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Abstract
We develop entropy and variance results for the product of independent identically
distributed random variables on Lie groups. Our results apply to the study of stationary
measures in various contexts.
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1 Introduction

Entropy is a central tool in the study of random walks. For example, as exposed in
the book by Johnson [6], entropic methods can be used to prove the central limit
theorem on Rd as well as equidistribution of random walks on compact groups. More
recently, entropy results have been applied in the study of stationary measures as in
the work of Hochman [4, 5] on the dimension of self-similar measures, of Bárány-
Hochman-Rapaport [1] for self-affinemeasures, or ofVarjú [10] to construct absolutely
continuous Bernoulli convolutions.

The aim of this paper is to establish entropy and variance bounds for smoothings
of random walks on arbitrary Lie groups. We strive to be as general as feasible to
ensure applicability to various settings. Our results generalise the entropy and variance
bounds previously established in [7] for SL2(R), which were developed to construct
absolutely continuous Furstenberg measures. Furthermore, the results presented here
have been applied in [8, 9] to study self-similar measures.We anticipate that this paper
will contribute to the investigation of randomwalks of Lie group actions on manifolds
in various contexts.

Throughout this paper, let G be a real Lie group of dimension � and denote by g the
Lie algebra of G. We fix an inner product on g, inducing an associated norm | ◦ | and a
left-invariant metric d on G. Also, denote by log : G → g the logarithm on G, which
is defined in a small neighbourhood around the identity. For g ∈ G we write Bε(g) for
the open ε-ball around g and abbreviate Bε = Bε(Id) for Id the identity in G. Finally,
mG is the Haar measure on G that is normalised such that mG(Bε)/mg(log Bε) → 1
as ε → 0, where mg is the volume measure induced by the fixed inner product on g.

Given a G-valued random variable g, we denote by

H(g)

the Shannon entropy of g when g is discrete and the differential entropy when g is
absolutely continuous. Precise definitions and some basic results are given in Sects. 2.1
and 2.2.

Similarly to [1, 4, 5] or [10], we study the entropy of a smoothing of g. If s is a
smoothing distribution independent of g, we can abstractly define the entropy of g
with respect to s as

H(g; s) = H(gs) − H(s).

Concretely, we will choose the following smoothing functions: for given r > 0 and
a ≥ 1, denote by βa,r a random variable on g with density function fa,r : g → R

given by

fa,r (x) =
⎧
⎨

⎩
Ca,r e

− |x |2
2r2 if |x | ≤ ar ,

0 otherwise,
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whereCa,r is a normalising constant to ensure that fa,r integrates to 1.We furthermore
set

sa,r = exp(βa,r ) (1.1)

and then define the entropy of g at scale r > 0 with respect to the parameter a ≥ 1 as

Ha(g; r) = H(g; sa,r ) = H(gsa,r ) − H(sa,r ). (1.2)

Entropy at scale r measures the amount of information g has at scale r . The parameter
a is useful in order to uniformly control how far βa,r is from a normal distribution. The
reasonwe are workingwith these smoothing functions onG is to deduce in Lemma 4.6
a quantitative analogue of (1.6). It is assumed throughout this paper that the collection
of random variables g and (sa,r )a≥1,r>0 are independent.

Letμ be a probabilitymeasure onG and let γ1, γ2, . . . be independentμ-distributed
random variables that are independent from (sa,r )a≥1,r>0 and denote for n ≥ 1,

qn = γ1 · · · γn .

Our first goal is to give a general result on the behaviour of Ha(qn; rn) for suitable
scales rn > 0. To do so, for a finitely supported probability measure μ on G we define
the separation rate as

Mn = min

{

d(g, h) : g, h ∈
n⋃

i=0

supp(μ∗i ) with g �= h

}

.

Furthermore, the random walk entropy of μ is given as

hμ = lim
n→∞

1

n
H(μ∗n) = inf

n≥1

1

n
H(μ∗n).

We first make the following basic observation. If rn < 1
2a Mn , then all the elements

in the support of qn are separated by at least 2arn . Therefore, the density of qnsa,rn
can be expressed as the weighted sum of the densities of xsa,rn with x ranging over
the elements in the support of qn . Thus it follows (by Lemma 2.3) that

Ha(qn; rn) = H(qn) ≥ nhμ. (1.3)

Our first result is a generalisation of (1.3) for arbitrary stopped random walks qηn for
a sequence of stopping times ηn . In order to deduce an analogue of (1.3), we require
that our stopping times satisfy a large deviation principle.

Definition 1.1 Let η = (ηn)n≥1 be a sequence of stopping times. Then we say that η

satisfies the large deviation principle if E[ηn] → ∞ as n → ∞ and for every ε > 0
there exists a δ > 0 such that for all sufficiently large n,

P
[|ηn − E[ηn]| ≥ ε · E[ηn]

] ≤ e−δ·E[ηn ].
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To state the first theorem, we note that we use the asymptotic notation as explained
at the end of the introduction.

Theorem 1.2 Letμ be a finitely supported probability measure on G. Let η = (ηn)n≥1
be a sequence of stopping times satisfying the large deviation principle and write
Ln = E[ηn] for n ≥ 1. Let a ≥ 1, ε > 0 and let rn > 0 be a sequence satisfying for
all n ≥ 1,

rn ≤ a−1cGM
(1+ε)Ln�

for a constant cG > 0 depending only on G. Then for all n ≥ 1,

Ha(qηn ; rn) ≥ hμ · Ln + oμ,η,ε(Ln).

Denote

Sn = −1

n
logMn as well as Sμ = lim sup

n→∞
Sn .

In numerous concrete cases Sμ is finite and can be bounded efficiently. Indeed, if G
is a linear group and all of the entries of elements in the support of μ lie in a number
field K and have logarithmic height at most L , then Sμ �G L · [K : Q] as shown in
[9]*Proposition 8.10. Under the additional assumption that Sμ < ∞, the following
corollary can be deduced from Theorem 1.2.

