
Variational Distillation of Diffusion Policies into
Mixture of Experts

Hongyi Zhou ∗i† Denis Blessing‡ Ge Li‡ Onur Celik‡§

Xiaogang Jia†‡ Gerhard Neumann‡§ Rudolf Lioutikov†
† Intuitive Robots Lab, Karlsruhe Institute of Technology

‡ Autonomous Learning Robots, Karlsruhe Institute of Technology
§ FZI Research Center for Information Technology

Abstract

This work introduces Variational Diffusion Distillation (VDD), a novel method
that distills denoising diffusion policies into Mixtures of Experts (MoE) through
variational inference. Diffusion Models are the current state-of-the-art in generative
modeling due to their exceptional ability to accurately learn and represent complex,
multi-modal distributions. This ability allows Diffusion Models to replicate the
inherent diversity in human behavior, making them the preferred models in behavior
learning such as Learning from Human Demonstrations (LfD). However, diffusion
models come with some drawbacks, including the intractability of likelihoods and
long inference times due to their iterative sampling process. The inference times,
in particular, pose a significant challenge to real-time applications such as robot
control. In contrast, MoEs effectively address the aforementioned issues while
retaining the ability to represent complex distributions but are notoriously difficult
to train. VDD is the first method that distills pre-trained diffusion models into MoE
models, and hence, combines the expressiveness of Diffusion Models with the
benefits of Mixture Models. Specifically, VDD leverages a decompositional upper
bound of the variational objective that allows the training of each expert separately,
resulting in a robust optimization scheme for MoEs. VDD demonstrates across
nine complex behavior learning tasks, that it is able to: i) accurately distill complex
distributions learned by the diffusion model, ii) outperform existing state-of-the-art
distillation methods, and iii) surpass conventional methods for training MoE. The
code and videos are available at https://intuitive-robots.github.io/vdd-website.

1 Introduction

Diffusion models [1–4] have gained increasing attention with their great success in various domains
such as realistic image generation [5–8]. More recently, diffusion models have shown promise
in Learning from Human Demonstrations (LfDs) [9–13]. A particularly challenging aspect of
LfD is the high variance and multi-modal data distribution resulting from the inherent diversity
in human behavior [14]. Due to the ability to generalize and represent complex, multi-modal
distributions, diffusion models are a particularly suitable class of policy representations for LfD.
However, diffusion models suffer from several drawbacks such as long inference time and intractable
likelihood calculation. Many diffusion steps are required for high-quality samples leading to a long
inference time, limiting the use in real-time applications such as robot control, where decisions are
needed at a high frequency. Moreover, important statistical properties such as exact likelihoods are
not easily obtained for diffusion models, which poses a significant challenge for conducting post hoc

∗Correspondence to hongyi.zhou@kit.edu

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://intuitive-robots.github.io/vdd-website/

a0 aT

dat =
[
f(at, t) − g2(t) ∇at log π∗

t (at|s′)
]

dt + g(t)dw̄t

distillation using
score function

VDD
Mixture of Experts

observation
s

prediction
qϕ(a|s)

Figure 1: VDD distills a diffusion policy into an MoE. LfD is challenging due to the multimodality
of human behaviour. For example, tele-operated demonstrations of an avoiding task often contain
multiple solutions [13]. Lower: A diffusion policy can predict high quality actions but relies on an
iterative sampling process from noise to data, shown as the red arrows. Upper: VDD uses the score
function to distill a diffusion policy into an MoE, unifying the advantages of both approaches.

optimization such as fine-tuning through well-established reinforcement learning (RL) approaches
like policy gradients or maximum entropy RL objectives.

A well-studied approach that effectively addresses these issues are Mixture of Experts (MoE).
During inference, the MoE first selects an expert that is subsequently queried for a forward pass. This
hierarchical structure provides a fast and simple sampling procedure, tractable likelihood computation,
and the ability to represent multimodal distributions. These properties make them a well-suited policy
representation for complex, multimodal behavior. However, training Mixture of Experts (MoEs) is
often difficult and unstable [15]. The commonly used maximum likelihood objective can lead to
undesired behavior due to mode-averaging, where the model fails to accurately represent certain
modes. Yet, this limitation has been alleviated by recent methods that use alternative objectives, such
as reverse KL-divergence, which do not exhibit mode-averaging behavior [14, 16].

To obtain the benefits of both models, i.e., learning highly accurate generative models with diffusion
and obtaining simple, tractable models using a mixture of experts, this work introduces Variational
Diffusion Distillation (VDD), a novel method that distills diffusion models to MoEs. Starting from the
variational inference objective [17, 18], we derive a lower bound that decomposes the objective into
separate per-expert objectives, resulting in a robust optimization scheme. Each per-expert objective
elegantly leverages the gradient of the pre-trained score function such that the MoE benefits from the
diffusion model’s properties. The resulting MoE policy performs on par with the diffusion model
and covers the same modes, while being interpretable, faster during inference, and has a tractable
likelihood. This final policy is readily available to the user for post hoc analysis or fast fine-tuning for
more specific situations. A high-level architecture of the VDD model and its relation to the diffusion
policy is shown in Fig. 1. VDD is thoroughly evaluated on nine complex behavior-learning tasks
that demonstrate the aforementioned properties. As an additional insight, this paper observed that
one-step continuous diffusion models already perform well, a finding not discussed in prior work.

In summary, this work presents VDD, a novel method to distill diffusion models to MoEs, by propos-
ing a variational objective leading to individual and robust expert updates, effectively leveraging a
pre-trained diffusion model. The thorough experimental evaluation on nine sophisticated behavior
learning tasks show that VDD i) accurately distills complex distributions, ii) outperforms existing
SOTA distillation methods and iii) surpasses conventional MoE training methods.

2 Related Works

Diffusion Models for Behavior Learning. Diffusion models have been used in acquiring complex
behaviors for solving sophisticated tasks in various learning frameworks. Most of these works train
diffusion policies using offline reinforcement learning [19–24], or imitation learning [9, 12, 11, 10,
25]. In contrast, VDD distills diffusion models into an MoE policy to overcome diffusion-based

2

policy drawbacks such as long inference times or intractable likelihoods instead of optimizing policies
directly from the data.

Mixture of Experts (MoE) for Behavior Learning. MoE models are well-studied, provide tractable
likelihoods, and can represent multi-modality which makes them a popular choice in many domains
such as in imitation learning [14, 26–31, 16, 13], reinforcement learning [32–38] and motion gen-
eration [39] to obtain complex behaviors. Although VDD also uses an MoE model, the behaviors
are distilled from a pre-trained model using a variational objective and are not trained from scratch.
The empirical evaluation demonstrates that VDD’s stable training procedure results in improved
performance compared to common MoE learning techniques.

Knowledge Distillation from Diffusion Models Knowledge distillation from diffusion models has
been researched in various research areas. For instance, in text-to-3D modeling, training a NeRF-
based text-to-3D model without any 3D data by mapping the 3D scene to a 2D image and leveraging a
text-to-2D diffusion is proposed [7]. The work proposes minimizing the Score Distillation Sampling
(SDS) loss that is inspired by probability density distillation [40] and incentivizes the 3D-model
to be updated into higher density regions as indicated by the score function of the diffusion model.
To overcome drawbacks such as over-smoothing and low-diversity problems when using the SDS
loss, variational score distillation (VSD) treats the 3D scene as a random variable and optimizes a
distribution over these scenes such that the projected 2D image aligns with the 2D diffusion model
[8]. In a similar context, the work in [41] proposes distilling a trained diffusion model into another
diffusion model while progressively reducing the number of steps. However, even though the number
of diffusion steps is drastically reduced, a complete distillation, i.e. one-step inference as for VDD
is not provided. Additionally, the resulting model suffers from the same drawbacks of diffusion
models such as intractable likelihoods. In contrast, in consistency distillation (CD), diffusion models
are distilled to consistency models (CM) [42–45] such that data generation is possible in one step
from noise to data. However, one-step data generation typically results in lower sample quality,
requiring a trade-off between iterative and single-step generation based on the desired outcome. As
CMs, VDD performs one-step data generation but distills the pre-trained diffusion model to an MoE
which has a tractable likelihood and is efficient in inference time. The experimental evaluations show
the advantages of VDD over CMs. Diff-Instruct [46] proposes a two-step framework for distilling
diffusion models into implicit generative models, whereas VDD considers an explicit generative
model where the model’s density can be directly evaluated. In addition, Diff-Instruct requires training
an auxiliary diffusion model, while VDD only optimizes a single model. Score Regularized Policy
Optimization (SRPO) [47] also leverages a diffusion behavior policy to regularize the offline RL-based
objective. However, in contrast to SRPO, VDD learns an MoE policy instead of a uni-modal Gaussian
policy and explicitly distills a diffusion model instead of using it as guidance during optimization.
Furthermore, VDD trains MoEs policies in imitation learning instead of reward-labeled data as in
offline RL. A concurrent work, EM-Distillation (EMD)[48], introduces an EM-style distillation
objective derived from the mode-covering forward KL divergence. In contrast, VDD proposes an
EM-style objective based on the mode-seeking reverse KL but encourages mode-covering behavior
by having multiple experts.

