
000 CERTIFIED ROBUSTNESS TRAINING: CLOSED-FORM 001 CERTIFICATES VIA CROWN 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 009 ABSTRACT 010

011 Adversarial training reshapes neural network decision boundaries by pushing
012 them away from adversarial examples, but this approach ignores a crucial geomet-
013 ric factor: the local curvature that determines how steeply network outputs change
014 with input perturbations. We introduce a fundamentally different approach that
015 optimizes certified robustness by directly reshaping decision boundary geometry
016 during training. Our key insight is that CROWN’s linear bounds encode both the
017 safety margin and input sensitivity needed for closed-form certified radius computa-
018 tion, transforming expensive verification into efficient geometric analysis. We
019 derive differentiable expressions that enable direct optimization of the margin-
020 over-slope ratio underlying certified robustness, creating networks with inherently
021 robust decision regions rather than boundaries hardened against specific attacks.
022 Our hybrid training method combines adversarial training’s broad coverage with
023 geometric certified objectives applied to hard examples, achieving 98.33% clean
024 accuracy and 71.1% certified robustness at $\epsilon = 0.03$ on MNIST—outperforming
025 both PGD adversarial training (61.7%) and randomized smoothing (53.1%) in
026 ReLU-based networks. On DC optimal power flow regression, we demonstrate
027 controllable accuracy-safety trade-offs critical for engineering applications. By
028 making certified robustness certificates both computationally tractable and differ-
029 entiable, our approach enables robustness-aware learning that produces networks
030 robust by geometric design rather than adversarial accident.

031 1 INTRODUCTION 032

033 Adversarial training has emerged as the dominant approach for learning robust neural networks, but
034 it suffers from a fundamental limitation: it primarily moves decision boundaries without changing
035 their local geometry. When a network encounters adversarial examples during training, gradient-
036 based methods shift the boundary away from these threats while preserving the network’s inherent
037 sensitivity to input perturbations. This creates a cat-and-mouse dynamic where stronger attacks find
038 new vulnerabilities in regions that remain geometrically fragile, leading to thin vulnerable slivers
039 that evade detection during training but compromise robustness in deployment.

040 We propose a fundamentally different approach that addresses robustness at its geometric root: in-
041 stead of merely pushing decision boundaries away from adversarial examples, we reshape their local
042 curvature to create inherently more robust decision regions. Our key insight is that certified robust-
043 ness bounds encode precise information about both the safety margin at a point and the network’s
044 input sensitivity—and optimizing these quantities directly during training leads to decision bound-
045 aries that are robust by construction rather than by adversarial hardening.

046 The central contribution of this work is showing that linear bound propagation methods like CROWN
047 (Zhang et al., 2020b), widely used for post-hoc verification, can be transformed into differentiable
048 training objectives that optimize certified radius bounds in closed form. Specifically, CROWN’s
049 affine bounds $\ell_s(x) = a_s^T x + \beta_s \leq s(x) \leq u_s(x) = \tilde{a}_s^T x + \tilde{\beta}_s$ naturally encode the geometric
050 quantities needed for radius computation: the safety margin $m(c) = a_s^T c + \beta_s$ and the worst-case
051 input sensitivity $\|a_s\|_1$. The certified radius becomes a simple margin-over-slope ratio: $r(c) =$
052 $m(c)/\|a_s\|_1$.

053 This geometric perspective reveals why certified training succeeds where adversarial training strug-
054 gles. While adversarial methods implicitly optimize margin through example-based learning, they

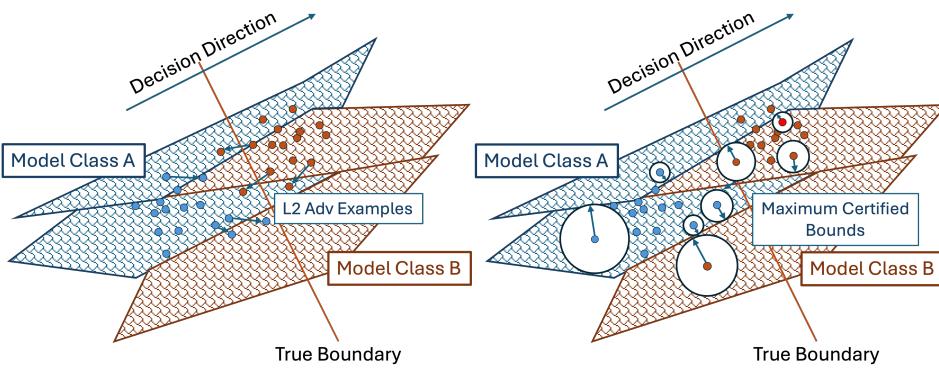


Figure 1: **Attack-only training moves the boundary; our certified objective changes its curvature (with ℓ_∞ radii).** Hatched polygons mark activation-stable (locally affine) regions of a ReLU network; colors denote classes. *Left*: adversarial/smoothing training largely translates the boundary along the decision direction, leaving thin vulnerable slivers. *Right*: adding the β -CROWN–driven radius loss enlarges per-sample certified ℓ_∞ balls (drawn as circles for readability) by simultaneously increasing margin and reducing input slope on neighboring facets, effectively reshaping local curvature and aligning better with the true boundary.

ignore the equally important sensitivity term. Our approach optimizes both simultaneously: increasing margin while reducing input sensitivity creates larger certified neighborhoods and fundamentally changes the local decision geometry. Figure 1 illustrates this difference—adversarial training translates boundaries, while our certified objectives reshape their curvature.

The practical implications are significant. Because CROWN coefficients are differentiable functions of network parameters, our certified radius bounds inherit this differentiability, enabling direct gradient-based optimization during training. This transforms expensive post-hoc verification into an efficient training signal that guides the network toward inherently robust representations.

Our hybrid training approach combines the broad coverage of adversarial training with the geometric precision of certified radius optimization. We apply adversarial training to all examples for baseline robustness, then selectively apply certified radius penalties to hard examples where geometric reshaping provides the greatest benefit. This selective approach balances computational cost with robustness gains while avoiding the optimization difficulties that can arise from applying strong certified constraints globally.

Contributions and experimental validation. We make certified robustness both theoretically principled and practically effective through four key contributions:

- **Closed-form certified radii:** We derive exact formulas converting CROWN bounds into certified radius expressions, enabling $O(d)$ -time robustness assessment versus exponential MILP complexity.
- **Differentiable certified training:** We provide explicit matrix formulations showing how CROWN coefficients depend on network parameters, making certified radii fully differentiable for gradient-based optimization.
- **Geometric robustness insight:** We demonstrate that certified training reshapes decision boundary curvature rather than merely translating boundaries, addressing the fundamental limitations of adversarial training.
- **Superior empirical performance:** Our hybrid method achieves 98.33% clean accuracy and 71.1% certified robustness at $\epsilon = 0.03$ on MNIST, outperforming both PGD adversarial training (61.7%) and randomized smoothing (53.1%) on ReLU-based neural networks.

We validate our approach across two distinct domains: MNIST classification, where our method demonstrates clear improvements over established baselines in both clean accuracy and certified robustness; and DC-OPF power system control, where we show how certified violation penalties

enable principled navigation of the accuracy-safety trade-off critical in engineering applications. Together, these results demonstrate that optimizing certified geometry during training produces networks that are robust by design rather than by adversarial accident.

2 BACKGROUND: CERTIFIED BOUNDS AND LINEAR RELAXATIONS

Having motivated the geometric perspective on certified robustness, we now establish the mathematical foundation for our approach. We review how linear bound propagation methods compute affine bounds that encode the geometric structure of neural network decision boundaries.

Network architecture and problem formulation. We consider a feedforward neural network $f_\theta : \mathbb{R}^d \rightarrow \mathbb{R}^k$ with parameters $\theta = (W^{(1)}, b^{(1)}, \dots, W^{(L)}, b^{(L)})$, where L denotes the number of layers. For an input $x \in \mathbb{R}^d$, the network output is $f_\theta(x) = (f_1(x), \dots, f_k(x))$.

For classification tasks, we focus on adversarial robustness: given a correctly classified input with true class $t \in \{1, \dots, k\}$, we study pairwise logit margins $m_{t,j}(x) = f_t(x) - f_j(x)$ for $j \neq t$. The network maintains its prediction when all margins $m_{t,j}(x) > 0$. Without loss of generality, we can focus on bounding scalar quantities $s(x) \in \mathbb{R}$ derived from network outputs—for regression, $s(x)$ might represent constraint violations; for classification, it typically represents logit margins where maintaining $s(x) > 0$ ensures correct prediction. We omit explicit dependence on θ when clear from context.

