
BeamLoRA: Beam-Constraint Low-Rank Adaptation

Anonymous ACL submission

Abstract
Due to the demand for efficient fine-tuning of001
large language models, Low-Rank Adaptation002
(LoRA) has been widely adopted as one of the003
most effective parameter-efficient fine-tuning004
methods. Nevertheless, while LoRA improves005
efficiency, there remains room for improvement006
in accuracy. Herein, we adopt a novel perspec-007
tive to assess the characteristics of LoRA ranks.008
The results reveal that different ranks within009
the LoRA modules not only exhibit varying010
levels of importance but also evolve dynami-011
cally throughout the fine-tuning process, which012
may limit the performance of LoRA. Based on013
these findings, we propose BeamLoRA, which014
conceptualizes each LoRA module as a beam015
where each rank naturally corresponds to a po-016
tential sub-solution, and the fine-tuning process017
becomes a search for the optimal sub-solution018
combination. BeamLoRA dynamically elimi-019
nates underperforming sub-solutions while ex-020
panding the parameter space for promising021
ones, enhancing performance with a fixed rank.022
Extensive experiments across three base mod-023
els and 12 datasets spanning math reasoning,024
code generation, and commonsense reasoning025
demonstrate that BeamLoRA consistently en-026
hances the performance of LoRA, surpassing027
the other baseline methods.028

1 Introduction029

In recent years, large language models have shown030

tremendous potential in various applications (Tou-031

vron et al., 2023a,b; Jiang et al., 2023; OpenAI,032

2023). To further enhance model performance on033

specific downstream tasks, fine-tuning is usually034

the most effective approach. However, as the scale035

of models keeps increasing, fine-tuning all model036

parameters becomes unsustainable. To address037

this issue, parameter-efficient fine-tuning (PEFT)038

emerges as a practical solution (Houlsby et al.,039

2019; Li and Liang, 2021; Liu et al., 2022; Hu040

et al., 2022). By updating only lightweight mod-041

ules, these methods nearly achieve the results of042

full parameter fine-tuning while reducing both fine- 043

tuning time and memory usage. 044

Among these PEFT methods, Low-Rank Adap- 045

tation (LoRA) stands out for its effectiveness and 046

practicality (Hu et al., 2022). The method strate- 047

gically inserts trainable low-rank modules into 048

frozen linear layers, approximating weight updates 049

while preserving the original model architecture 050

and inference efficiency. Recent advancements 051

aim to enhance LoRA through various approaches: 052

DoRA (Liu et al., 2024) decouples the fine-tuning 053

process into directional and magnitude adjustments, 054

whereas AdaLoRA (Zhang et al., 2023b) and In- 055

creLoRA (Zhang et al., 2023a) dynamically op- 056

timize rank allocation across different modules. 057

However, when revisiting the fundamental aspects 058

of LoRA, we find these methods generally treat 059

rank dimensions as homogeneous units, neglecting 060

the potential hierarchical importance of individual 061

rank components within each LoRA module. 062

In this paper, we adopt a novel perspective by 063

studying the intrinsic characteristics of LoRA ranks 064

from both spatial and temporal dimensions. From 065

the spatial dimension, we find significant differ- 066

ences in the importance of ranks within a LoRA 067

module, and pruning the less important ranks has a 068

minimal impact on performance. From the tempo- 069

ral dimension, these important differences do not 070

show up at the beginning of fine-tuning, but gradu- 071

ally emerge and stabilize as the fine-tuning process 072

progresses. Despite the significant differences in 073

importance among ranks, existing works typically 074

allocate the same parameter budget to each rank 075

(i.e., a row and a column in a module), which leads 076

to constrained optimization space for important 077

ranks and wasted resources on less important ones. 078

Based on the spatial and temporal findings, we 079

propose BeamLoRA, which is inspired by beam 080

search (Lowerre and Reddy, 1976) and treats each 081

LoRA module as a beam, where each rank acts as 082

a sub-solution, and the fine-tuning process is for- 083

1



malized as searching for the optimal combination084

of sub-solutions. Specifically, the main process085

of BeamLoRA includes assessment, pruning, and086

expansion. To assess the importance of each sub-087

solution, we insert a trainable score vector into the088

low-rank subspace and integrate the assessment089

process into fine-tuning. Based on their impor-090

tance, we prune unimportant sub-solutions to free091

up space and expand the important ones, thereby092

allowing them to be better optimized. Furthermore,093

to better determine the pruning or expansion thresh-094

old, we introduce a dynamic Top-P method that095

achieves adaptability in both temporal and spatial096

dimensions. Through these mechanisms, Beam-097

LoRA can effectively allocate parameter capacity098

to the most promising solution paths.099

We validate our approach using three different100

base models across 12 datasets covering math rea-101

soning, code generation, and commonsense reason-102

ing. Results indicate that BeamLoRA consistently103

outperforms multiple LoRA-enhanced baselines.104

Notably, on the most challenging math reasoning105

and code generation tasks, BeamLoRA achieves a106

1.57% accuracy gain while using only 2.4% of the107

trainable parameters compared to full fine-tuning.108

Further analysis reveals that the success of Beam-109

LoRA is attributed to its increased important rank110

space within the LoRA module.111

In summary, our contributions are as follows:112

• We adopt a novel perspective by studying113

the characteristics of LoRA ranks from both114

spatial and temporal dimensions, and high-115

light that ranks with various importance are116

assigned an equally sized parameter space.117

• We introduce BeamLoRA and view a LoRA118

module as a beam. It continuously assesses119

the importance of each rank, compresses the120

less important ones, and frees up resources for121

the more significant ones.122

• Through extensive experiments across three123

base models of different sources and scales,124

along with 12 diverse datasets, we demon-125

strate that BeamLoRA consistently outper-126

forms other baselines.127

2 Preliminary128

2.1 Low-Rank Adaptation (LoRA)129

Considering that the updates for fine-tuning large130

models occur within a low-rank subspace (Agha-131

janyan et al., 2021), LoRA inserts low-rank mod- 132

ules into the linear layers of the base model to ap- 133

proximate these transformations. Specifically, for a 134

weight matrix W0 ∈ Rd×k, LoRA decomposes the 135

update ∆W into a low-rank matrices product BA, 136

where B ∈ Rd×r, A ∈ Rr×k, and r ≪ min(d, k). 137

The forward pass of LoRA is formulated as 138

y = W0x+∆Wx = W0x+BAx, (1) 139

where x ∈ Rd represents the input and y ∈ Rd is 140

the output. During fine-tuning, W0 remains frozen, 141

while only B and A matrices are trainable. 142

The Independence of Ranks. Given a LoRA 143

module that includes two matrices B and A, in 144

which B is represented as [b1,b2, ...,br], where 145

bi denotes the i-th column of matrix B, and A = 146

[a1,a2, ...,ar], where ai denotes the i-th row. In 147

this way, the update ∆W is equivalent to 148

∆W =BA =
[
b1 b2 ... br

] 
a1
a2
...
ar

 ,

=b1a1 + ...+ brar =
∑
r

biai =
∑
r

∆wi,

(2) 149

where ∆wi ∈ Rd×k represents the update matrix 150

of i-th rank. Thus, the LoRA fine-tuning process 151

can be viewed as independently updating each ∆wi 152

represented by each rank. 153

2.2 Analysis of LoRA Ranks 154

During the fine-tuning process, an intuitive assump- 155

tion is that each rank within a LoRA module con- 156

tributes similarly. This intuition may stem from the 157

standard LoRA initialization procedure, where ma- 158

trix A is initialized randomly, and matrix B starts 159

with zero values. Since all ∆wi matrices begin as 160

zero matrices and are updated simultaneously, their 161

contributions might remain comparable throughout 162

the fine-tuning process. 163

To examine the validity of this assumption, we 164

fine-tune LoRA on LLaMA2-7B (Touvron et al., 165

2023b) and Mistral-7B-v0.1 (Jiang et al., 2023) 166

with the MetaMathQA dataset (Yu et al., 2024) and 167

conduct an analysis from both spatial and temporal 168

dimensions. Given that LoRA updates represent 169

adjustments to pre-trained weights, we use the mag- 170

nitude of each ∆w to quantify the importance of 171

different ranks1. 172

1The magnitude (importance) of the matrix is roughly mea-
sured by the commonly used Frobenius norm.

