
Long-Range Language Modeling with Selective Cache

Xinting Huang
University of Copenhagen
wbn969@alumni.ku.dk

Nora Hollenstein
University of Copenhagen

nora.hollenstein@hum.ku.dk

Abstract

The computational cost of transformer-based
language models grows quadratically with the
sequence length. In this paper, we introduce
the selective cache, which stores the selected
key-value pairs from the previous context. By
selecting important key-value pairs the model
makes better use of the cache so that in lim-
ited cache size, a longer context history can be
stored. We design three kinds of selection meth-
ods. The first is based on human language pro-
cessing. The key-value pairs are selected if they
correspond to tokens that are fixated longer, as
recorded in eye-tracking-while-reading exper-
iments. We also incorporate the cognitively-
inspired selection process into the language
model as a trainable process, resulting in two
additional methods with improved performance.
The selection task is converted into a pruning
task so they can be trained with differentiable
masks. We demonstrate that the proposed se-
lective cache improves the language modeling
performance across different datasets.1 With
the same number of stored key-value pairs
(cache size), our selective cache outperforms
XL cache (Dai et al., 2019) and compressive
cache (Rae et al., 2019) by considerable mar-
gins.

1 Introduction

Transformers (Vaswani et al., 2017) have been used
as the backbone architecture of various models and
achieve state-of-the-art results in a wide range of
tasks (Devlin et al., 2019; Dosovitskiy et al., 2020;
OpenAI, 2023; Kirillov et al., 2023). Compared to
other architectures such as Recurrent Neural Net-
works, its attention mechanism directly connects
long-distance elements in the input sequence. Thus,
it better captures long-range dependencies. How-
ever, it also constitutes the bottleneck in Transform-
ers. The time and space complexity of Transformer

1Our code is available at https://github.com/
huangxt39/SelectiveCacheForLM

attention is O(n2). Hence, the computational cost
becomes prohibitively expensive or even makes the
task infeasible when processing long sequences.
Extensive research is performed to address this
problem, introducing a number of X-former models
(Wang et al., 2020; Kitaev et al., 2020; Choroman-
ski et al., 2022).

While many proposed models successfully miti-
gate the problem to some extent, there are still open
limitations such as the storage cost of preserving
the whole sequence in memory and the inability to
be directly inserted into existing pretrained models.
In this paper, we propose a novel cache that stores
past key-value pairs, namely the selective cache,
for auto-regressive language modeling (LM). This
method aims to make better use of the cache in-
troduced in Transformer-XL (Dai et al., 2019) by
selecting more informative key-value pairs. Dif-
ferent from prior works such as (Rae et al., 2019),
it distills the previous context by extracting or se-
lecting, instead of averaging. In other words, some
key-value pairs are kept in the cache as it is, while
others are simply discarded. It is utilized as easily
as the cache in Transformer-XL, that is, the stored
keys and values are simply prepended to the current
keys and values.

We explore three selection methods for the cache:
(1) using eye fixation duration as importance scores,
(2) using neural networks which learn to select, and
(3) replace. The first one uses eye-movement data.
We simply consider the total reading time of each
word. Long-fixated words are important for lan-
guage comprehension (Rayner and Duffy, 1986)
and are usually difficult to infer from the context
(Rayner et al., 2011). Furthermore, fixation du-
ration correlates with the gradient-based saliency
in Transformer language models (Hollenstein and
Beinborn, 2021). Thus, selecting key-value pairs
associated with long-fixated tokens is a cognitively
plausible modeling decision. The second method
is to train a selector neural network. By learn-

https://github.com/huangxt39/SelectiveCacheForLM
https://github.com/huangxt39/SelectiveCacheForLM

ing to prune key-value pairs, the selector learns
to select. It is based on a neural network pruning
method (Louizos et al., 2017), which uses differ-
entiable stochastic masks and L0 penalty. The se-
lector learns to mask out unimportant key-value
pairs so it can be used to select them. Finally, the
third method uses the same technique but applies
the mask and its opposite mask simultaneously,
in order to train a replacer network that directly
learns the trade-off. The motivation is to simulate
the actual situation where adding new items to the
cache results in discarding old ones. In addition,
we introduce a novel method for training the selec-
tor and replacer network. By sampling a previous
snippet of context to train the network and stopping
gradient during cache updating, we avoid backprop-
agation through time (BPTT), while the network
can still learn to model long-term dependency.

Experimental results show that using these meth-
ods improves the model’s performance, especially
the latter two. They bring about considerable per-
formance gain against XL cache and compressive
cache (we use these two terms to refer to the meth-
ods used in Dai et al., 2019 and Rae et al., 2019,
respectively) with the same total cache size.

Moreover, thanks to the enhanced interpretabil-
ity of selective cache, we can directly investigate
which tokens are stored. We find that the trained se-
lector and replacer tend to keep named entities and
rare tokens, which is a common tendency found in
many prior works (Sun et al., 2021; Wu et al., 2022;
Hutchins et al., 2022). We also show that the se-
lective cache can preserve information from a very
distant context, or even from an infinite distance,
depending on the characteristics of the processed
document.

2 Related Work

Transformers have difficulty processing long se-
quences. There are a lot of works trying to address
this limitation. Linformer (Wang et al., 2020) and
Performer (Choromanski et al., 2022) introduce
new self-attention mechanisms, which can approx-
imate the original full attention with linear space
and time complexity. Many works utilize sparsity
to achieve efficient long-range attention, includ-
ing strided attention (Child et al., 2019; Beltagy
et al., 2020), global attention by a few tokens (Belt-
agy et al., 2020; Zaheer et al., 2020; Ravula et al.,
2020) and random attention to a limited number
of tokens (Zaheer et al., 2020). Moreover, suitable

sparsity patterns can be learned for each attention
head (Sukhbaatar et al., 2019; Correia et al., 2019).
Some other works (Kitaev et al., 2020; Roy et al.,
2021) use clustering techniques to partition ele-
ments in the sequence and perform intra-cluster
attention. Besides, hierarchical structure (Zhu and
Soricut, 2021; Ren et al., 2021) is incorporated
into the attention mechanism to reduce computa-
tional complexity. Long documents can also be
split into segments and processed in a recurrent
manner. Block-Recurrent Transformer (Hutchins
et al., 2022) use a set of hidden representations
to store past information and use cross-attention
to interact with them, while Memory Recurrent
Transformer (Bulatov et al., 2022) utilizes dedi-
cated memory tokens to do so.

Transformer-XL (Dai et al., 2019) achieves this
segment-level recurrence by the cache mechanism,
which stores the past hidden states and uses them
as an extended context when the model processes
the next input sequence. Compressive Transformer
(Rae et al., 2019) extends the Transformer-XL with
a secondary cache which compresses the old hid-
den states. On the other hand, Memorizing Trans-
former (Wu et al., 2022) expands the cache to an
enormous size, and uses an approximate k-nearest-
neighbor (kNN) search to retrieve key-value pairs
from the cache efficiently. ∞-former (Martins
et al., 2022) utilizes a continuous-space attention
mechanism and represents the input sequence as a
continuous signal, so that the long-term memory
can be represented with lower precision. Expire-
Span (Sukhbaatar et al., 2021) computes a span
for each hidden state that determines how long it
should stay in memory.

In this paper, we make use of eye-tracking data,
which has been incorporated into many NLP frame-
works (Mathias et al., 2020). Eye-tracking data
provides advantages to NLP models in terms of
both their performance and interpretability. Re-
search has demonstrated that incorporating eye-
tracking features can enhance prediction accuracy
in tasks like named entity recognition (Hollenstein
and Zhang, 2019; Tokunaga et al., 2017), part-of-
speech tagging (Barrett et al., 2018), sentiment
analysis (Mishra et al., 2017) and general NLP
benchmark tasks (Khurana et al., 2023). In the
meantime, eye-tracking data is utilized to explore
the correlation between human behavior and neural
attention (Hahn and Keller, 2023; Sood et al., 2020;
Brandl and Hollenstein, 2022).

We also use a pruning technique based on
stochastic masks (Louizos et al., 2017), which is
mainly used in neural network pruning (Louizos
et al., 2017) and interpretation (Voita et al., 2019;
De Cao et al., 2020). Different from these ap-
proaches, we aim to improve performance by us-
ing it to select important parts of previous context.
Even though the technique is used for different pur-
poses in different scenarios, it actually does the
same thing, i.e., learns what is less important.