3 Preliminaries

Here, we introduce the notation and foundation for Denoising Diffusion and Mixture of Experts
policies. Throughout this work, we assume access to samples from a behavior policy π∗ and the
corresponding state distribution µ, that is a ∼ π∗(·|s) and s ∼ µ(·), respectively.

Denoising Diffusion Policies. Denoising diffusion policies employ a diffusion process to smoothly
convert data into noise. For a given state s′, a diffusion process is modeled as stochastic differential
equation (SDE) [3]

dat = f(at, t)dt+ g(t)dwt, a0 ∼ π∗(·|s′), s′ ∼ µ(·) (1)
with drift f , diffusion coefficient g(t) and Wiener process wt ∈ Rd. The solution of the SDE is a
diffusion process (at)t∈[0,T] with marginal distributions π∗

t such that πT ≈ N (0, I) and π0 = π∗.
[49, 50] showed that the time-reversal of Eq. 1 is again an SDE given by

dat =
[
f(at, t)− g2(t)∇at

log π∗
t (at|s′)

]
dt+ g(t)dw̄t, aT ∼ N (·|0, I). (2)

Simulating the SDE generates samples from π∗(·|s′) starting from pure noise. For most distributions
π∗, however, we do not have access to the scores (∇at

log π∗
t (at|s′))t∈[0,T]. The goal of diffusion-

3

(a) Action distribution (b) Initialize VDD (c) Training (d) Training (e) Training (f) Convergence

Figure 2: Illustration of training VDD using the score function for a fixed state in a 2D toy task. (a)
The probability density of the distribution is depicted by the color map. The score function is shown
by the gradient field, visualized as white arrows. From (b) to (f), we initialize and train VDD until
convergence. We initialize 8 components, each represented by an orange circle. These components
are driven by the score function to match the data distribution and avoid overlapping modes by
utilizing the learning objective in Eq. (11). Eventually, they align with all data modes.

based modeling is therefore to approximate the intractable scores using a parameterized score
function, i.e., fθ(a, s, t) ≈ ∇ log π∗

t (a|s). To that end, several techniques have been proposed
[51, 52], allowing for sample generation by approximately simulating Eq. 2. The most frequently
employed SDEs in behavior learning are variance preserving (VP) [2, 10] and variance exploding
(VE) [9]. For further details on diffusion-based generative modeling, we refer the reader to [3, 4].
While we only consider VE and VP in this work, VDD can be applied to any score-based method.

Gaussian Mixtures of Expert Policies. Mixtures of expert policies are conditional discrete latent
variable models. Denoting the latent variable as z, the marginal likelihood can be decomposed as

qϕ(a|s) =
∑
z

qξ(z|s)qνz (a|s, z), (3)

where qξ(z|s) and qνz (a|s, z) are referred to as gating and experts respectively. ξ and νz denote the
gating and expert parameters and thus ϕ = ξ ∪ {νz}z . The gating is responsible for soft-partitioning
the state space into sub-regions where the corresponding experts approximate the target density.
To sample actions, that is, a′ ∼ qϕ(·|s′) for some state s′, we first sample a component index
from the gating, i.e., z′ ∼ qξ(·|s′). The component index selects the respective expert to obtain
a′ ∼ qνz (·|s′, z′). For Gaussian MoE the experts are chosen as qνz (a|s, z) = N (a|µνz (s),Σνz (s)),
where µνz ,Σνz could be neural networks parameterized by νz . From the properties of Gaussian
distributions, it directly follows that this model class admits tractable likelihoods and fast sampling
routines. Furthermore, given enough components, Gaussian MoEs are universal approximators of
densities [53], which makes them a good representation for distillation of diffusion policies.

4 Variational Distillation of Denoising Diffusion Policies

In this section, we outline the mathematical formulations of the VDD model. Detailed descriptions of
the model architecture and algorithms can be found in Appendix A. We aim to distill a given diffusion
policy π(a|s) by using a different policy representation qϕ with parameters ϕ. This is useful, e.g.,
if qϕ(a|s) has favorable properties such as likelihood tractability or admits fast inference schemes.
Assuming that we can evaluate π point-wise, a common approach is to leverage variational inference
(VI) to frame this task as an optimization problem by minimizing the reverse Kullback-Leibler (KL)
[54] divergence between qϕ and π, that is,

min
ϕ

DKL(q
ϕ(a|s′)∥π(a|s′)) = min

ϕ
Eqϕ(a|s′)

[
log qϕ(a|s′)− log π(a|s′)

]
, (4)

for a specific state s′. To obtain a scalable optimization scheme, we combine amortized and stochastic
VI [55]. The former allows for learning a conditional model qϕ(a|s) instead of learning a separate qϕ
for each state, while the latter allows for leveraging mini-batch computations, that is,

min
ϕ

J(ϕ) = min
ϕ

Eµ(s)DKL(q
ϕ(a|s)∥π(a|s)) ≈ min

ϕ

M

N

∑
si∼µ

DKL(q
ϕ(a|si)∥π(a|si)), (5)

with batch size M ≤ N . Thus, J(ϕ) can be minimized using gradient-based optimization techniques
with a gradient estimator such as reinforce [56, 57] or the reparameterization trick [58]. Note that,
while the states are sampled from the given data set of the behavior policy, the actions needed to

4

evaluate the KL are generated using our estimated model qϕ(a|si). Yet, there are two difficulties to
directly apply this scheme in distilling a diffusion model into an MoE: i) we are not able to evaluate
the likelihood π(a|s) of a diffusion model, ii) training of MoE models is notoriously difficult [15].
We will address these two issues in Section 4.1 and Section 4.2, respectively.

4.1 Scalable Variational Inference for Denoising Diffusion Policy Distillation

Although we cannot directly evaluate the likelihood of the diffusion policy π(a|s), we have access to
its score functions ∇at

log πt(at|s) = fθ(at, s, t), where t ∈ [0, T] is the diffusion time step. In prac-
tice, we would like to evaluate the score in the limit of t → 0 as ∇a log π

∗(a|s) ≈ limt→0 fθ(at, s, t).
Yet, this might lead to an unstable optimization [59] as this score is often not estimated well through-
out the action space, and, hence other diffusion time-step selection processes are needed [47]. For now,
we will omit the diffusion time-step for the sake of simplicity and refer to Section 4.3 for a detailed
discussion about time-step selection. Moreover, we will, for now, assume that the parametrization of
qϕ is amendable to the reparameterization trick [58]. In this case, we can express a ∼ qϕ(·|s) using a
transformation hϕ(ϵ, s) with an auxiliary variable ϵ ∼ p(·) such that a = hϕ(ϵ, s). We then express
the gradient of J w.r.t. ϕ as

∇ϕJ(ϕ) ≈
M

N

∑
si∼µ

Ep(ϵ)

[
∇ϕ log q

ϕ(hϕ(ϵ, si)|si)−∇ϕ log π(h
ϕ(ϵ, si)|si)

]
. (6)

Using the chain rule for derivatives, it is straightforward to see that

∇ϕ log π(a|si) = (∇a log π(a|si))∇ϕh
ϕ(ϵ, si) = fθ(a, si, t)∇ϕh

ϕ(ϵ, si). (7)

As ∇a log π(a|si) can be replaced by the given score of the pre-trained diffusion policy, we can
directly use of VI for optimizing J without evaluating the likelihoods of π.

4.2 Variational Inference via Mixture of Experts

To distill multimodal distributions learned by diffusion models, we require a more complex family of
distributions than conditional diagonal Gaussian distributions, which are commonly used in amortized
VI. We will therefore use Gaussian mixture of experts. To that end, we construct an upper bound of J
which is decomposable into single objectives per expert, allowing for reparameterizing each expert
individually and therefore avoiding the need for techniques that perform reparameterization for the
entire MoE [60, 61]. The upper bound U(ϕ, q̃) can be obtained by making use of the chain rule for
KL divergences [62, 63, 15], i.e.,

J(ϕ) = U(ϕ, q̃)− Eµ(s)Eqϕ(a|s)DKL

(
qϕ(z|a, s)∥q̃(z|a, s)

)
, (8)

where q̃ is an arbitrary auxiliary distribution and upper bound U(ϕ, q̃) =

Eµ(s)[Eqξ(z|s)[Eqνz (a|s,z) [log q
νz (a|s, z)− log π(a|s)− log q̃(z|a, s)]︸ ︷︷ ︸

Us
z(νz,q̃)

+ log qξ(z|s)]], (9)

with U s
z (νz, q̃) being the objective function for a single expert z and state s. For further details see

Appendix B. Since the expected KL term on the right side of Eq. 8 is always positive, it directly
follows that U is an upper bound on J for any q̃. This gives rise to an optimization scheme similar to
the expectation-maximization algorithm [64], where we alternate between minimization (M-Step)
and tightening of the upper bound U (E-Step), that is,

min
ϕ

U(ϕ, q̃) and min
q̃

Eµ(s)Eqϕ(a|s)DKL

(
qϕ(z|a, s)∥q̃(z|a, s)

)
, (10)

respectively. Please note that q̃ is fixed during the M-Step and ϕ during the E-Step. In what follows,
we identify the M-Step as a hierarchical VI problem and elaborate on the E-Step.