Corollary 1.3 Let μ be a finitely supported probability measure on G and assume
that Sμ < ∞. Let η = (ηn)n≥1 be a sequence of stopping times satisfying the large
deviation principle and write Ln = E[ηn] for n ≥ 1. Suppose that a ≥ 1 and S > Sμ.
Then for any sequence 0 < rn < e−S·Ln as n → ∞,

Ha(qηn ; rn) ≥ hμ · Ln + oμ,η,a,S(Ln).

To provide some further context, we discuss the setting from [8, 9] where Corol-
lary 1.3 is used. A similarity is a map g : Rd → R

d such that there exists a scalar
ρ(g) > 0, an orthogonal matrix U (g) ∈ O(d) and a vector b(g) ∈ R

d such that
g(x) = ρ(g)U (g)x + b(g) for all x ∈ R

d . Denote by G = Sim(Rd) the group of
similarities and let μ be a probability measure on Rd supported on finitely many con-
tractive similarities, that is, similarities g satisfying ρ(g) ∈ (0, 1). Then denote for
κ > 0 by ηκ the stopping time ηκ = inf{n ≥ 1 : ρ(qn) < κ}.

As shown in [9]*Lemma 3.9, ηκ satisfies a large deviation principle with

Ln = E[ηn] = log κ−1

|χμ| + oμ(log κ−1), for the logarithmic contraction rate χμ =
∫
log ρ(g) dμ(g). Under the assumption that Sμ < ∞, which is satisfied as discussed

above when all of the entries of elements in the support of μ are algebraic, it therefore
follows by Corollary 1.3 that for S > Sμ and 0 < rn < e−S·Ln ,

Ha(qηκ ; rn) ≥ (log κ−1)
hμ

|χμ| + oμ,η,a,S(log κ−1). (1.4)
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Results similar to (1.4) are an important component in the proof of the main the-
orems of [8, 9]. In fact, as discussed below, we will convert estimates such as (1.4)
into variance estimates. In [8, 9], these quantitative estimates will eventually allow us
to apply Berry-Esseen type results to establish absolute continuity or full dimension
of stationary measures. A similar approach is used in [7] to study the Furstenberg
measure of SL2(R). In this paper, we provide a unified perspective on these results
that can be applied to any Lie group.

We next address the second goal of this paper, which is to convert entropy estimates
into variance estimates on arbitrary Lie groups. Indeed, the reader may recall that if
Z is an absolutely continuous random variable on R with variance σ 2 then

H(Z) ≤ 1

2
log(2πeσ 2), (1.5)

where H(Z) is the differential entropy of Z and equality holds in (1.5) if and only if
Z is distributed like a centred Gaussian with variance σ 2. We will prove an analogue
of this fact on Lie groups. To do so, for random variables g that are supported within
small balls of a given point g0 we consider the covariance matrix of the Lie group
logarithm applied to g−1

0 g. This viewpoint allows us to apply a higher dimensional
analogue of (1.5) to deduce an analogous result on G.

For an �-dimensional random variable X , we denote by tr(X) the trace of the
covariance matrix of X . In particular, we use the following definition. Given g0 ∈ G
and a random variable g on G we define

trg0(g) = tr(log(g−1
0 g)),

whenever log(g−1
0 g) is defined. The analogue of (1.5), which will be proved in Propo-

sition 4.1, then amounts to

H(g) ≤ �

2
log

(
2πe

�
· trg0(g)

)

+ OG(ε) (1.6)

for random variables g supported on Bε(g0) and ε > 0 sufficiently small.
To make the latter more useful, we can relate a certain notion of trace to entropy

between scales. One defines the entropy between scales r1, r2 > 0 as

Ha(g; r1|r2) = H(g; sr1,a |sr2,a) = Ha(g; r1) − Ha(g; r2)
= (H(gsr1,a) − H(sr1,a)) − (H(gsr2,a) − H(sr2,a)).

Roughly speaking, Ha(g; r1|r2) measures how much more information g has on scale
r1 than it has on scale r2.

We furthermore define tr(g; r) to be the supremum of all t ≥ 0 such that we can
find some σ -algebra A and some A -measurable random variable h taking values in
G such that

| log(h−1g)| ≤ r and E[trh(g|A )] ≥ t · r2.
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The following general result can be deduced.

Theorem 1.4 Let g be a random variable taking values in G, let a ≥ 1 and r > 0 be
such that ar is sufficiently small in terms of G and assume that g, sa,r and sa,2r are
independent random variables. Then

tr(g; 2ar) 
G a−2(Ha(g; r |2r) − OG(e−a2/4 + a3r)),

for the implied constants depending only on G.

The conditional distribution (g|A ) becomes relevant as we can relate the entropy
between scales Ha(g; r |2r) to the conditional entropy H(gsa,r1 |gsa,r1) as shown in
Lemma 2.10 and Proposition 4.3.

In our applications [7–9] it is desirable to convert an entropy gap into lower bounds
of

∑m
i=1 tr(g; si ) for a sequence of scales s1, . . . , sm ∈ (r1, r2). It will be also useful

to assume that our scales satisfy si+1 ≥ Asi for some A > 0. Indeed, the latter
condition is necessary to make the variance summation method [7–9] applicable, that
is to combine variance bounds of stopped random walks on different scales.

Using Theorem 1.4, we deduce the following general proposition applied in [9] and
[8].

Proposition 1.5 Let g be a G-valued random variable independent of (sa,r )a≥1,r>0
and let 0 < r1 < r2. Let a ≥ 1 such that ar2 is sufficiently small in terms of G. Suppose
that for all r ′

1 ∈ [r1, 2r1] as well as r ′
2 ∈ [r2/2, 2r2] it holds for some constant C > 0

that

Ha(g; r ′
1|r ′

2) ≥ C .

Let A > 1. Then there exists s1, . . . , sm ∈ (ar1, 4ar2) where m = 
 log 4ar2−log ar1
2 log A �

such that for N =
⌈
log r2−log r1

log 2

⌉
− 1,

m∑

i=1

tr(g; si ) 
G
C − N · OG(e− a2

4 + a3r2)

a2 log A

and si+1 ≥ Asi for all 1 ≤ i ≤ m − 1.