3 Model

In this paper, we use decoder-only transformers
(Vaswani et al., 2017) to perform auto-regressive
LM tasks. Long documents are split into segments
of 512 tokens. The segments are not shuffled and
fed into the model sequentially. In other words, the
language model processes the document step by
step, one segment at a time, as is done in (Dai et al.,
2019; Wu et al., 2022).

At each step, Transformer-XL (Dai et al., 2019)
caches and fixes (stops gradient) the hidden state
sequence computed for the current segment. In
the next step, it is reused to extend the context.
Although in (Dai et al., 2019), the hidden states are
cached, we follow the practice in (Wu et al., 2022)
and save the key-value pairs into the cache for the
purpose of efficiency. When doing attention, the
keys and values are prepended to the current keys
and values. When the XL cache size Cxl is greater
than the input segment length Cinp, the XL cache
is a first-in-first-out (FIFO) queue.

When using cached representations, it is nec-
essary to use relative position embeddings. We
use T5 relative position embeddings (Raffel et al.,
2020), which adds different biases to different rela-
tive offsets when doing attention.

When switching to a new document, the cache
may contain some content from the old document,
we apply document masks to solve this problem.
Concretely, for the cached key-value pairs, we keep
track of their document IDs. Each token can only
attend to other tokens with the same document ID.

These are the common settings used for all our
experiments involving the cache, including base-
lines and proposed models.

3.1 Selective Cache

We aim to make better use of the cache by select-
ing those key-value pairs which are more beneficial
than others. The selective cache is a FIFO queue

Figure 1: In the selective cache, we extend the attention
layer with cached representations from previous context.

and is of a fixed size like XL cache. At each step,
the key-value pairs that satisfy a certain criterion
are selected and saved into the selective cache. In
the meantime, the same number of old key-value
pairs are discarded. Like XL cache, the selective
cache is also non-differentiable. In this paper, all
the models that use selective cache also use XL
cache in the meantime. The selective cache serves
as a secondary cache and selects tokens discarded
by XL cache, like the compressive cache (Rae et al.,
2019). So the model contains a detailed recent con-
text, as well as a distilled context that covers a
wider historical period. The cached keys and val-
ues from the selective cache are concatenated with
those from XL cache and those from the current
input. See illustration in Figure 1.

We also introduce a set of trainable bias param-
eters, the selective cache bias. They are used in
the same manner as T5 position embeddings. Re-
call that T5 position embeddings are scalars added
to the dot product of queries and keys. When the
query attends to the keys in selective cache, the po-
sition embedding that corresponds to the maximum
distance is used. Meanwhile, the selective cache
bias (also a scalar) is added to the dot product as
well. For each layer, there are m bias parameters,
where m is the number of heads. So the same bias
is used for all attention scores of one head.

3.2 Using Eye-fixation Duration as Criterion

A crucial component of the selective cache is the
selection criterion. One plausible choice is human
fixation data. While eye-tracking data contains
various information about human eye movements
during reading, we simply utilize the total read-
ing time (TRT) of each word, which is the sum of
all fixation duration on a single word. If an input
token is associated with a TRT longer than a cer-

tain threshold, its corresponding key-value pairs
are selected into the cache in all attention layers.
The threshold is a hyperparameter that needs to be
tuned. Because human reading is optimized for ef-
ficiency and accuracy, they only fixate words to the
extent necessary for task success (Hahn and Keller,
2023). Long fixated words are usually important
and are likely to contain new information which
cannot be inferred from the context.

However, there is no available eye-tracking data
for the LM datasets used in this paper. We choose
to use a simple long short-term memory (LSTM)
network to predict the fixation duration for the text
in LM datasets. It is trained on the available eye-
tracking corpora. After training it is able to predict
the TRT within an acceptable error range (see Ap-
pendix B). The fixation prediction model only pro-
cesses the text once at the preprocessing stage. The
predicted fixation duration is used repeatedly for
many epochs when training the language model.

3.3 Using Selector Network as Criterion

We introduce an automatic selector, which gives
free rein to the model and let it decide which to-
kens should be cached. It is a small neural network
integrated into the self-attention layer. The selec-
tion task is converted into a task similar to network
pruning. The language model is provided with
some previous key-value pairs when doing the LM
task, the selector is encouraged to prune some of
the key-value pairs. Its architecture is described in
Appendix E.

Binary Masks For a sequence of past hidden
states [⃗h1, h⃗2, · · · , h⃗n] (the time index is omitted
here for simplicity), the selector network takes the
hidden states as input and outputs binary masks for
each of them [z1, z2, · · · , zn]. The masks are used
in self-attention as follows:

sij = q⃗i · k⃗j + ln zj (1)

where s, q⃗, k⃗ are the attention score before softmax,
the query, and the key respectively. So when zj is
zero, the corresponding key-value pair is masked
out, when zj is one, the attention score is not af-
fected. Note that here the position embeddings,
document masks, and selective cache bias are all
omitted for simplicity.

In the meantime, L0 norm is applied to the pre-

Figure 2: Left: The probability density function of
Binary Concrete distribution and Hard Concrete dis-
tribution. In this example, logα = 0, β = 0.5, γ =
−0.1, ζ = 1.1, and p(z = 0) = p(z = 1) = 0.23.
Right: Hard Concrete distribution with different logα
when β = 0.4, γ = −0.1, ζ = 1.1.

dicted masks.

||z||0 =
n∑

j=1

1[R̸=0](zj) (2)

where ||z||0 denotes L0 norm, 1(·) stands for in-
dicator function. L0 norm penalizes the number
of non-zero values. It imposes a constant penalty
everywhere except for zj = 0. It encourages the
selector to completely switch off some key-value
pairs.

As we can see, L0 norm is not a differentiable
function and has zero derivative almost everywhere.
Meanwhile, the outputs zj are not produced from a
continuous function either.

Stochastic Masks The solution to these two prob-
lems is to use the stochastic masks drawn from
some distributions controlled by the selector, and
the L0 norm becomes the expected number of non-
zero masks. More specifically, we use Hard Con-
crete distribution (Louizos et al., 2017), which is
a mixture of discrete and continuous distributions,
ranging in the closed interval [0, 1]. It gives non-
zero probability to the two endpoints 0, 1, while
between 0 and 1 the probability density function is
continuous, as shown in Figure 2. The Hard Con-
crete distribution contains a few parameters, one
of which is logα. It controls the probability mass
skewing towards 0 or 1. See Appendix C for more
information.

With the Hard Concrete distribution, the selec-
tor is trained as follows: On the one hand, the
network outputs the parameter logαj for each in-
put hidden state h⃗j . Then one sample zj is drawn
from each distribution and is used to mask attention
scores as Equation 1. With the reparameterization
trick (Kingma and Welling, 2013), the gradient
can backpropagate through the sampling process

to the selector network. The training objective of
language modeling would encourage the selector
to output larger logα, so that extra information
can be obtained to help predict the next token. On
the other hand, L0 norm is treated in expectation,
which becomes a differentiable function of logα.
It encourages the selector to output smaller logα.

With the influence of both aspects, important
key-value pairs are likely to be kept. When the
selector is used as the selection criterion, the logαj

is compared with threshold 0. If logαj > 0, k⃗j
and v⃗j are put into the selective cache.

When using selector, the training loss becomes:

L = LLM + λL0 (3)

where L is the total loss, LLM is the language
modeling loss. L0 represents the L0 norm. λ is the
coefficient. A key problem is to determine λ. We
design an adaptive λ as follows:

λt = r2t ·λ′ rt = rt−1∗0.9+
#selected

#total
∗0.1 (4)

where rt is a running average of the selection ratio,
λt is the coefficient used at step t. λ′ is a hyperpa-
rameter. In this way, if the selection ratio grows
too big, the “suppression force" also increases.

Simultaneously Selecting and Training The se-
lective cache stores context of multiple previous
steps, one way to train the selector is to backpropa-
gate gradient through all relevant steps. We avoid
this by separating the selecting and training process.
We sample a random snippet of length Csnp = 128
from previous context to train the selector, i.e., per-
form the pruning task, while it also performs se-
lection as a non-differentiable process. In other
words, during training, some additional keys and
values are prepended to the concatenation of selec-
tive cache, XL cache, and current keys and values.
We control how distant the snippet is through a
geometric distribution parameterized by a hyperpa-
rameter l. It should be determined based on how
long the dependency we intend to capture. See
more details in Appendix D.

