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Abstract

We develop entropy and variance results for the product of independent identically
distributed random variables on Lie groups. Our results apply to the study of stationary
measures in various contexts.
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1 Introduction

Entropy is a central tool in the study of random walks. For example, as exposed in
the book by Johnson [6], entropic methods can be used to prove the central limit
theorem on R¥ as well as equidistribution of random walks on compact groups. More
recently, entropy results have been applied in the study of stationary measures as in
the work of Hochman [4, 5] on the dimension of self-similar measures, of Barany-
Hochman-Rapaport [ 1] for self-affine measures, or of Varji [10] to construct absolutely
continuous Bernoulli convolutions.

The aim of this paper is to establish entropy and variance bounds for smoothings
of random walks on arbitrary Lie groups. We strive to be as general as feasible to
ensure applicability to various settings. Our results generalise the entropy and variance
bounds previously established in [7] for SL,(R), which were developed to construct
absolutely continuous Furstenberg measures. Furthermore, the results presented here
have been applied in [8, 9] to study self-similar measures. We anticipate that this paper
will contribute to the investigation of random walks of Lie group actions on manifolds
in various contexts.

Throughout this paper, let G be areal Lie group of dimension £ and denote by g the
Lie algebra of G. We fix an inner product on g, inducing an associated norm | o | and a
left-invariant metric d on G. Also, denote by log : G — g the logarithm on G, which
is defined in a small neighbourhood around the identity. For g € G we write B.(g) for
the open e-ball around g and abbreviate B, = B, (Id) for Id the identity in G. Finally,
mg is the Haar measure on G that is normalised such that m¢ (Bg)/mg(log B;) — 1
as ¢ — 0, where m is the volume measure induced by the fixed inner product on g.

Given a G-valued random variable g, we denote by

H(g)

the Shannon entropy of g when g is discrete and the differential entropy when g is
absolutely continuous. Precise definitions and some basic results are given in Sects. 2.1
and 2.2.

Similarly to [1, 4, 5] or [10], we study the entropy of a smoothing of g. If s is a
smoothing distribution independent of g, we can abstractly define the entropy of g
with respect to s as

H(g;s) = H(gs) — H(s).

Concretely, we will choose the following smoothing functions: for given r > 0 and
a > 1, denote by B, , a random variable on g with density function f,, : g — R
given by

2
Fur(x) = Cure 22 if|x| <ar,

otherwise,
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where C, , is anormalising constant to ensure that f, , integrates to 1. We furthermore
set

Sa,r = exp(lga,r) (1.1

and then define the entropy of g at scale r > 0 with respect to the parameter a > 1 as
H,(g;r) = H(g; Sa,r) = H(gsa,r) - H(Sa,r)~ (1.2)

Entropy at scale r measures the amount of information g has at scale r. The parameter
a is useful in order to uniformly control how far B, , is from a normal distribution. The
reason we are working with these smoothing functions on G is to deduce in Lemma 4.6
a quantitative analogue of (1.6). It is assumed throughout this paper that the collection
of random variables g and (s, r)4>1.r~0 are independent.

Let 1 be a probability measure on G and let yy, y», . . . be independent p-distributed
random variables that are independent from (s, ;)4>1,-~0 and denote forn > 1,

qn =VY1"" " Vn-

Our first goal is to give a general result on the behaviour of H,(q,; r,) for suitable
scales r,, > 0. To do so, for a finitely supported probability measure ; on G we define
the separation rate as

n
M, =min {d(g.h): g.h €| Jsupp(u*) with g # h} .
i=0

Furthermore, the random walk entropy of u is given as
: 1 *n : 1 *n
hy, = lim —H(u™) =inf —H(u™).
n—oo n n>1n

We first make the following basic observation. If r,, < ﬁMn, then all the elements
in the support of g, are separated by at least 2ar,. Therefore, the density of g,54.,
can be expressed as the weighted sum of the densities of xs, ,,, with x ranging over
the elements in the support of g,. Thus it follows (by Lemma 2.3) that

Hy(qn: ra) = H(qn) = nhy,. (1.3)

Our first result is a generalisation of (1.3) for arbitrary stopped random walks ¢, for
a sequence of stopping times 7,,. In order to deduce an analogue of (1.3), we require
that our stopping times satisfy a large deviation principle.

Definition 1.1 Let n = (17,),>1 be a sequence of stopping times. Then we say that n
satisfies the large deviation principle if E[r,] — oo as n — oo and for every ¢ > 0
there exists a § > 0 such that for all sufficiently large n,

P17, — Elnall > & - E[n,]1] < e 2 lml,
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To state the first theorem, we note that we use the asymptotic notation as explained
at the end of the introduction.

Theorem 1.2 Let u be a finitely supported probability measure on G. Let n = (1) n>1
be a sequence of stopping times satisfying the large deviation principle and write
L, =E[n,]forn > 1. Leta > 1, ¢ > 0 and let r, > 0 be a sequence satisfying for
alln > 1,

In < aichM]'(H—s)L,,]
for a constant cg > 0 depending only on G. Then for alln > 1,
Ha(an; ry) > h;/. - L, + Ou,n,e(Ln)'

Denote

1
Sp = ——log M, as well as S, =limsup S,.
n n—o00

In numerous concrete cases S, is finite and can be bounded efficiently. Indeed, if G
is a linear group and all of the entries of elements in the support of w lie in a number
field K and have logarithmic height at most L, then S;, <g L - [K : Q] as shown in
[91*Proposition 8.10. Under the additional assumption that S, < oo, the following
corollary can be deduced from Theorem 1.2.