We comment on the structure of this paper. After discussing basic properties of
entropy in Sect. 2, we prove Theorem 1.2 and Corollary 1.3 in Sect. 3. In Sect. 4 we
show (1.6) and Theorem 1.4. Finally, we prove Proposition 1.5 in Sect. 5.

Notation

We use the asymptotic notation A � B or A = O(B) to denote that |A| ≤ CB for a
constantC > 0. If the constantC depends on additional parameters we add subscripts.
Moreover, A � B denotes A � B and B � A. For a sequence An and Bn we write
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An = o(Bn) to denote that An/Bn → 0 as n → ∞ and we add subscripts to indicate
that the speed of convergence depends on certain parameters.

We write [n] = {1, . . . , n}.
It is assumed throughout this paper that the random variables (sa,r )a≥1,r>0 as

defined in (1.1) are independent. Whenever g will denote a G-valued random vari-
able, it will be assumed that g is independent of (sa,r )a≥1,r>0. Given a probability
measureμ, we sample independent μ-distributed random variables γ1, γ2, . . . that are
independent from (sa,r )a≥1,r>0.

2 Basic Properties of Entropy on Lie Groups

In Sect. 2.1 we give definitions and discuss basic properties of entropy on G, after
which we discuss the Kullback-Leibler divergence on a general measurable space X
in Sect. 2.2. In Sect. 2.3 we review regular conditional distributions in order to study
conditional entropy and conditional trace in Sects. 2.4 and 4.

2.1 Entropy and Basic Properties

For notational convenience, we denote for x ∈ [0,∞) by

h(x) =
{

−x log(x) if x > 0

0 if x = 0

and recall that h is concave. If λ = ∑
i piδgi is a discrete probability measure on G,

we define the Shannon entropy of λ as

H(λ) =
∑

i

h(pi ).

On the other hand, given an absolutely continuous probability measure λ on G with
density fλ we define

H(λ) =
∫

h( fλ) dmG .

We extend the definition to finite positive measures λ that are either absolutely con-
tinuous or discrete by setting

H(λ) = ||λ||1H(λ/||λ||1), where ||λ||1 = λ(G).

In this subsection we collect some useful basic properties of entropy.

Lemma 2.1 Let λ1, . . . , λn be absolutely continuous finite measures on G. Then

H(λ1 + . . . + λn) ≥ H(λ1) + . . . + H(λn).
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Proof It suffices to prove the claim for n = 2. Let f1 and f2 be the densities of λ1 and
λ2. Then since h is concave

H(λ1 + λ2) = (||λ1||1 + ||λ2||1)
∫

h

(
f1 + f2

||λ1||1 + ||λ2||1
)

dmG

≥ (||λ1||1 + ||λ2||1)
∫ ||λ1||1

||λ1||1 + ||λ2||1 h
(

f1
||λ1||1

)

dmG

+ (||λ1||1 + ||λ2||1)
∫ ||λ2||1

||λ1||1 + ||λ2||1 h
(

f2
||λ2||1

)

dmG

= H(λ1) + H(λ2).

��
Lemma 2.2 Let p = (p1, p2, . . .) be a probability vector and let λ1, λ2, . . . be proba-
bilitymeasures onG either all absolutely continuousmeasures or all discretemeasures
with finite entropy such that ||λi ||1 = pi . Then

H

( ∞∑

i=1

λi

)

≤ H(p) +
∞∑

i=1

H(λi ).

In particular, if pi = 0 for all i > k for some k ≥ 1 then

H

(
k∑

i=1

λi

)

≤ log k +
k∑

i=1

H(λi ).

Proof We only consider the case of absolutely continuous measures as the proof is
analogous in the discrete case.Denote the densities ofλi by fi . Note that h(

∑∞
i=1 ai ) ≤∑∞

i=1 h(ai ) for any a1, a2, . . . ≥ 0. Therefore

H

( ∞∑

i=1

λi

)

=
∫

h

( ∞∑

i=1

fi

)

dmG

≤
∞∑

i=1

∫

h( fi ) dmG

=
∞∑

i=1

∫

(− fi (x) log(p
−1
i fi ) − fi (x) log(pi )) dmG

=
∞∑

i=1

∫

pi h(p−1
i fi )dmG + h(pi )

= H(p) +
∞∑

i=1

H(λi ).

��
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Lemma 2.3 Let λ1 be a discrete and λ2 be an absolutely continuous probability mea-
sure on G. Then

H(λ1 ∗ λ2) ≤ H(λ1) + H(λ2)

Suppose further that λ1 is supported on finitely many points with separation at least
2r and that the support of λ2 is contained in a ball of radius r . Then

H(λ1 ∗ λ2) = H(λ1) + H(λ2).

Proof Writeλ1 = ∑n
i=1 piδgi and let f be the density ofλ2. Then the density ofλ1∗λ2

is given by
∑n

i=1 pi f ◦ g−1
i . As h(

∑n
i=1 ai ) ≤ ∑n

i=1 h(ai ) for any a1, . . . , an ≥ 0,

H(λ1 ∗ λ2) =
∫

h

(
n∑

i=1

pi f ◦ g−1
i

)

dmG

≤
n∑

i=1

∫

h(pi f ◦ g−1
i ) dmG

=
n∑

i=1

∫

(pi f ◦ g−1
i )(log(pi ) + log( f ◦ g−1

i )) dmG

= H(λ1) + H(λ2).

Ifλ1 is supported on finitelymany pointswith separation at least 2r and that the support
of λ2 is contained in a ball of radius r , then the support of the functions f ◦ g−1

i is
disjoint and the inequality in the second line is an equality. ��

2.2 Kullback–Leibler Divergence

In this section we discuss Kullback–Leibler divergence on general measurable spaces
X . If ν � μ are measures on X , then we define the Kullback–Leibler divergence as

DKL(ν || μ) = −
∫

log
dν

dμ
dν.

Observe that if ν is absolutely continuous on G with respect to the Haar measure mG ,
then H(ν) = DKL(ν ||mG). We collect some basic results on the Kullback-Leibler
divergence on X .