Input regions and perturbation models. We work with compact regions in input space. The axis-aligned box is

$$[L, U] = \{x \in \mathbb{R}^d : L \leq x \leq U \text{ (elementwise)}\}.$$

Given a center $c \in \mathbb{R}^d$ and radius $r \geq 0$, the ℓ_∞ -ball is

$$\mathcal{B}_\infty(c, r) = \{x \in \mathbb{R}^d : \|x - c\|_\infty \leq r\}.$$

We focus on ℓ_∞ perturbations as they naturally model pixel-wise bounded adversarial attacks in image domains and element-wise operational tolerances in control applications. Throughout, $[L, U]$ denotes a fixed domain, and we seek to certify balls $\mathcal{B}_\infty(c, r) \subseteq [L, U]$ around centers c .

Linear bound propagation and certified affine bounds. The key insight behind linear bound propagation methods like CROWN is to replace nonlinear activations with linear relaxations, enabling efficient bound computation through matrix operations. These methods provide certified affine bounds on scalar network quantities $s(x)$ that are valid uniformly over input boxes $[L, U]$ (Zhang et al., 2020b; Wang et al., 2021b).

Specifically, for any scalar function $s(x)$ induced by the network, CROWN computes affine functions:

$$\ell_s(x) = a_s^\top x + \beta_s, \quad (1)$$

$$u_s(x) = \tilde{a}_s^\top x + \tilde{\beta}_s, \quad (2)$$

where the coefficients $(a_s, \beta_s, \tilde{a}_s, \tilde{\beta}_s)$ depend on both the network parameters θ and the input domain $[L, U]$. These bounds satisfy the certified sandwich inequality

$$\ell_s(x) \leq s(x) \leq u_s(x) \quad \text{for all } x \in [L, U].$$

The coefficients are computed through a backward pass that propagates linear bounds layer by layer, making the approach scalable to large networks. The bounds become tighter when the input region is smaller or when the network exhibits more stable activation patterns within that region.

Computational efficiency and geometric structure. CROWN bound computation requires only one forward and one backward pass through the network, scaling polynomially with network size. Crucially for our approach, the resulting affine bounds reveal the local geometric structure of the network’s decision boundary within the specified region. The coefficient vectors a_s and \tilde{a}_s capture how the network output changes with input variations, while the offset terms β_s and $\tilde{\beta}_s$ reflect the network’s behavior at the reference point.

162 This geometric information, encoded directly in CROWN’s affine bounds, will serve as the founda-
 163 tion for deriving closed-form expressions for certified robustness radii in the following sections.
 164

165 3 FROM CROWN BOUNDS TO CLOSED-FORM RADII

167 The power of our geometric approach lies in transforming CROWN’s linear bounds into explicit
 168 certified radius expressions. We begin by examining the computational challenges of exact veri-
 169 fication, then show how CROWN bounds contain precisely the geometric information needed for
 170 closed-form radius computation.
 171

172 3.1 THE COMPUTATIONAL CHALLENGE OF EXACT VERIFICATION

174 For a ReLU network $f_\theta : \mathbb{R}^d \rightarrow \mathbb{R}^k$ and scalar safety property $s(x) \in \mathbb{R}$ (e.g., classification margin
 175 $m_{t,j}(x) = f_t(x) - f_j(x)$), the exact certified radius at center c is:

$$176 \quad r^*(c) = \min_{x \in \mathbb{R}^d} \|x - c\|_\infty \quad \text{subject to} \quad s(x) \leq 0. \quad (3)$$

178 This optimization can be solved exactly using mixed-integer linear programming by encoding ReLU
 179 constraints with binary variables $\delta_i^\ell \in \{0, 1\}$ for each neuron (Fischetti & Jo, 2018; Tjeng et al.,
 180 2019; Bunel et al., 2018; Chehade et al., 2025):

$$181 \quad h_i^\ell \geq z_i^\ell, \quad h_i^\ell \geq 0, \quad (4)$$

$$183 \quad h_i^\ell \leq z_i^\ell - L_i^\ell(1 - \delta_i^\ell), \quad h_i^\ell \leq U_i^\ell \delta_i^\ell, \quad (5)$$

184 where (L_i^ℓ, U_i^ℓ) are pre-computed activation bounds.
 185

186 While MILP formulations provide exact solutions, they suffer from fundamental limitations: expo-
 187 nential worst-case complexity in the number of neurons, sensitivity to activation bound tightness,
 188 and incompatibility with gradient-based optimization due to discrete variables. These constraints
 189 motivate our search for tractable approximations that preserve geometric insight.
 190

191 3.2 THE GEOMETRIC STRUCTURE IN CROWN BOUNDS

192 CROWN (Zhang et al., 2020b) transforms the discrete verification problem into continuous op-
 193 timization by replacing ReLU constraints with linear relaxations. For scalar function $s(x)$ over
 194 domain $[L, U]$, CROWN computes certified affine bounds:

$$195 \quad \ell_s(x) = a_s^\top x + \beta_s \leq s(x) \leq u_s(x) = \tilde{a}_s^\top x + \tilde{\beta}_s \quad (6)$$

196 valid for all $x \in [L, U]$.
 197

198 The key insight is that these linear bounds encode the geometric quantities needed for distance com-
 199 putation: the safety margin at any point and the network’s worst-case sensitivity to input changes.
 200

201 **Theorem 3.1** (Closed-form ℓ_∞ radius bounds). *Given CROWN bounds on $s(x)$ and center
 202 $c \in [L, U]$, define safety margins:*

$$203 \quad m_{LB}(c) = a_s^\top c + \beta_s, \quad (7)$$

$$205 \quad m_{UB}(c) = \tilde{a}_s^\top c + \tilde{\beta}_s. \quad (8)$$

206 *Then the exact robust radius $r^*(c)$ satisfies:*

$$208 \quad r_{LB}(c) := \left[\frac{m_{LB}(c)}{\|a_s\|_1} \right]_+ \leq r^*(c) \leq \left[\frac{m_{UB}(c)}{\|\tilde{a}_s\|_1} \right]_+ =: r_{UB}(c) \quad (9)$$

211 where $[\cdot]_+ = \max\{\cdot, 0\}$.
 212

214 *Proof sketch.* CROWN bounds induce set containments $\{x : u_s(x) \leq 0\} \subseteq \{x : s(x) \leq 0\} \subseteq \{x : \ell_s(x) \leq 0\}$ within $[L, U]$. The certified radius bounds follow from distance monotonicity and the
 215 dual-norm characterization of half-space distances. Complete proof in Appendix B. \blacksquare

216 **Geometric interpretation and practical benefits.** The theorem reveals certified robustness as
 217 a **margin-over-slope ratio**: the numerator $m(c)$ represents safety margin, while the denominator
 218 $\|a_s\|_1$ captures input sensitivity. This interpretation provides several advantages:
 219

- 220 • **Computational efficiency:** $O(d)$ arithmetic operations versus exponential MILP complex-
 221 ity
- 222 • **Geometric insight:** Direct visualization of margin-sensitivity trade-offs
- 223 • **Optimization compatibility:** Smooth dependence on network parameters enables
 224 gradient-based training

227 The bounds are often tight in practice because neural networks are locally approximately linear,
 228 making CROWN’s linear relaxations accurate in activation-stable regions.

230 3.3 DIFFERENTIABLE IMPLEMENTATION FOR TRAINING

232 To integrate certified radius bounds into training objectives, we express them as explicit functions
 233 of network parameters $\theta = \{W^{(k)}, b^{(k)}\}_{k=1}^L$.

235 **Proposition 3.2** (Parameterized radius bounds). *The radius bounds become parameter-
 236 dependent functions:*

$$238 \quad r_{\text{LB}}(c; \theta) = \left[\frac{a_s(\theta)^\top c + \beta_s(\theta)}{\|a_s(\theta)\|_1} \right]_+, \quad (10)$$

$$241 \quad r_{\text{UB}}(c; \theta) = \left[\frac{\tilde{a}_s(\theta)^\top c + \tilde{\beta}_s(\theta)}{\|\tilde{a}_s(\theta)\|_1} \right]_+. \quad (11)$$

244 For piecewise-linear networks, these expressions are piecewise smooth in θ , enabling gradient-
 245 based optimization.