Corollary 1.3 Let p be a finitely supported probability measure on G and assume
that §;, < 00. Let 1 = (0,)u>1 be a sequence of stopping times satisfying the large
deviation principle and write L, = E[n,]forn > 1. Suppose thata > 1 and S > §,,.
Then for any sequence 0 < r, < e 5tn asn — oo,

Hy(qy,; ) > hu “Ly+045,a,5Lp).

To provide some further context, we discuss the setting from [8, 9] where Corol-
lary 1.3 is used. A similarity is a map g : RY — R? such that there exists a scalar
p(g) > 0, an orthogonal matrix U(g) € O(d) and a vector b(g) € R? such that
g(x) = p(g)U(g)x + b(g) for all x € RY. Denote by G = Sim(R4) the group of
similarities and let i be a probability measure on R? supported on finitely many con-
tractive similarities, that is, similarities g satisfying p(g) € (0, 1). Then denote for
k > 0 by 5, the stopping time 1, = inf{n > 1: p(g,) < k}.

As shown in [9]*Lemma 3.9, 7, satisfies a large deviation principle with

-1
L, = E[n,] = loﬁ(';l + ou(logx_l), for the logarithmic contraction rate x, =

[ log p(g) dji(g). Under the assumption that S, < oo, which is satisfied as discussed
above when all of the entries of elements in the support of p are algebraic, it therefore
follows by Corollary 1.3 that for § > S, and0 < r, < e S Ln,

hy

= |+0M‘n,a,5(logfc_1). (1.4)
i

Hu(‘]nk; ) > (lOgK_l)
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Results similar to (1.4) are an important component in the proof of the main the-
orems of [8, 9]. In fact, as discussed below, we will convert estimates such as (1.4)
into variance estimates. In [8, 9], these quantitative estimates will eventually allow us
to apply Berry-Esseen type results to establish absolute continuity or full dimension
of stationary measures. A similar approach is used in [7] to study the Furstenberg
measure of SL;(R). In this paper, we provide a unified perspective on these results
that can be applied to any Lie group.

We next address the second goal of this paper, which is to convert entropy estimates
into variance estimates on arbitrary Lie groups. Indeed, the reader may recall that if
Z is an absolutely continuous random variable on R with variance o2 then

H(Z) < %10g(27‘r602), (1.5)

where H (Z) is the differential entropy of Z and equality holds in (1.5) if and only if
Z is distributed like a centred Gaussian with variance o>. We will prove an analogue
of this fact on Lie groups. To do so, for random variables g that are supported within
small balls of a given point gy we consider the covariance matrix of the Lie group
logarithm applied to g, lg. This viewpoint allows us to apply a higher dimensional
analogue of (1.5) to deduce an analogous result on G.

For an ¢-dimensional random variable X, we denote by tr(X) the trace of the
covariance matrix of X. In particular, we use the following definition. Given gg € G
and a random variable g on G we define

trg, () = tr(log(gy ' 8)),

whenever log(g,, ! g) is defined. The analogue of (1.5), which will be proved in Propo-
sition 4.1, then amounts to

l 2me
H(g) < Elog (T 'trgo(g)> + Og(e) (1.6)

for random variables g supported on B.(go) and ¢ > 0 sufficiently small.
To make the latter more useful, we can relate a certain notion of trace to entropy
between scales. One defines the entropy between scales r{, r, > 0 as

Hy(g:rilr2) = H(g; Sry,alSr,a) = Ha(g:11) — Ha(g:12)
= (H(gsr|,a) - H(Sr|,a)) - (H(gsrz,a) - H(srz,a))o

Roughly speaking, H,(g; r1|r2) measures how much more information g has on scale
r1 than it has on scale r;.

We furthermore define tr(g; r) to be the supremum of all # > 0 such that we can
find some o -algebra <7 and some .27 -measurable random variable / taking values in
G such that

llog(h™'g)| <r and Eftry(gle?)] > 11>
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The following general result can be deduced.

Theorem 1.4 Let g be a random variable taking values in G, leta > 1 and r > 0 be
such that ar is sufficiently small in terms of G and assume that g, sq r and s, 2, are
independent random variables. Then

tr(g; 2ar) >¢g afz(Ha(g; rl2r) — 00(676{2/4 +a*r),

for the implied constants depending only on G.

The conditional distribution (g|.27) becomes relevant as we can relate the entropy
between scales H,(g; r|2r) to the conditional entropy H(gs4,r 18S4,r;) as shown in
Lemma 2.10 and Proposition 4.3.

In our applications [7-9] it is desirable to convert an entropy gap into lower bounds
of sz:l tr(g; s;) for a sequence of scales s1, ..., s, € (r1, r2). It will be also useful
to assume that our scales satisfy s;+; > As; for some A > 0. Indeed, the latter
condition is necessary to make the variance summation method [7-9] applicable, that
is to combine variance bounds of stopped random walks on different scales.