Lemma 2.4 Let ν � μ be measures on G and assume that ν is a probability measure
supported on a set A of positive μ measure. Then

DKL(ν || μ) ≤ log(μ(A)).

123
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Proof For convenience write dν = fν dμ. Then by Jensen’s inequality,

DKL(ν || μ) =
∫

A
h

(

fν
μ(A)

μ(A)

)

dμ =
∫

h( fνμ(A))
1A

μ(A)
dμ + log(μ(A))

≤ log(μ(A)).

��

Lemma 2.5 Assume that we can write X = X1 × . . . × Xm as a product of sub-
manifolds Xi ⊂ X and assume that mX = mX1 × . . . ×mXm for a measure mX on X
and measures mXi on Xi . Let μ be a probability measure on X with μ � mG. Denote
by πi the projection from X to Xi and by πiμ the pushforward of μ under πi . Then

DKL(μ ||mX ) ≤ DKL(π1μ ||mX1) + . . . + DKL(πmμ ||mXm ).

Proof It suffices to prove the claim for m = 2. Denote by fμ the density of μ with
respect to mX and write

f 1μ(x2) =
∫

fμ(x1, x2) dmX1(x1) and f 2μ(x1) =
∫

fμ(x1, x2) dmX2(x2).

Therefore,

DKL(μ ||mX ) =
∫ ∫

h( fμ(x1, x2)) dmX1(x1)dmX2(x2)

=
∫ ∫

h

(
fμ(x1, x2)

f 2μ(x1)
f 2μ(x1)

)

dmX1(x1)dmX2(x2)

=
∫ ∫

h

(
fμ(x1, x2)

f 2μ(x1)

)

f 2μ(x1) dmX1(x1)dmX2(x2)

+
∫ ∫

− log( f 2μ(x1)) fμ(x1, x2) dmX1(x1)dmX2(x2)

≤
∫

h( f 1μ(x2)) dmX2(x2) +
∫

h( f 2μ(x1)) dmX1(x1)

= DKL(π1μ ||mX1) + DKL(π2μ ||mX2),

having used that h is concave and Jensen’s inequality in the penultimate line. ��

Lemma 2.6 Let (X ,mX ) and (Y ,mY ) be a locally compact Hausdorff space endowed
with Radon measures, and let � : X → Y be a homeomorphism with �∗mX = mY .
Then for a measure ν � mX on X it holds that

DKL(�∗ν||mY ) = DKL(ν||mX ).

123
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Proof Let f : Y → R be a continuous compactly supported function. Then

∫

f d�∗ν =
∫

( f ◦ �) dν =
∫

( f ◦ �)
dν

dmX
dmX

as well as

∫

f d�∗ν =
∫

f
d�∗ν
dmY

dmY

=
∫

f
d�∗ν
dmY

d�∗mX =
∫

( f ◦ �)

(
d�∗ν
dmY

◦ �

)

dmX .

Since � is a homeomorphism, every continuous compactly supported function g :
X → R can be written as g = f ◦ � for f : Y → R a continuous compactly
supported function. Therefore, using the Riesz Representation Theorem, it holds that
mX -almost surely

d�∗ν
dmY

◦ � = dν

dmX

and thus

DKL(�∗ν||mY ) = −
∫

log
d�∗ν
dmY

d�∗ν

= −
∫

log

(
d�∗ν
dmY

◦ �

)

dν

= −
∫

log

(
dν

dmX

)

dν = DKL(ν||mX ).

��
Lemma 2.7 Let λ1 be a probability measure on X and let λ2 and λ3 be measures on
X such that λ1 � λ2 and λ2 � λ3. Let U ⊂ X and suppose that the support of λ1 is
contained in U. Then

|DKL(λ1 || λ2) − DKL(λ1 || λ3)| ≤ sup
x∈U

∣
∣
∣
∣ log

dλ2

dλ3

∣
∣
∣
∣.

Proof We calculate

|DKL(λ1 || λ2) − DKL(λ1 || λ3)| =
∣
∣
∣
∣

∫

U
log

dλ1

dλ2
dλ1 −

∫

U
log

dλ1

dλ3
dλ1

∣
∣
∣
∣

≤
∫

U

∣
∣
∣
∣ log

dλ1

dλ2
− log

dλ1

dλ3

∣
∣
∣
∣ dλ1
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=
∫

U

∣
∣
∣
∣ log

dλ2

dλ3

∣
∣
∣
∣ dλ1

≤ sup
x∈U

∣
∣
∣
∣ log

dλ2

dλ3

∣
∣
∣
∣.

��

2.3 Regular Conditional Distributions

In this section we review the definition of regular conditional distributions that will
be used in the following subsections in order to discuss conditional entropy. On a
probability space (�,F ,P), we denote the conditional expectation by E[ f |A ] for
f ∈ L1(�,F ,P) and a σ -algebra A ⊂ F . Given two measurable spaces (�1,A1)

and (�2,A2), recall that a Markov kernel on (�1,A1) and (�2,A2) is a map κ :
�1 × A2 → [0, 1] if for any A2 ∈ A2, the map κ(·, A2) is A1-measurable and for
any ω1 the map A2 → κ(ω1, A2) is a probability measure.

Definition 2.8 Let (�,F ,P) be a probability space and let A ⊂ F be a σ -algebra.
Let (E, ξ) be a measurable space and let Y : (�,F ) → (E, ξ) be a random variable.
Then we say that a Markov kernel

(Y |A ) : � × ξ → [0, 1]

on (�,A ) and (E, ξ) is a regular conditional distribution if for all B ∈ ξ ,

(Y |A )(ω, B) = P[Y ∈ B |A ](ω) = E[1Y−1(B) |A ](ω).

In other words,

E[(Y |A )(·, B)1A] = P[A ∩ {Y ∈ B}]

for all A ∈ A .

Regular conditional distributions existwhenever (�,F ,P) is a standardprobability
space. To give a construction, recall (c.f. section 3 of [3]) that there exist conditional
measures PAω uniquely characterised by

E[ f |A ](ω) =
∫

f dPAω .