247 The parameter dependence enters entirely through CROWN coefficients $(a_s, \beta_s, \tilde{a}_s, \tilde{\beta}_s)$, which ad-
 248 mit explicit matrix representations:

250 **Proposition 3.3** (CROWN coefficient structure (Zhang et al., 2020b; Wang et al., 2021a)).
 251 *CROWN coefficients can be expressed as products of modified weight matrices:*

$$253 \quad \tilde{a}_s(\theta)^\top = \rho^\top W^{(L)} D^{(L-1)} W^{(L-1)} \dots D^{(1)} W^{(1)}, \quad (12)$$

$$254 \quad a_s(\theta)^\top = \rho^\top W^{(L)} \hat{D}^{(L-1)} W^{(L-1)} \dots \hat{D}^{(1)} W^{(1)}, \quad (13)$$

256 where $D^{(k)}$ and $\hat{D}^{(k)}$ are diagonal matrices encoding relaxation slopes for each layer. Com-
 257 plete matrix expressions appear in Appendix B.2.1.

259 This explicit parameterization enables automatic differentiation through our radius expressions,
 260 making certified robustness objectives fully compatible with standard gradient-based training
 261 pipelines. The geometric insight of margin-over-slope optimization can now be directly incorpo-
 262 rated into neural network learning.

264 4 TRAINING WITH CERTIFIED ROBUSTNESS OBJECTIVES

267 Having derived closed-form expressions for certified radii, we now show how to integrate them
 268 into neural network training to reshape decision boundary geometry. The key insight is that our
 269 margin-over-slope formulation enables direct optimization of both safety margin and input sensitiv-
 ity simultaneously.

Algorithm 1 Certified Robustness Training

```

Require: Network  $\theta$ , domain  $[L, U]$ , robustness weight  $\lambda$ , penalty  $\phi$ 
1: for mini-batch  $\mathcal{B} = \{(c_i, y_i)\}_{i=1}^B$  do
2:   FORWARD: Compute predictions  $f_\theta(c_i)$  and task loss
3:   BOUNDS: Run  $(\beta)$ -CROWN on  $[L, U]$  to obtain  $(a_{s,i}, \beta_{s,i})$  for all  $s \in \mathcal{S}$ 
4:   RADII: Compute  $r_{LB}^{(s)}(c_i; \theta)$  using expressions from Proposition 3.2
5:   AGGREGATE: Apply soft-min aggregation via equation (16)
6:   LOSS: Add  $\lambda \cdot \phi(r_{LB}(c_i; \theta))$  to total loss
7:   UPDATE:  $\theta \leftarrow \theta - \eta \nabla_\theta \mathcal{L}_{\text{train}}(\theta)$ 
8: end for

```

4.1 FROM VERIFICATION TO TRAINING OBJECTIVES

Geometric motivation for radius-based training. Traditional adversarial training optimizes margin implicitly by pushing decision boundaries away from adversarial examples. However, this approach ignores the equally important sensitivity term $\|a_s\|_1$ that captures how steeply the network's output changes with input perturbations. Our certified radius formulation reveals that true geometric robustness requires optimizing both quantities: increasing the safety margin while simultaneously reducing input sensitivity. This creates decision regions with fundamentally different local curvature, as illustrated in Figure 1.

Multi-constraint aggregation. For a training sample c with multiple safety constraints \mathcal{S} (e.g., all pairwise classification margins $\{s_{t,j}(x) = f_t(x) - f_j(x) : j \neq t\}$ for true class t), we compute constraint-specific radii using the parameterized expressions from Proposition 3.2 and aggregate via:

$$r_{\text{LB}}(c; \theta) := \min_{s \in S} r_{\text{LB}}^{(s)}(c; \theta). \quad (14)$$

Training objective design. We augment standard task loss with a certified robustness penalty that directly optimizes radius bounds:

$$\mathcal{L}_{\text{train}}(\theta) = \frac{1}{|\mathcal{B}|} \sum_{(c, y) \in \mathcal{B}} [\mathcal{L}_{\text{task}}(f_\theta(c), y) + \lambda \cdot \phi(r_{\text{LB}}(c; \theta))], \quad (15)$$

where ϕ is a monotone decreasing penalty function that encourages larger certified radii. We consider two practical choices:

- **Target hinge:** $\phi(r) = \max(0, \tau - r)$ encourages radii to exceed threshold τ
 - **Inverse penalty:** $\phi(r) = 1/(r + \varepsilon)$ provides smooth, unbounded incentive for larger radii

Smooth aggregation for stability. The hard minimum in equation (14) can create unstable gradients when multiple constraints are nearly active. We therefore use a smooth approximation:

$$r_{\text{LB}}(c; \theta) \approx -\kappa \log \left(\sum_{s \in S} \exp \left(-\frac{r_{\text{LB}}^{(s)}(c; \theta)}{\kappa} \right) \right), \quad (16)$$

where $\kappa > 0$ controls the smoothness, recovering the hard minimum as $\kappa \rightarrow 0$.

4.2 PRACTICAL TRAINING ALGORITHM

Computational considerations. The primary computational cost comes from (β) -CROWN bound computation, which scales as $O(\text{network size} \times d \times |\mathcal{S}|)$ where d is input dimension and $|\mathcal{S}|$ is the number of constraints. The radius computation itself requires only $O(d)$ arithmetic operations on the computed coefficients. For classification with k classes, $|\mathcal{S}| = k - 1$ pairwise margins, making the overhead manageable even for large vocabularies.

Bound tightening during training. To strengthen the training signal, we optionally apply a few steps of β -CROWN joint- α optimization before computing certified radii. This tightens the linear relaxations without changing their affine structure, providing more accurate radius estimates at modest computational cost.

324 4.3 THEORETICAL FOUNDATIONS
325

326 Our training approach is supported by several theoretical guarantees that connect certified radii to
327 fundamental network properties:

329 **Corollary 4.1** (Certified safety guarantee). *If $r_{LB}(c) \geq \varepsilon$ and $\mathcal{B}_\infty(c, \varepsilon) \subseteq [L, U]$, then $s(x) >$*

330 *0 for all $x \in \mathcal{B}_\infty(c, \varepsilon)$. Hence the network's decision is invariant throughout that neighborhood.*

332 This provides the fundamental certification: once we achieve certified radius ε , safety is guaranteed
333 within that neighborhood.

335 **Theorem 4.2** (Local exactness under activation stability). *When all ReLUs maintain activation*
336 *signs on $\mathcal{B}_\infty(c, \varepsilon) \cap [L, U]$, the network becomes locally affine $s(x) = w^\top x + b$ and our bounds*
337 *are exact: $r^*(c) = r_{LB}(c) = r_{UB}(c) = s(c)/\|w\|_1$.*

339 This explains why CROWN-based bounds are often tight in practice: neural networks are locally
340 approximately linear, and our relaxations become exact in activation-stable regions.

342 **Proposition 4.3** (Sensitivity control through radius optimization). *Meeting certified radius re-*
343 *quirement $r_{LB}(c) \geq \varepsilon$ automatically bounds network sensitivity: $\|a_s\|_1 \leq (a_s^\top c + \beta_s)/\varepsilon$.*

346 **Proposition 4.4** (Connection to margin-based learning). *For linear models $f(x) = Wx + b$,*
347 *maximizing r_{LB} is equivalent to normalized margin maximization, connecting our approach to*
348 *classical generalization theory.*

350 **Putting it together: geometric robustness by design.** Algorithm 1 operationalizes the geometric
351 insight illustrated in Figure 1: rather than merely pushing decision boundaries away from adversarial
352 examples, we reshape their local curvature by optimizing both margin and sensitivity simultaneously.
353 This creates networks with fundamentally different geometric properties—larger certified
354 neighborhoods and inherently more robust decision regions that resist adversarial perturbations by
355 construction rather than by hardening.

357 5 EXPERIMENTAL VALIDATION

360 We validate our approach across two complementary domains: MNIST classification, which demon-
361 strates the effectiveness of our geometric training approach against established baselines, and DC
362 optimal power flow (DC-OPF) regression, which illustrates the accuracy-safety trade-offs funda-
363 mental to certified robustness in engineering applications. Together, these experiments show that
364 our closed-form radius bounds enable practical certified training across diverse problem types.

365 5.1 MNIST CLASSIFICATION

367 We evaluate our hybrid training method against three established robust training approaches on
368 a fully-connected network with two hidden layers of 128 units each, trained on standard MNIST
369 (60k/10k train/test split). Our architecture uses ReLU activations with $784 \rightarrow 128 \rightarrow 128 \rightarrow 10$ dimen-
370 sions, totaling 118,282 parameters.