2



1 2 3 4 5 6 7 8 9
Decile Index of Rank Importance

1.10

1.15

1.20

1.25

1.30

1.35

1.40
Im

po
rta

nc
e 

of
 R

an
ks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

GS
M

8K
 A

cc
ur

ac
y

(a) LLaMA2-7B

1 2 3 4 5 6 7 8 9
Decile Index of Rank Importance

0.140

0.145

0.150

0.155

0.160

0.165

0.170

Im
po

rta
nc

e 
of

 R
an

ks

0.0

0.2

0.4

0.6

0.8

GS
M

8K
 A

cc
ur

ac
y

(b) Mistral-7B-v0.1

Figure 1: Differences in importance among ranks within
a LoRA module (spatial). The blue line represents the
deciles of importance for ranks. The red line represents
accuracy changes when pruning ranks of varying im-
portance. We take ffn.up_proj in the 30th layer as an
example, with similar phenomena in other modules.

1 2 3 4 5 6 7 8 9
Decile Index of Rank Importance

0.00

0.05

0.10

0.15

0.20

0.25

Im
po

rta
nc

e 
Di

ffe
re

nc
e

Step 500
Step 1000
Step 1500
Step 2000
Step 2500
Step 3000
Step 3500
Step 4000

(a) ffn.up_proj

1 2 3 4 5 6 7 8 9
Decile Index of Rank Importance

0.00

0.05

0.10

0.15

0.20

Im
po

rta
nc

e 
Di

ffe
re

nc
e

Step 500
Step 1000
Step 1500
Step 2000
Step 2500
Step 3000
Step 3500
Step 4000

(b) attn.v_proj

Figure 2: The visualization of importance difference
among different ranks in LoRA on LLaMA2-7B as fine-
tuning steps increase (temporal). We take ffn.up_proj
and attn.v_proj in the 30th layer as examples, with
similar trends observed in all other modules.

Spatial Dimension. Figure 1 describes the results173

of sorting the importance of ranks after fine-tuning.174

The blue line represents the levels of importance175

across different deciles after sorted by importance176

in a LoRA module. It can be observed that the177

deciles of the importance of ranks are hierarchical,178

indicating that the importance of different ranks179

within a LoRA module is not uniform after fine-180

tuning. Furthermore, by pruning the ranks in each181

LoRA module based on its own importance from182

the least to the most significant gradually (the red183

line), the accuracy shows limited change when184

pruning the less important ranks. On the con-185

trary, when important ranks are pruned, the evalua-186

tion results drop sharply to zero. This phenomenon187

further demonstrates the significant differences in188

importance among the different ranks.189

Temporal Dimension. To further understand the190

reasons behind this importance differentiation, we191

return to the initial assumption: since the ∆w cor-192

responding to each rank is initialized to zero, they193

all start with equal importance during fine-tuning.194

Therefore, a natural idea is to investigate how the 195

importance of different ranks evolves during fine- 196

tuning. Figure 2 shows the changes in importance 197

of two LoRA modules, where the differences in 198

importance among ranks increase with the num- 199

ber of fine-tuning steps. In other words, the less 200

important ranks are progressively filtered out. Fur- 201

thermore, the differences in importance tend to 202

stabilize as the number of fine-tuning steps con- 203

tinues to increase further. These phenomena are 204

prevalent across various LoRA modules. 205

In summary, there are significant differences in 206

the importance of ranks in LoRA, and these dif- 207

ferences appear and gradually increase as the fine- 208

tuning process progresses. However, in most ex- 209

isting LoRA-based methods, less important ranks 210

still occupy the same parameter budget as impor- 211

tant ones. Here, a question is about to arise: Could 212

we free up space from less important ranks for more 213

important ones to achieve better optimization? 214

3 BeamLoRA 215

To answer the above question, we propose Beam- 216

LoRA, which continuously assesses the importance 217

of different ranks during fine-tuning, periodically 218

pruning the less important ones to free up resources 219

for the more important ranks. The overall workflow 220

of the method is illustrated in Figure 3. 221

For a LoRA module with rank r, we treat it as 222

a beam with width r and the optimization process 223

is naturally regarded as a search for the solution 224

set ∆W = {∆w1,∆w2, ...,∆wr} tailored to the 225

fine-tuning dataset, where i-th rank in the LoRA 226

module is considered a sub-solution ∆wi. For- 227

mally, the optimization process seeks to minimize 228

the loss function L over dataset D: 229

∆W∗ = argmin L(W0 +∆W; D), (3) 230

where the optimal solution ∆W∗ represents the 231

well-trained LoRA module. 232

3.1 Importance Assessment 233

In the pilot experiments of Section 2.2, we use 234

the Frobenius norm to measure the importance of 235

each rank offline. However, this approach involves 236

considerable computational overhead during fine- 237

tuning2. To make the assessment more efficient 238

and accurate, we introduce a learnable score vector 239

2Typically, a large model contains hundreds of LoRA mod-
ules. For each module, it requires computing r matrices of
size d× k, and then calculating the norm for each matrix.

3



𝐵!"

𝐵#$%

𝑏&&

𝑏&'

𝑏&(

𝑏'&

𝑏''

𝑏'(

𝑠& = 0.8𝑠' = 0.2 𝑠& = 0.5𝑠' = 0.5

𝑏&&

𝑏&'

𝑏&(

𝑠& = 0.8𝑠' = 0.2

𝑏&&

𝑏&'

𝑏&(

𝑏'&

𝑏''

𝑏'(

Pruning-Expansion Dynamic Top-P Threshold
𝐴!"