M-Step for Updating the Experts. The decomposition in Eq. 8 allows for optimizing each expert
separately. The optimization objective for a specific expert z and state s, that is, U s

z (νz, q̃), is

min
νz

U s
z (νz, q̃) = min

νz

Eqνz (a|s,z) [q
νz (a|s, z)− log π(a|s)− log q̃(z|a, s)] . (11)

Note that this objective corresponds to the standard reverse KL objective from variational inference
(c.f. Eq. 4) , with an additional term log q̃(z|a, s), which acts as a repulsion force, keeping the

5

individual components from concentrating on the same mode. Assuming that q̃ is differentiable and
following the logic in Section 4.1 it is apparent that the single component objective in Eq 11 can be
optimized only by having access to scores ∇a log π(a|s). Moreover, we can again leverage amortized
stochastic VI, that is minνz Eµ(s) [U

s
z (νz, q̃)] ≈ minνz

M
N

∑
si∼µ U

si
z (νz, q̃).

M-Step for Updating the Gating. The M-Step for the gating parameters, i.e., minimizing U(ϕ, q̃)
with respect to ξ ⊂ ϕ is given by

min
ξ

U(ϕ, q̃) = max
ξ

Eµ(s)Eqξ(z|s)
[
qξ(z|s)− U s

z (νz, q̃)
]
. (12)

Using gradient estimators such as reinforce [57], requires evaluating U s
z (νz, q̃) which is not possible

as we do not have access to log π(a|s). This motivates the need for a different optimization scheme.
We note that qξ is a categorical distribution and can approximate any distribution over z. It does
therefore not suffer from problems associated with the forward KL divergence such as mode averaging
due to limited complexity of qξ. We thus propose using the following objective for optimizing ξ, i.e.,

min
ξ

Eµ(s)DKL(π(a|s)∥qϕ(a|s)) = max
ξ

Eµ(s)Eπ(a|s)Eq̃(z|a,s)
[
log qξ(z|s)

]
, (13)

resulting in a cross-entropy loss that does not require evaluating the intractable log π(a|s). Moreover,
we note that using the forward KL does not change the minimizer as

ξ∗ = argmin
ξ

Eµ(s)DKL(π(a|s)∥qϕ(a|s)) = argmin
ξ

Eµ(s)DKL(q
ϕ(a|s)∥π(a|s)), (14)

and, therefore does not affect the convergence guarantees of our method. Please note that the forward
KL requires samples from the teacher model π. In practice, if the dataset used for training the
diffusion model is available, it can be used as a proxy and prevent costly data regeneration.

E-Step: Tighening the Lower Bound. Using the properties of the KL divergence, it can easily be
seen that the global minimizer of the E-Step, i.e., the optimization objective defined in Eq. 10 can be
found by leveraging Bayes’ rule, i.e.,

q̃(z|a, s) = qϕ
old
(z|a, s) = qν

old
z (a|s, z)qξold

(z|s)∑
z q

νold
z (a|s, z)qξold(z|s)

. (15)

The superscript ‘old’ refers to the previous iteration. Numerically, ϕold can easily be obtained by using
a stop-gradient operation which is crucial as q̃ is fixed during the subsequent M-step which requires
blocking the gradients of q̃ with respect to ϕ. As the KL is set to zero after this update, the upper
bound is tight after every E-step ensuring Eµ(s)DKL(q

ϕ(a|s)∥πθ(a|s)) = U(ϕ, q̃). Hence, VDD has
similar convergence guarantees to EM, i.e., every update step improves the original objective.

4.3 Choosing the Diffusion-Timestep

In denoising diffusion models, the score function is usually characterized as a time-dependent function
∇at

log πt(at|s) = fθ(at, s, t), where t is the diffusion timestep. Yet, the formulation in Section
4.1 only leverages the pretrained diffusion model at time t → 0. However, [47]showed that using
an ensemble of scores from multiple diffusion time steps significantly improves performances. We,
therefore, replace Eq. 11 with a surrogate objective that utilizes scores at different time steps, that is,

min
νz

U s
z (νz, q̃) = min

νz

Eqνz (a|s,z)Ep(t) [q
νz (a|s, z)− log π(a|s, t)− log q̃(z|a, s)] , (16)

with p(t) being a distribution on [0, T]. Furthermore, we provide an ablation study for different time
step selection schemes and empirically confirm the findings from [47].

5 Experiments

We conducted imitation learning experiments by distilling two types of diffusion models: variance
preserving (VP) [2, 12] and variance exploding (VE) [65, 4]. We selected DDPM as the representative
for VP and BESO as the representative for VE. We adopt the choices of samplers and the number
of denoising steps in [9] and [13]. Additional evaluation of teacher models with different numbers
of denoising steps can be found in Appendix F. In the experiments, VP-1 and VE-1 denote the

6

VP (DDPM) VE (BESO) VP-1 VE-1 CD-VE CTM-VE VDD-VP(ours) VDD-VE(ours)
Kitchen 3.35 4.06 0.22 4.02 3.87 ± 0.05 3.89 ± 0.11 3.24 ± 0.12 3.85 ± 0.10

Block Push 0.96 0.96 0.09 0.94 0.89 ± 0.05 0.89 ± 0.04 0.93 ± 0.03 0.91 ± 0.03

Avoiding 0.94 0.96 0.09 0.84 0.82 ± 0.05 0.93 ± 0.02 0.92 ± 0.02 0.95 ± 0.01

Aligning 0.85 0.85 0.00 0.93 0.94 ± 0.08 0.81 ± 0.11 0.70 ± 0.07 0.86 ± 0.04

Pushing 0.74 0.78 0.00 0.70 0.66 ± 0.05 0.80 ± 0.07 0.61 ± 0.04 0.85 ± 0.02

Stacking-1 0.89 0.91 0.00 0.75 0.69 ± 0.06 0.54 ± 0.17 0.81 ± 0.08 0.85 ± 0.02

Stacking-2 0.68 0.70 0.00 0.53 0.46 ± 0.11 0.30 ± 0.09 0.60 ± 0.07 0.57 ± 0.06

Sorting (Image) 0.69 0.70 0.20 0.68 0.71 ± 0.07 0.70 ± 0.07 0.80 ± 0.04 0.76 ± 0.04

Stacking (Image) 0.58 0.66 0.00 0.58 0.63 ± 0.01 0.59 ± 0.10 0.78 ± 0.02 0.60 ± 0.04

(a) Task Success Rate (or Environment Return for Kitchen)

VP (DDPM) VE (BESO) VP-1 VE-1 CD-VE CTM-VE VDD-VP(ours) VDD-VE(ours)
Avoiding 0.89 0.87 0.25 0.76 0.72 ± 0.02 0.79 ± 0.04 0.37 ± 0.01 0.72 ± 0.12

Aligning 0.62 0.67 0.00 0.34 0.32 ± 0.14 0.31 ± 0.28 0.25 ± 0.09 0.40 ± 0.04

Pushing 0.74 0.76 0.00 0.50 0.53 ± 0.07 0.54 ± 0.08 0.66 ± 0.05 0.69 ± 0.08

Stacking-1 0.24 0.30 0.00 0.26 0.19 ± 0.12 0.18 ± 0.08 0.19 ± 0.05 0.16 ± 0.03
Stacking-2 0.12 0.13 0.00 0.07 0.03 ± 0.05 0.09 ± 0.06 0.07 ± 0.04 0.13 ± 0.06

Sorting (Image) 0.16 0.19 0.09 0.14 0.14 ± 0.06 0.08 ± 0.05 0.12 ± 0.03 0.22 ± 0.03

Stacking (Image) 0.31 0.15 0.00 0.10 0.06 ± 0.01 0.04 ± 0.04 0.05 ± 0.02 0.11 ± 0.03

(b) Task Entropy

Table 1: Comparison of distillation performance, (a) VDD achieves on-par performance with Consis-
tency Distillation (CD) (b) VDD is able to possess versatile skills (indicated by high task entropy)
while keeping high success rate. The best results for distillation are bolded, and the highest values
except origin models are underlined. In most tasks VDD achieves both high success rate and entropy.
Note: to better compare the distillation performance, we report the performance of origin diffusion
model, therefore only seed 0 results of diffusion models are presented here.

results when performing only one denoising step of the respective diffusion models during inference.
VDD-VP and VDD-VE denote the results of distilled VDD Additionally, we consider the SoTA
Consistency Distillation (CD) [42] and Consistency Trajectory Model (CTM) [44] as baselines for
comparing VDD’s performance in distillation. For CD and CTM, we distill from the VE following
the original works. For CTM we adapt the implementation and design choices from Consistency
Policy [45], which are specialized for behavior learning. We compare VDD against MoE learning
baselines, namely the widely-used Expectation-Maximization (EM) [66] approach as a representative
of the maximum likelihood-based objective and the recently introduced SoTA method Information
Maximizing Curriculum (IMC) as representative of the reverse KL-based objective. To make them
stronger baselines, we extend them with the architecture described in Figure 5 and name the extended
methods as EM-GPT and IMC-GPT, respectively. For a fair comparison, we used the same diffusion
models as the origin model for all distillation methods that we have trained on seed 0. For a
statistically significant comparison, all methods have been run on 4 random seeds, and the mean and
the standard deviation are reported throughout the evaluation. Detailed descriptions regarding the
baselines implementation and hyperparameters selection can be found in Appendix D and E.