372 **Experimental setup and baselines.** We compare against three state-of-the-art methods: **Pro-**
373 **jected Gradient Descent Adversarial Training (PGD-AT)** (Madry et al., 2018), which generates
374 adversarial examples via iterative PGD attacks ($\epsilon = 0.08$, 10 iterations, 2 restarts); **Randomized**
375 **Smoothing** (Cohen et al., 2019), which trains on Gaussian-noised inputs ($\sigma = 0.25$, 4 samples
376 per input) combined with ℓ_2 adversarial training and Jensen-Shannon consistency regularization;
377 and our **Hybrid Method**, which combines PGD-AT with our differentiable certified radius penalty
378 applied selectively to hard examples identified via margin screening.

378 Our training objective augments PGD adversarial training with certified radius penalties: $\mathcal{L}_{\text{total}} =$
 379 $\mathcal{L}_{\text{PGD-AT}} + \lambda \sum_{i \in \mathcal{H}} \phi(r_{\text{LB}}(x_i; \theta))$, where \mathcal{H} contains up to 24 hard examples per batch and $\phi(r) =$
 380 $0.3(-\log r) + 0.7 \max(0, \tau - r)$ encourages target radius $\tau = 0.65\epsilon$ to 0.75ϵ . We use joint- α
 381 optimization with 6 gradient steps to tighten CROWN bounds before penalty computation.
 382

383 **Evaluation metrics.** We assess **clean accuracy** on unperturbed inputs, **certified fraction** (percentage of test inputs where CROWN margins remain positive under ℓ_∞ perturbations), and **median certified radius** computed via bisection search across test examples.
 384
 385

386 Table 1: MNIST results: clean accuracy and ℓ_∞ certified robustness comparison.
 387

Method	Clean Acc.	Cert. @ 0.02	Cert. @ 0.03	Median Radius
Standard Training	97.52%	55.5%	13.3%	0.0211
PGD-AT	97.58%	89.8%	61.7%	0.0331
Randomized Smoothing	97.62%	87.5%	53.1%	0.0312
Hybrid (Ours)	98.33%	94.5%	71.1%	0.0343

394
 395 **Results and key findings.** Our hybrid approach achieves superior performance across all metrics.
 396 The 0.75% clean accuracy improvement over PGD-AT represents 5.4 standard errors, demonstrating
 397 statistical significance and showing that certified training objectives can enhance rather than harm
 398 clean performance when properly balanced through selective hard-example targeting.
 399

400 For certified robustness, our method provides substantial improvements: at $\epsilon = 0.03$, we certify
 401 71.1% of examples versus 61.7% for PGD-AT—a 15.2% relative improvement. At the more chal-
 402 lenging $\epsilon = 0.02$ level, we achieve 94.5% certification compared to 89.8% for PGD-AT. The median
 403 certified radius improves from 0.0331 to 0.0343, a 3.6% relative gain that translates to meaningful
 404 improvements in practical deployment scenarios.
 405

406 These results validate our core theoretical contributions: CROWN bounds contain sufficient geomet-
 407 ric information for tight certified radius computation, these radii integrate effectively into gradient-
 408 based training without optimization instabilities, and certified objectives improve robustness without
 409 sacrificing accuracy. The hybrid approach demonstrates that attack-based and certification-based
 410 training are complementary strategies for robust neural networks.
 411

5.2 DC-OPF POWER SYSTEM CONTROL

412 We evaluate our approach on DC optimal power flow regression, a canonical benchmark from power
 413 system optimization that emphasizes a different aspect of certified robustness: ensuring that neural
 414 network surrogates maintain feasibility constraints under input perturbations representing demand
 415 uncertainties.
 416

417 **Problem formulation and methodology.** We train a compact fully-connected network
 418 ($3 \rightarrow 16 \rightarrow 3$) that maps electrical demand vectors to generator dispatch decisions. The training ob-
 419 jective combines mean squared error with our β -CROWN certified violation penalty—a variation of
 420 our certified loss framework where we penalize violations of generator capacity limits rather than
 421 classification margins. Specifically, we enforce that certified output bounds $[f_j(x; \epsilon), \bar{f}_j(x; \epsilon)]$ re-
 422 main within engineering limits $[y_j^{\min}, y_j^{\max}]$ over ℓ_∞ balls of radius $\epsilon = 1.0$ (scaled units) for each
 423 generator j . Generator limits are derived from training data percentiles to avoid test leakage.
 424

425 **Trade-off analysis and results.** We systematically vary the robustness penalty weight λ to char-
 426 acterize the fundamental accuracy-safety trade-off in certified regression. Figure 2 demonstrates
 427 several key insights: (a) increasing λ consistently reduces certified violations across perturbation
 428 budgets, (b) violation reductions occur uniformly across all three generators, and (c-d) qualitative
 429 analysis shows that robust training produces outputs that maintain larger margins from capacity
 430 limits while accepting modest degradation in numerical accuracy.
 431

This experiment validates our framework’s applicability beyond classification to regression tasks
 where certified safety constraints are paramount. The smooth trade-off curves demonstrate that

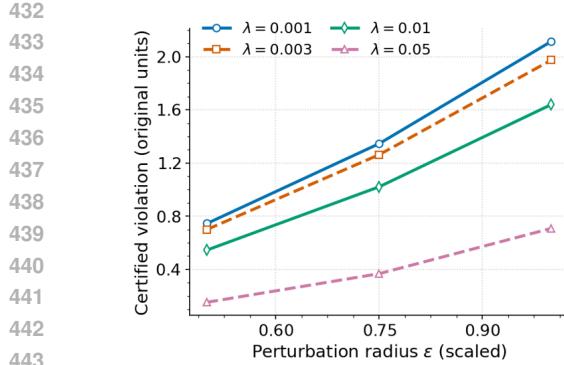
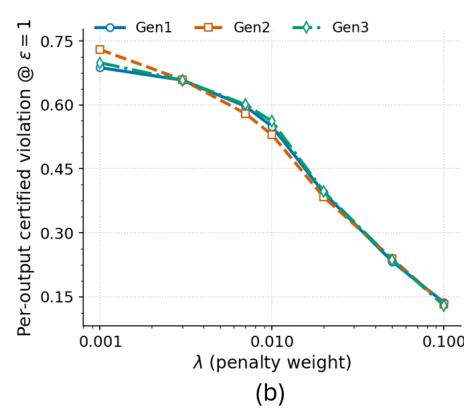
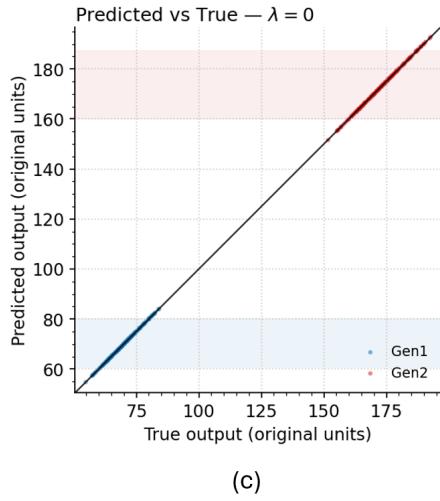
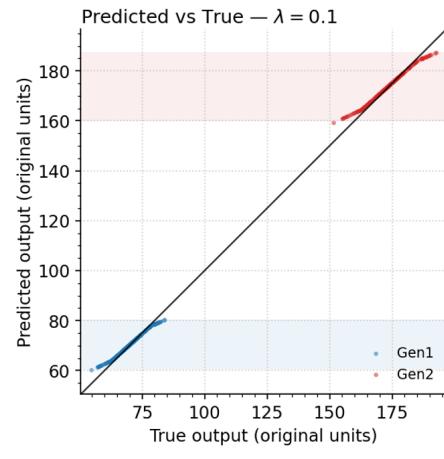


Figure 2: **DC-OPF certified feasibility study.** (a) Certified violation versus perturbation budget for different robustness weights—larger λ consistently reduces violations. (b) Per-generator violation breakdown at $\epsilon = 1.0$ shows uniform improvement across all outputs. (c-d) Output trajectories for $\lambda = 0$ versus $\lambda = 0.1$ illustrate the accuracy-safety trade-off: robust training maintains larger margins from capacity limits (shaded regions) while slightly relaxing numerical fit.

practitioners can navigate accuracy-safety tensions in a principled manner, selecting operating points based on their specific risk tolerance. More experimental details appear in Appendix C.2.