𝐴#$%
𝑎&&

𝑎'&
𝑎&(𝑎&'

𝑎'' 𝑎'(
𝑠& = 0.8

𝑠' = 0.2

𝑠& = 0.5

𝑠' = 0.5

𝑎&& 𝑎&(𝑎&' 𝑠& = 0.8

𝑠' = 0.2

𝑎&&

𝑎&&
)

𝑎&(𝑎&'

𝑎&'
) 𝑎&(

)

BeamLoRA

𝐵
𝐴

⋯

Prune Expand Prune Expand

0.25

0.25

0.25

0.25

0.1

0.4

0.4

0.1

⋯
0.10.1 0.2

0.35

0.3

0.35 0.2

0.3

0.30.3

0.3 0.3

⋯
0.1

0.4

0.4

0.1 Step Δ𝑡

Step 𝑡! Step 𝑡"

…

𝑠* 𝑠& 𝑠+…𝑠(𝑠'

…

𝑠* 𝑠& 𝑠+…𝑠(𝑠'

…

𝑝

Step

Step 𝑡! Step 𝑡"

𝑡& 𝑡'

𝑠

Figure 3: Illustration of BeamLoRA. Throughout the fine-tuning process, BeamLoRA continually assesses the
importance of each rank. Every ∆t steps, unimportant ranks are pruned while those identified as important are
expanded, optimizing the module’s performance.

s ∈ Rr, which is inserted between the matrices B240

and A, to scale the output of each rank through241

element-wise broadcasting multiplication. In that242

case, the modified forward pass of LoRA can be243

formulated as follows:244

y = W0x+B(s⊙A)x =
∑
r

si∆wix. (4)245

This is equivalent to scaling the corresponding rank246

matrices ∆wi. This means that during fine-tuning,247

if a rank is considered important, the corresponding248

score si for that rank is amplified.249

At the start of the fine-tuning process, LoRA ini-250

tializes each rank to zero, indicating that their ini-251

tial importance is equal. Consequently, we initial-252

ize all elements in s with identical values. During253

the fine-tuning process, s is consistently normal-254

ized using the softmax function, like the logits of255

tokens in text generation,256

si =
esi∑r
j=1 e

sj
, (5)257

where si is the i-th element in score vector s. The258

continuous normalization ensures a stable value259

range and facilitates meaningful comparisons of260

importance differences between elements.261

3.2 Pruning and Expansion262

With the importance of each rank, the space occu-263

pied by the less important ranks can be freed up,264

which allows us to expand the parameter space for 265

the remaining important ones. Specifically, we be- 266

gin by selecting the K least important ranks based 267

on their importance s to form the rank index set Ip 268

for pruning: 269

Ip = {i |si ∈ MinK(s)}. (6) 270

During the pruning stage, for the indices of the 271

unimportant ranks included in Ip, we set their pa- 272

rameters to zero: 273

bi,ai =

{
0 i ∈ Ip,
bi,ai otherwise,

(7) 274

where i is the index of i-th rank. It means that if i 275

is in Ip, we set both ai and bi of i-th rank to zero 276

in preparation for subsequent expansion. 277

Next, more space is allocated for important ranks 278

for better optimization. Similarly, we select the K 279

most important ranks based on s to form the rank 280

index set Ie for expansion: 281

Ie = {i |si ∈ TopK(s)}. (8) 282

For each pruned rank, we copy the parameter val- 283

ues from the corresponding important rank: 284

bIp ,aIp ← bIe ,aIe . (9) 285

Meanwhile, to ensure the stability of the optimiza- 286

tion for the expanded ranks, the optimizer states 287

are also copied: 288

MIp ,VIp ←MIe ,VIe , (10) 289

4



where M and V are the first-order and second-290

order moment in Adam optimizer.291

However, directly copying parameters and opti-292

mizer states from the original ranks creates a chal-293

lenge: the lack of symmetry breaking between the294

expanded and original ranks means the optimiza-295

tion process is essentially trying to synchronously296

optimize two identical objects (Chen et al., 2016).297

This makes it difficult to effectively leverage the298

additional capacity provided by the expanded pa-299

rameter space. To address this issue, we propose300

using historical parameters and their corresponding301

optimizer states to break the symmetry, Eq. 9 and302

Eq. 10 change to:303

bIp ,aIp ← b′
Ie ,a

′
Ie , (11)304

305
MIp ,VIp ←M′

Ie ,V
′
Ie , (12)306

where b′
Ie and a′Ie represent the historical parame-307

ters of the important ranks, M′
Ie and V′

Ie represent308

the optimizer states3. After expansion, we take the309

average of the corresponding expanded sIp and sIe310

to ensure fair competition between the expanded311

ranks and the original ones.312

3.3 Dynamic Top-P Threshold313

In the previous statement, we fix the number of314

ranks for each pruning or extension operation to315

be K. This might overlook the actual distribution316

of parameter importance, potentially leading to the317

elimination of relatively important parameters due318

to quantitative constraints. Similar to the sampling319

process of text generation, we introduce Top-P strat-320

egy (Holtzman et al., 2020; Huang et al., 2024) to321

dynamically determine the operable rank number.322

Specifically, given the score vector s and a thresh-323

old p, we sort si in descending order, then identify324

the subset of operable ranks and its size as K:325

K = |{i |
i∑

j=1

sj ≥ p}|, (13)326

where i is the index of i-th rank. A larger p results327

in fewer ranks being operated, while a smaller one328

leads to more ranks being affected.329

Even so, a fixed threshold p still poses issues,330

as the learning rate decreases and the model con-331

verges, the number of ranks that need to be operated332

should decrease. Therefore, we design a Dynamic333

Top-P Threshold. To gradually reduce the number334

3In practice, we use the parameters from half steps between
the last pruning and the current pruning step.

of ranks being operated, the p value should progres- 335

sively increase with each operation, starting from 336

pinit and moving towards 1 (indicating no ranks 337

are operated). We tie this process to the learning 338

rate scheduler used during fine-tuning to align it 339

with the model’s learning progression. For exam- 340

ple, given the commonly used cosine scheduler, We 341

obtain the value of threshold p at step t by: 342

p = pinit +
1

2
(1− pinit)

(
1− cos

(
πt

T

))
, (14) 343

where T is the total fine-tuning steps. In imple- 344

mentation, we perform pruning and expansion op- 345

erations every ∆t steps, which allows the LoRA 346

module to adapt after expansion. 347

3.4 Computational Efficiency 348

Regarding fine-tuning efficiency, BeamLoRA is 349

similar to LoRA (more details in Appendix B.2), 350

with a minimal addition of parameters in the form 351

of a score vector s. In terms of inference efficiency, 352

s can be merged in the matrix A: A′ = s ⊙ A, 353

resulting in a structure identical to standard LoRA. 354

Furthermore, the design philosophy of BeamLoRA 355

ensures consistent ranks in various modules, al- 356

lowing smooth integration with existing LoRA in- 357

ference frameworks, which distinguishes it from 358

previous works that employ varying ranks across 359

different modules (Zhang et al., 2023a,b). 360

Note that the inspiration for BeamLoRA comes 361

from the classic Beam Search algorithm (Lowerre 362

and Reddy, 1976), where we consider each LoRA 363

module as a beam. Although BeamLoRA employs 364

similar operations, it pursues distinct objectives. 365

Beam Search aims to produce a single sentence to 366

achieve the final goal, resulting in only one solution. 367

In contrast, our approach continuously filters sub- 368

solutions to obtain an optimal collection of sub- 369

solutions to accomplish the objective. 370

4 Experiments 371

4.1 Experimental Settings 372

Models and Datasets. To thoroughly evaluate our 373

method, our experiments encompass three differ- 374

ent base models, including LLaMA2-7B, Mistral- 375

7B-v0.1, and LLaMA2-13B. We conduct exper- 376

iments across three different domains, including 377

math reasoning, code generation, and common- 378

sense reasoning, utilizing a total of 12 datasets. 379

For math reasoning, we fine-tune the models on 380

the MetaMathQA dataset (Yu et al., 2024) and 381

5



Math Reasoning Code Generation

Model Method #Params GSM8K MATH HumanEval MBPP Avg.