The evaluations are structured as follows. Firstly, we demonstrate that VDD is able to achieve
competitive performance with the SoTA diffusion distillation method and the original diffusion
models on two established datasets. Next, we proceed to a recently proposed challenging benchmark
with human demonstrations, where VDD outperforms existing diffusion distillation and SoTA MoE
learning approaches. We then highlight the faster inference time of VDD. Following this, a series of
ablation studies reflect the importance of VDD’s essential algorithmic properties. Finally, we provide
a visualization to offer deeper insights into our method.

5.1 Competitive Distillation Performance in Imitation Learning Datasets

We first demonstrate the effectiveness of VDD using two widely recognized imitation learning datasets:
Relay Kitchen [67] and XArm Block Push [68]. A detailed description of these environments is
provided in Appendix C. To ensure a fair comparison, we follow the same evaluation process as
outlined in [9]. The environment rewards for Relay Kitchen and the success rate for XArm Block
Push are presented in Table 1a with mean and standard deviation resulting from 100 environment
rollouts. The results indicate that VDD achieves a performance comparable to CD in both tasks,
with slightly better outcomes in the block push dataset. An additional interesting finding is that
BESO, with only one denoising step (VE-1), already proves to be a strong baseline in these tasks, as
the original models outperformed the distillation results in both cases. We attribute this interesting

7

Environments EM-GPT IMC-GPT VDD-VP VDD-VE EM-GPT IMC-GPT VDD-VP VDD-VE
Avoiding 0.65± 0.18 0.75± 0.08 0.92± 0.02 0.95± 0.01 0.17± 0.13 0.82± 0.05 0.37± 0.01 0.73± 0.09

Aligning 0.78± 0.04 0.83± 0.02 0.70± 0.07 0.86± 0.04 0.38± 0.11 0.27± 0.09 0.25± 0.09 0.40± 0.04

Pushing 0.16± 0.07 0.76± 0.04 0.61± 0.04 0.85± 0.02 0.14± 0.10 0.31± 0.03 0.66± 0.05 0.69± 0.08

Stacking-1 0.58± 0.06 0.54± 0.05 0.81± 0.08 0.83± 0.09 0.43± 0.08 0.37± 0.04 0.19± 0.05 0.16± 0.03

Stacking-2 0.34± 0.07 0.29± 0.07 0.60± 0.07 0.57± 0.06 0.27± 0.05 0.17± 0.07 0.07± 0.04 0.13± 0.06

Sorting (image) 0.69± 0.02 0.74± 0.04 0.80± 0.04 0.76± 0.03 0.13± 0.03 0.10± 0.03 0.12± 0.03 0.22± 0.03

Stacking (image) 0.04± 0.03 0.39± 0.10 0.78± 0.02 0.60± 0.04 0.00± 0.00 0.05± 0.04 0.08± 0.02 0.11± 0.03

Relay Kitchen 3.62± 0.10 3.67± 0.05 3.24± 0.12 3.85± 0.10 - - - -
Block Push 0.88± 0.04 0.89± 0.04 0.93± 0.03 0.91± 0.03 - - - -

Table 2: Comparison between VDD and SoTA MoE approaches, with left: success rate and right:
entropy. VDD consistently outperforms EM and IMC in terms of task success. For behavior
versatility, VDD outperforms in 4 out of 7 D3IL tasks.

NFE 1 8 32 64
VE (BESO) 4.03 10.38 32.14 60.64
VP (DDPM) 2.15 8.25 29.47 55.62
VDD (Ours) 2.16

NFE 1 4 8 16
VE (BESO) 9.69 12.72 16.39 23.68
VP (DDPM) 6.49 9.33 12.79 19.90
VDD (Ours) 4.91

Table 3: Inference time in state-based pushing (left) and image-based stacking (right). The gray
shaded area indicates the default setting for diffusion models.

observation to the possibility that the Relay Kitchen and the XArm Block Push tasks are comparably
easy to solve and do not provide diverse, multi-modal data distributions. We therefore additionally
evaluate the methods on a more recently published dataset (D3IL) [13] which is explicitly generated
for complex robot imitation learning tasks and provides task entropy measurements.

5.2 Replicating Diffusion Performance while Possessing Versatile Behavior

The D3IL benchmark provides human demonstrations for several challenging robot manipulation
tasks, focusing on evaluating methods in terms of both success rate and versatility, i.e. the different
behaviors that solve the same task. This benchmark includes a versatility measure for each task,
referred to as task entropy. Task entropy is a scalar value ranging from 0 to 1, where 0 indicates
the model has only learned one way to solve the task, and 1 indicates the model has covered all the
skills demonstrated by humans. Detailed descriptions of the environments and the calculation of task
entropy are provided in the Appendix C. The task success rate of the distilled polices is presented in
Table 1a. The results show VDD outperforms consistency distillation and 1-step variants of origin
models in 6 out of 7 tasks except the Aligning. However, in the Aligning task VDD achieves higher
task entropy, indicating more diverse learned behaviors. The task entropy is presented in Table 1b.
The results demonstrate that VDD achieves higher task entropy compared to both consistency models
(CD, CTM) and the 1-step diffusion models (VP-1, VE-1) in 4 out of 7 tasks, which shows that our
method replicates high-quality versatile behaviors from diffusion policies.

5.3 Comparison with MoE learning from scratch

The previous evaluation demonstrated that VDD can effectively distill diffusion models into MoEs,
preserving the performance and behavioral versatility. In this section, we discuss the necessity of
using VDD instead of directly learning MoEs from scratch by comparing VDD against EM-GPT and
IMC-GPT. Both methods train MoE models from scratch but differ in their objectives. While EM is
based on the well-known maximum likelihood objective, IMC is based on a reverse KL objective.
The results in Table 2 show that VDD consistently outperforms both, EM-GPT and IMC-GPT across
a majority of all tasks in terms of both success rate and task entropy. We attribute the performance
boost leveraging the generalization ability of diffusion models and the stable updates provided by our
decomposed lower bound Eq.(11).

5.4 Fast Inference with distilled MoE

Inference with MoE models do not require an iterative denoising process and are therefore faster
in sampling. We evaluate the inference time of VDD against DDPM and BESO on the state-based
pushing task and the image-based stacking task and report the average results from 200 predictions in
Table 3. In addition to the absolute inference time in milliseconds, we report the number of function

8

1 2 4 8 16 32
0

1

Number of Experts

success entropy

(a) Avoiding: number of experts
Avo

idi
ng

Alig
nin

g

Stac
kin

g
0

1

w/o gating with gating

(b) Success rate, w/o gating
Avo

idi
ng

Alig
nin

g

Stac
kin

g
0

1

w/o gating with gating

(c) Entropy, w/o gating

min max

un
ifo

rm

int
erv

al
0

1

success entropy

(d) Choices of noise level

Figure 3: Ablation studies for key design choices used in VDD. (a) Using only one expert leads to a
higher success rate but is unable to solve the task in diverse manners. Sufficiently more experts can
trade off task success and action diversities. (b)Learning the gating distribution improves the success
rates in three D3IL tasks. (c) A Uniform gating leads to higher task entropy in three out of two tasks.
(d) Sampling the score from multiple noise levels leads to a better distillation performance

evaluations (NFE) in Table 3 for better comparability. The results show that VDD is significantly
faster than the original diffusion models in both cases, even when the diffusion model takes only one
denoising step. For a fair comparison, all methods used an identical number of transformer layers.
The predictions were conducted using the same system (RTX 3070 GPU, Intel i7-12700 CPU).

5.5 Ablation Studies

We assess the importance of VDD’s key properties on different environments by reporting the task
performance and task entropy averaged over four different seeds.

Number of experts matters for task entropy. We start by varying the number of experts of the MoE
model while freezing all other hyperparameters on the avoiding task. Figure 3a shows the average
task success rate and task entropy of MoE models trained with VDD. The success rate is almost
constantly high for all numbers of experts, except for the single expert (i.e. a Gaussian policy) case
which shows a slightly higher success rate. However, the single expert can only cover a single mode
of the multi-modal behavior space and hence achieves a task entropy of 0. With an increasing number
of experts, the task entropy increases and eventually converges after a small drop.