Using Theorem 1.4, we deduce the following general proposition applied in [9] and

[8].

Proposition 1.5 Let g be a G-valued random variable independent of (Sq.r)a>1,r>0
andlet0 < r; < ro. Leta > 1 suchthat ar; is sufficiently small in terms of G. Suppose
that for all ri € [r1, 2r1] as well as ré € [r2/2, 2rp] it holds for some constant C > 0
that

H,(g; rilry) = C.

log 4ar, —logar;

Let A > 1. Then there exists sy, ..., Sy € (ary,4ary) where m = fW]
_ | logra—logr; _
such that for N = ’V—logz -| 1,

a2
C—N-0g(e™ 7 +a’r)
a’log A

m
Y (g s) >

i=1
and siy1 > Asjforall 1 <i <m — 1.

We comment on the structure of this paper. After discussing basic properties of
entropy in Sect. 2, we prove Theorem 1.2 and Corollary 1.3 in Sect. 3. In Sect. 4 we
show (1.6) and Theorem 1.4. Finally, we prove Proposition 1.5 in Sect. 5.

Notation
We use the asymptotic notation A < B or A = O(B) to denote that |A| < CB for a

constant C > 0. If the constant C depends on additional parameters we add subscripts.
Moreover, A < B denotes A <« B and B < A. For a sequence A, and B, we write
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A, = o(B,) to denote that A,,/B, — 0 as n — oo and we add subscripts to indicate
that the speed of convergence depends on certain parameters.

We write [n] = {1, ..., n}.

It is assumed throughout this paper that the random variables (s4 ;)a>1,r>0 as
defined in (1.1) are independent. Whenever g will denote a G-valued random vari-
able, it will be assumed that g is independent of (s, ,)s>1.-~0. Given a probability
measure (1, we sample independent p-distributed random variables y1, y», . .. that are
independent from (sS4, )g>1,r>0-

2 Basic Properties of Entropy on Lie Groups
In Sect. 2.1 we give definitions and discuss basic properties of entropy on G, after
which we discuss the Kullback-Leibler divergence on a general measurable space X

in Sect. 2.2. In Sect. 2.3 we review regular conditional distributions in order to study
conditional entropy and conditional trace in Sects. 2.4 and 4.

2.1 Entropy and Basic Properties
For notational convenience, we denote for x € [0, co) by

—x1 if
hx) = x log(x) 1 x>0
0 ifx =0

and recall that & is concave. If . = ), p;8,, is a discrete probability measure on G,
we define the Shannon entropy of X as

H() =Y h(pi).

On the other hand, given an absolutely continuous probability measure A on G with
density f; we define

H(}) = /h(fx)dmc-

We extend the definition to finite positive measures X that are either absolutely con-
tinuous or discrete by setting

HQ) = (At H@R/lIAMD),  where  [[A[]1 = A(G).

In this subsection we collect some useful basic properties of entropy.

Lemma 2.1 Let Ay, ..., A, be absolutely continuous finite measures on G. Then

HOq+ ...+ 2) > HOD + ...+ HOw).
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Proof 1t suffices to prove the claim forn = 2. Let f] and f, be the densities of A and
A2. Then since & is concave

HOq +22) = (IMh +||)~2||1)/h< Lz ) dme

A1l + 11220

2111 i
> (||A A h d
> ([|All + 1 2||1)/|IMI|1+||?»2||1 (IIMII] me

[1A21]1 2
+(kll +||)»2||1)/ " dmg
AL =+ HAzll - \lA2lh
= H(A1) + H(A2).

m}

Lemma 2.2 Let p = (p1, p2, . ..) be a probability vector and let M1, L2, . . . be proba-
bility measures on G either all absolutely continuous measures or all discrete measures
with finite entropy such that ||\;||1 = pi. Then

o o0
H (Z x,») < H(p)+ ) H(u).
i=1 i=1
In particular, if p; = 0 foralli > k for some k > 1 then
k k
H (Z xi) <logk+ Y HQu).
i=1 i=l1

Proof We only consider the case of absolutely continuous measures as the proof is
analogous in the discrete case. Denote the densities of A; by f;. Note that 4 (Z;’il a;) <
Y22, h(a;) forany ay, az, ... > 0. Therefore

o (5) - [5(557) ame

i=1

H(p)+ ) H(k).

i=1

@ Springer



Journal of Theoretical Probability (2026) 39:13 Page9of25 13

Lemma 2.3 Let A1 be a discrete and Ly be an absolutely continuous probability mea-
sure on G. Then

H(k xA2) < H(A1) + H(X2)

Suppose further that A1 is supported on finitely many points with separation at least
2r and that the support of Ay is contained in a ball of radius r. Then

H xA2) = H(A) + H(Ap).