6 CONCLUSION

We have presented a unified framework that transforms CROWN’s affine bounds into closed-form certified radius expressions, enabling direct optimization of certified robustness during training. Our key insight is that these linear bounds encode the geometric quantities—safety margins and input sensitivities—needed for radius computation as a margin-over-slope ratio, eliminating expensive iterative verification while maintaining formal guarantees. Unlike adversarial training, which primarily translates decision boundaries away from attacks, our approach directly optimizes both margin and sensitivity to reshape local curvature, creating networks with larger certified neighborhoods that resist perturbations by geometric design. Experimental validation on MNIST classification and DC-OPF regression demonstrates superior certified performance while maintaining computational tractability, transforming verification from a post-hoc analysis tool into a practical training objective for safety-critical applications.

486 REFERENCES

487

- 488 Brian Bell, Michael Geyer, David Glickenstein, Keaton Hamm, Carlos Scheidegger, Amanda S.
489 Fernandez, and Juston Moore. Persistent classification: A new approach to stability of data and
490 adversarial examples. *arXiv preprint arXiv:2404.08069*, 2024.
- 491 Rudy Bunel, Ilker Turkaslan, Philip Torr, Pushmeet Kohli, and M. Pawan Kumar. A unified view
492 of piecewise linear neural network verification. In *Advances in Neural Information Processing
493 Systems (NeurIPS)*, 2018.
- 494 Rudy Bunel, João Lu, Laurent Meunier, Alban Desmaison, Pushmeet Kohli, Philip H.S. Torr, and
495 M. Pawan Kumar. Branch and bound for piecewise linear neural network verification. *Journal of
496 Machine Learning Research*, 21(42):1–39, 2020.
- 497
- 498 Mohamad Fares El Hajj Chehade, WENTING LI, Brian Wesley Bell, Russell Bent, Saif R Kazi,
499 and Hao Zhu. Levis: Large exact verifiable input spaces for neural networks. In *Forty-second
500 International Conference on Machine Learning*, 2025.
- 501 Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
502 smoothing. In *international conference on machine learning*, pp. 1310–1320. PMLR, 2019.
- 503
- 504 Matteo Fischetti and Jason Jo. Deep neural networks as mixed integer linear programs. In *Con-
505 straints*. Springer, 2018. doi: 10.1007/s10601-018-9285-6.
- 506
- 507 Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, et al. On the effectiveness of interval
508 bound propagation for training verifiably robust models. *arXiv preprint arXiv:1810.12715*, 2018.
- 509
- 510 Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classi-
511 fier against adversarial manipulation. In *Advances in Neural Information Processing Systems
(NeurIPS)*, 2017.
- 512
- 513 Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
514 efficient SMT solver for verifying deep neural networks. In *Computer Aided Verification (CAV)*,
2017.
- 515
- 516 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
517 Towards deep learning models resistant to adversarial attacks. In *International Conference on
518 Learning Representations*, 2018.
- 519
- 520 Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation for prov-
521 ably robust neural networks. In *International Conference on Machine Learning (ICML)*, 2018.
- 522
- 523 Gagandeep Singh, Markus Püschel, and Martin Vechev. An abstract domain for certifying neural
524 networks. In *Proceedings of the ACM on Programming Languages (POPL)*, 2019.
- 525
- 526 Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
527 integer programming. In *International Conference on Learning Representations (ICLR)*, 2019.
528 URL <https://openreview.net/forum?id=HyGIdiRqtM>.
- 529
- 530 Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter.
531 Beta-CROWN: Efficient bound propagation with per-neuron split constraints for complete and
532 incomplete neural network robustness verification. *arXiv preprint arXiv:2103.06624*, 2021a. URL
533 <https://arxiv.org/abs/2103.06624>.
- 534
- 535 Shiqi Wang, Kaili Zhang, Kai Wang, and Peng Zhang. Efficient and accurate certified robust-
536 ness with PAC-LiRPA. In *International Conference on Learning Representations*, 2021b. URL
537 <https://openreview.net/forum?id=i9i9C1r6B2M>.
- 538
- 539 Eric Wong and J. Zico Kolter. Provable defenses via the convex outer adversarial polytope. In
540 *International Conference on Learning Representations (ICLR)*, 2018.
- 541
- 542 Huan Zhang, Hongge Chen, Chaowei Xiao, and Bo Zhang. Towards deeper and better certified
543 defenses against adversarial attacks. In *International Conference on Learning Representations*,
544 2019. URL <https://openreview.net/forum?id=rJgG92A2m>.

-
- 540 Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, et al. Towards stable and efficient training
541 of verifiably robust neural networks. In *International Conference on Learning Representations*
542 (*ICLR*), 2020a.
543
544 Huan Zhang, Wen Liu, Chaowei Xiao, and Bo Zhang. CROWN-Optimized: A new certified robust-
545 ness verification for deep neural networks. In *International Conference on Learning Representa-*
546 *tions*, 2020b. URL <https://openreview.net/forum?id=HygSg0VKwS>.
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594	CONTENTS	
595		
596		
597	1 Introduction	1
598		
599	2 Background: Certified Bounds and Linear Relaxations	3
600		
601	3 From CROWN Bounds to Closed-Form Radii	4
602	3.1 The Computational Challenge of Exact Verification	4
603	3.2 The Geometric Structure in CROWN Bounds	4
604	3.3 Differentiable Implementation for Training	5
605		
606		
607	4 Training with Certified Robustness Objectives	5
608	4.1 From Verification to Training Objectives	6
609	4.2 Practical Training Algorithm	6
610	4.3 Theoretical Foundations	7
611		
612		
613		
614	5 Experimental Validation	7
615	5.1 MNIST Classification	7
616	5.2 DC-OPF Power System Control	8
617		
618		
619	6 Conclusion	9
620		
621		
622	A Related Work and Positioning	14
623	A.1 Robustness Verification Methods	14
624	A.2 Training for Certified Robustness	14
625	A.3 Methodological Distinctions and Contributions	15
626		
627		
628	B Mathematical Foundations and Proofs	16
629	B.1 Notation and Standing Assumptions	16
630	B.2 Geometric Tools	16
631	B.2.1 β -CROWN Affine Bounds and Matrix Forms	17
632	B.3 Closed-Form Radius Bounds and Consequences	18
633	B.4 Auxiliary Results	19
634		
635		
636		
637	C Experimental Details and Additional Results	20
638	C.1 Complete MNIST Experimental Setup and Results	20
639	C.1.1 Dataset and Architecture Specification	20
640	C.1.2 Training Method Implementations	20
641	C.1.3 Certification Methodology	22
642	C.1.4 Statistical Analysis and Implementation Details	22
643	C.2 DC-OPF Regression	23
644		
645		
646		
647		

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

D LLMs

24

702 APPENDIX
703

704 A RELATED WORK AND POSITIONING
705

706 A.1 ROBUSTNESS VERIFICATION METHODS
707

708 **Exact verification approaches.** Mixed-Integer Linear Programming (MILP) encodings provide
709 complete robustness verification by introducing binary variables to model ReLU activations: $z_i =$
710 $\max(0, y_i)$ becomes $z_i \geq y_i$, $z_i \geq 0$, $z_i \leq M_i \delta_i$, and $y_i \leq M_i(1 - \delta_i)$ where $\delta_i \in \{0, 1\}$ (Fischetti
711 & Jo, 2018; Tjeng et al., 2019; Bunel et al., 2018). SMT-based approaches like Reluplex (Katz
712 et al., 2017) use directed case-splitting with simplex reasoning. Branch-and-bound frameworks
713 (Bunel et al., 2018; 2020) combine tight relaxations with intelligent branching to improve scalabil-
714 ity. While these methods provide mathematical guarantees, their exponential worst-case complexity
715 limits practical applicability, particularly for real-time certification or training integration.

716 **Scalable approximation methods.** Tractable over-approximations replace exact verification with
717 polynomial-time alternatives. Wong and Kolter (Wong & Kolter, 2018) construct convex relaxations
718 using linear programming, enabling differentiable training surrogates. CROWN (Zhang et al., 2019;
719 2020b) achieves significant advances through optimized linear bound propagation, computing affine
720 bounds $\ell(x) = a^T x + b \leq f(x) \leq \tilde{a}^T x + \tilde{b} = u(x)$ that hold uniformly over input regions. Ad-
721 vanced variants (α -CROWN, β -CROWN (Wang et al., 2021b)) optimize relaxation parameters and
722 introduce dual variables for split constraints, achieving near-exact performance on many practical
723 problems while maintaining polynomial complexity.

724 Abstract interpretation methods (Singh et al., 2019) use geometric domains like zonotopes and poly-
725 hedra to track correlations between variables. Differentiable abstract interpretation (Mirman et al.,
726 2018) makes these techniques trainable by ensuring differentiability with respect to network pa-
727 rameters. These approaches share our strategy of propagating geometric objects through layers but
728 typically focus on membership queries rather than explicit distance bounds.