Training a gating distribution boosts performance. Figure 3b shows the success rates when
training a parameterized gating network qξ(z|s) (red) and when fixing the probability of choosing
expert z to q(z) = 1/N , where N is the number of experts (blue). While training a gating distribution
increases the success rate over three different tasks, the task entropy (see Figure 3c) slightly decreases
in two out of three tasks. This observation makes sense as the MoE with a trained gating distribution
leads to an input-dependent specialization of each expert, while the experts with a fixed gating are
forced to solve the task in every possible input.

Interval time step sampling increases task entropy. Here, we explore different time step distribu-
tions p(t), as introduced in Eq.(16). We consider several methods in Fig. 3d: using the minimum
time step, i.e., p(t) = limt→0 δ(t), where δ denotes a Dirac delta distribution, the maximum time
step p(t) = δ(T), a uniform distribution on [0, T] and on sub-intervals [t0, t1] ⊂ [0, T] with interval
bounds t0, t1 being hyperparameters. While success rates were comparable across the variants, inter-
val sampling yielded the highest task entropy with very high success rates. Thus, interval time-step
sampling is adopted as our default setting. The results were obtained from the avoiding task.

5.6 Visualization of the per-Expert Behavior

We provide additional visualizations on the Avoiding task from the D3IL task suite aiming to provide
further intuition on how VDD leverages the individual experts. Figure 4 illustrates the expert selection
according to the likelihood of the gating distribution at a given state, offering several key insights.
First, VDD effectively distills experts with distinct behaviors, e.g., z1 typically moves downward, z2
tends to move upward, while z3 and z4 tend to generate horizontal movements. Second, the gating
mechanism effectively deactivates redundant experts (z6, z7, z8) in most states, demonstrating that a
larger number of components can be used without harming performance, as the gating mechanism
deactivates redundant experts. Lastly, using a single component (Z = 1) can achieve a perfect success
rate at the cost of losing behavior diversity. On the contrary, using many experts potentially results in

9

a slightly lower success rate but increased behavior diversity. These qualitative results are consistent
with the quantitative results from the ablation study presented in Figure 3a.

Figure 4: Trajectory visualization for VDD with different number of components Z ∈ {1, 2, 4, 8} on
the Avoiding task (left). Different colors indicate components with highest likelihood according to
the learned gating network qξ(z|s) at a state s. For each step we select the action by first sampling an
expert from the categorical gating distribution and then take the mean of the expert prediction. We
decompose the case Z = 8 and visualize the individual experts zi (bottom row). Diverse behavior
emerges as multiple actions are likely given the same state. For example, moving to the bottom right
(z1) and top right (z2). An extreme case of losing diversity is seen with Z = 1, where the policy is
unable to capture the diverse behavior of the diffusion teacher, leading to deterministic trajectories.

6 Conclusion

This work introduced Variational Diffusion Distillation (VDD), a novel method that distills a diffusion
model to an MoE. VDD enables the MoE to benefit from the diffusion model’s properties like
generalization and complex, multi-modal data representation, while circumventing its shortcomings
like long inference time and intractable likelihood calculation. Based on the variational objective,
VDD derives a lower bound that enables optimizing each expert individually. The lower-bound leads
to a stable optimization and elegantly leverages the gradient of the pre-trained score function such that
the overall MoE model effectively benefits from the diffusion model’s properties. The evaluations
on nine sophisticated behavior learning tasks show that VDD achieves on-par or better distillation
performance compared to SOTA methods while retaining the capability of learning versatile skills.
The ablation on the number of experts reveals that a single expert is already performing well, but
can not solve the tasks in a versatile manner. Additionally, the results show that training the gating
distribution greatly boosts the performance of VDD, but reduces the task entropy.

Limitations. VDD is not straightforwardly applicable to generating very high-dimensional data
like images due to the MoE’s contextual mean and covariance prediction. Scaling VDD to images
requires further extensions like prediction in a latent space. Additionally, the number of experts needs
to be pre-defined by the user. However, a redundantly high number of experts could increase VDD’s
training time and potentially decrease the usage in post hoc fine-tuning using reinforcement learning.
Similar to other distillation methods, the performance of VDD is bounded by the origin model.

Future Work. A promising avenue for further research is to utilize the features of the diffusion
‘teacher’ model to reduce training time and enhance performance. This can be achieved by leveraging
the diffusion model as a backbone and fine-tuning an MoE head to predict the means and covariance
matrices of the experts. The time-dependence of the diffusion model can be directly employed to
train the MoE on multiple noise levels, effectively eliminating the need for the time-step selection
scheme introduced in Section 4.3.

Broader Impact. Improving and enhancing imitation learning algorithms could make real-world
applications like robotics more accessible, with both positive and negative impacts. We acknowledge
that it falls on sovereign governments’ responsibility to identify these potential negative impacts.

Acknowledgement

We thank Moritz Reuss for the valuable discussions and technical support. H.Z. and R.L. acknowl-
edges funding by the German Research Foundation (DFG) – 448648559. D.B. is supported by

10

funding from the pilot program Core Informatics of the Helmholtz Association (HGF). G.L. is
supported in part by the Helmholtz Association of German Research Centers. G.N. was supported in
part by Carl Zeiss Foundation through the Project JuBot (Jung Bleiben mit Robotern). The authors
also acknowledge support by the state of Baden-Württemberg through HoreKa supercomputer funded
by the Ministry of Science, Research and the Arts Baden-Württemberg and by the German Federal
Ministry of Education and Research.

References
[1] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-

vised learning using nonequilibrium thermodynamics. In International conference on machine
learning, pages 2256–2265. PMLR, 2015.

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[3] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2020.

[4] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. Advances in Neural Information Processing Systems, 35:
26565–26577, 2022.

[5] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin,
Bob Mcgrew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image genera-
tion and editing with text-guided diffusion models. In International Conference on Machine
Learning, pages 16784–16804. PMLR, 2022.

[6] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents.

[7] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using
2d diffusion. In The Eleventh International Conference on Learning Representations, 2022.

[8] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[9] Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal conditioned imitation
learning using score-based diffusion policies. In Robotics: Science and Systems, 2023.

[10] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and
Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings
of Robotics: Science and Systems (RSS), 2023.

[11] Paul Maria Scheikl, Nicolas Schreiber, Christoph Haas, Niklas Freymuth, Gerhard Neumann,
Rudolf Lioutikov, and Franziska Mathis-Ullrich. Movement primitive diffusion: Learning
gentle robotic manipulation of deformable objects. IEEE Robotics and Automation Letters,
2024.

[12] Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,
Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating
human behaviour with diffusion models. In The Eleventh International Conference on Learning
Representations (ICLR 2023), 2023.

[13] Xiaogang Jia, Denis Blessing, Xinkai Jiang, Moritz Reuss, Atalay Donat, Rudolf Lioutikov,
and Gerhard Neumann. Towards diverse behaviors: A benchmark for imitation learning with
human demonstrations. arXiv preprint arXiv:2402.14606, 2024.

[14] Denis Blessing, Onur Celik, Xiaogang Jia, Moritz Reuss, Maximilian Li, Rudolf Lioutikov,
and Gerhard Neumann. Information maximizing curriculum: A curriculum-based approach for
learning versatile skills. Advances in Neural Information Processing Systems, 36, 2024.

11

[15] Oleg Arenz, Philipp Dahlinger, Zihan Ye, Michael Volpp, and Gerhard Neumann. A unified
perspective on natural gradient variational inference with gaussian mixture models. arXiv
preprint arXiv:2209.11533, 2022.

[16] Philipp Becker, Oleg Arenz, and Gerhard Neumann. Expected information maximization:
Using the i-projection for mixture density estimation. In International Conference on Learning
Representations, 2019.

[17] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877, 2017.

[18] Denis Blessing, Xiaogang Jia, Johannes Esslinger, Francisco Vargas, and Gerhard Neumann.
Beyond elbos: A large-scale evaluation of variational methods for sampling. arXiv preprint
arXiv:2406.07423, 2024.

[19] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion
for flexible behavior synthesis. In International Conference on Machine Learning, pages
9902–9915. PMLR, 2022.

[20] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expres-
sive policy class for offline reinforcement learning. International Conference on Learning
Representations, 2023.

[21] Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. In The Eleventh International Conference on
Learning Representations, 2023.

[22] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola, and Pulkit
Agrawal. Is conditional generative modeling all you need for decision making? In The Eleventh
International Conference on Learning Representations, 2023.

[23] Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao,
and Xuelong Li. Diffusion model is an effective planner and data synthesizer for multi-task
reinforcement learning. Advances in neural information processing systems, 36, 2023.

[24] Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies
for offline reinforcement learning. Advances in Neural Information Processing Systems, 36,
2023.