Proof WriteA; = Y}, pi8s andlet f be the density of A>. Then the density of A1 A2
isgivenby Y ', pi f o gl._l. Ash(Y ! yai) <7 h(a;) forany ay, ..., a, >0,
n
H(\p % A2) = /h (Zpif°8i1> dmg
i=1

=3 [hoi s o dme
i=1

n
=Y [ £ o5 doutp) + tos(f o g dm
i=1
= H(1) + H(2).
If A1 is supported on finitely many points with separation at least 2r and that the support

of X, is contained in a ball of radius r, then the support of the functions f o gi_l is
disjoint and the inequality in the second line is an equality. O

2.2 Kullback-Leibler Divergence

In this section we discuss Kullback—Leibler divergence on general measurable spaces
X.If v <« p are measures on X, then we define the Kullback—Leibler divergence as

dv
Dk (v | 1) = —/logad\;.

Observe that if v is absolutely continuous on G with respect to the Haar measure m g,
then H(v) = Dk (v || mg). We collect some basic results on the Kullback-Leibler
divergence on X.

Lemma 2.4 Letv < u be measures on G and assume that v is a probability measure
supported on a set A of positive . measure. Then

Dxr(v | ) < log(i(A)).
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Proof For convenience write dv = f,, du. Then by Jensen’s inequality,

B J(A)
DxL(v|| ) = [ (fu ( A)) w= f h(fuM(A))mdu—i-log(M(A))

< log(u(A)).
o

Lemma 2.5 Assume that we can write X = X1 X ... X X, as a product of sub-
manifolds X; C X and assume that mx = myx, X ... x my,, for a measure my on X
and measures my, on X;. Let . be a probability measure on X with i < mg. Denote
by 7 the projection from X to X; and by m; u the pushforward of u under ;. Then

Dxr(ullmyx) < Dxp(mpllmx,) + ...+ DxL(mwmp | mx,,).

Proof 1t suffices to prove the claim for m = 2. Denote by f;, the density of x with
respect to mx and write

f,l(xz)=/fu(x1,X2)dMX1(x1) and f,f(xl)=/fu(x1,x2)dmxz(x2).

Therefore,

Dy (i || mx) =//h(fu(X1,X2))dmxl (x1)dmx, (x2)

_ / / p (e xz)f( D | dmy, (x1)dmyx, (x2)

_ / / h (%) F200) dmy, (e )dmx, (2)

+//—log(f,f(xl))fu(xhxz)dmxl(xl)dmxz(xz)

< [ nestoan dmoe)+ [ ARG dmy o)

= Dxp.(mupllmy,) + Dxp(mop || mx,),
having used that £ is concave and Jensen’s inequality in the penultimate line. O
Lemma 2.6 Let (X, myx) and (Y, my) be a locally compact Hausdorff space endowed

with Radon measures, and let ® : X — Y be a homeomorphism with ®,.myx = my.
Then for a measure v < myx on X it holds that

Dg (®yv|lmy) = DgpL(v||mx).
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Proof Let f : Y — R be a continuous compactly supported function. Then

/fdcb*u=f(foq>)dv=/(foq>)d—”dmx
dmx
as well as
dd,v
/fdcb*v:/f dmy
de

dd dd
Z/f *qu>*mX=/(f0¢) LA dmy.
dmy dmy

Since @ is a homeomorphism, every continuous compactly supported function g :
X — R can be written as g = f o ® for f : Y — R a continuous compactly
supported function. Therefore, using the Riesz Representation Theorem, it holds that
m x-almost surely

dd,v dv
od =
de de

and thus

Dxp(®yv||my) = /

-/ ( or) o
/ ( )dU—DKL(uHmX)

Lemma 2.7 Let A be a probability measure on X and let 1> and A3 be measures on
X such that Ay < A and o < A3. Let U C X and suppose that the support of A1 is
contained in U. Then

O

d)Q
log —

| Dk (A1 |l A2) — DL (A1 || A3)| < sup ds

xeU

Proof We calculate

dr dr
|Dkr (A1 |l A2) — DL(A1 ]| A3)| = 10g—d?»1 - 10g—d?»1
U

d3
<,

d)»l d)»l

log——l g— dry
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-,

< sup
xeU

o diy
& dis

lo d2
g dis

di

2.3 Regular Conditional Distributions

In this section we review the definition of regular conditional distributions that will
be used in the following subsections in order to discuss conditional entropy. On a
probability space (2, .%, P), we denote the conditional expectation by E[ f|.<7] for
f e LY (Q,.#,P) and a o-algebra o7 C .%. Given two measurable spaces (Q1, )
and (€2, @), recall that a Markov kernel on (21, «7]) and (£2;, &%) is a map k :
Q) x @ — [0, 1] if for any Ay € 4%, the map « (-, A) is /;-measurable and for
any wi the map A> — « (w1, Ay) is a probability measure.

Definition 2.8 Let (2, .%, P) be a probability space and let &/ C .% be a o-algebra.
Let (E, &) be a measurable space and let Y : (R, .%) — (E, &) be arandom variable.
Then we say that a Markov kernel
Y): Q2 x & —[0,1]
on (2, &) and (E, &) is a regular conditional distribution if for all B € &,
(Y|o)(w, B) =PlY € B|Z(w) = E[ly-1(5)| Z1(w).
In other words,

E[(Y|«)(-, B)1a]l = PIAN{Y € B}]

forall A € o&/.