LLaMA2-7B

Full-FT† 6738M 66.50 19.80 38.01 46.03 42.59

LoRA 160M 66.31 19.09 39.23 43.47 42.03
DoRA 161M 65.53 19.25 38.41 42.95 41.54
PiSSA 160M 64.87 17.67 35.77 39.33 39.41

MiLoRA 160M 66.19 18.45 36.79 44.62 41.51
ReLoRA 160M 62.55 18.08 35.98 45.59 40.55

AdaLoRA 160M 68.04 17.02 35.16 46.56 41.70
IncreLoRA 160M 65.58 16.93 34.35 42.77 39.91
BeamLoRA 160M 67.05 19.39 43.90 46.30 44.16

Mistral-7B

Full-FT† 7242M 77.70 28.20 53.86 61.73 55.37

LoRA 168M 77.56 28.04 54.27 60.85 55.18
DoRA 169M 77.86 28.14 53.46 62.08 55.39

MiLoRA 168M 77.36 26.71 50.00 62.88 54.24
AdaLoRA 168M 77.91 27.53 46.95 60.14 53.13

BeamLoRA 168M 78.11 28.28 54.07 62.70 55.79

Table 1: Math reasoning and code generation results for LLaMA2-7B and Mistral-7B with r = 64 for all methods.
On Mistral-7B, we compare the baseline methods that perform well on LLaMA. The math reasoning results for
Full-FT† are derived from MetaMathQA paper (Yu et al., 2024).

evaluate them using the GSM8K (Cobbe et al.,382

2021) and MATH (Hendrycks et al., 2021) datasets.383

For code generation, we fine-tune on the Code-384

Feedback105K dataset (Zheng et al., 2025; Meng385

et al., 2024) and then evaluate using the Hu-386

manEval (Chen et al., 2021) and MBPP (Austin387

et al., 2021) datasets. For commonsense rea-388

soning, we fine-tune on the Commonsense170K389

dataset (Hu et al., 2023b) and evaluate on the390

BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2019),391

SIQA (Sap et al., 2019), HellaSwag (Zellers et al.,392

2019), WinoGrande (Sakaguchi et al., 2019), ARC-393

e, ARC-c (Clark et al., 2018), and OBQA (Mi-394

haylov et al., 2018) datasets.395

Baselines. We compare BeamLoRA with eight396

baseline methods to validate the effectiveness of397

our proposed approach: Full-FT, LoRA (Hu et al.,398

2022), DoRA (Liu et al., 2024), ReLoRA (Lialin399

et al., 2024), PiSSA (Meng et al., 2024),400

MiLoRA (Wang et al., 2024), AdaLoRA (Zhang401

et al., 2023b), and IncreLoRA (Zhang et al., 2023a).402

More details are presented in Appendix A.403

4.2 Math Reasoning and Code Generation404

Table 1 presents the experiments on math reason-405

ing and code generation, demonstrating that Beam-406

LoRA outperforms all other baseline methods in407

terms of overall performance. Notably, BeamLoRA408

not only surpasses the original LoRA across all409

tasks but also achieves an average performance 410

improvement of 1.57% compared to standard full 411

parameter fine-tuning on LLaMA2-7B. This result 412

is obtained while maintaining the same number of 413

fine-tuning epochs and full data settings as the stan- 414

dard full parameter fine-tuning, highlighting the 415

practicality of the BeamLoRA method. 416

Furthermore, we extend our experiments on 417

Mistral-7B by comparing BeamLoRA with the 418

baseline methods that perform well in LLaMA 419

experiments. The results show that BeamLoRA 420

continues to outperform all baseline methods, sur- 421

passing Full-FT by 0.42%. More notably, Beam- 422

LoRA shows improvement over Full-FT across all 423

task metrics. This demonstrates that within a lim- 424

ited parameter budget, BeamLoRA can effectively 425

achieve better optimization by expanding the pa- 426

rameter space of important ranks. 427

4.3 Commonsense Reasoning 428

Table 2 presents evaluation results across 8 com- 429

monsense reasoning datasets. BeamLoRA achieves 430

the best overall performance on LLaMA2-7B, with 431

an average accuracy improvement of 3.2% over 432

original LoRA and 1.1% over the strong baseline 433

DoRA. Similar to math and coding tasks, Beam- 434

LoRA’s performance does not rely heavily on op- 435

timal results from just two or three datasets, as 436

observed in other baselines. Instead, it consistently 437

6



Model Method ARC-c SIQA WinoGrande BoolQ ARC-e PIQA OBQA HellaSwag Avg.

LLaMA2-7B

LoRA† 64.7 79.5 82.6 69.8 79.8 79.9 81.0 83.6 77.6
DoRA† 68.2 76.0 82.6 71.8 83.7 83.7 82.4 89.1 79.7
PiSSA‡ 60.2 78.4 78.0 67.6 75.8 78.1 75.6 76.6 73.8

MiLoRA‡ 68.8 80.1 82.0 67.6 82.8 83.8 80.6 88.2 79.2
ReLoRA 59.3 76.9 77.2 63.9 75.4 76.4 63.2 62.2 69.3

AdaLoRA 69.5 66.4 78.6 62.1 84.1 83.2 79.2 42.1 70.7
IncreLoRA 65.5 61.3 81.4 63.6 81.3 70.7 73.8 66.9 70.6
BeamLoRA 71.0 78.9 82.7 71.6 83.7 82.8 84.8 90.5 80.8

LLaMA2-13B

LoRA 75.8 80.9 86.1 75.0 87.2 86.2 85.4 92.6 83.7
DoRA 74.6 81.2 86.3 74.4 86.8 84.3 84.2 93.4 83.2

MiLoRA 73.0 80.3 86.7 73.6 87.1 81.1 85.6 92.0 82.4
AdaLoRA 75.8 73.1 84.5 67.7 88.3 83.3 83.4 90.7 80.9

BeamLoRA 75.5 81.3 86.1 74.7 88.0 85.6 86.2 94.3 84.0

Table 2: Commonsense reasoning results for LLaMA2-7B and LLaMA2-13B. We set r = 32 for all methods. All
results with † are taken from (Liu et al., 2024) and those marked with ‡ are taken from (Wang et al., 2024).

GSM8K MATH Avg.

LoRA 66.31 19.09 42.70
BeamLoRA 67.05 19.39 43.22

w/o Expansion 65.88 18.94 42.41
w/o Assessment 64.82 19.08 41.95
w/o Dynamic P. 65.81 18.74 42.28

Table 3: Results of ablation experiments. We evaluate
the impact of pruning and the significance of expansion,
importance assessment, and dynamic Top-P threshold
in BeamLoRA.

performs among the top three results across most438

datasets, demonstrating the generalization capabil-439

ity of BeamLoRA. Additionally, we find that In-440

creLoRA and AdaLoRA are less effective in com-441

monsense reasoning tasks, likely due to frequent442

rank changes across modules, which cause insta-443

bility in fine-tuning. This issue is more evident in444

scenarios requiring extensive task evaluation.445

For larger base models LLaMA2-13B, the per-446

formance gaps between different methods become447

smaller. In this setting, BeamLoRA still achieves a448

0.4% performance improvement over LoRA, while449

other methods show inferior performance com-450

pared to LoRA. This demonstrates that BeamLoRA451

can effectively enhance LoRA’s performance with452

larger base models.453

4.4 Ablation Study454

The ablation results are shown in Table 3. Without455

expansion refers to only pruning the unimportant456

ranks, the performance experiences a slight decline457

compared to the original LoRA, and is markedly458

inferior to the complete BeamLoRA. This under-459

1 2 3 4 5 6 7 8 9
Decile Index of Rank Importance

0.0

0.1

0.2

0.3

0.4

0.5

0.6
GS

M
8K

 A
cc

ur
ac

y

LoRA
BeamLoRA
Trend Line for LoRA
Trend Line for BeamLoRA

(a) LLaMA2-7B

1 2 3 4 5 6 7 8 9
Decile Index of Rank Importance

0.0

0.2

0.4

0.6

0.8

GS
M

8K
 A

cc
ur

ac
y

LoRA
BeamLoRA
Trend Line for LoRA
Trend Line for BeamLoRA

(b) Mistral-7B-v0.1

Figure 4: Comparison of BeamLoRA and LoRA on
importance of ranks within a module by pruning ranks.
The solid lines represent the accuracy changes after
pruning, while the dashed lines indicate the accuracy
change trends caused by pruning.