729 **Specialized and geometric approaches.** Lipschitz-based methods (Hein & Andriushchenko,
730 2017) provide closed-form bounds through sensitivity analysis but can be conservative. Randomized
731 smoothing (Cohen et al., 2019) offers probabilistic guarantees through noise injection. Recent work
732 explores topological perspectives: Bell and Gangrade (Bell et al., 2024) analyze decision boundary
733 evolution through persistent homology, providing insights into adversarial geometry but not explicit
734 ℓ_p distance bounds needed for practical certification.

735 A.2 TRAINING FOR CERTIFIED ROBUSTNESS
736

737 **Relaxation-based training.** Integration of verification into training has evolved from post-hoc
738 analysis toward robust-by-construction learning. Wong and Kolter (Wong & Kolter, 2018) pioneered
739 differentiable convex relaxations, replacing intractable adversarial objectives with LP-dual bounds.
740 Mirman et al. (Mirman et al., 2018) extended this using zonotope domains for tighter but more
741 expensive bounds.

742 Interval Bound Propagation (IBP) training (Gowal et al., 2018) achieves extreme efficiency through
743 interval arithmetic but requires careful scheduling to handle loose bounds. CROWN-IBP (Zhang
744 et al., 2020a) combines IBP efficiency with CROWN tightness through hybrid approaches. Zhang
745 et al. (Zhang et al., 2019) analyze training stability, showing how bound propagation methods affect
746 optimization dynamics and proposing scheduling strategies for convergence.

747 **Advanced training strategies.** Recent advances explore multi-objective approaches balancing
748 clean accuracy, adversarial robustness, and certified robustness. Progressive training starts with
749 loose constraints and gradually tightens them. Hybrid methods combine adversarial training with
750 verification objectives to leverage benefits of both approaches.

751
752
753
754
755

756
757

A.3 METHODOLOGICAL DISTINCTIONS AND CONTRIBUTIONS

758
759
760
761
762

Direct radius optimization. Our approach fundamentally differs from existing methods by optimizing certified radii directly rather than proxy objectives. While methods like CROWN-IBP optimize dual bounds or abstract surrogates that correlate with robustness, we derive explicit closed-form radius expressions and optimize these quantities directly. This ensures that training objective improvements translate immediately to certified neighborhood size improvements.

763
764
765
766
767
768

Geometric insight and center optimization. We show that CROWN affine bounds encode precisely the geometric quantities needed for radius computation—safety margin and input sensitivity—enabling single-pass certification without iterative optimization. Our center optimization approach addresses a literature gap by casting the bilevel problem of finding optimal verification points as a tractable linear program, making robust center selection practical for the first time.

769
770
771
772
773
774

Theoretical connections. Our margin-over-slope characterization connects certified robustness to classical margin-based learning theory while preserving formal verification guarantees. This geometric interpretation complements topological approaches like Bell et al. (2024) by providing actionable, quantitative information about local neighborhoods that can be directly optimized during training.

775
776
777
778
779

Practical implications. The differentiability of our closed-form expressions enables new robust optimization possibilities beyond standard adversarial training. Single-pass radius computation makes real-time robustness assessment feasible, potentially enabling interactive design tools. Our framework provides a foundation for extending to multi-property scenarios and hierarchical robustness specifications through the flexible LP formulation.

780
781
782
783
784

Compared to exact methods, we avoid combinatorial search while maintaining geometric precision. Compared to existing relaxation-based training, we optimize explicit radii rather than bound surrogates using closed-form expressions that eliminate repeated bound-tightening during learning. This represents a step toward making formal verification a routine part of machine learning practice rather than specialized post-hoc analysis.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 B MATHEMATICAL FOUNDATIONS AND PROOFS 811

812 This appendix provides complete mathematical foundations for our closed-form robustness certi-
813 fication approach. We develop the geometric tools needed for distance computation, derive explicit
814 expressions for β -CROWN coefficients, and establish the theoretical guarantees underlying our prac-
815 tical algorithms. Throughout, $p \in [1, \infty]$ and q_\star denotes its dual exponent ($1/p + 1/q_\star = 1$).
816

817 B.1 NOTATION AND STANDING ASSUMPTIONS 818

819 Consider a feedforward network with L layers and weight matrices $W^{(k)} \in \mathbb{R}^{n_k \times n_{k-1}}$ where n_k is
820 the width of layer k :

$$821 \quad z^{(0)} = x, \quad (17)$$

$$823 \quad y^{(k)} = W^{(k)} z^{(k-1)} + b^{(k)}, \quad (18)$$

$$824 \quad z^{(k)} = \sigma(y^{(k)}) \quad \text{for } k = 1, \dots, L-1, \quad (19)$$

825 and output $f_\theta(x) = z^{(L)} = W^{(L)} z^{(L-1)} + b^{(L)}$. Unless otherwise stated, σ is the ReLU activation
826 and all norms are vector norms.
827

828 We work on a fixed input domain
829

$$830 \quad [L, U] := \{x \in \mathbb{R}^d : L_i \leq x_i \leq U_i\}, \quad (20)$$

831 and we only claim radius certificates for balls contained in this domain, i.e., $\mathbb{B}_p(c, r) \subseteq [L, U]$ when
832 needed.
833

834 Throughout, we focus on scalar network outputs obtained via linear readouts $s(x) = \rho^T f_\theta(x) + \rho_0$,
835 which encompasses both regression objectives (ρ selects an output component) and classification
836 margins (ρ computes logit differences). For such scalar functions, we define the exact robust radius

$$837 \quad r^*(c) := \text{dist}_p(c, \{x : s(x) \leq 0\}) = \inf\{\|x - c\|_p : s(x) \leq 0\}. \quad (21)$$

839 **Activation-envelope setup.** For each hidden neuron (k, i) with pre-activation bounds $l_i^{(k)} \leq$
840 $y_i^{(k)} \leq u_i^{(k)}$, we select valid linear envelopes

$$843 \quad h_{U,i}^{(k)}(y) = \alpha_{U,i}^{(k)}(y + \gamma_{U,i}^{(k)}), \quad (22)$$

$$844 \quad h_{L,i}^{(k)}(y) = \alpha_{L,i}^{(k)}(y + \gamma_{L,i}^{(k)}), \quad (23)$$

846 such that $h_{L,i}^{(k)} \leq \sigma \leq h_{U,i}^{(k)}$ on $[l_i^{(k)}, u_i^{(k)}]$ and $\alpha_{\cdot,i}^{(k)} \geq 0$. For ReLU activations, these reduce to
847 standard convex/concave relaxations; in activation-stable regions they recover exact slopes in
848 $\{0, 1\}$ with zero intercept corrections.
849

850 B.2 GEOMETRIC TOOLS 851

853 The following result provides the explicit formula for computing distances to affine decision bound-
854 aries, which appear as surrogates for the true network decision boundary.
855

856 **Theorem B.1** (Half-space distance in ℓ_p). *Let $H(w, b) = \{x : w^\top x + b \leq 0\}$ and $c \in \mathbb{R}^d$.
857 Then*

$$858 \quad \text{dist}_p(c, H(w, b)) = \max \left\{ 0, \frac{w^\top c + b}{\|w\|_{q_\star}} \right\}. \quad (24)$$

861 Geometrically, this result states that the distance from a point to a hyperplane is the margin (numer-
862 ator) divided by the 'slope' in the dual norm (denominator).
863

864

865 *Proof.* If $w^\top c + b \leq 0$ then $c \in H$ and the distance is 0. Otherwise, minimize $\|x - c\|_p$ subject
 866 to $w^\top x + b = 0$. Writing $x = c + u$ gives $\min_u \|u\|_p$ subject to $w^\top u = -(w^\top c + b)$. By
 867 Hölder's inequality, $|w^\top u| \leq \|w\|_{q_*} \|u\|_p$, with equality when u aligns with a dual vector of w .
 868 The minimizer has the form $u = -\frac{w^\top c + b}{\|w\|_{q_*}^2} \cdot w^*$ where w^* is a dual vector satisfying $\|w^*\|_p = 1$
 869 and $\langle w, w^* \rangle = \|w\|_{q_*}$. Thus the minimum distance is $(w^\top c + b)/\|w\|_{q_*}$. \blacksquare
 870

871

872 **Lemma B.2** (Support function of ℓ_∞ balls). *For any w, c and $r \geq 0$,*

$$\sup_{\|x-c\|_\infty \leq r} w^\top x = w^\top c + r\|w\|_1, \quad (25)$$

$$\inf_{\|x-c\|_\infty \leq r} w^\top x = w^\top c - r\|w\|_1. \quad (26)$$

873

874

875 *Proof.* Write $x = c + \delta$ with $\|\delta\|_\infty \leq r$. Then $\sup w^\top \delta = r\|w\|_1$ achieved at $\delta = r \text{sign}(w)$;
 876 the infimum follows analogously. \blacksquare
 877

878

879

880

881

882

883 B.2.1 β -CROWN AFFINE BOUNDS AND MATRIX FORMS

884

885 β -CROWN (Wang et al., 2021a) improves upon basic CROWN (Zhang et al., 2020b) by optimizing
 886 the choice of linear relaxations at each neuron. The key insight is to introduce dual multipliers β
 887 that enforce 'split constraints'—conditions that tighten the relaxation by exploiting the structure of
 888 ReLU activations.