Regular conditional distributions exist whenever (€2, .%, P) is a standard probability
space. To give a construction, recall (c.f. section 3 of [3]) that there exist conditional
measures Pg uniquely characterised by

ELf|/ () = / Fap.
Then
Y ) (@, ) = Y, P

Indeed, for B € &,

(Y1) (@, B) = E[1y-1(5) | (@) = / ly-1s dBZ =PZ (v~ '(B)) = Y.PZ (B).
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We denote by [Y].</] a random variable defined on a separate probability space with
law (Y |<).

We recall that given two further o-algebras ¢4, % C .7, we say that they are
independent given o if forall U € 4 and V € 4,

P[U N V|| = PlU|A/P[V| ]

almost surely. Similarly, two random variables Y and Y, are independent given o7 if
the o -algebra they generate are. Note that if Y] is .7 -measurable, then it is independent
given ¢/ to every random variable Y>.

Given a topological group G and two measures p1 and wy we recall that the con-
volution 1 * w7 is defined as

(11 *Mz)(B)=//1B(gh)dul(g)duz(h)

for any measurable set B C G.

Lemma 2.9 Let (2, .7, P) be a probability space, G be a topological group and g, h
be G-valued random variables. Let o/ C F be a o-algebra and assume that g and h
are independent given <. Then the following properties hold:

(i) (ghle?) = (g|</) % (h|</) almost surely.
(ii) [gh|</] = [g|</] - [h|</] almost surely.

Proof To show (i), we note that by assumption g and 4 are independent with respect
to Pf for almost all ® € Q. This implies that for f : G — R a continuous compactly
supported function,

Epe [f (8] = Epy [Epsy [f(gMIh]] = Eq, p)pe wp [f(8(zDR(2))],
proving (i). (ii) follows from (i) on a suitable separate probability space. O

The aim of this subsection is to prove an abstract result relating entropy between
scales and the trace. To do so, we first discuss conditional entropy and conditional
trace. Let Y be a random variable on a probability space (2, %#,P) and &/ C %
be a o-algebra. Denote by (Y|.<) the regular conditional distribution as defined in
Sect. 2.3. Assuming that (Y|.<) is almost surely absolutely continuous, we define

H((Y | ) (w) = H((Y|)(w)).
Recall that if X; and X, are two random variables, then entropy of X given X> is
H(X11X2) = H(X1, X2) — H(X»). If X1 and X, have finite entropy and finite joint

entropy, then by [11]*Proposition 3,

H(X]1X2) = E[H((X1]X2))]. 2.1
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2.4 Conditional Entropy

We next give an abstract definition of the entropy at a scale for a smoothing functions
s. Indeed, let g and s be random variables on G and assume that s is absolutely
continuous. Then the entropy at scale s is defined as

H(g;s) = H(gs)— H(s)

Moreover, if s; and s, are absolutely continuous smoothing functions we define the
entropy between scales s1 and s> as

H(g; s1ls2) = H(g;s1) — H(g: s2).

The following basic result on the growth of conditional entropy holds.

Lemma 2.10 Ler g, sy, s2 be independent random variables taking values in G.
Assume that s1 and s> are absolutely continuous with finite differential entropy and
assume that gs1 and gs»> also have finite differential entropy. Then

H(gsi|gs2) > H(g; stls2) + H(s1).
Proof Note that
H(gsz|gs1) = H(gs2lg, s1) = H(gs2|g) = H(s2),

having used in the inequality that conditioning reduces entropy as in [2]*Section 8.6,
and so

H(gs2, gs1) = H(gsalgs1) + H(gs1) = H(gs1) + H(s2).
Therefore

H(gsilgs2) = H(gs2, gs1) — H(gs2)
> H(gs1) — H(gs2) + H(sz)
> H(g; s1ls2) + H(sy).

3 Entropy Growth for Stopped Random Walks
The reader may recall the definition of H,(g; r) as given in (1.2). In this section we
prove Theorem 1.2, which we restate for convenience, and Corollary 1.3.

Given a probability measure p, we sample independent p-distributed random vari-
ables y1, 2, ... that are independent from (sS4, )4>1.r>0 and we denote

qn =V1" " Vn-
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Theorem 3.1 (Theorem 1.2) Let wu be a finitely supported probability measure on
G. Let n = (Mp)n>1 be a sequence of stopping times satisfying the large deviation
principle and write L, = E[n,] forn > 1. Leta > 1, ¢ > QO and letr, > 0 be a
sequence satisfying for alln > 1,

< a_ICGMr(1+g)Ln1
for a constant cg > 0 depending only on G. Then for alln > 1,
Hy(qy,; ) = hu Ly +o0p5,:(Ly).

Recall that H,(qy,; rn) = H(qy,Sa,r,) — H(Sa,r,). To give the proof idea, note
that by assuming a large deviation principle, with high probability 1, ~ E[n,]. Also,
by definition of %,, we have that H(g.,) > h;, - L,. On the other hand, s, ,, is
mostly contained in a ball around the identity with radius O (M, ), and therefore by
Lemma 2.3 we have H(qL, - Sa,r,) = H(qr,) + H(s4,r,), Which implies the claim.
We proceed with a more rigorous proof.