Then

(Y |A )(ω, ·) = Y∗PAω

Indeed, for B ∈ ξ ,

(Y |A )(ω, B) = E[1Y−1(B)|A ](ω) =
∫

1Y−1(B) dP
A
ω = P

A
ω (Y−1(B)) = Y∗PAω (B).
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We denote by [Y |A ] a random variable defined on a separate probability space with
law (Y |A ).

We recall that given two further σ -algebras G1,G2 ⊂ F , we say that they are
independent given A if for all U ∈ G1 and V ∈ G2

P[U ∩ V |A ] = P[U |A ]P[V |A ]

almost surely. Similarly, two random variables Y1 and Y2 are independent given A if
the σ -algebra they generate are. Note that if Y1 isA -measurable, then it is independent
given A to every random variable Y2.

Given a topological group G and two measures μ1 and μ2 we recall that the con-
volution μ1 ∗ μ2 is defined as

(μ1 ∗ μ2)(B) =
∫ ∫

1B(gh) dμ1(g)dμ2(h)

for any measurable set B ⊂ G.

Lemma 2.9 Let (�,F ,P) be a probability space, G be a topological group and g, h
be G-valued random variables. LetA ⊂ F be a σ -algebra and assume that g and h
are independent given A . Then the following properties hold:

(i) (gh|A ) = (g|A ) ∗ (h|A ) almost surely.
(ii) [gh|A ] = [g|A ] · [h|A ] almost surely.
Proof To show (i), we note that by assumption g and h are independent with respect
to PAω for almost all ω ∈ �. This implies that for f : G → R a continuous compactly
supported function,

E
PAω

[ f (gh)] = E
PAω

[E
PAω

[ f (gh)|h]] = E(z1,z2)∼PAω ×PAω
[ f (g(z1)h(z2))],

proving (i). (ii) follows from (i) on a suitable separate probability space. ��
The aim of this subsection is to prove an abstract result relating entropy between

scales and the trace. To do so, we first discuss conditional entropy and conditional
trace. Let Y be a random variable on a probability space (�,F ,P) and A ⊂ F
be a σ -algebra. Denote by (Y |A ) the regular conditional distribution as defined in
Sect. 2.3. Assuming that (Y |A ) is almost surely absolutely continuous, we define

H((Y |A ))(ω) = H((Y |A )(ω)).

Recall that if X1 and X2 are two random variables, then entropy of X1 given X2 is
H(X1|X2) = H(X1, X2) − H(X2). If X1 and X2 have finite entropy and finite joint
entropy, then by [11]*Proposition 3,

H(X1|X2) = E[H((X1|X2))]. (2.1)
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2.4 Conditional Entropy

We next give an abstract definition of the entropy at a scale for a smoothing functions
s. Indeed, let g and s be random variables on G and assume that s is absolutely
continuous. Then the entropy at scale s is defined as

H(g; s) = H(gs) − H(s)

Moreover, if s1 and s2 are absolutely continuous smoothing functions we define the
entropy between scales s1 and s2 as

H(g; s1|s2) = H(g; s1) − H(g; s2).
The following basic result on the growth of conditional entropy holds.

Lemma 2.10 Let g, s1, s2 be independent random variables taking values in G.
Assume that s1 and s2 are absolutely continuous with finite differential entropy and
assume that gs1 and gs2 also have finite differential entropy. Then

H(gs1|gs2) ≥ H(g; s1|s2) + H(s1).

Proof Note that

H(gs2|gs1) ≥ H(gs2|g, s1) = H(gs2|g) = H(s2),

having used in the inequality that conditioning reduces entropy as in [2]*Section 8.6,
and so

H(gs2, gs1) = H(gs2|gs1) + H(gs1) ≥ H(gs1) + H(s2).

Therefore

H(gs1|gs2) = H(gs2, gs1) − H(gs2)

≥ H(gs1) − H(gs2) + H(s2)

≥ H(g; s1|s2) + H(s1).

��

3 Entropy Growth for Stopped RandomWalks

The reader may recall the definition of Ha(g; r) as given in (1.2). In this section we
prove Theorem 1.2, which we restate for convenience, and Corollary 1.3.

Given a probability measure μ, we sample independent μ-distributed random vari-
ables γ1, γ2, . . . that are independent from (sa,r )a≥1,r>0 and we denote

qn = γ1 · · · γn .
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Theorem 3.1 (Theorem 1.2) Let μ be a finitely supported probability measure on
G. Let η = (ηn)n≥1 be a sequence of stopping times satisfying the large deviation
principle and write Ln = E[ηn] for n ≥ 1. Let a ≥ 1, ε > 0 and let rn > 0 be a
sequence satisfying for all n ≥ 1,

rn ≤ a−1cGM
(1+ε)Ln�

for a constant cG > 0 depending only on G. Then for all n ≥ 1,

Ha(qηn ; rn) ≥ hμ · Ln + oμ,η,ε(Ln).

Recall that Ha(qηn ; rn) = H(qηn sa,rn ) − H(sa,rn ). To give the proof idea, note
that by assuming a large deviation principle, with high probability ηn ≈ E[ηn]. Also,
by definition of hμ, we have that H(qLn ) ≥ hμ · Ln . On the other hand, sa,rn is
mostly contained in a ball around the identity with radius O(MLn ), and therefore by
Lemma 2.3 we have H(qLn · sa,rn ) = H(qLn ) + H(sa,rn ), which implies the claim.
We proceed with a more rigorous proof.

Proof We note that if the assumption holds for some ε, it holds for all sufficiently
small ε. Therefore it suffices to show that for all sufficiently small fixed ε > 0 we
have that

Ha(qηn ; rn) ≥ hμ · Ln + Oμ,η(εLn) + oμ,η,ε(Ln).

So fix some ε > 0 which is sufficiently small in terms of μ and consider η′
n as

η′
n =

⎧
⎪⎨

⎪⎩


(1 + ε)Ln� if ηn > 
(1 + ε)Ln�,
�(1 − ε)Ln� if ηn < �(1 − ε)Ln�,
ηn otherwise.