3.4 Removal of Similar Instances
In preliminary experiments of training the selector,
we find that some tokens are repeatedly selected.
Because the selector network makes decisions on
token-level, it does not have the overall information,
e.g., which kind of information is already selected.

For this reason, it is possible that it selects very
similar representations. To address this issue, we
calculate the distance matrix of the selected values
in each step. Values with a distance smaller than a
certain threshold are considered in the same “clus-
ter". Only one key-value pair in each “cluster" is
finally selected. See more details in Appendix F. In
this process, we only calculate the distance matrix
once among the selected values. This process can
be regarded as a secondary selection. In the follow-
ing part of the paper, we refer to this technique as
removal of similar instances (RSI).

3.5 Replacement-Based Selective Cache
When training the selector network, the L0 penalty
implies the capacity limit of the selective cache.
Because the cache size is fixed, storing some new
key-value pairs means discarding some old ones.
Inspired by this process, we further propose a way
to directly model this trade-off. Concretely, the
key-value pairs are grouped two by two, a neu-
ral network compares the two key-value pairs and
masks out either of them.

Suppose that the representations at position j and
j′ are compared. The approach calculates stochas-
tic masks as follows.

logαjj′ = frpl(⃗hj ,∆tj)− frpl(⃗hj′ ,∆tj′) (5)

zjj′ ∼ HardConcrete(logαjj′ , β, γ, ζ) (6)

where frpl(·) denotes the neural network trained
(we refer to it as the replacer network, see its ar-
chitecture in Appendix E), ∆tj is the time interval
between the current step and the previous step when
processing position j. HardConcrete represents the
Hard Concrete distribution, β, γ, ζ are constant pa-
rameters. Then the sampled random mask zjj′ is
used as follows.

sij = q⃗i · k⃗j + ln zjj′ (7)

sij′ = q⃗i · k⃗j′ + ln
(
1− zjj′

)
(8)

Therefore, ideally, only one of the two can be
attended. Intuitively, if the key k⃗j and value v⃗j
provide more important information for the current
step, the replacer network should output a higher
“score" frpl(⃗hj ,∆tj) which results in high logαjj′ .
The cost, on the other hand, is masking out k⃗j′ and
v⃗j′ .

However, this one-to-one relationship deviates
from the actual situation. Adding one into the cache
does not necessarily result in removing the other,

the removed key-value pair could be any one in
the cache. Nevertheless, we still opt to use this
relationship for its simplicity.

When training the replacer, there is no need for
L0 penalty. We again use a random snippet of
previous context for training. A random set of key-
value pairs in selective cache is chosen to do the
one-to-one comparison with those in the snippet.
The replacer network outputs masks, and each of
the masks and its opposite mask are applied to
one in the snippet and one in the selective cache
respectively.

When updating, the replacement-based selec-
tive cache is not a first-in-first-out queue anymore.
The input sequence is compared with the selec-
tive cache element-wise. The key-value pair with
higher “score" frpl(⃗hj ,∆tj) is retained. Impor-
tantly, when switching to a new document, the
key-value pair from the new document is always
preserved no matter what the replacer outputs.

4 Experiments

We evaluate the models described above on three
datasets using two different model sizes. The ex-
periments are all language modeling and the per-
formance is evaluated by perplexity per token. Be-
sides, we also do various qualitative and quantita-
tive analyses on the models. From these analyses,
we provide strong evidence of the effectiveness of
the proposed models.

4.1 Data

We introduce the language modeling datasets used
in the experiments. The eye-tracking corpora are
described in Appendix A

PG-19 PG-19 language modeling benchmark is
a LM dataset introduced by Rae et al. (2019). It
includes a collection of English books published be-
fore 1919 from the Project Gutenberg books library.
Each document in the PG-19 is a full-length book.
However, due to limited computational resources,
we only use 1% of the training set, which is 286
books, around 18M tokens. The documents are
randomly selected and then fixed. So the same set
of documents is used for all models. On the other
hand, we use full validation and test set, which con-
tain 3M and 7M tokens respectively. Even though
only 1% is used, the training data still has a reason-
able size and is enough for fine-tuning.

WikiText-2 The WikiText language modeling
dataset (Merity et al., 2016) consists of articles
from Wikipedia. It provides two sizes, WikiText-2
and WikiText-103. They share the same validation
and test set, while the training set of WikiText-2 is
a truncated version of that of WikiText-103.

CMU-DoG CMU Document Grounded Con-
versations Dataset (Zhou et al., 2018) provides
conversation data about the contents of specified
documents. Following (Martins et al., 2022),
we also use it to test long-range modeling. The
dataset contains conversations about movies, the
Wikipedia article about the movie is also provided.
In this paper, to test the models’ ability on modeling
long-dependency, we concatenate all conversations
to their corresponding Wikipedia articles. The
resulting document takes the following form:
(WikiArticle,Converstation 1,··· ,Converstation n).
Note that the Wikipedia article accounts for only a
small portion (1.3%) of a concatenated document
on average.

4.2 Experimental Methods

Due to limited computational resources, we do not
train the language models from scratch. We fine-
tune a pretrained language model. We extract the
decoder of T5v1.1-LM-adapted 2, and remove the
encoder-decoder attention layers from it. It is a
version of T5 (Raffel et al., 2020) adapted to LM
objective during pretraining. We choose it because
it not only uses relative position embedding which
is necessary for our purpose, but also is available
in a wide range of sizes. Its Small and Base sizes
suit our budget. Even though taking only a part of
it seems crude, we find it works well on LM tasks
in general, even before our fine-tuning.

We fine-tune two sizes of T5v1.1-LM-adapted,
namely Small and Base. We simply refer to them
as T5 Small and T5 Base. The former has 8 layers
and 6 heads, and the latter has 12 layers and 12
heads.

The input size is always Cinp = 512 tokens.
There are two groups of experiments with total
cache size of 512 and 640 respectively. In the
first group one baseline is pure XL cache of size
Cxl = 512, in other words, same as Transformer-
XL (Dai et al., 2019). The other baseline is Com-
pressive Transformer (Rae et al., 2019). We imple-

2https://github.com/google-research/text-to-text-transfer-
transformer/blob/main/released_checkpoints.md

XL 2nd
PG-19 WikiText2 CMU-DoG

Small Base Small Base Small Base
Vanilla Transformer - - 30.85 25.24 22.30 17.56 20.77 17.22
XL 512 - 29.89 24.38 19.85 16.31 20.15 17.19
XL, CPR 256 256 29.39 24.18 19.95 16.17 20.09 17.02
XL, SLC (fix) 256 256 29.32 24.04 19.78 16.27 19.97 16.75
XL, SLC (fix,RSI) 256 256 29.46 23.99 19.77 16.19 19.83 16.63
XL, SLC (slc) 128 384 29.08 24.14 19.13 15.65 19.12 16.11
XL, SLC (slc,RSI) 128 384 28.89 23.83 19.05 15.60 18.98 16.15
XL 640 - 29.62 24.43 19.77 16.27 20.23 17.41
XL, CPR 384 256 29.38 24.21 19.83 16.14 20.20 17.16
XL, R-SLC 128 512 28.50 23.63 18.57 15.20 17.95 14.82

Table 1: Test perplexity on three datasets. Columns “XL" and “2nd" denotes the XL cache size and secondary cache
size. “XL", “SLC", “CPR" in rows refer to XL , selective and compressive cache respectively. “(fix)" means using
fixation duration as selection criterion. “(slc)" means using selector network. “R-SLC" stands for replacement-based
selective cache.

ment their compressive cache in our experimental
framework and use the best configuration reported
in their paper. For each model, we choose the best
cache size configuration between (Cxl, C2nd) =
(256, 256) or (128, 384), where C2nd is the size of
the secondary cache. In other words, given the total
size limit, we treat the cache sizes as hyperparam-
eters and search for the best one. In the second
group the total cache size is 640 tokens. Because
our replacement-based selective cache needs to be
greater or equal to the input size, i.e., >= 512, and
meanwhile, XL cache plays an important role so
it is necessary to have a minimum size of it. Thus
we use (Cxl, C2nd) = (128, 512). For compres-
sive cache, we choose the best configuration be-
tween (Cxl, C2nd) = (128, 512) or (256, 384), or
(384, 256). See more details in Appendix G.