Proof We note that if the assumption holds for some ¢, it holds for all sufficiently
small e. Therefore it suffices to show that for all sufficiently small fixed & > 0 we
have that

Ha(an; ) > hu L, + O,u,n(ELn) + O,u,n,s(Ln)-

So fix some ¢ > 0 which is sufficiently small in terms of 1 and consider ), as

[(14&)Ly] ifn, > [(1+e)L,],
M =111 —&L,| ifn, < [(1—e)L,],
Nn otherwise.

For a random variable X denote by £(X) its law. Furthermore, given an event A, we
will denote by £(X)|4 the measure given by the push forward of the restriction of P
to A under the random variable X. Note that || £(X)|4 |1 = P[A].

By applying Lemma 2.1,

H(qﬂnsaﬂ’n) = H(ﬁ(q??n) * ‘C(Sa’rn))
> H(L(an”nn:n,’l * E(Sa,r,,)) + H(‘C(an”n,ﬁén,’l * E(Sa,rn))
> H(L(Gn) gy=n, * L(Sar,) +Plna # np1H(L(sar,)),  (3.1)

having used that

H (L(Gn) ysn, * L(ar,)) = Pl # 1, 1H (L(5a,r,)),

which can be shown by conditioning on ¢, (as conditioning reduces entropy
[2]*Section 8.6) and using that g,, and s, ,, are independent.
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We next apply that s, ,, has small support. Indeed, as d(sq4,,,€) <G ma =
o(M[L,(1+¢)7) it follows that if n is sufficiently large,

1
- min d(x,y).
2 x,yesupp(q,];l),x?ﬁy

1
d(sa,rnv Id) < EMrLll(1+8)-| S
In particular, by Lemma 2.3,

H(‘C(qUn”n,,:n;l * E(Sa,r,,)) = H(‘C(CIU,I)ln,,=77;,) + IP)[r)n = n;,]H(AC(Sa,r,,))-
3.2)

Combining (3.2) with (3.1),
H(ansa,rn) > H(E(qUn)|n,1:r;;,) + H(Sa,r,l)-
It remains to estimate H (L(q,,n)|,7n:n;1). Consider the random variable

/ —_—
X' = (qI(1-)Lols VI(A=6) Ly J+1> VI(1=&) Ly ]4+25 - - - Y[(14+6)L,7)-

As gy, is completely determined by X', we have H (X'|q, ) = H(X') — H(qy ).
Let K be the number of points in the support of w. Note that if

YIA=e)Ln 41> V(=) Ly J+25 + - - » VI (14+€)Ln]
and 7, are fixed, then for any possible value of gy, there is at most one choice of
q\(1—¢)L,) Which would lead to this value of g, . Therefore for each y in the image

of g, there are at most (2¢L, + 2)K 2¢Lnt2 elements x in the image of X’ such that
PX ' =xN gy, = y1 > 0. Therefore (X’|q,7;l) is almost surely supported on less than

(2eL, + 2) K*Ln*2 points and hence by (2.1),
H(X/|q,,;l) <log ((ZSL,, + 2)K28L”+2> <2¢elogK - L, + 0y ¢(Ly).
On the other hand,
H(X') = H(q|L,)) = hy - |La] (3.3)
and therefore
H(qy,) = (hy —2elog K)Ly — 0,6 (Lp).
To continue, we note that by Lemma 2.2,
H(qy) < H(L(Gy) gy + HLGy )y ) + log 2. (3.4
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We wish to bound H (L(gy )|y,=y ) from below. By the large deviation principle,
Py, # 1,1 < ol for o € (0, 1) only depending on & and 1. We also know that

conditional on 7, # 7/, there are at most 2K [1+)m] pogsible values for gy, and
therefore
H (L) ) < @ log (2KT0F9ET) = 0, (L),
This implies
H(E(Qn,’lﬂn,,:n,’l) > (hy —2elog K)Ly — 0y y,e(Ln),
concluding the proof. O

Proof (of Corollary 1.3) For sufficiently small & > 0 it holds that as L,, — oo that
S = o(e= St Oy = o(My(16)1,1)

as S > (1+¢)S, for all sufficiently large m. The claim follows from Theorem 3.1. O

4 Entropy and Trace on Lie groups

In this section we prove (1.6) in Sect. 4.1 and in Sect. 4.3 we establish Theorem 1.4.
In Sect. 4.2 an auxiliary result necessary for the proof of Theorem 1.4 will be shown.

4.1 Entropy and Trace

In this subsection we prove (1.6). Recall that given go € G and a random variable g
on G we define

trg,(g) = trlog(gy ' 8)),

whenever log(gy ! g) is defined.

Proposition 4.1 Let G be a Lie group of dimension £. Let ¢ > 0 and suppose that g is
a absolutely continuous random variable taking values in B¢ (go) for some go € G. If
¢ is sufficiently small depending on G,

V4 2me
H(g) < Elog (7 ‘tfgo(g)) + Og(e).

Proof We first note that if X is an £-dimensional absolutely continuous random vector,
then

l 2me
H(X) < Elog (T ~tr(X)> 4.1)
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Indeed, it follows from the one-dimensional case (1.5) that H(X) < %log((Zne)e .
|Var(X)|), where |Var(X)| is the determinant of the covariance matrix. Note that by
the AM-GM inequality |Var(X)| < tr(X)“¢~¢, which implies (4.1).