For a random variable X denote by L(X) its law. Furthermore, given an event A, we
will denote by L(X)|A the measure given by the push forward of the restriction of P
to A under the random variable X . Note that ‖L(X)|A ‖1 = P[A].

By applying Lemma 2.1,

H(qηn sa,rn ) = H(L(qηn ) ∗ L(sa,rn ))

≥ H(L(qηn )|ηn=η′
n
∗ L(sa,rn )) + H(L(qηn )|ηn �=η′

n
∗ L(sa,rn ))

≥ H(L(qηn )|ηn=η′
n
∗ L(sa,rn )) + P[ηn �= η′

n]H(L(sa,rn )), (3.1)

having used that

H(L(qηn )|ηn �=η′
n
∗ L(sa,rn )) ≥ P[ηn �= η′

n]H(L(sa,rn )),

which can be shown by conditioning on qn (as conditioning reduces entropy
[2]*Section 8.6) and using that qn and sa,rn are independent.
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We next apply that sa,rn has small support. Indeed, as d(sa,rn , e) �G rna =
o(M
Ln(1+ε)�) it follows that if n is sufficiently large,

d(sa,rn , Id) <
1

2
M
Ln(1+ε)� ≤ 1

2
min

x,y∈supp(qη′
n
),x �=y

d(x, y).

In particular, by Lemma 2.3,

H(L(qηn )|ηn=η′
n
∗ L(sa,rn )) = H(L(qηn )|ηn=η′

n
) + P[ηn = η′

n]H(L(sa,rn )).

(3.2)

Combining (3.2) with (3.1),

H(qηn sa,rn ) ≥ H(L(qηn )|ηn=η′
n
) + H(sa,rn ).

It remains to estimate H(L(qηn )|ηn=η′
n
). Consider the random variable

X ′ = (q�(1−ε)Ln�, γ�(1−ε)Ln�+1, γ�(1−ε)Ln�+2, . . . , γ
(1+ε)Ln�).

As qη′
n
is completely determined by X ′, we have H(X ′|qη′

n
) = H(X ′) − H(qη′

n
).

Let K be the number of points in the support of μ. Note that if

γ�(1−ε)Ln�+1, γ�(1−ε)Ln�+2, . . . , γ
(1+ε)Ln�

and η′
n are fixed, then for any possible value of qη′

n
there is at most one choice of

q�(1−ε)Ln� which would lead to this value of qη′
n
. Therefore for each y in the image

of qη′
n
there are at most (2εLn + 2)K 2εLn+2 elements x in the image of X ′ such that

P[X ′ = x ∩ qη′
n

= y] > 0. Therefore (X ′|qη′
n
) is almost surely supported on less than

(2εLn + 2)K 2εLn+2 points and hence by (2.1),

H(X ′|qη′
n
) ≤ log

(
(2εLn + 2)K 2εLn+2

)
≤ 2ε log K · Ln + oμ,ε(Ln).

On the other hand,

H(X ′) ≥ H(q�Ln�) ≥ hμ · �Ln� (3.3)

and therefore

H(qη′
n
) ≥ (hμ − 2ε log K )Ln − oμ,ε(Ln).

To continue, we note that by Lemma 2.2,

H(qη′
n
) ≤ H(L(qη′

n
)|ηn=η′

n
) + H(L(qη′

n
)|ηn �=η′

n
) + log 2. (3.4)
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We wish to bound H(L(qη′
n
)|ηn=η′

n
) from below. By the large deviation principle,

P[ηn �= η′
n] ≤ αLn for α ∈ (0, 1) only depending on ε and μ. We also know that

conditional on ηn �= η′
n , there are at most 2K 
(1+ε)m� possible values for qη′

n
and

therefore

H(L(qη′
n
)|ηn �=η′

n
) ≤ αLn log

(
2K 
(1+ε)Ln�

)
= oμ,ε(Ln).

This implies

H(L(qη′
n
)|ηn=η′

n
) ≥ (hμ − 2ε log K )Ln − oμ,η,ε(Ln),

concluding the proof. ��
Proof (of Corollary 1.3) For sufficiently small ε > 0 it holds that as Ln → ∞ that

e−S·Ln = o(e−S
(1+ε)Ln�·
(1+ε)Ln�) = o(M
(1+ε)Ln�)

as S > (1+ ε)Sm for all sufficiently large m. The claim follows from Theorem 3.1. ��

4 Entropy and Trace on Lie groups

In this section we prove (1.6) in Sect. 4.1 and in Sect. 4.3 we establish Theorem 1.4.
In Sect. 4.2 an auxiliary result necessary for the proof of Theorem 1.4 will be shown.

4.1 Entropy and Trace

In this subsection we prove (1.6). Recall that given g0 ∈ G and a random variable g
on G we define

trg0(g) = tr(log(g−1
0 g)),

whenever log(g−1
0 g) is defined.

Proposition 4.1 Let G be a Lie group of dimension �. Let ε > 0 and suppose that g is
a absolutely continuous random variable taking values in Bε(g0) for some g0 ∈ G. If
ε is sufficiently small depending on G,

H(g) ≤ �

2
log

(
2πe

�
· trg0(g)

)

+ OG(ε).

Proof Wefirst note that if X is an �-dimensional absolutely continuous random vector,
then

H(X) ≤ �

2
log

(
2πe

�
· tr(X)

)

(4.1)
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Indeed, it follows from the one-dimensional case (1.5) that H(X) ≤ 1
2 log((2πe)

� ·
|Var(X)|), where |Var(X)| is the determinant of the covariance matrix. Note that by
the AM-GM inequality |Var(X)| ≤ tr(X)��−�, which implies (4.1).

Since H(g−1
0 g) = H(g) and trg0(g) = tre(g

−1
0 g), we may assume without loss of

generality that g0 = e. The density dmG |Bε(e)
d(mg◦log)|Bε(e)

is smooth and for ε > 0 sufficiently

small is 1+ OG(ε) and therefore sup
∣
∣ log dmG |Bε(e)

d(mg◦log)|Bε(e)

∣
∣ �G ε. Thus by Lemma 2.7,

|DKL(g ||mG) − DKL(g ||mg ◦ log)| �G ε.

