmented views are generated from estimated
Gaussian parameters, and combined with negative sampling to achieve state-of-the-art results across
three public datasets. DGCL effectively preserves semantic consistency and node-specific features,
while exploring underrepresented regions of the feature space to enrich contrastive view diversity.
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Appendix

A pseudo-code of DGCL

In this section, we summarize the training and inference of DGCL and provide pseudo-code in detail.

Algorithm 1 Algorithm of DGCL Training

Input: user and item embedding E and randomly initialized 6.
Output: optimized 6.

1: Sample a batch of node embedding e € E.

2: while converged do
Sample t ~U(1,T),e ~N(1,1);
4 Compute the noised embedding e; given the eq,e via Eq.[3}
5:  Predict the noise from e, iteratively by Eq.[4}
6:  Calculate the loss Ly s according to the Eq.[9}
7.
8

: Take the gradient descent step on VgL, to optimize 6;
: end while

Algorithm 2 Algorithm of DGCL Inference

Input: embedding prediction model fy from the diffusion process, node embedding. eg
Output: the augmented contrastive view embedding €, including the user contrastive view €, and item con-
trastive view €;.
Sample Gaussian noise z € NV(0, I).
2: Compute the initial noised data e; in Eq.[3]
fort=1T,...,1do
4:  Calculate the 119 (er, t) and e;—1 via Eq.[IT)and Eq.
end for

B Theoretical Analysis

B.1 Manifold Reconstruction

theorem B.1 (Manifold Reconstruction). Suppose the reverse model satisfies pg(e;—1 | e;) =
q(ei—1 | s, eq) for all t and that the prior used at t = T equals q(er). Then the marginal distribution
of the reconstructed samples equals the data distribution:pg(éo) = Daaa(€0). Consequently, the
support of pg(éo) coincides with the semantic manifold M.

Proof. Under the forward chain we have the joint

T
g(eo, - - er) = paataleo) [ [ aler | er-1). (16)
=1

The reverse process is defined by:
1

poleo, - er) =poler) [ [ poler— | er). (17)
t=T



By assumption, for every ¢ we have pyp(e;—1 | e:) = g(et—1 | €4, eg) (which depends implicitly on
eo along the forward path) and py(er) = g(er). The well-known time-reversal identity for Markov
chains shows that these equalities imply pg(eq, er) = g(e, er) for all (eg, er) and that the full joint
also matches:

po(€o, --.,er) = qleo, ... er). (18)
Marginalizing out e1, . . ., e from both sides yields
po(eo) = /p9(€0:T)d81:T = /Q(eo:T) der.r = q(€0) = Pdaw(€o)- (19)

Hence, the reconstructed samples €, ~ py are distributed according to the true data distribution.
Therefore, the support of pg(ép) is exactly the semantic manifold M, and DGCL approximately re-
constructs this manifold in practice, supporting the capability of DGCL to approximately reconstructs
the semantic manifold of original embeddings.

B.2 Semantic Consistency

theorem B.2 (Semantic Consistency). Under the assumed forward process and with the reverse
model matching the true posterior, the sampled augmented embedding é satisfies E[éq | eg] = eq i.e.
the reverse-sampled view is mean-unbiased for the original embedding. Moreover, the conditional
mean-squared error equals the posterior variance trace: E[||éy — eol|* | o] = Tr(Var(eo | €))
The posterior variance can be bounded in terms of the diffusion schedule (5, in particular there exists

a constant C(d) such that E [||éy — eo|?] < C(d) Zthl B.

Proof. We prove mean-unbiasedness by conditioning on the forward-reverse path. Consider the
forward marginal q(e; | eg) = N(y/azeq, (1 — a;)I). The true posterior at step ¢ has the form

(standard Gaussian conditioning): q(e;—1 | er,€0) = N (er—1; fiz (e, €o), Btl) , where the posterior
mean can be written as a linear combination

Va1 n Vor(l — ay—q) 20)

fir(et, €0) = T—a, © —a,
Leta; = 7@7 by = %{5“1) Then:
fit(et, €0) = azeo + byey, (21)
Taking expectation over e¢|eg:
E[fit(et, €0) | 0] = areq + by, (22)
Ele; | eo] = aseo + biv/ay, e9 = (ar + bev/ag)eo. (23)

A direct computation shows:

ay + bin/Gy = \/@t,lﬁt—l—\/aﬁ(l—dt,l)\/éz. 24)

1—a

Hence:
Ele;—1 | eo] = E[fi(es, €0) | 0] = v@i—1e0. (25)

By induction, running the reverse chain from ¢ = T" down to ¢ = 0 and taking expectations stepwise
yields

E[éo | eo] = eo. (26)

The conditional MSE equals the posterior variance trace. The posterior variance accumulates
contributions from sampling noise injected at each reverse step. For the MSE:

E[lléo — eoll® | eo) = Tr (Var(éo | eo)) + | E[éq | eo] — eoll*. (27)

Since the estimator is unbiased, the bias term vanishes and :

E [Héo — €0||2 | 60} =Tr (Var(éo | 60)). (28)
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The variance at each reverse step is proportional to 3;, and by propagating variance through the chain,
we obtain:

T
Var(éo | e0) X C(d)> B -1, (29)
t=1

for some constant C/(d) depending on dimension d. Therefore: E [||éy — eo|?] < C(d) Zthl Bt.
This shows that the reconstruction error is controlled by the cumulative noise schedule, ensuring
semantic consistency.