Since H(go_lg) = H(g) and trg,(g) = tr, (go_lg), we may assume without loss of

generality that gg = e. The density #ﬁ;f:()
g e (e

small is 1 + Og (¢) and therefore sup | log %

is smooth and for ¢ > 0 sufficiently

<G €. Thus by Lemma 2.7,

IDkL(g [ImG) — DxL(g || mg olog)| K¢ e.

The claim follows since by (4.1)

¢ 2
Dxi(g ||mg olog) = Dxp(log(g) [|mg) = H(log(g)) < 3 log <%tre(g)) .

4.2 Conditional Trace and Entropy Between Scales

We next define the conditional trace of a random variable on G and relate it to the
entropy between scales.

Definition 4.2 Let g be a random variable defined on a probability space (22, .7, IP)
and taking values in G. Let &7 C .7 be a o-algebra let go be a <7 -measurable random
variable taking values on G. Then we denote by tr, (g | /) the .7 -measurable function
given for w € Q2 by

trgy (g | &) (@) = trg () ((g | ) (@),
whenever this expression is well-defined.

We note here that the variance of a measure u is defined as the variance of a random
variable with law . It follows from Proposition 4.1 that when (g|.<7) is almost surely
absolutely continuous,

Y4 2
H(gl/) <  log (% -trgo(guzf)) + 06 (e). 4.2)

Proposition 4.3 Let g, s1 and s> be independent absolutely continuous random vari-
ables taking values in G and suppose that s\ and sy are supported on B, for
some sufficiently small ¢ > 0 and have finite differential entropy. Write ¢ =
%log %tre(m) — H(s1) and suppose that tr.(s1) > Ag? for some constant A > 0.

Then

2
Eltrgs, (81gs2)] = 7 (H (g5 s1l52) = ¢ = O (A~ e)tre(s1).
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We first prove some basic result on the trace of the product of two random variables.
Lemma4.4 Let ¢ > 0 be sufficiently small and let a, b be random variables and
o/ a o-algebra. Suppose that b is independent from a and </ and let go be an < -

measurable random variable. Suppose that g, Ya and b are almost surely contained
in Bg. Then

trg(ab|e?) = trg (ale) + tr.(b) + 0c(e%).
Note that under the assumptions of Lemma 4.4 it holds by Lemma 2.9 that
lab|./] = [a|/][b|</] = [a]/]b.

Therefore the claim follows from the following unconditional version.

Lemma4.5 Let ¢ > 0 be sufficiently small and let g and h be independent random
variables taking values in G. Suppose that the image of g is contained in B, and the
image of h is contained in B (hg) for some hg € G. Then

trpg (hg) = trag (h) + tre(g) + Og (6%).
Proof Let X = log(halh) and let Y = log(g). Then | X|, |Y| < ¢ almost surely and
by Taylor’s theorem there is a random variable E with |E| < &2 almost surely such
that
log(exp(X)exp(Y)) =X+ Y + E.

Therefore

tryg(hg) = E[|X + Y + E] — [E[X + ¥ + E]|?
=E[|X + Y|’] — |E[X + Y]?
+2E[(X +Y) - E]1+E[|E|*] - 2E[X + Y|E[E] — |[E[E]|?
= Var[X + Y]+ Og(e®) = Var[X] + Var[Y] + Og(£?).

Proof (of Proposition 4.3) We note that by (2.1) and Lemma 2.10, it holds that
E[H ((gs11gs2))] = H(g; s1ls2) + H(s1)
and so by (4.2),

V4 2me
E [5 log Ttrgsz (gs1 |gS2)] + Og(e) = H(g; s1]s2) + H(sy).
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Note that (gs2) " 'g = 5y ! which is contained in B, (e). Therefore by Lemma 4.4,
s (8511852) < trgsy (g1g52) + tre(s1) + O (&)

and so

L 2me 3
H(g;s1ls2) + H(s1) < E [5 log — (trgsz(g|g52) +tre(s1) + Og(e ))] + Og(e).

£
Thus
2 t
2 (H(gisils2) — o) < E|log 1+ 128182 - a-15) |
¢ tre(s1)
Using that log(1 + x) < x for x > 0, we conclude the claim. O

4.3 Proof of Theorem 1.4

The proof relies on the following lemma. We recall from the introduction that g, , is
the random variable with density function f, , : g — R given by

o
farx) = Cure 27 if|x| <ar,

otherwise,

where C, , is a normalising constant to ensure that f; , integrates to 1.

Lemma 4.6 The following properties hold forr > 0 anda > 1:

(i) r? <« tr(Ba.r) < or? and for ng , the distribution of Bg.r,
¢ 2 —a?/4
HMa,r) = 3 log2mer® + Oy (e ).
(ii) If ar is sufficiently small, £r* < tre(Sq,r) < or? and
¢ 2 —a? /4
H(sq,) = 3 log2mer® + Oy (e ) 4+ Og(ar).