4.3 Results

Table 1 shows the results on three datasets (see
Appendix H for statistical significance). We can
clearly see that using selective cache achieves the
best results in all scenarios. Partly replacing XL
cache with selective cache results in considerable
gains across datasets and model sizes.

We can see that the fixation-based selection sur-
passes XL cache, especially on PG-19 dataset,
which demonstrates the validity of using eye fixa-
tion. It achieves similar performance as compres-
sive cache. On the other hand, using the selec-
tor network brings about larger improvement, be-
cause it allows the model to select what it needs.
Note that this is not because of larger selective

cache size, the configuration of cache size shown
in the table is the optimal configuration. More-
over, replacement-based selective cache produces
even larger improvements. In general, the most
substantial performance gains are on the concate-
nated CMU-DoG dataset. While using XL cache
and compressive cache only slightly reduces the
perplexity, using selective cache reduces the per-
plexity by substantial margins. Regarding RSI, it
slightly improves the performance in general. It
appears to be more effective when the selector is
used. It is probably because the key-value pairs
selected are more homogeneous in that case.

In addition, the compressive cache shows smaller
improvements on PG-19 compared to (Rae et al.,
2019), we think it is because of different experimen-
tal settings. For example, we fine-tune pretrained
models while they train from scratch; we keep the
total cache size the same when comparing models;
we use smaller models and datasets.

4.4 Analysis

Tokens selected by selector Figure 3 show the in-
put tokens corresponding to the selected key-value
pairs (See Appendix K.1 and K.3 for more exam-
ples). It’s obvious that the selector has a strong
tendency to select named entities. Other than capi-
talized nouns and some rare tokens, it also selects
some normal nouns that are keywords of the text,
e.g., “exploration". Note that there is no explicit
guidance for this behavior during training. It’s in-
teresting that this pattern is automatically learned
with a simple LM objective and a L0 penalty. One

Figure 3: The selected tokens in PG-19 validation set. The input tokens of the selected key-value pairs are marked
with blue. Deep blue means the key-value pairs pass the secondary selection and are stored in selective cache, while
light blue means they are selected by selector but then removed by RSI. The model is T5 Small + XL, SLC (slc,RSI).

possibility is that keeping the named entities in the
cache largely facilitates the prediction when the
target tokens are themselves. More importantly,
it seems that the selector tends to select tokens
starting from the second token of a noun phrase.
For example, “Doctor <Newberry>" (using “<>"
to represent the selection), “Grand <Canyon>"
etc. This is a reasonable behavior because when
the first token of these noun phrases occurs as the
input token, the target is very likely to be the sec-
ond token. In other words, given that in real data
distribution p(2nd token|1st token) is much larger
than p(2nd token), so successfully modeling this
conditional probability can reduce perplexity sig-
nificantly. But it is hard without seeing any prece-
dents. Keeping these tokens in cache largely helps
to model this kind of conditional probability. From
these examples, we can see that the selector tries
to make the best use of the cache.

Effect of RSI In the examples shown, RSI seems
to work well, at least from the observation of input
tokens. The selector repeatedly selects “Canyon".
By RSI, only the last one is kept (bottom right cor-
ner), and all other “Canyon" tokens are removed.
To some extent, it avoids storing similar informa-
tion in the cache repeatedly, thus saving space for
other kinds of representations that carry more di-
versified information.

Effect on token-level loss We also examine the
selective cache from the output side, i.e., the token-
level cross-entropy loss. We find that the model
makes worse predictions on named entities after
masking out part of the selective cache. This, to
some extent, explains where the overall perplexity
improvements come from. See Appendix K.2.

Combining the findings from both sides, we find
the model mainly uses selective cache to store rare
tokens or names of characters and places. Impor-

tantly, this retrieval-based working pattern is in line
with prior works (Sun et al., 2021; Wu et al., 2022;
Hutchins et al., 2022). Therefore, this pattern is not
because of the design of selective cache, but rather
a general tendency.

Replacement process As for replacement-based
selective cache, we calculate the replacement ra-
tio over time. As we expect, we find that the re-
placement ratio is very high at the beginning of a
document, then it quickly decreases and finally sta-
bilizes around a certain level. This is because the
density of important key-value pairs in the cache
increases over time. Interestingly, on the concate-
nated CUM-DoG dataset, the replacement ratio
stabilizes around zero, which means it preserves
the beginning of the document for many steps. Im-
portantly, we observe the same tendency as when
using the selector. Most of the newly added to-
kens in each step belong to named entities. See
Appendix L.

Fixation-based selection The fixation duration
is predicted by a separate LSTM network. We ex-
amine the selected tokens and find that the fixation
duration is reasonable in general (see Appendix M).
It does not simply stick with a single kind of token
such as named entities or rare words. It usually
focuses on the core actions in the sentence and the
subject and the object of the action, as well as some
relevant adjectives and dates. Therefore, it largely
reflects human reading behavior (Tokunaga et al.,
2017).

Regarding the reason why fixation-based selec-
tion is good but not good enough, we think it
mainly lies in the discrepancy between the LM task
and the task that humans are doing. On the one
hand, humans are performing a task of language
comprehension when reading. On the other hand, a
lookup table for noun phrases could be more advan-

tageous for prediction when they appear multiple
times.

5 Conclusion

In this work, we propose the selective cache that
stores selected key-value pairs from previous con-
text for language models, which significantly in-
creases the length of the context that a language
model can attend to. Moreover, we propose three
different ways to select important key-value pairs,
namely using fixation duration, the selector net-
work and the replacer network. The experimen-
tal results from different datasets and model sizes
demonstrate the effectiveness of the proposed ap-
proaches. Without increasing total cache size, the
selective cache outperforms XL cache by consider-
able margins. Moreover, further analyses reveal im-
portant characteristics of the selective cache, such
as the neural network-based selection tends to se-
lect named entities and rare tokens, as shown by
the increased interpretability of our models.

Limitations

Due to limited computational resources, we eval-
uate the proposed selective cache by fine-tuning
pretrained models on small datasets. In contrast,
most of other relevant works train models from
scratch on very large language modeling datasets.
It is possible that the selective cache performs bet-
ter or worse in different settings. We cannot di-
rectly compare our results with other related work
because of the same reason. Moreover, among all
the datasets commonly used to evaluate long-range
models, we only use PG-19. Other datasets include
character-level LM datasets text8 and enwik8 (Ma-
honey, 2011), source code datasets GitHub (Wu
et al., 2022). We have to train from scratch if we
evaluate models on those datasets. Finally, while
processing long sequences is an ability needed in
many applications, we only apply the selective
cache on language modeling tasks. The effect of
selective cache on other modalities, such as speech
and time series is also worth investigating. We hope
that future work will continue to evaluate our mod-
els on a wider range of datasets and experimental
settings.

Acknowledgements

We acknowledge the computing resources provided
at the UCloud platform at SDU eScience Cen-

ter. We thank the anonymous reviewers for their
thoughtful comments on the paper.

References
Abien Fred Agarap. 2018. Deep learning using rectified

linear units (relu). arXiv preprint arXiv:1803.08375.

Maria Barrett, Ana Valeria González-Garduño, Lea Fr-
ermann, and Anders Søgaard. 2018. Unsupervised
induction of linguistic categories with records of read-
ing, speaking, and writing. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 2028–2038, New Orleans, Louisiana.
Association for Computational Linguistics.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Stephanie Brandl and Nora Hollenstein. 2022. Every
word counts: A multilingual analysis of individual
human alignment with model attention. In Proceed-
ings of the 2nd Conference of the Asia-Pacific Chap-
ter of the Association for Computational Linguistics
and the 12th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 72–77, Online only. Association for Computa-
tional Linguistics.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev.
2022. Recurrent memory transformer. Advances
in Neural Information Processing Systems, 35:11079–
11091.

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. arXiv preprint
arXiv:1904.10509.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, David Belanger, Lucy Colwell, and
Adrian Weller. 2022. Rethinking attention with per-
formers.