scores the significance of expanding the impor- 460

tant ranks. Without assessment refers to randomly 461

pruning and expanding ranks, leading to a substan- 462

tial performance drop. This suggests that impor- 463

tant ranks may have been pruned, highlighting the 464

necessity of rank assessment. Without dynamic 465

Top-P refers to using a static operation threshold 466

throughout fine-tuning, which also results in a per- 467

formance decline. This indicates that higher thresh- 468

olds should be applied during the later stages of 469

fine-tuning, resulting in fewer ranks being oper- 470

ated. This approach allows the model to better 471

adapt pruning and expansion as it converges, em- 472

phasizing the importance of dynamic thresholds. 473

4.5 Analysis 474

Why is BeamLoRA effective? To further under- 475

stand how BeamLoRA affects the ranks within 476

LoRA modules, building upon our observations in 477

Figure 1, we analyze the differences in rank impor- 478

7



4 8 16 32 64
Rank

61

63

65

67

GS
M

8K
 A

cc
ur

ac
y

LoRA
BeamLoRA

(a) GSM8K

4 8 16 32 64
Rank

13

15

17

19

M
AT

H 
Ac

cu
ra

cy

LoRA
BeamLoRA

(b) MATH

Figure 5: Comparison of BeamLoRA and LoRA on
accuracy under various rank settings on LLaMA2-7B.

tance between BeamLoRA and LoRA. As shown479

in Figure 4, when pruning ranks based on their480

decile importance within each module, we observe481

that BeamLoRA’s accuracy decreases more rapidly482

compared to LoRA. This indicates that in Beam-483

LoRA, the importance of different ranks within484

each module is more evenly distributed. Com-485

pared to LoRA, the number of important ranks486

increases in the BeamLoRA module, with each487

rank contributing more uniformly to the overall per-488

formance. This more balanced utilization of ranks489

explains why BeamLoRA consistently outperforms490

LoRA across various experimental settings.491

How does BeamLoRA perform under different492

rank settings? As shown in Figure 5. We see that493

BeamLoRA improves the performance of LoRA494

across each rank setting, demonstrating the effec-495

tiveness of BeamLoRA’s approach to compress496

unimportant ranks and expand important ones. In497

scenarios with very small ranks (e.g., r = 4), the498

performance improvement brought by BeamLoRA499

is relatively limited compared to larger rank set-500

tings. This is because, with small rank settings501

and difficult tasks (e.g., Math Reasoning), LoRA502

is denser, leaving fewer unimportant ranks to com-503

press and expand, thus providing a smaller opera-504

tional space for BeamLoRA.505

5 Related Works506

5.1 LoRA and its variants507

As one of the parameter-efficient fine-tuning meth-508

ods, LoRA (Hu et al., 2022) has been widely509

adopted. However, it still has room for improve-510

ment in terms of accuracy. Current enhancements511

follow two main pathways: optimizing initializa-512

tion and refining the fine-tuning process. For ini-513

tialization, methods like PiSSA (Meng et al., 2024)514

and MiLoRA (Wang et al., 2024) use Singular515

Value Decomposition on base model weights, with 516

PiSSA focusing on principal singular values and 517

MiLoRA on minor ones for initializing LoRA be- 518

fore fine-tuning. For fine-tuning, DoRA (Liu et al., 519

2024) splits LoRA’s fine-tuning into magnitude 520

and direction components. ReLoRA (Lialin et al., 521

2024) continuously merges the fine-tuned LoRA 522

modules into the base model. AdaLoRA (Zhang 523

et al., 2023b) and IncreLoRA (Zhang et al., 2023a) 524

optimize rank allocation across modules. Unlike 525

these approaches, BeamLoRA revisits the founda- 526

tional aspects of LoRA and recognizes the vary- 527

ing importance of ranks within a module. It com- 528

presses less important ranks to free up space for 529

expanding the important ones, thereby allowing 530

them to be better optimized. 531

5.2 Model Pruning and Expansion 532

Model pruning is typically used to remove redun- 533

dant parameters in models, thereby improving ef- 534

ficiency (Kurtic et al., 2022; Ma et al., 2023). Un- 535

like previous works, our primary goal for prun- 536

ing is to free up space for expanding important 537

parameters. Model Width expansion is first intro- 538

duced by Net2Net (Chen et al., 2016) and applied 539

to CNNs. bert2BERT (Chen et al., 2022) extends 540

this method to the pre-training of language mod- 541

els, and the recent work Scaling Smart (Samragh 542

et al., 2024) applies width expansion to large scale 543

base models. Unlike these approaches, we focus on 544

parameter-efficient fine-tuning and propose com- 545

pressing unimportant parameters within a limited 546

space to expand important ones for better perfor- 547

mance. Additionally, due to the shorter nature of 548

the fine-tuning process than pre-training, we pro- 549

pose to use historical states to break symmetry in 550

expansion, thereby ensuring fast convergence. 551

6 Conclusion 552

This paper introduces a PEFT method called Beam- 553

LoRA. We adopt a novel perspective to study the 554

characteristics of ranks within a LoRA module and 555

discover that there are differences in the impor- 556

tance of ranks, which change with the number of 557

fine-tuning steps. Based on this, we propose using 558

a dynamic threshold to prune less important ranks, 559

free up space to better optimize the more impor- 560

tant ones. Extensive experiments demonstrate that 561

BeamLoRA effectively enhances the performance 562

of LoRA across different base models, tasks, and 563

settings, outperforming other baseline methods. 564

8



Limitations565

BeamLoRA introduces a method that compresses566

less important ranks while expanding important567

ones during fine-tuning. Although this approach568

achieves good performance in parameter-efficient569

fine-tuning, existing implementation requires the570

addition of a trainable assessment vector s over571

ranks. In the context of full-parameter training, a572

full-rank matrix does not have the low-rank struc-573

ture like the B-A decomposition in LoRA, making574

it impossible to add the vector s. How to extend575

this method to full-parameter training scenarios576

remains an area for future research exploration.577

References578

Armen Aghajanyan, Sonal Gupta, and Luke Zettle-579
moyer. 2021. Intrinsic dimensionality explains the580
effectiveness of language model fine-tuning. In Pro-581
ceedings of the 59th Annual Meeting of the Associa-582
tion for Computational Linguistics and the 11th Inter-583
national Joint Conference on Natural Language Pro-584
cessing (Volume 1: Long Papers), pages 7319–7328,585
Online. Association for Computational Linguistics.586

Jacob Austin, Augustus Odena, Maxwell I. Nye,587
Maarten Bosma, Henryk Michalewski, David Dohan,588
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,589
and Charles Sutton. 2021. Program synthesis with590
large language models. CoRR, abs/2108.07732.591

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng592
Gao, and Yejin Choi. 2019. PIQA: reasoning about593
physical commonsense in natural language. CoRR,594
abs/1911.11641.595

Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang,596
Yujia Qin, Fengyu Wang, Zhi Wang, Xiao Chen,597
Zhiyuan Liu, and Qun Liu. 2022. bert2BERT: To-598
wards reusable pretrained language models. In Pro-599
ceedings of the 60th Annual Meeting of the Associa-600
tion for Computational Linguistics (Volume 1: Long601
Papers), pages 2134–2148, Dublin, Ireland. Associa-602
tion for Computational Linguistics.603

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming604
Yuan, Henrique Pondé de Oliveira Pinto, Jared Ka-605
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,606
Greg Brockman, Alex Ray, Raul Puri, Gretchen607
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-608
try, Pamela Mishkin, Brooke Chan, Scott Gray,609
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz610
Kaiser, Mohammad Bavarian, Clemens Winter,611
Philippe Tillet, Felipe Petroski Such, Dave Cum-612
mings, Matthias Plappert, Fotios Chantzis, Eliza-613
beth Barnes, Ariel Herbert-Voss, William Hebgen614
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie615
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,616
William Saunders, Christopher Hesse, Andrew N.617
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan618

Morikawa, Alec Radford, Matthew Knight, Miles 619
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 620
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 621
Sutskever, and Wojciech Zaremba. 2021. Evaluat- 622
ing large language models trained on code. CoRR, 623
abs/2107.03374. 624

Tianqi Chen, Ian J. Goodfellow, and Jonathon Shlens. 625
2016. Net2net: Accelerating learning via knowledge 626
transfer. In 4th International Conference on Learn- 627
ing Representations, ICLR 2016, San Juan, Puerto 628
Rico, May 2-4, 2016, Conference Track Proceedings. 629

Christopher Clark, Kenton Lee, Ming-Wei Chang, 630
Tom Kwiatkowski, Michael Collins, and Kristina 631
Toutanova. 2019. BoolQ: Exploring the surprising 632
difficulty of natural yes/no questions. In Proceedings 633
of the 2019 Conference of the North American Chap- 634
ter of the Association for Computational Linguistics: 635
Human Language Technologies, Volume 1 (Long and 636
Short Papers), pages 2924–2936, Minneapolis, Min- 637
nesota. Association for Computational Linguistics. 638

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 639
Ashish Sabharwal, Carissa Schoenick, and Oyvind 640
Tafjord. 2018. Think you have solved question an- 641
swering? try arc, the AI2 reasoning challenge. CoRR, 642
abs/1803.05457. 643

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 644
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 645
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 646
Nakano, Christopher Hesse, and John Schulman. 647
2021. Training verifiers to solve math word prob- 648
lems. CoRR, abs/2110.14168. 649

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 650
Arora, Steven Basart, Eric Tang, Dawn Song, and 651
Jacob Steinhardt. 2021. Measuring mathematical 652
problem solving with the MATH dataset. CoRR, 653
abs/2103.03874. 654

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and 655
Yejin Choi. 2020. The curious case of neural text de- 656
generation. In International Conference on Learning 657
Representations. 658

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 659
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges- 660
mundo, Mona Attariyan, and Sylvain Gelly. 2019. 661
Parameter-efficient transfer learning for NLP. In Pro- 662
ceedings of the 36th International Conference on Ma- 663
chine Learning, ICML 2019, 9-15 June 2019, Long 664
Beach, California, USA, volume 97 of Proceedings 665
of Machine Learning Research, pages 2790–2799. 666
PMLR. 667

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 668
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 669
Weizhu Chen. 2022. Lora: Low-rank adaptation of 670
large language models. In The Tenth International 671
Conference on Learning Representations, ICLR 2022, 672
Virtual Event, April 25-29, 2022. OpenReview.net. 673

9

https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://doi.org/10.18653/v1/2022.acl-long.151
https://doi.org/10.18653/v1/2022.acl-long.151
https://doi.org/10.18653/v1/2022.acl-long.151
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1511.05641
http://arxiv.org/abs/1511.05641
http://arxiv.org/abs/1511.05641
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-674
Peng Lim, Roy Ka-Wei Lee, Lidong Bing, and Sou-675
janya Poria. 2023a. Llm-adapters: An adapter family676
for parameter-efficient fine-tuning of large language677
models. arXiv preprint arXiv:2304.01933.678

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-679
Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria,680
and Roy Lee. 2023b. LLM-adapters: An adapter681
family for parameter-efficient fine-tuning of large682
language models. In Proceedings of the 2023 Con-683
ference on Empirical Methods in Natural Language684
Processing, pages 5254–5276, Singapore. Associa-685
tion for Computational Linguistics.686

Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao,687
Chen Zhang, Yang Jin, Kun Xu, Kun Xu, Liwei Chen,688
Songfang Huang, and Yansong Feng. 2024. Harder689
task needs more experts: Dynamic routing in MoE690
models. In Proceedings of the 62nd Annual Meeting691
of the Association for Computational Linguistics (Vol-692
ume 1: Long Papers), pages 12883–12895, Bangkok,693
Thailand. Association for Computational Linguistics.694

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-695
sch, Chris Bamford, Devendra Singh Chaplot, Diego696
de Las Casas, Florian Bressand, Gianna Lengyel,697
Guillaume Lample, Lucile Saulnier, Lélio Re-698
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,699
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-700
thée Lacroix, and William El Sayed. 2023. Mistral701
7b. CoRR, abs/2310.06825.702

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Fran-703
tar, Mark Kurtz, Benjamin Fineran, Michael Goin,704
and Dan Alistarh. 2022. The optimal BERT surgeon:705
Scalable and accurate second-order pruning for large706
language models. In Proceedings of the 2022 Con-707
ference on Empirical Methods in Natural Language708
Processing, pages 4163–4181, Abu Dhabi, United709
Arab Emirates. Association for Computational Lin-710
guistics.711

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:712
Optimizing continuous prompts for generation. In713
Proceedings of the 59th Annual Meeting of the Asso-714
ciation for Computational Linguistics and the 11th715
International Joint Conference on Natural Language716
Processing (Volume 1: Long Papers), pages 4582–717
4597, Online. Association for Computational Lin-718
guistics.719

Vladislav Lialin, Sherin Muckatira, Namrata Shiva-720
gunde, and Anna Rumshisky. 2024. ReloRA: High-721
rank training through low-rank updates. In The722
Twelfth International Conference on Learning Repre-723
sentations.724

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo725
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting726
Cheng, and Min-Hung Chen. 2024. DoRA: Weight-727
decomposed low-rank adaptation. In Proceedings of728
the 41st International Conference on Machine Learn-729
ing, volume 235 of Proceedings of Machine Learning730
Research, pages 32100–32121. PMLR.731

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx- 732
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning: 733
Prompt tuning can be comparable to fine-tuning 734
across scales and tasks. In Proceedings of the 60th 735
Annual Meeting of the Association for Computational 736
Linguistics (Volume 2: Short Papers), pages 61–68, 737
Dublin, Ireland. Association for Computational Lin- 738
guistics. 739

Bruce P Lowerre and B Raj Reddy. 1976. Harpy, a 740
connected speech recognition system. The Journal of 741
the Acoustical Society of America, 59(S1):S97–S97. 742

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023. 743
LLM-pruner: On the structural pruning of large lan- 744
guage models. In Thirty-seventh Conference on Neu- 745
ral Information Processing Systems. 746