The claim follows since by (4.1)

DKL(g ||mg ◦ log) = DKL(log(g) ||mg) = H(log(g)) ≤ �

2
log

(
2πe

�
tre(g)

)

.

��

4.2 Conditional Trace and Entropy Between Scales

We next define the conditional trace of a random variable on G and relate it to the
entropy between scales.

Definition 4.2 Let g be a random variable defined on a probability space (�,F ,P)

and taking values in G. LetA ⊂ F be a σ -algebra let g0 be aA -measurable random
variable taking values onG. Thenwedenote by trg0(g |A ) theA -measurable function
given for ω ∈ � by

trg0(g |A )(ω) = trg0(ω)((g |A )(ω)),

whenever this expression is well-defined.

We note here that the variance of a measureμ is defined as the variance of a random
variable with law μ. It follows from Proposition 4.1 that when (g|A ) is almost surely
absolutely continuous,

H((g|A )) ≤ �

2
log

(
2πe

�
· trg0(g|A )

)

+ OG(ε). (4.2)

Proposition 4.3 Let g, s1 and s2 be independent absolutely continuous random vari-
ables taking values in G and suppose that s1 and s2 are supported on Bε for
some sufficiently small ε > 0 and have finite differential entropy. Write c =
�
2 log

2πe
�
tre(s1) − H(s1) and suppose that tre(s1) ≥ Aε2 for some constant A > 0.

Then

E[trgs2(g|gs2)] ≥ 2

�
(H(g; s1|s2) − c − OG(A−1ε))tre(s1).
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Wefirst prove some basic result on the trace of the product of two random variables.

Lemma 4.4 Let ε > 0 be sufficiently small and let a, b be random variables and
A a σ -algebra. Suppose that b is independent from a and A and let g0 be an A -
measurable random variable. Suppose that g−1

0 a and b are almost surely contained
in Bε. Then

trg0(ab|A ) = trg0(a|A ) + tre(b) + OG(ε3).

Note that under the assumptions of Lemma 4.4 it holds by Lemma 2.9 that

[ab|A ] = [a|A ][b|A ] = [a|A ]b.

Therefore the claim follows from the following unconditional version.

Lemma 4.5 Let ε > 0 be sufficiently small and let g and h be independent random
variables taking values in G. Suppose that the image of g is contained in Bε and the
image of h is contained in Bε(h0) for some h0 ∈ G. Then

trh0(hg) = trh0(h) + tre(g) + OG(ε3).

Proof Let X = log(h−1
0 h) and let Y = log(g). Then |X |, |Y | ≤ ε almost surely and

by Taylor’s theorem there is a random variable E with |E | � ε2 almost surely such
that

log(exp(X) exp(Y )) = X + Y + E .

Therefore

trh0(hg) = E[|X + Y + E |2] − |E[X + Y + E]|2
= E[|X + Y |2] − |E[X + Y ]|2

+ 2E[(X + Y ) · E] + E[|E |2] − 2E[X + Y ]E[E] − |E[E]|2
= Var[X + Y ] + OG(ε3) = Var[X ] + Var[Y ] + OG(ε3).

��
Proof (of Proposition 4.3) We note that by (2.1) and Lemma 2.10, it holds that

E[H((gs1|gs2))] ≥ H(g; s1|s2) + H(s1)

and so by (4.2),

E

[
�

2
log

2πe

�
trgs2(gs1|gs2)

]

+ OG(ε) ≥ H(g; s1|s2) + H(s1).
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Note that (gs2)−1g = s−1
2 , which is contained in Bε(e). Therefore by Lemma 4.4,

trgs2(gs1|gs2) ≤ trgs2(g|gs2) + tre(s1) + OG(ε3)

and so

H(g; s1|s2) + H(s1) ≤ E

[
�

2
log

2πe

�

(
trgs2(g|gs2) + tre(s1) + OG(ε3)

)]

+ OG(ε).

Thus

2

�
(H(g; s1|s2) − c) ≤ E

[

log

(

1 + trgs2(g|gs2)
tre(s1)

+ OG(A−1ε)

)]

.

Using that log(1 + x) ≤ x for x ≥ 0, we conclude the claim. ��

4.3 Proof of Theorem 1.4

The proof relies on the following lemma. We recall from the introduction that βa,r is
the random variable with density function fa,r : g → R given by

fa,r (x) =
⎧
⎨

⎩
Ca,r e

− |x |2
2r2 if |x | ≤ ar ,

0 otherwise,

where Ca,r is a normalising constant to ensure that fa,r integrates to 1.

Lemma 4.6 The following properties hold for r > 0 and a ≥ 1:

(i) �r2 � tr(βa,r ) ≤ �r2 and for ηa,r the distribution of βa,r ,

H(ηa,r ) = �

2
log 2πer2 + O�(e

−a2/4).

(ii) If ar is sufficiently small, �r2 � tre(sa,r ) ≤ �r2 and

H(sa,r ) = �

2
log 2πer2 + O�(e

−a2/4) + OG(ar).

Proof We note that (ii) follows from (i). To prove (i), we deal initially with the r = 1
case. Note first that

∫

x∈R�,|x |≤a
e−|x |2/2 dx ≤

∫

x∈R�

e−|x |2/2 dx =
�∏

i=1

∫

R

e−x2i /2 dxi = (2π)�/2
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and by using spherical coordinates

∫

x∈R�,|x |≥a
e−|x |2/2 dx = c�

∫ ∞

a
u�−1e−u2/2 du

��

∫ ∞

a
e−u2/3 du ≤

∫ ∞

a
e−au/3 du = 3

a
e−a2/3 �� e

−a2/4.