Uschi Cop, Nicolas Dirix, Denis Drieghe, and Wouter
Duyck. 2017. Presenting geco: An eyetracking cor-
pus of monolingual and bilingual sentence reading.
Behavior research methods, 49(2):602–615.

Gonçalo M Correia, Vlad Niculae, and André FT Mar-
tins. 2019. Adaptively sparse transformers. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 2174–2184.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-xl: Attentive language models beyond

https://doi.org/10.18653/v1/N18-1184
https://doi.org/10.18653/v1/N18-1184
https://doi.org/10.18653/v1/N18-1184
https://aclanthology.org/2022.aacl-short.10
https://aclanthology.org/2022.aacl-short.10
https://aclanthology.org/2022.aacl-short.10
http://arxiv.org/abs/2009.14794
http://arxiv.org/abs/2009.14794

a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988.

Nicola De Cao, Michael Sejr Schlichtkrull, Wilker Aziz,
and Ivan Titov. 2020. How do decisions emerge
across layers in neural models? interpretation with
differentiable masking. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3243–3255.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Michael Hahn and Frank Keller. 2023. Modeling task
effects in human reading with neural network-based
attention. Cognition, 230:105289.

Nora Hollenstein and Lisa Beinborn. 2021. Relative
importance in sentence processing. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 141–150, Online.
Association for Computational Linguistics.

Nora Hollenstein, Jonathan Rotsztejn, Marius Troen-
dle, Andreas Pedroni, Ce Zhang, and Nicolas Langer.
2018. Zuco, a simultaneous eeg and eye-tracking
resource for natural sentence reading. Scientific data,
5(1):1–13.

Nora Hollenstein, Marius Troendle, Ce Zhang, and
Nicolas Langer. 2020. ZuCo 2.0: A dataset of physi-
ological recordings during natural reading and anno-
tation. In Proceedings of the Twelfth Language Re-
sources and Evaluation Conference, pages 138–146,
Marseille, France. European Language Resources
Association.

Nora Hollenstein and Ce Zhang. 2019. Entity recog-
nition at first sight: Improving NER with eye move-
ment information. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1–10, Minneapolis, Minnesota. Associa-
tion for Computational Linguistics.

DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan
Dyer, and Behnam Neyshabur. 2022. Block-recurrent

transformers. Advances in Neural Information Pro-
cessing Systems, 35:33248–33261.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categori-
cal reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

Alan Kennedy, Robin Hill, and Joël Pynte. 2003. The
dundee corpus. In Proceedings of the 12th European
conference on eye movement.

Varun Khurana, Yaman Kumar, Nora Hollenstein, Ra-
jesh Kumar, and Balaji Krishnamurthy. 2023. Syn-
thesizing human gaze feedback for improved nlp per-
formance. In Proceedings of the 17th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 1887–1900.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C. Berg, Wan-Yen
Lo, Piotr Dollár, and Ross Girshick. 2023. Segment
anything. arXiv:2304.02643.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Christos Louizos, Max Welling, and Diederik P Kingma.
2017. Learning sparse neural networks through l_0
regularization. arXiv preprint arXiv:1712.01312.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh.
2016. The concrete distribution: A continuous relax-
ation of discrete random variables. In International
Conference on Learning Representations.

Matt Mahoney. 2011. Large text compression bench-
mark.

Pedro Henrique Martins, Zita Marinho, and André FT
Martins. 2022. -former: Infinite memory transformer-
former: Infinite memory transformer. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5468–5485.

Sandeep Mathias, Diptesh Kanojia, Abhijit Mishra, and
Pushpak Bhattacharya. 2020. A survey on using gaze

https://doi.org/10.18653/v1/2021.acl-short.19
https://doi.org/10.18653/v1/2021.acl-short.19
https://aclanthology.org/2020.lrec-1.18
https://aclanthology.org/2020.lrec-1.18
https://aclanthology.org/2020.lrec-1.18
https://doi.org/10.18653/v1/N19-1001
https://doi.org/10.18653/v1/N19-1001
https://doi.org/10.18653/v1/N19-1001
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.24963/ijcai.2020/683

behaviour for natural language processing. In Pro-
ceedings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence, IJCAI-20, pages
4907–4913. International Joint Conferences on Arti-
ficial Intelligence Organization. Survey track.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Abhijit Mishra, Kuntal Dey, and Pushpak Bhattacharyya.
2017. Learning cognitive features from gaze data for
sentiment and sarcasm classification using convo-
lutional neural network. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 377–387.

OpenAI. 2023. Gpt-4 technical report.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Process-
ing Systems 32, pages 8024–8035. Curran Associates,
Inc.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar,
Chloe Hillier, and Timothy P Lillicrap. 2019. Com-
pressive transformers for long-range sequence mod-
elling. In International Conference on Learning Rep-
resentations.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Anirudh Ravula, Chris Alberti, Joshua Ainslie, Li Yang,
Philip Minh Pham, Qifan Wang, Santiago Ontanon,
Sumit Kumar Sanghai, Vaclav Cvicek, and Zach
Fisher. 2020. Etc: Encoding long and structured
inputs in transformers. In 2020 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP 2020).

Keith Rayner and Susan A Duffy. 1986. Lexical com-
plexity and fixation times in reading: Effects of word
frequency, verb complexity, and lexical ambiguity.
Memory & cognition, 14(3):191–201.

Keith Rayner, Timothy J Slattery, Denis Drieghe, and
Simon P Liversedge. 2011. Eye movements and word
skipping during reading: effects of word length and
predictability. Journal of Experimental Psychology:
Human Perception and Performance, 37(2):514.

Hongyu Ren, Hanjun Dai, Zihang Dai, Mengjiao Yang,
Jure Leskovec, Dale Schuurmans, and Bo Dai. 2021.
Combiner: Full attention transformer with sparse
computation cost. Advances in Neural Information
Processing Systems, 34:22470–22482.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2021. Efficient content-based sparse
attention with routing transformers. Transactions of
the Association for Computational Linguistics, 9:53–
68.

Noam Shazeer. 2020. Glu variants improve transformer.
arXiv preprint arXiv:2002.05202.

Ekta Sood, Simon Tannert, Diego Frassinelli, Andreas
Bulling, and Ngoc Thang Vu. 2020. Interpreting
attention models with human visual attention in ma-
chine reading comprehension. In Proceedings of
the 24th Conference on Computational Natural Lan-
guage Learning, pages 12–25.

Sainbayar Sukhbaatar, Édouard Grave, Piotr Bo-
janowski, and Armand Joulin. 2019. Adaptive at-
tention span in transformers. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 331–335.

Sainbayar Sukhbaatar, Da Ju, Spencer Poff, Stephen
Roller, Arthur Szlam, Jason Weston, and Angela Fan.
2021. Not all memories are created equal: Learning
to forget by expiring. In International Conference on
Machine Learning, pages 9902–9912. PMLR.

Simeng Sun, Kalpesh Krishna, Andrew Mattarella-
Micke, and Mohit Iyyer. 2021. Do long-range lan-
guage models actually use long-range context? In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 807–
822.

Takenobu Tokunaga, Hitoshi Nishikawa, and Tomoya
Iwakura. 2017. An eye-tracking study of named
entity annotation. In RANLP, pages 758–764.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5797–5808, Florence, Italy.
Association for Computational Linguistics.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,

https://doi.org/10.24963/ijcai.2020/683
http://arxiv.org/abs/2303.08774
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://www.aclweb.org/anthology/2020.emnlp-main.19.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.19.pdf
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580

Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins,
and Christian Szegedy. 2022. Memorizing transform-
ers. In International Conference on Learning Repre-
sentations.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in neural information
processing systems, 33:17283–17297.

Kangyan Zhou, Shrimai Prabhumoye, and Alan W
Black. 2018. A dataset for document grounded con-
versations. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 708–713.

Zhenhai Zhu and Radu Soricut. 2021. H-transformer-
1d: Fast one-dimensional hierarchical attention for
sequences. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3801–3815.