B.3 Controlled Diversity
proposition B.3. Ler éél) and é((f) be two independent samples drawn from the reverse model

~(1 ~(2
- o

conditioned on the same ey. Then E [| % | eo} =2 Tr(Var(éy | eo)) . In particular, when

the posterior variance is nonzero the reverse process produces distinct views in expectation, and
the magnitude of diversity is controlled by the posterior covariance. Because DGCL estimates
node-adaptive posterior covariances, diversity is node-adaptive.

Proof. Since égl) and é,(f) are i.i.d. given eg, we have:
E[le5” — e | eo] = B[leg” " + 1657 * —2(e6” . €6”) | eo) (30)
This simplifies to :
2E[|éo[|* | eo] — 2[|E[éo | eo]|* = 2Tx (Var(&y | eo)), (€29)
where we used the identity:
E[lléol*] = |[E[éo]|* + Tr(Var(éo)). (32)

Thus, the expected squared distance between two augmented views is proportional to the trace of the
posterior covariance. Since the reverse process in DGCL learns node-specific variances, the diversity
of augmented views is adaptive to each node’s local feature distribution. Moreover, because the
noise is Gaussian and centered at eq, the diversity is semantically controlled and explores the local
neighborhood of the true embedding.

C Experiments Detail And Analysis

Table 3: DGCL performance on different graph inference layer L.

Douban-Book Gowalla Amazon-Kindle
Models R@10 N@I0 R@20 N@20 | R@l0 N@I0 R@20 N@20 | R@l0 N@I0 R@20 N@20

DGCL layer=1 | 0.1269  0.1545  0.1742  0.1588 | 0.1287  0.1402  0.1818  0.1549 | 0.1488  0.1002  0.2023  0.1243
DGCL layer=2 | 0.1279  0.1583  0.1777  0.1633 | 0.1296  0.1416  0.1849  0.1571 | 0.1494  0.1090  0.2051  0.1258
DGCL layer=3 | 0.1292 0.1593 0.1782 0.1638 | 0.1307 0.1424 0.1855 0.1577 | 0.1495 0.1090 0.2052 0.1259

Experimental Settings. the LighGCN is employed as the basic recommendation embedding. The
hidden dimension and learning rate of the DGCL are searched from {64, 128, 256, 512, 1024}
and{le-2, le-3, 4e-4, le-4}, respectively. The number of GNN layers is selected from {1,2,3}. A
is searched in { 0.01, 0.2, 0.3} and timestep of diffusion is searched in {10,20,30,50}. The noise
B is tined in range of {le-5, 2e-2}. In performance metrics, we adopt the widely used ranking
metrics to evaluate the model, including the Recall@K (R@K) and the NDCG@K (N@K), where
K € {10,20}. All experiments were conducted on a high-performance computing cluster equipped
with NVIDIA A800 GPUs, each with 80GB of memory.

11



C.1 Hyper-Parameter Sensitivity Analysis

Effect of Graph Layer Depth L. To investigate the impact of graph layer depth, we vary L within
the range {1,2,3}. As shown in Table[3] the model achieves optimal performance with L = 3 across
all three datasets. It is demonstrated the shallow graph layers can not capture the high-order neighbor
interactions and semantic dependencies. We are not increasing the layers because too many layers risk
over-smoothing in GNN learning, where node embeddings become indistinguishable due to excessive
aggregation. Effect of Contrastive Loss A. As illustrated in Figure[2[a),(d), We evaluate the influence

== Recall@10
_ 0.18 _ 0.18 _ 0.18 Recall@20
g 0.16 o= Recall@10 g 0.16 o= Recall@10 g 0.16
& 014 Recall@20 & 014 Recall@20 & 014 .
0.12 0.12 012 e
0109 1 0.2 03 20 30 40 50 linear quadratic sigmoid
A T B
(a) (b) ©
0.1 8 =g= NDCG@10
0.18 e ke 0.16 e
(O] (O] (O]
8 S0.16 o— S e S
20.16 . 9 20.14
0144 1 2 0145 30 40 50 0-1fear quadratic sigmoid
A T B
(d (e (f)