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

883 **Layerwise ReLU relaxation.** For a ReLU layer with pre-activation $v \in \mathbb{R}^d$ and interval bounds
 884 $l \leq v \leq u$ (elementwise), and any row vector w , there exist a diagonal matrix $D = \text{diag}(D_{jj})$ and
 885 a vector b' such that

$$w^\top \text{ReLU}(v) \geq w^\top Dv + b', \quad (27)$$

886 where for neurons with $l_j < 0 < u_j$, we have a free slope parameter $\alpha_j \in [0, 1]$ and the intercept is
 887 chosen in a sign-aware manner to optimize the bound.

888 **Matrix products for bound propagation.** Define the accumulated weight products:

$$\Omega(i, i) = I, \quad (28)$$

$$\Omega(k+1, i) = W^{(k+1)} D^{(k)} \Omega(k, i), \quad 1 \leq i \leq k \leq L-1. \quad (29)$$

889 **Main β -CROWN bound.** Let $S^{(i)}$ be the diagonal split-selector matrix for layer i (entries +1 for
 890 $l_j^{(i)} > 0$, -1 for $u_j^{(i)} < 0$, and 0 otherwise). The split-selector matrix encodes which neurons are
 891 'stable' (always active/inactive) versus 'unstable' (potentially switching). For stable neurons, the
 892 relaxation is exact; for unstable ones, we optimize over relaxation parameters.

893 **Theorem B.3** (β -CROWN primal lower bound (Wang et al., 2021a)). *For an L -layer network
 894 f with inputs $x \in [L, U]$ and per-layer pre-activation bounds $l^{(i)} \leq y^{(i)} \leq u^{(i)}$, we have*

$$\min_{x \in [L, U]} f(x) \geq \max_{\beta \geq 0} \min_{x \in [L, U]} \{(a + P\beta)^\top x + q_\beta^\top \beta + c\}, \quad (30)$$

895 where a , P , q_β , and c are explicit matrix expressions derived from the network weights and
 896 chosen relaxation parameters.

901 The maximization over $\beta \geq 0$ is typically solved via projected gradient ascent or other convex
 902 optimization methods.

918 **Connection to scalar readouts.** For a scalar functional $s(x) = \rho^\top f_\theta(x) + \rho_0$, the β -CROWN upper
919 affine bound $u_s(x) = \tilde{a}_s(\beta)^\top x + \tilde{\beta}_s(\beta)$ has coefficients that depend linearly on the optimization
920 variables β .

922 **Practical implementation.** Maximize the β -CROWN bound over $\beta \geq 0$ using convex opti-
923 mization, then use the resulting coefficients $\tilde{a}_s(\beta), \tilde{\beta}_s(\beta)$ in our closed-form radius formulas.
924 Setting $\beta = 0$ recovers standard CROWN bounds (Zhang et al., 2020b).

927 B.3 CLOSED-FORM RADIUS BOUNDS AND CONSEQUENCES

929 **Theorem B.4** (Closed-form ℓ_p radius bounds). Assume affine surrogates $\ell_s(x) = a_s^\top x + \beta_s \leq$
930 $s(x) \leq u_s(x) = \tilde{a}_s^\top x + \tilde{\beta}_s$ hold on $[L, U]$, and let $c \in [L, U]$. Then

$$932 r_{\text{LB}}(c) := \max \left\{ 0, \frac{a_s^\top c + \beta_s}{\|a_s\|_{q_*}} \right\} \leq r^*(c) \quad (31)$$

$$935 \leq \max \left\{ 0, \frac{\tilde{a}_s^\top c + \tilde{\beta}_s}{\|\tilde{a}_s\|_{q_*}} \right\} =: r_{\text{UB}}(c). \quad (32)$$

938 For the box-restricted radius $r_{[L, U]}^*(c) = \text{dist}_p(c, \{s \leq 0\} \cap [L, U])$, the bounds hold uncondi-
939 tionally.

941 This theorem provides the mathematical foundation for the closed-form radii introduced in the main
942 paper.

944 *Proof.* Let $\mathcal{V}_\ell = \{x : \ell_s(x) \leq 0\}$, $\mathcal{V}_s = \{x : s(x) \leq 0\}$, $\mathcal{V}_u = \{x : u_s(x) \leq 0\}$. From the
945 certified bounds $\ell_s \leq s \leq u_s$ on $[L, U]$, we have the containment relationships $\mathcal{V}_u \subseteq \mathcal{V}_s \subseteq$
946 \mathcal{V}_ℓ within the domain. Monotonicity of distance to sets gives $\text{dist}_p(c, \mathcal{V}_\ell) \leq \text{dist}_p(c, \mathcal{V}_s) \leq$
947 $\text{dist}_p(c, \mathcal{V}_u)$. Apply Theorem B.1 to compute the distances to the affine half-spaces \mathcal{V}_ℓ and
948 \mathcal{V}_u . ■

950 **Corollary B.5** (Certified exclusion zone). If $r_{\text{LB}}(c) \geq \varepsilon$ and $\mathbb{B}_\infty(c, \varepsilon) \subseteq [L, U]$, then $s(x) > 0$
951 for all $x \in \mathbb{B}_\infty(c, \varepsilon)$; hence the network's decision is invariant on that ball.

953 This corollary provides the fundamental safety guarantee for classification: once we certify radius
954 ε around a correctly classified point, we can guarantee that the network's prediction remains un-
955 changed throughout that neighborhood.

957 **Theorem B.6** (Activation-stable exactness). If all ReLUs maintain their activation signs on a
958 region \mathcal{N} and $\mathbb{B}_\infty(c, \varepsilon) \subseteq \mathcal{N} \cap [L, U]$, then $s(x) = w^\top x + b$ on $\mathbb{B}_\infty(c, \varepsilon)$ and

$$960 r^*(c) = \frac{s(c)}{\|w\|_1} = r_{\text{LB}}(c) = r_{\text{UB}}(c). \quad (33)$$

963 This theorem explains why our bounds are often tight in practice: neural networks are locally ap-
964 proximately linear, and in regions where activation patterns are stable, our relaxation-based bounds
965 become exact.

966 **Proposition B.7** (Sensitivity control via target radius). If $r_{\text{LB}}(c) \geq \varepsilon > 0$ and $\mathbb{B}_\infty(c, \varepsilon) \subseteq$
967 $[L, U]$, then

$$969 \quad \|a_s\|_1 \leq \frac{a_s^\top c + \beta_s}{\varepsilon}. \quad (34)$$

972 This result provides a principled approach to controlling network Lipschitz constants: by enforcing
 973 certified radius requirements during training, we automatically bound the network's sensitivity in
 974 adversarially relevant directions.

976 **Proposition B.8** (Connection to margin-based learning). *For an affine model $f(x) = Wx + b$
 977 and margin $s(x) = y(w^\top x + b)$ with $y \in \{\pm 1\}$,*

$$979 \quad r^*(c) = \frac{s(c)}{\|w\|_1} = r_{\text{LB}}(c) = r_{\text{UB}}(c). \quad (35)$$

982 This result connects our approach to classical margin-based learning theory. For linear models,
 983 maximizing certified robustness is equivalent to maximizing normalized margin—a well-established
 984 principle for generalization.

986 **Degenerate case handling.** If $\|a_s\|_1 = 0$ while $a_s^\top c + \beta_s > 0$, the surrogate yields $r_{\text{LB}} = +\infty$;
 987 in practice, cap certificates at the box margin $\min_i\{U_i - c_i, c_i - L_i\}$ to maintain validity within
 988 $[L, U]$.