A Eye-tracking Corpora

To train a fixation prediction model, we gather
eye-tracking data from four eye-tracking Corpora.
Namely, Dundee (Kennedy et al., 2003), GECO
(Cop et al., 2017), ZuCo1 (Hollenstein et al., 2018),
and ZuCo2 (Hollenstein et al., 2020). We only take
the eye-tracking data during natural reading of En-
glish text. The collected data comprises multiple
domains such as news, novels, movie reviews, and
Wikipedia articles. All data is recorded by profes-
sional researchers and equipment, with a minimum
of 10 subjects reading the same text. There are 1.6
million tokens in total (including repeated text read
by different subjects). The total reading time (TRT)
of each word is normalized across corpora and av-
eraged over subjects, and then evenly mapped to
{0, 1, · · · , 11}.

B Fixation Prediction Model

We train a fixation prediction model, which uses the
same tokenizer and embedding layer as the main
transformer language model (the embedding layer
is frozen for the sake of generalization on unseen
tokens). The model predicts fixation duration on
token-level. The original word-level fixation dura-
tion is converted to token-level in order to train the
model. The conversion is slightly complex: TRT of
a word is first assigned to each character of it, then
a small number is assigned to the last character of
the word (mainly to give small values to punctua-
tion). After tokenizing the word we obtain the span
of each subword, and take the maximum value in
the span to get the final token-level fixation data.
We do it in this way because the tokenizer we are
using only provides character-level span informa-
tion. This is not a perfect solution but it works fine
in most cases.

The fixation prediction model consists of an em-
bedding layer (T5 embedding), a two-layer bidirec-
tional LSTM, and a one-hidden-layer MLP on top
of it. The best model achieves an MSE of 4.02 on
a randomly held-out test set (25% of all data).

C Hard Concrete Distribution

The Hard Concrete distribution is based on Bi-
nary Concrete distribution (Maddison et al., 2016;
Jang et al., 2016), which is defined on the interval
(0, 1) and can be regarded as a relaxed version of
Bernoulli distribution (see Figure 2). The Binary
Concrete distribution is parameterized by logα and

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

β. The location parameter logα controls the prob-
ability mass skewing towards 0 or 1, while β con-
trols how sharp the probability density is, or the
degree of approximation to a real Bernoulli distri-
bution. The following function can be used to draw
samples from this distribution:

s = Sigmoid ((log u− log (1− u) + logα)/β)
(9)

where u is drawn from a uniform distribution
u ∼ U(0, 1), s is the sample drawn from Binary
Concrete distribution. To obtain the Hard Concrete
distribution, the Binary Concrete distribution is first
stretched to (γ, ζ) interval, where γ < 0 and ζ > 1.
It is then rectified to [0, 1].

s̄ = s(ζ − γ) + γ (10)

z = min(1,max(0, s̄)) (11)

where z is the sample drawn from the Hard Con-
crete distribution. In the second step, the prob-
ability mass between (γ, 0) is "folded" to the 0
point, and the probability mass between (1, ζ) is
also "folded" to the point at 1. The stretching and
rectifying operations result in non-zero probabil-
ity at the two endpoints, as well as a continuous
curve between them. Figure 2 shows how param-
eter logα affects the distribution. For more infor-
mation about the probability density function and
cumulative density function of Hard Concrete dis-
tribution, see Appendix B of (Louizos et al., 2017).

When using stochastic masks, the L0 norm is
treated in expectation. Then Equation 2 becomes:

E[||z||0] =
n∑

j=1

E[1[R ̸=0](zj)] (12)

=
n∑

j=1

p(zj > 0) (13)

=
n∑

j=1

(1−Qs̄j (0)) (14)

where Qs̄j (·) is the cumulative density function of
s̄, which is the stretched distribution introduced
in Equation 10. The last term is a function of its
parameters.

n∑
j=1

(1−Qs̄j (0)) =

n∑
j=1

Sigmoid(logαj−β log
−γ

ζ
)

(15)

In this paper, we follow the recommendation
in (Louizos et al., 2017) and use β = 2/3, γ =
−0.1, ζ = 1.1 when training the model with the
selector network. Thus the selector only predicts
logα.

D Training Selector over Previous
Snippets

To train the selector, the model maintains a list of
previous snippets. Two hyperparameters l and Csnp

control the length of the list (the number of snippets
stored) and the size of snippets respectively. Note
that in this paper, Csnp = 128. At the end of the
current step, a consecutive sub-sequence of hidden
states and key-value pairs are randomly selected
from all current hidden states [⃗h1, · · · h⃗n] and all
current keys and values [⃗k1, · · · k⃗n], [v⃗1, · · · v⃗n].
They do not receive gradient as well. If the list
is not full, the selected snippet is then appended to
the list, otherwise a random old snippet is replaced
by it. At the beginning of the next step, one random
snippet in the list is selected. The stored hidden
states are fed into the selector, and the correspond-
ing keys and values are prepended to the main key
and value matrix. The selector produces masks
that control the attention to the snippet. Therefore,
the selector is trained on a snippet of the previous
context, and the time interval between that context
and the current input is random. The probability
of selecting a snippet from the kth previous step
is (1− 1

l)
k−1 1

l , which is a geometric distribution.
Thus l should be set according to the average length
of documents.

On the other hand, at the end of each step, the
selector selects key-value pairs. But this process
does not update the selector. The self-attention
layer then learns to attend to whatever is selected.
During testing, since the selector does not need
training, the list of snippets is always empty, and
there are no snippets prepended to the current keys
and values.

E Architecture of Selector and Replacer
Network

The selector network consists of one fully-
connected layer, one ReLU activation function
(Agarap, 2018), and one fully-connected layer se-
quentially. The input size, hidden size, and output
size are H,H/4, 1 respectively, where H is the
dimensionality of hidden states of the language
model. For each self-attention layer, there is a sepa-

rate selector network, so that the selection criterion
is adapted to the need of each layer.

We use the same architecture for the replacer net-
work, with the exception that we add time informa-
tion. The time interval ∆t is first converted into a
vector and then concatenated with the hidden states.
In mathematical form, t⃗j = ∆t · [1

2dt−1 · · · 1
20
],

where dt is the dimensionality for time embed-
ding. In this paper, we use dt = 8. So the input
size, hidden size, and output size of replacer is
H + 8, H/4, 1, where H is the dimensionality of
the hidden states.

F Detailed Description of RSI

In the case of selector network, suppose that the
output logα for [⃗h1, · · · , h⃗n] are greater than 0,
then their corresponding key-value pairs are se-
lected, i.e., [⃗k1,r, · · · , k⃗n,r], [v⃗1,r, · · · , v⃗n,r],∀r ∈
{1, · · · ,m}, where r is the index of the head,
m is the number of heads. Then a distance
matrix D ∈ Rn×n is calculated. Each entry
Dij is the Euclidean distance between the con-
catenated values, i.e., Concate(v⃗i,1, · · · , v⃗i,m) and
Concate(v⃗j,1, · · · , v⃗j,m). The reason for choosing
values instead of hidden states is that the imple-
mentation is simpler. Then the distance matrix
is compared with a threshold and converted into
a binary matrix D̄, whose entries are equal to 1
for distances less than the threshold, and 0 other-
wise. Therefore, each row or column represents
a collection of similar representations. Then its
elements along and above the diagonal are set to
be 0, resulting in a strictly lower triangular matrix
D̂. Finally, the sum of each column is calculated,
if
∑n

i=1 D̂ij = 0, then k⃗j,r, v⃗j,r are remained. If∑n
i=1 D̂ij > 0, the corresponding key-value pairs

are discarded. The additional computation involved
in these operations is mainly on the distance cal-
culation. Since this operation is implemented with
high-performance code by most popular deep learn-
ing frameworks, and the distance is only calculated
for selected representations, it does not add much
extra computation.

Figure 4 shows the case where v⃗1, v⃗3 are similar
and v⃗2, v⃗4, v⃗5 are similar.

Again, like the coefficient for L0 norm, we find
a constant threshold is not appropriate. The overall
magnitude of distance varies across different layers.
Therefore, we use a threshold that is determined
by the average distance. Specifically, threshold =
η 1
n2

∑
ij Dij , where η is a hyperparameter. Note

Figure 4: In order to further remove similar represen-
tations, a pair-wise Euclidean distance matrix is calcu-
lated. It is then converted to a binary matrix D̄ whose
1 entries represent that the distance is small enough. It
is then converted to a strictly lower triangular matrix
D̂. If the sum of a column is zero, the corresponding
key-value pair is kept.

that in practice, η is usually not a small value, so
the vectors in the same cluster only bear a limited
resemblance.