Thus we conclude

∫

x∈R�,|x |≤a
e−|x |2/2 dx = (2π)�/2 −

∫

x∈R�,|x |≥a
e−||x ||2/2 dx

≥ (2π)�/2 − O�(e
−a2/4)

and therefore C1,a = (2π)−�/2 + O�(e−a2/4). We are now in a suitable position to
calculate H(η1,a). Indeed,

H(η1,a) =
∫

|x |≤a
−C1,ae

−|x |2/2 log
(
C1,ae

−|x |2/2) dx

=
∫

|x |≤a
C1,a

( |x |2
2

− logC1,a

)

e−|x |2/2 dx

We calculate

∫

x∈R�

C1,a

( |x |2
2

− logC1,a

)

e−|x |2/2 dx

= (2π)�/2C1,a

(
�

2
− logC1,a

)

=
(
1 + O�(e

−a2/4)
)(

�

2
log e + �

2
log 2π + O�(e

−a2/4)

)

= �

2
log 2πe + O�(e

−a2/4).

and again using spherical coordinates,

∫

|x |≥a
C1,a

( |x |2
2

− logC1,a

)

e−|x |2/2 dx

= c�

∫ ∞

a
C1,a

(
u2

2
− logC1,a

)

u�−1e−u2/2 dx

�� O�(e
−a2/4).

Thus the claimed bound on H(η1,a) follows. Since fa,r (x) = r�C1,a f1,a(x/r) it
follows that H(ηa,r ) = log(r�) + H(η1,a) and hence the proof is complete. ��
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Proof (of Theorem 1.4) We apply Proposition 4.3 to s1 = sa,r and s2 = sa,2r and
we set ε = �ar . By Lemma 4.6 (ii) we have that tre(s1) 
G �r2 
G a−2ε2 and
c = �

2 log
2πe
�
tre(s1) − H(s1) ≤ OG(e−a2/4 + ar). Applying Proposition 4.3 with

A = a−2,

E[trgs2(g|gs2)] 
G r2(Ha(g; r |2r) − OG(e−a2/4 + a3r)).

On the other hand, we have that | log((gs2)−1g)| = | log s2| ≤ 2ar and therefore

tr(g; 2ar) ≥ (2ar)−2
E[trgs2(g|gs2)] 
G a−2(Ha(g; r |2r) − OG(e−a2/4 + a3r)).

��

5 From Entropy Gap to Trace Sum

In this section we prove Proposition 1.5, which we deduce from the following two
propositions.

Proposition 5.1 Let g be a G-valued random variable independent of (sa,r )a≥1,r>0
and let 0 < r1 < r2. Let a ≥ 1 such that ar2 is sufficiently small in terms of G. Suppose
that for all r ′

1 ∈ [r1, 2r1] as well as r ′
2 ∈ [r2/2, 2r2] it holds for some constant C > 0

that

Ha(g; r ′
1|r ′

2) ≥ C .

Then

∫ 4ar2

ar1

1

u
tr(g; u) du 
G a−2(C − N · (OG(e− a2

4 + a3r2))

for N =
⌈
log r2−log r1

log 2

⌉
− 1.

Proof Let a ≥ 1 and set N =
⌈
log r2−log r1

log 2

⌉
− 1. Note that 2N+1r1 ≥ r2 as well as

2Nr1 ≤ r2.
Given u ∈ [1, 2) and an integer 1 ≤ i ≤ N denote

ki (u) = Ha(g; 2i−1ur1|2i ur1).

Then by Theorem 1.4, there is some constant c = c(G) > 0 depending only on G
such that

tr(g; a2i ur1) ≥ ca−2(ki (u) − OG(e−a2/4 + a32i r1)). (5.1)
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Thus

N∑

i=1

tr(g; a2i ur1) ≥ ca−2

(
N∑

i=1

ki (u) − OG(Ne− a2
4 + Na32Nr1)

)

.

Note that for u ∈ [1, 2) we have a2N+1ur1 ≤ 4ar2 and aur1 ≥ ar1. Therefore, upon
substituting v = a2i ur1 in the third line,

∫ 4ar2

ar1

1

v
tr(g; v) dv ≥

N∑

i=1

∫ a2i+1ur1

a2i ur1

1

v
tr(g; v) dv

≥
N∑

i=1

∫ 2

1

1

u
tr(g; a2i ur1) du

≥ ca−2
∫ 2

1

1

u

(
N∑

i=1

ki (u) − OG(Ne− a2
4 + Na32Nr1)

)

du.

(5.2)

Observe that by our assumption
∑N

i=1 ki (u) = Ha(g; ur1|2Nur1) ≥ C and there-
fore the claim follows using that 2Nr1 ≤ r2. ��
Proposition 5.2 Suppose that for a G-valued random variable g and 0 < r1 < r2 we
have for some constant C1 > 0 that

∫ r2

r1

1

u
tr(g; u) du ≥ C1.

Let A > 1. Then there exists s1, . . . , sm ∈ (r1, r2) where m = 
 log r2−log r1
2 log A � such that

m∑

i=1

tr(g; si ) ≥ C1

4 log A
and si+1 ≥ Asi

for all 1 ≤ i ≤ m − 1.

Proof Define a1, a2, . . . , a2m+1 by ai = r1Ai−1. Therefore a1 = r1 and a2m+1 ≥ r2.
Let U and V be defined by

U =
m⋃

i=1

[a2i−1, a2i ) and V =
m⋃

i=1

[a2i , a2i+1).

Without loss of generality, upon replacing U with V , by our assumption

∫

U

1

u
tr(g; u) du ≥ C1/2.
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For i ∈ [m] let si ∈ (a2i−1, a2i ) be chosen such that

tr(g; si ) ≥ 1

2
sup

u∈(a2i−1,a2i )
tr(g; u).

In particular,

tr(g; si ) ≥ 1

2 log A

∫ a2i

a2i−1

1

u
tr(g; u) du.

Summing over i gives

m∑

i=1

tr(g; si ) ≥ 1

2 log A

∫

U

1

u
tr(g; u) du ≥ C1

4 log A
.

��
To deduce Proposition 1.5, one uses Proposition 5.2 with the range (ar1, 4ar2) and

with

C1 = a−2(C − N · (OG(e− a2
4 + a3r2)).
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