[25] Ajay Sridhar, Dhruv Shah, Catherine Glossop, and Sergey Levine. Nomad: Goal masked
diffusion policies for navigation and exploration. arXiv preprint arXiv:2310.07896, 2023.

[26] Maximilian Xiling Li, Onur Celik, Philipp Becker, Denis Blessing, Rudolf Lioutikov, and
Gerhard Neumann. Curriculum-based imitation of versatile skills. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 2951–2957. IEEE, 2023.

[27] Niklas Freymuth, Nicolas Schreiber, Aleksandar Taranovic, Philipp Becker, and Gerhard
Neumann. Inferring versatile behavior from demonstrations by matching geometric descriptors.
In 6th Annual Conference on Robot Learning, 2022.

[28] Katharina Mülling, Jens Kober, Oliver Kroemer, and Jan Peters. Learning to select and
generalize striking movements in robot table tennis. The International Journal of Robotics
Research, 32(3):263–279, 2013.

[29] Marco Ewerton, Gerhard Neumann, Rudolf Lioutikov, Heni Ben Amor, Jan Peters, and Guil-
herme Maeda. Learning multiple collaborative tasks with a mixture of interaction primitives. In
2015 IEEE International Conference on Robotics and Automation (ICRA), pages 1535–1542.
IEEE, 2015.

[30] You Zhou, Jianfeng Gao, and Tamim Asfour. Movement primitive learning and generalization:
Using mixture density networks. IEEE Robotics & Automation Magazine, 27(2):22–32, 2020.

[31] Vignesh Prasad, Alap Kshirsagar, Dorothea Koert Ruth Stock-Homburg, Jan Peters, and Georgia
Chalvatzaki. Moveint: Mixture of variational experts for learning human-robot interactions
from demonstrations. IEEE Robotics and Automation Letters, 2024.

12

[32] Riad Akrour, Davide Tateo, and Jan Peters. Continuous action reinforcement learning from
a mixture of interpretable experts. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44:6795–6806, 2020. URL https://api.semanticscholar.org/CorpusID:
219558472.

[33] Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. Mcp: Learning
composable hierarchical control with multiplicative compositional policies. Advances in Neural
Information Processing Systems, 32, 2019.

[34] Jie Ren, Yewen Li, Zihan Ding, Wei Pan, and Hao Dong. Probabilistic mixture-of-experts for
efficient deep reinforcement learning. arXiv preprint arXiv:2104.09122, 2021.

[35] Onur Celik, Dongzhuoran Zhou, Ge Li, Philipp Becker, and Gerhard Neumann. Specializing
versatile skill libraries using local mixture of experts. In Conference on Robot Learning, pages
1423–1433. PMLR, 2022.

[36] Onur Celik, Aleksandar Taranovic, and Gerhard Neumann. Acquiring diverse skills using
curriculum reinforcement learning with mixture of experts. arXiv preprint arXiv:2403.06966,
2024.

[37] Ahmed Hendawy, Jan Peters, and Carlo D’Eramo. Multi-task reinforcement learning with
mixture of orthogonal experts. In The Twelfth International Conference on Learning Represen-
tations, 2023.

[38] Samuele Tosatto, Georgia Chalvatzaki, and Jan Peters. Contextual latent-movements off-policy
optimization for robotic manipulation skills. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 10815–10821. IEEE, 2021.

[39] Kay Hansel, Julen Urain, Jan Peters, and Georgia Chalvatzaki. Hierarchical policy blending as
inference for reactive robot control. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 10181–10188. IEEE, 2023.

[40] Aaron Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray Kavukcuoglu,
George Driessche, Edward Lockhart, Luis Cobo, Florian Stimberg, et al. Parallel wavenet:
Fast high-fidelity speech synthesis. In International conference on machine learning, pages
3918–3926. PMLR, 2018.

[41] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
In International Conference on Learning Representations, 2021.

[42] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In
Proceedings of the 40th International Conference on Machine Learning, pages 32211–32252,
2023.

[43] Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=WNzy9bRDvG.

[44] Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu
Uesaka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models:
Learning probability flow ode trajectory of diffusion. In The Twelfth International Conference
on Learning Representations, 2023.

[45] Aaditya Prasad, Kevin Lin, Jimmy Wu, Linqi Zhou, and Jeannette Bohg. Consistency policy:
Accelerated visuomotor policies via consistency distillation. In Robotics: Science and Systems,
2024.

[46] Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36, 2024.

[47] Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy
optimization through diffusion behavior. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=xCRr9DrolJ.

13

https://api.semanticscholar.org/CorpusID:219558472
https://api.semanticscholar.org/CorpusID:219558472
https://openreview.net/forum?id=WNzy9bRDvG
https://openreview.net/forum?id=WNzy9bRDvG
https://openreview.net/forum?id=xCRr9DrolJ

[48] Sirui Xie, Zhisheng Xiao, Diederik P Kingma, Tingbo Hou, Ying Nian Wu, Kevin Patrick
Murphy, Tim Salimans, Ben Poole, and Ruiqi Gao. Em distillation for one-step diffusion
models. arXiv preprint arXiv:2405.16852, 2024.

[49] Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

[50] Ulrich G Haussmann and Etienne Pardoux. Time reversal of diffusions. The Annals of
Probability, pages 1188–1205, 1986.

[51] Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable
approach to density and score estimation. In Uncertainty in Artificial Intelligence, pages
574–584. PMLR, 2020.

[52] Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020.

[53] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, Cambridge,
MA, USA, 2016. http://www.deeplearningbook.org.

[54] Jonas Köhler, Andreas Krämer, and Frank Noé. Smooth normalizing flows. Advances in Neural
Information Processing Systems, 34:2796–2809, 2021.

[55] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational
inference. Journal of Machine Learning Research, 2013.

[56] Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems. Communications
of the ACM, 33(10):75–84, 1990.

[57] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229–256, 1992.

[58] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[59] Valentin De Bortoli, Michael Hutchinson, Peter Wirnsberger, and Arnaud Doucet. Target score
matching. arXiv preprint arXiv:2402.08667, 2024.

[60] Alex Graves. Stochastic backpropagation through mixture density distributions. arXiv preprint
arXiv:1607.05690, 2016.

[61] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[62] Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

[63] Oleg Arenz, Gerhard Neumann, and Mingjun Zhong. Efficient gradient-free variational inference
using policy search. In International conference on machine learning, pages 234–243. PMLR,
2018.

[64] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the royal statistical society: series B (methodological), 39
(1):1–22, 1977.

[65] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

[66] Todd K Moon. The expectation-maximization algorithm. IEEE Signal processing magazine, 13
(6):47–60, 1996.

[67] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay
policy learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv
preprint arXiv:1910.11956, 2019.

[68] Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs,
Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning.
In Conference on Robot Learning, pages 158–168. PMLR, 2022.

14

http://www.deeplearningbook.org

A VDD Architecture and Algorithm Box

Algorithm 1 VDD training

Require: observations S, actions A, pretrained
denoising score function sθ(s, a)

1: Initialize MoE:
qϕ(a|s) =

∑
z q

ξ(z|s)qνz (a|s, z)
2: for each iteration i = 1, 2, . . . , N do
3: M-Step: Update Experts:
4: update qνz (a|s, z) with Eq. 16
5: E-Step: Update Gating:
6: compute gating targets with Eq. 15
7: update qξ(z|s) using cross-entropy loss
8: end for
9: Output learned MoE qϕ(a|s)

... sk−2 sk−1 sk

Number of
Experts Z

wz

µz Σz

Figure 5: VDD’s architecture Figure 6: Task Envs.

The architecture of VDD is depicted in Fig. 5 and the algorithm box is given in Algorithm 1. Align
with the SoTA diffusion policies’ architecture, such as [9, 12], we leverage a transformer architecture
for VDD to encode a short observation history, seen as a sequence of states {sk}. The state sequences
are first encoded using a state encoder: a linear layer for state-based tasks or a pre-trained ResNet-18
for image-based tasks. Positional encodings are added to the encoded sequence, which is then fed
into a decoder-only transformer. The last output token predicts the parameters of the MoE, including
the mean and covariance of each expert, as well as the gating distribution for expert selection. This
parameterization enables VDD to predict all experts and the gating distribution with a single forward
pass, enhancing inference time efficiency.

B Derivations

B.1 Derivation of the Variational Decomposition (Eq. 8)

Recall that the marginal likelihood of the Mixture of Experts is given as

qϕ(a|s) =
∑
z

qξ(z|s)qνz (a|s, z), (17)

where z denotes the latent variable, qξ(z|s) and qνz (a|s, z) are referred to as gating and experts
respectively.

The expected reverse Kullback-Leibler (KL) divergence between qϕ and π is given as

min
ϕ

Eµ(s) DKL(q
ϕ(a|s)∥π(a|s)) = min

ϕ
Eµ(s) Eqϕ(a|s)

[
log qϕ(a|s)− log π(a|s)

]
(18)

= min
ϕ

J(ϕ), (19)

where

J(ϕ) =

∫
s

µ(s)

∫
a

qϕ(a|s)
[
log qϕ(a|s)− log π(a|s)

]
dads. (20)

We can write

J(ϕ) =

∫
s

µ(s)
∑
z

qξ(z|s)
∫
a

qνz (a|s, z)
[
log qϕ(a|s)− log π(a|s)

]
dads, (21)

where we have used the definition of the marginal likelihood of the Mixture of Experts in Eq. 3.