Figure 2: Effect of the A, diffusion step 7" and noise 5 on Douban-Book

of the contrastive loss weight A over{0.1,0.2,0.3} on the Douban-Book dataset. The results reveal that
DGCL yields peak performance when A is 0.2. A balanced weighting (A = 0.2) optimally integrates
these objectives. High loss weight (A = 0.3) overemphasizes contrastive regularization, diluting
task-specific signals, while lower value (A = 0.1) underutilizes the benefits of contrastive learning.
Therefore, the recommendation loss plays a dominant role and drives task-specific learning, and the
contrastive enhancement loss function serves as an auxiliary component which enhances embedding
robustness by promoting invariance to augmented contrastive views. The integration of these two
loss functions and joint training can improve the performance of the recommendation task.

Effect of Diffusion Step 7'. The diffusion step T critically governs the augmentation process by
balancing noise injection and feature preservation. As illustrated in Figure 2[b)(e), the results indicate
that the metrics obtain superior results when 7" is 30, with NDCG @20 slightly declining when T'
is 30. And as the diffusion step increases over time, the results tend to decrease gradually. This
phenomenon may result from the multiple iterations of noise injection which may lead to excessive
feature smoothing and the inability to capture the unique feature of each node. Moreover, more
diffusion steps lead to more time cost and diversity loss. Therefore, sufficient steps are necessary to
refine embeddings, but excess iterations harm discriminative power.

Effect of the Noise Schedule j3. In this section, we evaluate three noise scheduling strategies for [3:
linear, quadratic, and sigmoid interpolation methods Nguyen and Fang|[2024]. As shown in Figure
@kc), (f), the linear schedule outperforms alternatives. This may attributed to that sable diffusion
facilitates the balance of noise interference and semantic coherence. In contrast, non-linear schedules
(quadratic, sigmoid) disrupt the balance between perturbation and stability, leading to suboptimal
augmentation.

C.2 Diffusion Augmentation Analysis

To validate the superior augmentation capability of our diffusion-based approach, we conduct a
comparative analysis using a Variational Autoencoder (VAE)-based generation. Specifically, we

12



0.175 . VAE
0.150 Diffusion
_0.125
gO.lOO
@ 0.075
0.050
0.025
0.000

R@10

(a)

Figure 3: Contrastive augmentation performance between Diffusion and VAE on Douban-Book.

replace the diffusion module in DGCL with a VAE and evaluate both methods on the Douban-Book
dataset. As illustrated in Figure [3] the diffusion-augmented method consistently outperforms its
VAE-augmented counterpart. This indicates that the multi-step denoising mechanism has advantages
over VAE single-step reconstruction. The diffusion process employs iterative denoising steps to refine
augmented samples progressively. Unlike VAE single-step augmentation, this gradual correction
enables a deeper exploration of latent feature correlations, enhancing the model’s ability to capture
complex user-item interactions. Moreover, through implicit probabilistic modeling, the diffusion
mechanism dynamically adjusts augmentation intensity based on local data density. DGCL can pre-
serve semantic consistency with subtle perturbations in high-density regions and synthetic meaningful
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(b)

samples in low-density regions, thereby mitigating the data sparsity.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Section Abstract and Introduction[I]
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:[Yes]

Justification:See in Section Experimental Results @ In the last sentence, we introduce the
limitations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification:See theorem in section Theoretical Analysis@]and proof in Appendix [B]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See in Section Experiments [5|and Appendix [C|

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code is available in section Abstract or directly accessed at https://
anonymous . 4open.science/r/DGCL-7FEA.| Data is at section Experimental Setup[5.1]

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See in Section Appendix Experimental Settings|[C]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our paper includes experiments, but we have not reported error bars or
other appropriate information about the statistical significance of the experiments. We
acknowledge the importance of providing this information to support the robustness and
reliability of our results. In future revisions, we will include error bars and conduct statistical
significance tests to ensure that our findings are properly validated.

Guidelines:

» The answer NA means that the paper does not include experiments.

¢ The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See in Section Appendix Experimental Settings[C|
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and confirm that our
research conforms to these guidelines in every respect. Our study adheres to the principles
of research integrity, data handling, fairness, transparency, and consideration of societal
impacts as outlined in the Code of Ethics. We have ensured that no ethical standards were
violated during the research process and have accurately reported all relevant information in
the paper.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification:Our work is foundational research focused on recommendation system. It is not
directly tied to any specific applications or deployments that would have immediate societal
impacts.

Guidelines:
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12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve the release of data or models that pose a high risk
for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly credited the creators or original owners of all assets used in
the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not introduce any new assets such as datasets, models, or code.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve any crowdsourcing experiments or research with
human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve any crowdsourcing experiments or research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: We used LLMs in our research, but only for editing and formatting purposes
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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