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024. 747
PiSSA: Principal singular values and singular vectors 748
adaptation of large language models. In The Thirty- 749
eighth Annual Conference on Neural Information 750
Processing Systems. 751

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish 752
Sabharwal. 2018. Can a suit of armor conduct elec- 753
tricity? a new dataset for open book question an- 754
swering. In Proceedings of the 2018 Conference on 755
Empirical Methods in Natural Language Processing, 756
pages 2381–2391, Brussels, Belgium. Association 757
for Computational Linguistics. 758

OpenAI. 2023. Gpt-4 technical report. ArXiv, 759
abs/2303.08774. 760

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat- 761
ula, and Yejin Choi. 2019. WINOGRANDE: an ad- 762
versarial winograd schema challenge at scale. CoRR, 763
abs/1907.10641. 764

Mohammad Samragh, Seyed-Iman Mirzadeh, Keivan 765
Alizadeh-Vahid, Fartash Faghri, Minsik Cho, Moin 766
Nabi, Devang Naik, and Mehrdad Farajtabar. 2024. 767
Scaling smart: Accelerating large language model 768
pre-training with small model initialization. CoRR, 769
abs/2409.12903. 770

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan 771
Le Bras, and Yejin Choi. 2019. Social IQa: Com- 772
monsense reasoning about social interactions. In 773
Proceedings of the 2019 Conference on Empirical 774
Methods in Natural Language Processing and the 775
9th International Joint Conference on Natural Lan- 776
guage Processing (EMNLP-IJCNLP), pages 4463– 777
4473, Hong Kong, China. Association for Computa- 778
tional Linguistics. 779

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 780
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 781
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 782
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard 783
Grave, and Guillaume Lample. 2023a. Llama: Open 784
and efficient foundation language models. ArXiv, 785
abs/2302.13971. 786

10

https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2024.acl-long.696
https://doi.org/10.18653/v1/2024.acl-long.696
https://doi.org/10.18653/v1/2024.acl-long.696
https://doi.org/10.18653/v1/2024.acl-long.696
https://doi.org/10.18653/v1/2024.acl-long.696
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.18653/v1/2022.emnlp-main.279
https://doi.org/10.18653/v1/2022.emnlp-main.279
https://doi.org/10.18653/v1/2022.emnlp-main.279
https://doi.org/10.18653/v1/2022.emnlp-main.279
https://doi.org/10.18653/v1/2022.emnlp-main.279
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://openreview.net/forum?id=DLJznSp6X3
https://openreview.net/forum?id=DLJznSp6X3
https://openreview.net/forum?id=DLJznSp6X3
https://proceedings.mlr.press/v235/liu24bn.html
https://proceedings.mlr.press/v235/liu24bn.html
https://proceedings.mlr.press/v235/liu24bn.html
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://openreview.net/forum?id=J8Ajf9WfXP
https://openreview.net/forum?id=J8Ajf9WfXP
https://openreview.net/forum?id=J8Ajf9WfXP
https://openreview.net/forum?id=6ZBHIEtdP4
https://openreview.net/forum?id=6ZBHIEtdP4
https://openreview.net/forum?id=6ZBHIEtdP4
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://api.semanticscholar.org/CorpusID:266362871
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://doi.org/10.48550/ARXIV.2409.12903
https://doi.org/10.48550/ARXIV.2409.12903
https://doi.org/10.48550/ARXIV.2409.12903
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404


Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-787
bert, Amjad Almahairi, Yasmine Babaei, Nikolay788
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti789
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-790
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,791
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,792
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-793
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan794
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,795
Isabel Kloumann, Artem Korenev, Punit Singh Koura,796
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-797
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-798
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-799
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-800
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,801
Ruan Silva, Eric Michael Smith, Ranjan Subrama-802
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-803
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,804
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,805
Melanie Kambadur, Sharan Narang, Aurélien Ro-806
driguez, Robert Stojnic, Sergey Edunov, and Thomas807
Scialom. 2023b. Llama 2: Open foundation and808
fine-tuned chat models. CoRR, abs/2307.09288.809

Hanqing Wang, Yixia Li, Shuo Wang, Guanhua Chen,810
and Yun Chen. 2024. Milora: Harnessing minor811
singular components for parameter-efficient llm fine-812
tuning. Preprint, arXiv:2406.09044.813

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU,814
Zhengying Liu, Yu Zhang, James Kwok, Zhenguo Li,815
Adrian Weller, and Weiyang Liu. 2024. Metamath:816
Bootstrap your own mathematical questions for large817
language models. In The Twelfth International Con-818
ference on Learning Representations.819

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali820
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-821
chine really finish your sentence? In Proceedings of822
the 57th Annual Meeting of the Association for Com-823
putational Linguistics, pages 4791–4800, Florence,824
Italy. Association for Computational Linguistics.825

Feiyu Zhang, Liangzhi Li, Junhao Chen, Zhouqiang826
Jiang, Bowen Wang, and Yiming Qian. 2023a.827
Increlora: Incremental parameter allocation828
method for parameter-efficient fine-tuning. CoRR,829
abs/2308.12043.830

Qingru Zhang, Minshuo Chen, Alexander Bukharin,831
Pengcheng He, Yu Cheng, Weizhu Chen, and832
Tuo Zhao. 2023b. Adaptive budget allocation for833
parameter-efficient fine-tuning. In The Eleventh In-834
ternational Conference on Learning Representations.835

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,836
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang837
Yue. 2025. Opencodeinterpreter: Integrating code838
generation with execution and refinement. Preprint,839
arXiv:2402.14658.840