G Implementation Details

Batching and Processing Figure 5 shows how
the model is trained with batches of documents. In
all of our experiments, the documents are shuffled
and then packed in this way. The models process a
batch of segments at a time, each segment comes
from a different document. The segments are al-
ways aligned, i.e., the segments at the same position
in the batch dimension are consecutive. Therefore,
there are separate caches for each position in the
batch dimension. Because the selected number of
key-value pairs is different for each cache, we iter-
ate over the batch dimension to update each cache
respectively. The cache is emptied at the beginning
of each epoch, as well as the beginning and the
end of the evaluation. When the model encounters
a new document, e.g., from document A to docu-
ment B in Figure 5, the cache is not emptied. It is
unnecessary to do so because the document masks
(Section 3) can prevent the model from attending
the old document.

During training and validation, the model stops
at the shortest row in Figure 5, i.e., at the end of
document I in this example, for the sake of effi-
ciency. During testing, the model finishes all the
documents, i.e., it stops at the end of document
D. The documents are packed in a way such that
the rows in Figure 5 have lengths that are as sim-
ilar to one another as possible. This is important
since some documents (especially in PG-19) are

Figure 5: The documents are packed and split into multiple segments. The model processes a batch of segments
at a time, and then moves to the next batch of segments (from left to right). In the same position along the batch
dimension, i.e., for each row, the segments are continuous. All the models in this paper are trained and tested in this
way.

extremely long, and uneven lengths cause a lot of
waste.

Implementation Details T5 Small has 8 layers, 6
heads of dimension of 64 in each layer, an embed-
ding size of 512, an FFN hidden layer of size 1024.
T5 Base has 12 layers, 12 heads of dimension of 64
in each layer, an embedding size of 768, an FFN
hidden layer of size 2048. The two models use
GEGLU activation (Shazeer, 2020) in FFN layer.
The two models use a sentence-piece (Kudo and
Richardson, 2018) tokenizer with a vocabulary size
of 32K.

In preliminary experiments, we fine-tune the T5
Small with XL cache and T5 Base with XL cache
on truncated PG-19 dataset using learning rate of
{1 · 10−3, 1 · 10−4, 5 · 10−5, 2 · 10−5}, as well as a
constant learning rate and a linearly decaying learn-
ing rate. We find that a constant learning rate of
1 · 10−4 works best for both models, when trained
for 100K steps. Therefore, we use it for all the
experiments presented in this paper. In the follow-
ing part of this section, unless otherwise specified,
the same setting applies to all models. We use
AdamW (Loshchilov and Hutter, 2018) optimizer,
with weight decay of 0.01. We also use fp16 16-bit
mixed precision training. We run all experiments
on Tesla T4 GPUs. The models are implemented
in Pytorch (Paszke et al., 2019) and based on Hug-
gingface Transformer (Wolf et al., 2020).

For experiments done on the truncated PG-19
dataset, we train the models for 100K steps (59.28
epochs). After 50K steps, the models are evaluated
on the validation set every 10K steps, and the best
checkpoints are then tested on the test set when
the training is finished. We use batch size of 32
for models using T5 Small, and use batch size of
16 and gradient accumulation of 2 steps for mod-
els using T5 Base. Note that we train the models
on 1% of training data from PG-19 for about 60

epochs instead of training 60% of data for 1 epoch.
The reason is that we would like to compare the
performance when the models reach convergence.
For experiments done on WikiText2 dataset, we
train all models that use T5 Small for 50 epochs,
with batch size of 32. We train models that use T5
base for 40 epochs (these models converge faster)
with batch size of 16 and gradient accumulation of
2 steps. The models are evaluated on validation set
every epoch. The best checkpoints are then tested
on the test set. For experiments done on the con-
catenated CMU-DoG dataset, we train all models
for 30 epochs, because we find the models start to
overfit after 15-20 epochs. we use batch size of 8
and accumulate gradient for 2 steps. We use the
same evaluation process as WikiText2.

For compressive cache, we implement the best
configuration reported in (Rae et al., 2019), namely,
1D convolution as the compression function trained
with attention-reconstruction loss. We follow the
compression rate reported in their experiments on
PG-19 and use the compression rate of 2. The other
experimental settings are the same as other models
in this paper, e.g., fine-tuning instead of training
from scratch. Recall that we keep track of docu-
ment IDs to use document masks, the document ID
of the first hidden state in the sliding window of
convolution operation is assigned as the document
ID of the compressed hidden state.

For fixation-based selective cache, we transform
the original fixation duration to values ranging from
0 to 11, thus the prediction is also mostly in this
range (See preprocessing of eye-tracking data in
Appendix A). we then experiment with thresholds
of 8, 9, 10 and find 9 works best, which means there
are roughly 25% of key-value pairs are selected in
each step. Given that Cinp = 512, Cslc = 256, the
selective cache only covers two previous steps.

For selector-based selective cache, when train-
ing the selector, the size of the context snippet

Csnp = 128 throughout all experiments, which is
removed during evaluation. we haven’t tried other
values for Csnp because we assume it does not af-
fect the performance as long as it is not too small.
Besides the cache size, another important hyperpa-
rameter is the length of the list that stores previous
snippets l. Recall that in Section D, the probability
of selecting a snippet from the kth previous step is
a geometric distribution with parameter l. In gen-
eral, It is better to set larger l for modeling longer
dependency. We search the best hyperparameter
l from choices of {3, 5, 7} for PG-19 and Wiki-
Text2 datasets, and from {6, 9, 12} for CMU-DoG
dataset, using a model fine-tuned from T5 small.
For PG-19, the best l = 5; For WikiText2, the
best l = 3; For CMU-DoG, the best l = 9, and
in this dataset the performance is almost the same
with different choices. Another hyperparamter is
λ′ in Equation 4. In preliminary experiments, we
find λ′ = 0.01 works the best in general among
{0.03, 0.01, 0.003} and use it for all experiments
involving L0 norm. As for the η that is used to
control the threshold for RSI (See Section 3.4), we
simply set η = 0.5 in all experiments.

As for replacement-based selective cache, we
adopt the same hyperparameters when possible.
Concretely, I use Csnp = 128, Cslc = 512, Cxl =
128, Cinp = 512. We also use l = 5 for PG-19,
l = 3 for WikiText2, l = 9 for CMU-DoG.

H Statistical Significance

We measure the statistical significance of the re-
sults. We did 3 runs with different random seeds
for 3 configurations, namely T5 Small + XL of size
512, T5 Small + XL, CPR of size (256,256), T5
Small + XL, SLC (slc, RSI) of size (128, 384). We
measure the standard deviation of the perplexity as
shown in Table 2. Note that we train models on
PG-19 dataset for only 10K steps, while we use the
same experimental setting on other datasets. We
can see the standard deviation is much smaller than
the gap between different models.

I Training and Inference Cost

We measure the number of parameters, speed
and memory usage of different configurations, as
shown in Table 3. For all these configurations, we
use the same hyperparameters (batch size, model
size, etc.) and experiment on the same device (2
Tesla T4) to ensure fair comparisons. We can see
the training and inference cost of the proposed

methods are comparable to the compressive cache,
and higher than vanilla and XL cache. While these
numbers will change on different hardware, we
believe the relative proportion will be largely con-
sistent.

J Comparison to Simple Baselines

Other than fixation duration and neural networks,
we also experiment with two less-sophisticated
baselines. (1) The first one (“freq") selects rare
tokens. We calculate the token frequency on the
training set, and select those tokens whose fre-
quency is lower than the threshold into the selective
cache. We determine the threshold so that, on av-
erage, around a quarter of tokens in each step are
selected (same as when using fixation duration).
(2) The second one (“entropy") uses information
entropy. When doing auto-regressive LM, the lan-
guage model estimates the distribution of the next
token P(Xi|x<i), the entropy of the distribution
is H(Xi) = −

∑
xi∈V P(xi|x<i) log P(xi|x<i),

where V denotes the vocabulary. If the entropy
of Xi is large enough, the observed next token will
be selected. Intuitively, when the entropy is large,
the model is uncertain about the next token, or it’s
hard to infer from the context, so seeing the next
token provides new information. Similarly, we de-
termine the threshold so that the same proportion
of tokens are selected in each step.