With the identity

qϕ(a|s) = qξ(z|s)qνz (a|s, z)
qϕ(z|s,a)

(22)

15

we can further write

J(ϕ) =

∫
s

µ(s)
∑
z

qξ(z|s)
∫
a

qνz (a|s, z)
[
log qξ(z|s) + log qνz (a|s, z)− log q(z|s,a)

− log π(a|s)] dads. (23)

We can now introduce the auxiliary distribution q̃(z|a, s) by adding and subtracting it as

J(ϕ) =

∫
s

µ(s)
∑
z

qξ(z|s)
∫
a

qνz (a|s, z)
[
log qξ(z|s) + log qνz (a|s, z)− log qϕ(z|s,a)

− log π(a|s) + log q̃(z|a, s)− log q̃(z|a, s)] dads. (24)

We can rearrange the terms such that

J(ϕ) =

∫
s

µ(s)
∑
z

qξ(z|s)
∫
a

qνz (a|s, z)
[
log qξ(z|s) + log qνz (a|s, z)− log π(a|s)

− log q̃(z|a, s)] dads+
∫
s

µ(s)
∑
z

qξ(z|s)
∫
a

qνz (a|s, z) [log q̃(z|a, s)

− log qϕ(z|s,a)
]
dads. (25)

With can plug in the identity

qνz (a|s, z) = qϕ(a|s)qϕ(z|s,a)
qξ(z|s)

(26)

into the second sum and obtain

J(ϕ) =

∫
s

µ(s)
∑
z

qξ(z|s)
∫
a

qνz (a|s, z)
[
log qξ(z|s) + log qνz (a|s, z)− log π(a|s)− log q̃(z|a, s)

]
dads

+

∫
s

∑
z

∫
a

qϕ(a|s)qϕ(z|s,a)
[
log q̃(z|a, s)− log qϕ(z|s,a)

]
dads. (27)

which is the expected negative KL as

J(ϕ) =

∫
s

µ(s)
∑
z

qξ(z|s)
∫
a

qνz (a|s, z)
[
log qξ(z|s) + log qνz (a|s, z)− log π(a|s)− log q̃(z|a, s)

]
dads

− Eµ(s)Eqϕ(a|s)DKL(q
ϕ(z|s,a)∥q̃(z|a, s)). (28)

We note that

U(ϕ, q̃) =

∫
s

µ(s)
∑
z

qξ(z|s)
∫
a

qνz (a|s, z)
[
log qξ(z|s) + log qνz (a|s, z)− log π(a|s)

− log q̃(z|a, s)] dads, (29)

such that we arrive to the identical expression as in Eq. 8

J(ϕ) = U(ϕ, q̃)− Eµ(s)Eqϕ(a|s)DKL

(
qϕ(z|a, s)∥q̃(z|a, s)

)
. (30)

B.2 Derivation of the Gating Update (Eq. 13)

First, we note that

DKL(π(a|s)∥qϕ(a|s)) = Eπ(a|s) [log π(a|s)]− Eπ(a|s)
[
log qϕ(a|s)

]
(31)

as we are optimizing w.r.t. ϕ, we can write const. = Eπ(a|s) [log π(a|s)]

DKL(π(a|s)∥qϕ(a|s)) = −Eπ(a|s)
[
log qϕ(a|s)

]
+ const. (32)

16

We can now introduce the latent variable z

DKL(π(a|s)∥qϕ(a|s)) = −Eπ(a|s)

[∑
z

q̃(z|a, s) log qϕ(a|s)

]
+ const. (33)

We use the identity in Eq. 22 to arrive at

DKL(π(a|s)∥qϕ(a|s)) = −Eπ(a|s)

[∑
z

q̃(z|a, s)
(
log qνz (a|s, z) + log qξ(z|s)− log qϕ(z|s,a)

)]
(34)

+ const.

= −Eπ(a|s)

[∑
z

q̃(z|a, s)
(
log qνz (a|s, z) + log qξ(z|s)− log qϕ(z|s,a)

)
+ log q̃(z|a, s)− log q̃(z|a, s)] + const. (35)

= −Eπ(a|s)

[∑
z

q̃(z|a, s)
(
log qνz (a|s, z) + log qξ(z|s)− log q̃(z|a, s)

)]
−DKL(q̃(z|a, s)∥qϕ(z|s,a)) + const. (36)

Since DKL(q̃(z|a, s)∥qϕ(z|s,a)) ≥ 0 we have the upper bound

U(ϕ, q̃) = −Eπ(a|s)

[∑
z

q̃(z|a, s)
(
log qνz (a|s, z) + log qξ(z|s)− log q̃(z|a, s)

)]
. (37)

We can now write

U(ϕ, q̃) = −Eπ(a|s)

[∑
z

q̃(z|a, s) log qνz (a|s, z)

]
+ Eπ(a|s)

[
DKL(q̃(z|a, s)∥qξ(z|s))

]
. (38)

Hence optimizing U(ϕ, q̃) with respect to ϕ = ξ ∪ {νz}z is equivalent to optimizing
DKL(π(a|s)∥qϕ(a|s)). Specifically optimizing with respect to ξ boils down to

min
ξ

U(ϕ, q̃) = min
ξ

Eπ(a|s)DKL(q̃(z|a, s)|qξ(z|s)) = max
ξ

Eπ(a|s)Eq̃(z|a,s)[log q
ξ(z|s)]. (39)

Noting that the expectation concerning µ(s) does not affect the minimizer, concludes the derivation.

C Environments

Relay Kitchen: A multi-task kitchen environment with long-horizon manipulation tasks such as
moving kettle, open door, and turn on/off lights. The dataset consists of 566 human-collected
trajectories with sequences of 4 executed skills. We used the same experiment settings and the
pre-trained diffusion models from [9].

XArm Block Push: We used the adapted goal-conditioned variant from [9]. The Block-Push
Environment consists of an XARm robot that must push two blocks, a red and a green one, into
a red and green squared target area. The dataset consists of 1000 demonstrations collected by a
deterministic controller with 4 possible goal configurations. The methods got 0.5 credit for every
block pushed into one of the targets with a maximum score of 1.0. We use the pretrained Beso model
from [9].

D3IL [13] is a simulation benchmark with diverse human demonstrations, which aims to evaluate
imitation learning models’ ability to capture multi-modal behaviors. D3IL provides 7 simulation tasks
consisting of a 7DoF Franka Emika Panda robot and various objects, where each task has different
solutions and the robot is required to acquire all behaviors. Except for success rate, D3IL proposes to
use task behavior entropy to quantify the policy’s capability of learning multi-modal distributions.
Given the predefined behaviors β for each task, the task behavior entropy is defined as,

17

Es0∼p(s0)

[
H
(
π(β|s0)

)]
≈ − 1

S0

∑
s0∼p(s0)

∑
β∈B

π(β|s0) log|B| π(β|s0) (40)

where s0 refers to the initial state and S0 refers to the number of samples from the initial state
distribution p(s0). During the simulation, we rollout the policy multiple times for each s0 and use a
Monte Carlo estimation to compute the expectation of the behavior entropy.

Avoiding

Aligning Pushing

StackingSorting

Figure 7: Visualization of D3IL tasks. We further provide the figure of demonstrations for the
Avoiding task, which indicates 24 solutions of it.

In this paper, we evaluate our algorithm in Avoiding, Aligning, Pushing, and Stacking with state-
based representations and Sorting and Stacking with image-based representations. The simulation
environments can be found in Fig. 7. The Avoiding task requires the robot to reach the green line
without colliding with any obstacles. The task contains 96 demonstrations, consisting of 24 solutions
with 4 trajectories for each solution. The Aligning task requires the robot to push the box to match
the target position and orientation. The robot can either push the box from inside or outside, thus
resulting in 2 solutions. This task contains 1000 demonstrations, 500 for each solution with uniformly
sampled initial states. The Pushing task requires the robot to push two blocks to the target areas.
The robot can push the blocks in different orders and to different target areas, which gives the task 4
solutions. This task contains 2000 demonstrations, 500 for each solution with uniformly sampled
initial states. The Sorting task requires the robot to sort red and blue blocks to the corresponding
box. The number of solutions is determined by the sorting order. D3IL provides Sorting 2, 4, and
6 boxes, here we only use the Sorting-4 task, which contains around 1054 demonstrations with 18
solutions. The Stacking task requires the robot to stack three blocks in the target zone. Additionally,
the blue block needs to be stacked upright which makes it more challenging. This task contains 1095
demonstrations with 6 solutions.