A Experimental Setup 841

A.1 Baselines 842

We select several baselines to verify the effec- 843

tiveness of our method. Full-FT fine-tunes all 844

model parameters, delivers strong performance 845

but requires substantial computational resources. 846

LoRA (Hu et al., 2022) is one of the most effi- 847

cient PEFT methods, offering computational effi- 848

ciency, though its accuracy often differs from full 849

parameter fine-tuning. DoRA (Liu et al., 2024) 850

decomposes LoRA’s fine-tuning into magnitude 851

and direction components. ReLoRA (Lialin et al., 852

2024) continuously merges the obtained LoRA pa- 853

rameters into the base model during fine-tuning. 854

PiSSA (Meng et al., 2024) and MiLoRA (Wang 855

et al., 2024) perform Singular Value Decomposi- 856

tion (SVD) on the base model; PiSSA fine-tunes 857

the significant components of the decomposition, 858

while MiLoRA fine-tunes the minor components. 859

AdaLoRA (Zhang et al., 2023b) begins fine-tuning 860

with a rank setting higher than the target and prunes 861

redundant ranks during the process to achieve op- 862

timal rank allocation across different modules. In 863

contrast, IncreLoRA (Zhang et al., 2023a) starts 864

with a rank setting lower than the target and pro- 865

gressively increases the rank during fine-tuning to 866

achieve optimal rank allocation across modules. 867

A.2 Implementation Details 868

In the math and code tasks, we follow Yu et al. 869

(2024) and set the Full-FT learning rate for 870

LLaMA2-7B to 2e-5 and for Mistral-7B to 5e-6, 871

with a batch size of 128. The models are fine- 872

tuned for 3 epochs on the dataset. For the ReLoRA 873

method, we use the same settings as Full-FT. For 874

other PEFT methods, we add the LoRA module to 875

all linear layers. Following Wang et al. (2024) we 876

set their learning rate to 3e-4, a batch size of 32, 877

and fine-tuning for 3 epochs. 878

In the commonsense reasoning tasks, to facilitate 879

comparison, we follow the approach of Hu et al. 880

(2023a) and Liu et al. (2024) by adding LoRA to 881

q_proj, k_proj, v_proj, up_proj, and down_proj 882

modules. We use the optimal learning rate from 883

{2e-4,3e-4} for different methods on LLaMA2-7B, 884

with a batch size of 16 and fine-tuning for 3 epochs. 885

For the larger LLaMA2-13B, following Liu et al. 886

(2024), we reduce the learning rate to the optimal 887

{1e-4,2e-4,3e-4} for different methods, while keep- 888

ing other settings unchanged. These settings are 889

applied to all PEFT methods. All our experiments 890

11

https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://arxiv.org/abs/2406.09044
https://arxiv.org/abs/2406.09044
https://arxiv.org/abs/2406.09044
https://arxiv.org/abs/2406.09044
https://arxiv.org/abs/2406.09044
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.48550/ARXIV.2308.12043
https://doi.org/10.48550/ARXIV.2308.12043
https://doi.org/10.48550/ARXIV.2308.12043
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY
https://arxiv.org/abs/2402.14658
https://arxiv.org/abs/2402.14658
https://arxiv.org/abs/2402.14658


200 600 1200 1800 2400 3000
Step t

0

5

10

15

20

25

30

35
Nu

m
be

r o
f O

pe
ra

tio
ns

32

10

5
3 2 2

(a) Number of Operations

200 600 1200 1800 2400 3000
Step t

40

41

42

43

44

45

Co
de

 P
er

fo
rm

an
ce

BeamLoRA
LoRA

(b) Code Performance

Figure 6: Effect of step ∆t. We set pinit to 0.95 and
take the average performance across the code tasks on
LLaMA2-7B with r = 64.

0.93 0.94 0.95 0.96 0.97 0.98
pinit

500

1000

1500

2000

2500

Nu
m

be
r o

f O
pe

ra
te

d 
Ra

nk
s 2594

2054

1754

1248

978

558

(a) Number of Operated Ranks

0.93 0.94 0.95 0.96 0.97 0.98
pinit

40

41

42

43

44

45

46

Co
de

 P
er

fo
rm

an
ce

BeamLoRA
LoRA

(b) Code Performance

Figure 7: Effect of pinit. We set the step ∆t to 1200 and
take the average performance across the code tasks on
LLaMA2-7B with r = 64.

are conducted on four H800 GPUs.891

The implementation of BeamLoRA mainly in-892

cludes assessment, pruning-expansion, and dy-893

namic Top-P threshold. The most crucial pruning-894

expansion is uniformly set in the first two epochs895

to facilitate. BeamLoRA introduces two hyperpa-896

rameters: the initial value of the dynamic threshold897

pinit and the operation interval step ∆t. We analyze898

their impact in Section B.1. The detailed settings899

can be found in Table 4.900

B Additional Experiment Results901

B.1 Analysis of Hyperparameters902

Effect of step ∆t. The hyperparameter ∆t deter-903

mines the number of adaptation steps the model904

takes after each pruning-expansion operation. As905

shown in Figure 6, when ∆t is too small (e.g.,906

200), the model cannot quickly adapt to the prun-907

ing and expansion due to the excessive number of908

operations, resulting in suboptimal performance.909

As ∆t increases, performance gradually improves,910

reaching its peak at n = 1200 with five pruning-911

expansion operations. When ∆t continues to in-912

crease, the number of operations becomes too few,913

diminishing the benefits of the pruning-expansion914

0 1 2 3 4 5 6 7 8 9
Time (hours)

LoRA
DoRA

MiLoRA
AdaLoRA

BeamLoRA

 4h 44m

 8h 10m

 4h 49m

 7h 39m

 4h 58m

Figure 8: Fine-tuning time for different methods on
LLaMA2-7B with r = 64.

0 10 20 30 40 50 60 70 80
Per GPU Device Memory Usage(GB)

LoRA
DoRA

MiLoRA
AdaLoRA

BeamLoRA

 54 GB

 73 GB

 54 GB

 59 GB

 54 GB

Figure 9: Fine-tuning memory usage for different meth-
ods on LLaMA2-7B with r = 64.

operation. In our implementation, we determine 915

the number of BeamLoRA operations based on the 916

total number of fine-tuning steps. Specifically, for 917

the MetaMathQA dataset, we select from {2500, 918

3000, 3500}; for the CodeFeedback dataset, we 919

select from {800, 1000, 1200}; and for the Com- 920

monsense dataset, we select from {2400, 2800, 921

3200} for ∆t. 922

Effect of pinit. The hyperparameter pinit determines 923

the number of affected ranks in each pruning- 924

expansion operation. According to Eq. 14, a 925

smaller pinit results in more ranks being operated. 926

As shown in Figure 7, we see that when a larger 927

number of ranks is operated (e.g., p = 0.93), the 928

performance, while still better than LoRA, is not 929

optimal. As pinit increases, the number of operated 930

ranks decreases, reaching optimal performance at 931

p = 0.95. However, if pinit continues to increase, 932

the number of operated ranks further decreases, re- 933

ducing the advantages of the pruning-expansion 934

process, and performance gradually declines to lev- 935

els comparable to LoRA. 936

B.2 Fine-tuning Efficiency 937

The efficiency of fine-tuning primarily involves two 938

aspects: fine-tuning time and memory usage. We 939

present the fine-tuning time for different methods 940

on the MetaMathQA dataset in Figure 8. We see 941

that BeamLoRA and MiLoRA require a similar 942

time as LoRA. However, DoRA and AdaLoRA 943

require 1.73 times and 1.62 times the fine-tuning 944

time of LoRA, respectively, thereby losing some of 945

the time-saving advantages that LoRA offers. 946

In terms of memory usage, as shown in Figure 9, 947

12



Math Reasoning Code Generation Commonsense Reasoning

Base Model LLaMA2-7B Mistral-7B LLaMA2-7B Mistral-7B LLaMA2-7B LLaMA2-13B
Rank r 64 64 64 64 32 32
pinit 0.95 0.95 0.95 0.95 0.96 0.96

Step ∆t 3000 2500 1200 800 3200 2400

Table 4: Detailed settings of hyperparameters in BeamLoRA. In order to thoroughly evaluate the method’s
performance, we utilize two standard configurations in our experiments: r = 64 and r = 32. The pinit is based on
the rank size. ∆t is determined based on the total number of fine-tuning steps across different datasets to control the
number of operations.

it can be observed that BeamLoRA and MiLoRA948

also have similar memory usage on each GPU as949

LoRA. AdaLoRA requires slightly more memory950

compared to these three, while DoRA requires 1.35951

times the memory of LoRA. Overall, in terms of952

fine-tuning time and memory usage, BeamLoRA953

is similar to LoRA and significantly lower than954

DoRA and AdaLoRA, rendering it practical.955

13


	Introduction
	Preliminary
	Low-Rank Adaptation (LoRA)
	Analysis of LoRA Ranks

	BeamLoRA
	Importance Assessment
	Pruning and Expansion
	Dynamic Top-P Threshold
	Computational Efficiency

	Experiments
	Experimental Settings
	Math Reasoning and Code Generation
	Commonsense Reasoning
	Ablation Study
	Analysis

	Related Works
	LoRA and its variants
	Model Pruning and Expansion

	Conclusion
	Experimental Setup
	Baselines
	Implementation Details

	Additional Experiment Results
	Analysis of Hyperparameters
	Fine-tuning Efficiency