The experimental results of the new baselines
are shown in Table 4. From the table, we can see
that the frequency is a better selection criterion than
the entropy in general. Compared to Table 1, the
frequency and the fixation duration achieve sim-
ilar performance. On PG-19, the latter performs
slightly better, while on CMU-DoG the former per-
forms better. However, the frequency and fixation-
based methods demonstrate different selection pat-
terns. E.g., when using frequency as selection crite-
rion, the model selects almost all digits and selects
more named entity-related tokens.

Note that the models with selector and replacer
networks still show considerable improvements
compared to these two baselines. Therefore, even
though neural network-based selection tends to se-
lect rare tokens, aspects other than frequency also
play an important role.

PG-19 WikiText2 CMU-DoG
XL 34.49 ± 0.059 19.95 ± 0.055 20.13 ± 0.058
XL,CPR 34.09 ± 0.033 19.92 ± 0.035 20.13 ± 0.052
XL,SLC (slc,RSI) 33.14 ± 0.051 19.05 ± 0.010 18.94 ± 0.037

Table 2: Mean and standard deviation of 3 runs

XL 2nd #param
Training Inference

s/iter Memory s/iter Memory
Vanilla Transformer - - 52.3 M 0.71 9.0 GB 0.12 2.9 GB
XL 512 - 52.3 M 0.84 10.5 GB 0.14 3.1 GB
XL, CPR 256 256 56.0 M 0.95 12.4 GB 0.16 3.4 GB
XL, SLC (fix) 256 256 52.3 M 0.93 10.5 GB 0.17 3.0 GB
XL, SLC (fix,RSI) 256 256 52.3 M 1.07 10.5 GB 0.20 3.0 GB
XL, SLC (slc) 128 384 52.3 M 0.98 12.5 GB 0.16 3.0 GB
XL, SLC (slc,RSI) 128 384 52.3 M 1.05 12.5 GB 0.18 3.0 GB
XL, R-SLC 128 512 52.3 M 0.98 12.2 GB 0.15 3.1 GB

Table 3: Training and inference cost of difference configurations. “#param” denotes the number of parameters,
“s/iter” stands for second per iteration, “Memory" stands for memory usage per GPU.

K Analysis of Selector Network

K.1 Selected Tokens

Other than Figure 3, we show more examples in
Figure 6. We can see the same pattern as described
previously.

K.2 Effect on Token-Level Loss

We run two identical models which use selector and
selective cache. One model runs normally, while
the cached key-value pairs in selective cache of the
other model are randomly masked (50% probabil-
ity). The model cannot attend to those key-value
pairs, but those still occupy the room in selective
cache. The differences in cross-entropy loss be-
tween these two models are then calculated on
token-level. In other words, we measure whether
the model makes better or worse predictions when
predicting each token. Figure 7 shows the result-
ing loss difference. Note that in previous figures
of selected tokens, the color is associated with the
input token, while in this figure the color is asso-
ciated with the prediction target token. We pur-
posely choose the input sequence that is from the
same document as the previous example, and a
few steps after that. Orange color means the loss
increases after masking, green means the loss de-
creases. Deeper color represents bigger values. The
difference values that exceed 1.0 or -1.0 are repre-
sented in full color.

K.3 Difference across Layers
Figure 8 shows examples of the selected tokens
in other layers. We can see the selection ratio is
different across layers, as well as the “quality" of
selection. Besides selecting named entities and
rare tokens, no other meaningful patterns are found.
The pattern only appears in a few layers. The pat-
tern shown in the figure is consistent in the whole
dataset.

K.4 Performance on CMU-DoG
It is interesting to see how the selector performs in
CMU-DoG dataset as shown in Figure 9. Recall
that the document in this dataset consists of one
Wikipedia article and many conversations based
on that article. Therefore, keeping the article in
memory is a considerable advantage when doing
LM on this dataset.

It is obvious that the selector treats the Wikipedia
article and the conversations very differently. The
selection ratio drops drastically when coming to
the conversation part (in the middle of the third
block in Figure 9). This means that the selective
cache stores the background article and receives
minimal updates afterward. Therefore, the back-
ground article can be preserved for many steps.
Note that this beneficial pattern is learned by the
model itself, and there is no token type embedding
or something similar to explicitly distinguish two
types of inputs. Furthermore, this example reveals
a key difference between the selective cache and

XL 2nd
PG-19 WikiText2 CMU-DoG
Small Small Base Small Base

XL, SLC (freq) 256 256 29.53 19.86 16.25 19.85 16.66
XL, SLC (entropy) 256 256 29.91 19.88 16.24 20.24 17.02

Table 4: Test perplexity when using frequency (“freq") and information entropy (“entropy") as selection criterion.

Figure 6: The selected tokens in WikiText2 validation set. See the caption of Figure 3 for an explanation of colors.
The model is T5 Small + XL, SLC (slc,RSI).

Figure 7: Difference in token-level loss when randomly masking 50% key-value pairs in selective cache in layer
4,5 and 6. Orange color means the loss increases after masking, green means the loss decreases. The deeper color
represents bigger values. The model is T5 Small + XL, SLC (slc, RSI) trained on PG-19.

Figure 8: The selected tokens in PG-19 validation set. See the caption of Figure 3 for an explanation of colors.

Figure 9: The selected tokens in the concatenated CMU-DoG valid set. The input sequences shown are consecutive,
starting from the beginning of a document. See Figure 3 for the explanation of colors. The model is T5 Small + XL,
SLC (slc,RSI).

compressive cache. The latter defines a fixed com-
pressive rate beforehand, while selective cache is
adaptive to the varying density of information in
the input and has varying compressive rates.

In addition, different from previous examples on
PG-19 and WikiText2, in this example the selector
not only selects named entities or rare words, but
also selects some common words such as “shark",
“tank", even including a verb “escape". This shows
that the selection is not necessarily restricted to
named entities or rare words. The selector can
further learn to select other kinds of tokens such as
keywords.

L Analysis of Replacer Network

L.1 Analysis of Replacement Process
Figure 10 shows how the replacement ratio changes
over time. The peaks in the figure correspond to the
start of a new document. It seems that the selective
cache can preserve items for infinite steps on CMU-
DoG, since there are some nearly zero replacement
ratios. We found this is the case for most layers.

Figure 11 shows an example of replacement.
Both new key-value pairs and the cached ones are
shown. They are aligned to show that “shops" and
“," are compared (more precisely, their correspond-
ing inner representations), “districts" and “@" are
compared, etc. Note that the “cache" rows contain
non-continuous context, while “new" rows contain
a continuous input sequence.

M Tokens Selected According to Fixation
Duration

Figure 12 shows the selected token according to
fixation duration. we can see the differences com-
pared to those selected by the selector network.
Humans are doing comprehension when reading,
such as building the relationship map between char-
acters and understanding the plot, and the long-
fixated tokens are key information for that. As
we can see, an important difference is that verbs
compose a substantial proportion in those tokens
selected by fixation duration, while they are ex-
cluded by the selector network. We think those
verbs are also helpful for predicting future tokens,
but that requires higher-level abilities. It is possible
that when combined with a more advanced or much
larger language model which has the capacity to do
complex reasoning and comprehension over pre-
vious distant context, the fixation-based selection
can bring about much larger performance gains.

Meanwhile, another important advantage of using
fixation duration is that it does not require training
or fine-tuning together with the language model.
So it can be used to select key-value pairs for those
very large pretrained language models that are too
expensive to calculate gradients.

Figure 10: Replacement ratio over time. “Lx" denotes the layer number. Top: T5 Small + XL, R-SLC on PG-19
dataset. Bottom: T5 Base + XL, R-SLC on the concatenated CMU-DoG dataset.

Figure 11: A example of replacement. Rows starting with “cache" depict the content of the selective cache, while
rows starting with “new" show the new candidates from the input sequence. Tokens that are aligned to represent
the one-to-one relationship. Highlighted tokens mean that their corresponding key-value pairs are kept after the
replacement process. The configuration is T5 Small + XL, R-SLC on the WikiText2 dataset.

Figure 12: Top: The selected tokens on PG-19. Bottom: The selected tokens on WikiText2. Those long-fixated
tokens are selected, based on the fixation duration predicted by a separate model. The input tokens of the selected
key-value pairs are marked with blue. The RSI is not used here.