Proof We note that (ii) follows from (i). To prove (i), we deal initially with the r = 1
case. Note first that

¢
/ eI gy < / e M2 ax =T / e dx; = 2m)'
xeR! |x|<a xeR¢ i=1 'R
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and by using spherical coordinates

o0
_ix? 2
/ el /zdxzcz/ u e 2 gy
xeR¢, |x|>a a

Thus we conclude

/ P2 gy = (2m)t? —f e IXIP/2 gy
xeR¢ |x|<a xeR¢|x|>a

> 2m) 12 = 0y(e 1%

and therefore C1, = Qm)~t? + 0, (e_“2/4). We are now in a suitable position to
calculate H(n1,4). Indeed,

H(’]l,a) = / _Cl,ae_mz/2 lOg (Cl,ae_lxlz/2> dx
|x|<a

2
= / Cla (ﬁ —log Cl,a> e P2 gy
I 2

We calculate

£ £
= (14 0ce™) <§ loge + > log 2 + Op(e™ "/ 4))
E 7(42/4
= 510g27re+ Oy (e ).

and again using spherical coordinates,

2
f Ciqg <& — log Cl,a> e W2 gy
[x|>a 2
R u? 2
ZCZ/ C1a<——logC1a)uz_le_“ 2 dx
. \2 |
¢ Oe™ 1.

Thus the claimed bound on H(n;,) follows. Since f, , (x) = recl,afl,a(x/r) it
follows that H (14,,) = log(re) + H(n1.4) and hence the proof is complete. m]
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Proof (of Theorem 1.4) We apply Proposition 4.3 to s; = s, and s2 = 5,2 and
we set ¢ = far. By Lemma 4.6 (ii) we have that tr.(s1) >¢ 02 > a 2% and

c = tlog %tre(sl) — H(s)) < OG(e"‘z/4 + ar). Applying Proposition 4.3 with
A= a‘z,

2
Eltrgs, (g1g52)1 3> r*(Ha(g; r12r) — Og(e™*/* + ar)).

On the other hand, we have that | log((gsz)_lg)| = |log s2| < 2ar and therefore

2
tr(g; 2ar) > (2ar) *Eltrgy, (glgs2)] 6 a 2(Ha(g; r|2r) — Og(e™*/* +a’r)).

5 From Entropy Gap to Trace Sum

In this section we prove Proposition 1.5, which we deduce from the following two
propositions.

Proposition 5.1 Let g be a G-valued random variable independent of (Sq.r)a>1,r>0
andlet0 < r; < ro. Leta > 1 suchthat ar; is sufficiently small in terms of G. Suppose
that for all ri € [r1, 2r1] as well as ré € [r2/2, 2rp] it holds for some constant C > 0
that

H,(g; rilry) = C.

Then

4ary o2
/ Lirtg: wydu > a2(C = N - (06T +d°r)
a u

r

__ | logrp—logry |
fOl"N = (T 1.

Proof Leta > 1 and set N = ’7%] — 1. Note that 2N*1y; > r, as well as

2Vr < 1.
Given u € [1,2) and an integer 1 <i < N denote

ki () = Hy(g: 2~ ury 20 ury).

Then by Theorem 1.4, there is some constant ¢ = ¢(G) > 0 depending only on G
such that

tr(g: a2 ur)) > ca (ki) — O (e~ /* + a32ir)). (5.1
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Thus
N ' N 5
Ztr(g; a2ury) > ca? (Z ki(u) — Og(Ne™ ¥ + Na32Nr1)) .
i=1 =

Note that for u € [1, 2) we have a2Vt yr, < 4ary and aur; > ar;. Therefore, upon
substituting v = a2'ur in the third line,

dary 1 a2 ury 1
/ —tr(g, v)dv > Z/ —tr(g, v)dv
a a

r 2iury

1 .
> Z/l ;tr(g;aZlurl)du
i=1
2 1 N a2
—2/ — > ki) — 06(Ne™ T + Na®2Vry) ) du.
1 U \7
i=1

5.2)
Observe that by our assumption vazl ki(u) = Hy(g; ur1|2Vury) > C and there-
fore the claim follows using that 2Np < 1. O

Proposition 5.2 Suppose that for a G-valued random variable g and 0 < r; < rp we
have for some constant Cy > 0 that

rn 1
/ —tr(g; u)du > Cj.
r u

1

logrp—logr;

Let A > 1. Then there exists s1, ..., Sy € (r1, r) wherem = |——210gA 1 such that
C
Ztr(g, si) > ! and Siy1 > As;
= 4log A
foralll <i <m—1.
Proof Define aj, ap, ..., ayn+1 by a; = rlAi_l_ Therefore a; = r; and Ay mi1 > 1.

Let U and V be defined by

m m
U= Jlai1.ax) and V =|Jlaz. aziy1).
i=1 i=1

Without loss of generality, upon replacing U with V, by our assumption
1
/ —tr(g;u)du > C1/2.
uu
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Fori € [m]lets; € (ai—1, axi) be chosen such that

1
tr(g;si) > = sup  tr(g;u).

ue(azi—i,az)

In particular,

1
tr(g; ;) > —

azi 1 d
—tr(g; .
2logA/a (g u) du

2i—1

Summing over i gives

" 1 1 c
Ztr(g; 5i) > —— | —t(g;u)du > ——.
i=1 2logA Jy u 4log A

m}

To deduce Proposition 1.5, one uses Proposition 5.2 with the range (ary, 4ar;) and
with

uZ
Ci=a3(C—N-(0g(e"T +a’m)).
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