D Baselines Implementation

BESO [9] is a continuous time diffusion policy that uses a continuous stochastic-differential
equation to represent the denoising process. We implement this method from the D3IL benchmark,
following the default which predicts one-step action conditional on the past five-step observations.

DDPM [2, 10] is a discrete diffusion policy. We do not directly use the code from DiffusionPolicy
[10] which implements an encoder-decoder transformer structure. For fair comparison, we evaluate
this model from the D3IL benchmark which shares the same architecture as in BESO.

Consistency Distillation [42] is designed to overcome the slow generation of diffusion models.
Consistency models can directly map noise to data using one-step and few-step generation and they
can be trained either through distilling pre-trained diffusion models or as an independent generative
model. Our implementation takes the main training part of the model by integrating a GPT-based
diffusion policy as the backbone.

18

Consistency Trajectory Models [44] is an extension of the CD model originally used in image
generation. It augments the performance by integrating additional CTM and GAN loss terms in
consideration. Later, it is used in robot policy prediction in [45] without taking the GAN loss.
Our implementation of CTM is extended from our CD implementation, by modifying the loss
computation.

IMC [14] is a curriculum-based approach that uses a curriculum to assign weights to the training
data so that the policy can select samples to learn, aiming to address the mode-averaging problem in
multimodal distributions. We implement the model using the official IMC code with a GPT structure.

EM [66] is based on the maximum likelihood objective and follows an iterative optimization
scheme, where the algorithm switches between the M-step and the E-step in each iteration.

E Hyper Parameters

E.1 Hyperparameter Selection

We executed a large-scale grid search to fine-tune key hyperparameters for each baseline method. For
other hyperparameters, we choose the value specified in their respective original papers. Below is a
list summarizing the key hyperparameters that we swept during the experiment phase.

BESO: None

DDPM: None

Consistency Distillation: µ: EMA decay rate, N: see Algorithm 2 in [42]. All the other hyper-
parameters reuse the ones from the diffusion policy (BESO), as CD requires to be initialized using a
pre-trained diffusion model.

Consistency Trajectory Models: Same as Consistency Distillation.

IMC-GPT: Eta [14], Number of components

EM-GPT: Number of components

VDD-DDPM: Number of components, tmin, tmax

VDD-BESO: Number of components, σmin, σmax

19

E.2 Hyperparameter List

Methods / Parameters Grid Search Avoiding Aligning Pushing Stacking Sorting-Vision Stacking-Vision Kitchen Block Push

GPT (shared by all)
Number of Layers − 4 4 4 4 6 6 6 4
Number of Attention Heads − 4 4 4 4 6 6 12 12
Embedding Dimension − 72 72 72 72 120 120 240 192
Window Size − 5 5 5 5 5 5 4 5
Optimizer − Adam Adam Adam Adam Adam Adam Adam Adam
Learning Rate ×10−4 − 1 1 1 1 1 1 1 1

DDPM
Number of Time Steps − 8 16 64 16 16 16

BESO
Number of Sampling Steps − 8 16 64 16 16 16
σmin − 0.1 0.01 0.1 0.1 0.1 0.1 0.1 0.1
σmax − 1 3 1 1 1 1 1 1

IMC-GPT
Number of Components {4, 8, 20, 50} 8 8 8 8 8 8 20 20
Eta η {0.5, 1, 2, 5} 1 1 1 1 2 5 1 1

EM-GPT
Number of Components {4, 8, 20, 50} 20 20 50 20 20 20 20 20

CD
N, Algorithm 2 in [42] {2, 5, 10, 20, 40, 80, 120, 180} 2 2 2 2 2 2 2 2
EMA decay rate µ {0.99, 0.999, 0.9999} 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

CTM
N, Algorithm 2 in [42] {5, 10, 20, 40} 20 20 20 20 20 20 10 10
EMA decay rate µ {0.99, 0.999, 0.9999} 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

VDD-DDPM
Number of Components − 8 8 8 8 8 8 1 2

tmin {1, 2, 4} 1 4 4 2 1 6 0 0

tmax {4, 8, 10, 12} 4 6 12 8 4 12 3 3

VDD-BESO
Number of Components {4, 8} 8 8 8 8 8 8 4 4

σmin {0.1, 0.2, 0.4, 0.6, 0.8} 0.2 0.8 0.2 0.4 0.4 0.2 0.1 0.2

σmax {0.1, 0.6, 0.8, 1.0} 0.5 1.0 0.5 1.0 0.8 0.5 0.1 0.6

Table 4: Hyperparameter algorithms proposed method and baselines. The ‘Grid Serach’ column
indicates the values over which we performed a grid search. The values in the column which are
marked with task names indicate which values were chosen for the reported results.

F Evaluation of Teacher Diffusion Models with Different Denoising Steps

Unlike DDPM, which uses a fixed set of timesteps, BESO learns a continuous-time representation of
the scores. This continuous representation enables the use of various numerical integration schemes,
which can impact the performance of the diffusion model. We conducted an evaluation on the BESO
teacher we used with different denoising steps. The results are presented in Table 5.

Environments Euler Maru-16 Euler Maru-32 Euler Maru-64 Euler Maru-16 Euler Maru-32 Euler Maru-64
Avoiding 0.96 0.96 0.95 0.87 0.86 0.88

Aligning 0.85 0.85 0.85 0.67 0.32 0.80

Pushing 0.77 0.80 0.78 0.71 0.78 0.76

Stacking-1 0.91 0.87 0.88 0.30 0.32 0.32

Stacking-2 0.70 0.64 0.63 0.13 0.14 0.13

Sorting (image) 0.70 0.76 0.76 0.19 0.23 0.24

Stacking (image) 0.60 0.70 0.70 0.15 0.16 0.21

Table 5: BESO with varies denoising steps.

20

G Compute Resources

We train and evaluate all the models based on our private clusters. Each node contains 4 NVIDIA
A100 and we use one GPU for each method. We report the average training time in Table 6.

Training Time
state-based image-based

EM-GPT 2− 3 h 4− 6 h
IMC-GPT 2− 3 h 4− 6 h
VDD-DDPM 3− 4 h 6− 8 h
VDD-BESO 3− 4 h 6− 8 h

Table 6: Training time for each method.

In addition, we evaluate how the number of trainable parameters and training time scale with different
numbers of components. The results are presented in Table 7.

Num. of Experts 1 2 4 8 16

Parameters (×104) 144.23 144.45 144.89 145.76 147.50
Times/1k Iters (s) 64.48 70.19 74.62 106.98 166.54

Table 7: Adding more experts does not significantly increase the number of neural network parameters
or the training time. We conducted the evaluation on the state-based avoiding task, using a machine
with an RTX 3070 GPU and an i7-13700 CPU. This result is due to the optimized network architecture
of the VDD model, as shown in Figure 5. Adding more experts will only increase the number of
output linear layers, i.e., the mean and covariance nets, while the transformer backbone which
contains most of the parameters remains unchanged.

21

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main contribution is a novel method for distilling diffusion models into
mixture of experts, which is outlined and described in the abstract and the introduction and
the method section. Claims wrt to the performance of the distilled policies are verified in
the experiment section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

22

Answer: [Yes]
Justification: We discuss the limitations of this work in the conclusion section
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide a description of our learning objective in the method section, and a
full derivation in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe how the baselines are implemented in Appendix C and corre-
sponding hyperparameters to reproduce the experiment results in the appendix D

23

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will open source the codes in the near future once they are cleaned up
and anomnymity is not a concern anymore. All the experiments we conducted were using
open-source datasets. In the experiments section and appendix C we provide information to
get access to the data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide hyperparameter lists for each of the algorithms, how they were
chosen and type of optimizer in appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The experiments describe the number of trials and show the deviations in the
result tables. There are no deviations for the origin models as they are the used as the base
of the distillation and hence set to a fixed seed 0.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

25

Answer: [Yes]

Justification: The used compute resources are described in appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed the broader impact in the conclusion section

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

26

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we do used pretrained models for diffusion model and open source code
base for baselines, which is clearly stated in both experiment section and appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We plan to open source the code in the future

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

27

paperswithcode.com/datasets

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Related Works
	Preliminaries
	Variational Distillation of Denoising Diffusion Policies
	Scalable Variational Inference for Denoising Diffusion Policy Distillation
	Variational Inference via Mixture of Experts
	Choosing the Diffusion-Timestep

	Experiments
	Competitive Distillation Performance in Imitation Learning Datasets
	Replicating Diffusion Performance while Possessing Versatile Behavior
	Comparison with MoE learning from scratch
	Fast Inference with distilled moe
	Ablation Studies
	Visualization of the per-Expert Behavior

	Conclusion
	VDD Architecture and Algorithm Box
	Derivations
	Derivation of the Variational Decomposition (Eq. 8)
	Derivation of the Gating Update (Eq. 13)

	Environments
	Baselines Implementation
	Hyper Parameters
	Hyperparameter Selection
	Hyperparameter List

	Evaluation of Teacher Diffusion Models with Different Denoising Steps
	Compute Resources