990 B.4 AUXILIARY RESULTS

993 **Proposition B.9** (Robust affine constraint characterization). *For an affine function $\ell(x) =$
 994 $a^\top x + \beta$ and any center c and radius $r \geq 0$,*

$$995 \quad \min_{\|x-c\|_\infty \leq r} \ell(x) \geq 0 \iff a^\top c + \beta \geq r\|a\|_1. \quad (36)$$

999 *Proof.* By Lemma B.2, $\min_{\|x-c\|_\infty \leq r} \ell(x) = a^\top c + \beta - r\|a\|_1$. The inequality ≥ 0 is equivalent
 1000 to $a^\top c + \beta \geq r\|a\|_1$. ■

1026 C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

C.1 COMPLETE MNIST EXPERIMENTAL SETUP AND RESULTS

C.1.1 DATASET AND ARCHITECTURE SPECIFICATION

C.1.1 DATASET AND ARCHITECTURE SPECIFICATION

We conduct all experiments on the standard MNIST handwritten digit classification dataset, consisting of 60,000 training images and 10,000 test images, each of size 28×28 pixels with grayscale values originally in [0, 255]. Our preprocessing pipeline applies the standard `ToTensor()` transformation, which converts PIL images to PyTorch tensors and automatically scales pixel values to the range [0, 1]. We then flatten each 28×28 image into a 784-dimensional vector to serve as input to our fully-connected architecture. No additional normalization, data augmentation, or preprocessing steps are applied to maintain comparability across methods and ensure reproducible results.

All experiments use an identical three-layer fully-connected network architecture to ensure fair comparison. The network consists of an input layer ($784 \rightarrow 128$ with bias), a hidden layer ($128 \rightarrow 128$ with bias), and an output layer ($128 \rightarrow 10$ with bias), with ReLU activations applied after the first two layers. This yields a total of 118,282 trainable parameters: $(784 \times 128 + 128) + (128 \times 128 + 128) + (128 \times 10 + 10) = 100,352 + 16,512 + 1,290 + 128 + 128 + 10$. We deliberately avoid batch normalization, dropout, or other architectural regularization techniques to isolate the effects of our training methodologies.

C.1.2 TRAINING METHOD IMPLEMENTATIONS

Standard Training Baseline. Our standard training baseline employs conventional cross-entropy loss minimization without any robustness-specific techniques. We optimize using the Adam optimizer with learning rate 2×10^{-3} , weight decay 10^{-4} , and default Adam hyperparameters ($\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 10^{-8}$). Training continues for 4-6 epochs with early stopping based on validation performance. In some configurations, we apply optional label smoothing with factor 0.02. This baseline serves two purposes: establishing the clean accuracy ceiling achievable with standard training, and quantifying the inherent robustness gap that motivates robust training approaches.

PGD Adversarial Training. Our PGD adversarial training implementation follows Madry et al. (Madry et al., 2018) precisely. For each training batch, we generate adversarial examples using the Projected Gradient Descent algorithm with the following parameters: perturbation budget $\epsilon = 0.08$, step size $\alpha = 0.01$, 10 PGD iterations, and 2 random restarts to find stronger adversarial examples.

Algorithm 2 PGD Adversarial Example Generation

Require: Input (x, y) , model f_θ , $\epsilon = 0.08$, $\alpha = 0.01$, steps = 10

1: Initialize: $x' \leftarrow x + \text{Uniform}(-\epsilon, \epsilon)$

2: **for** step = 1 to 10 **do**

$$3: \quad \quad g \leftarrow \nabla_{x'} \mathcal{L}_{\text{CE}}(f_{\theta}(x'), y)$$

$$4: \quad \quad x' \leftarrow x' + \alpha \cdot \text{sign}(g)$$

$$5: \quad \quad x' \leftarrow \text{clip}(x', x -$$

6: $x' \leftarrow$

7: end for

- ▷ ℓ_∞ projection
- ▷ Valid pixel range

The adversarial training objective becomes:

$$\mathcal{L}_{\text{PGD-AT}}(\theta) = \frac{1}{|\mathcal{B}|} \sum_{(x,y) \in \mathcal{B}} \mathcal{L}_{\text{CE}}(f_\theta(x_{\text{adv}}), y) \quad (37)$$

where x_{adv} is generated via the PGD procedure above. We train for 6 epochs using Adam optimizer with learning rate 2×10^{-3} and weight decay 10^{-4} , maintaining a constant learning rate throughout training.

Randomized Smoothing Training. Our randomized smoothing implementation creates smooth classifiers that provide provable ℓ_2 robustness guarantees following Cohen et al. (Cohen et al.,

1080 2019). The approach trains networks to be consistent across Gaussian-noised versions of each input,
 1081 creating a smoothed classifier $g(x) = \mathbb{E}_{z \sim \mathcal{N}(0, \sigma^2 I)}[f_\theta(x + z)]$ where $\sigma = 0.25$ controls the noise
 1082 level.

1083 For each training input x , we sample $K = 4$ independent noise vectors $z_1, \dots, z_K \sim \mathcal{N}(0, \sigma^2 I)$
 1084 and create noisy inputs $x_k = x + z_k$ for $k = 1, \dots, K$. We then compute network outputs $f_\theta(x_k)$ for
 1085 each noisy input and apply Jensen-Shannon divergence regularization to encourage similar
 1086 predictions across the noise samples. Additionally, we incorporate ℓ_2 adversarial training with
 1087 perturbation budget $\epsilon = 1.0$, step size 0.2, and 5 iterations, using Expected over Transformations
 1088 (EOT) with 4 samples per adversarial example.

1089 The complete training objective combines three components:

$$1091 \mathcal{L}_{\text{smooth}}(\theta) = \mathcal{L}_{\text{CE}} + 0.5 \cdot \mathcal{L}_{\text{JS}} + 0.1 \cdot \mathcal{L}_{\text{clean-mix}} \quad (38)$$

1092 where \mathcal{L}_{JS} is the Jensen-Shannon divergence between noisy predictions and $\mathcal{L}_{\text{clean-mix}}$ maintains
 1093 performance on clean examples. We train for 8 epochs using Adam optimizer with initial learning
 1094 rate 2×10^{-3} and cosine learning rate scheduling. Exponential Moving Average (EMA) with decay
 1095 factor 0.999 is applied to model parameters, with the EMA model used for final evaluation.

1096 **Hybrid Method Implementation.** Our hybrid approach represents the core contribution of this
 1097 work, combining the broad robustness benefits of PGD adversarial training with targeted optimization
 1098 of certified radius bounds on strategically selected hard examples. The method operates through
 1099 two parallel components within each training iteration.

1102 **Algorithm 3** Hybrid Training with Certified Penalty

1103 **Require:** Dataset \mathcal{D} , model f_θ , hard sample threshold = 24

1104 1: **for** batch $\mathcal{B} \subset \mathcal{D}$ **do**

1105 2: Generate adversarial examples using PGD ($\epsilon = 0.03$, 10 steps)

1106 3: Compute $\mathcal{L}_{\text{PGD}} = \frac{1}{|\mathcal{B}|} \sum_i \mathcal{L}_{\text{CE}}(f_\theta(x_{\text{adv},i}), y_i)$

1107 4: Screen examples using margin and radius criteria

1108 5: Select hard subset $\mathcal{H} \subseteq \mathcal{B}$ with $|\mathcal{H}| \leq 24$

1109 6: **for** $x_i \in \mathcal{H}$ (limit to 6 examples) **do**

1110 7: Compute IBP bounds at multiple ϵ levels

1111 8: Apply joint- α optimization (6 steps, Adam lr=0.12)

1112 9: Compute $r_i = r_{\text{LB}}(x_i; \theta)$ using tightened bounds

1113 10: Evaluate $\phi(r_i) = 0.3(-\log r_i) + 0.7 \max(0, r_{\text{goal}} - r_i)$

1114 11: **end for**

1115 12: $\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{PGD}} + \lambda \sum_{i \in \mathcal{H}} \phi(r_i) + \text{regularizers}$

1116 13: Update parameters and EMA

1117 14: **end for**

1118 The first component applies standard PGD adversarial training to the entire batch using a smaller
 1119 perturbation budget ($\epsilon = 0.03$ instead of 0.08) to balance robustness with the certified component.
 1120 The second component identifies hard examples within each batch using margin-based screening
 1121 and applies our differentiable certified radius penalty to a subset of up to 24 examples (processing
 1122 at most 6 per batch for computational efficiency).

1123 For selected hard examples, we first compute Interval Bound Propagation (IBP) preliminary bounds
 1124 at multiple perturbation levels $\epsilon \in \{0.010, 0.015, 0.020, 0.025, 0.030\}$ to establish initial activation
 1125 intervals. We then apply joint- α optimization using 6 gradient steps with Adam optimizer (learning
 1126 rate 0.12) and temperature annealing from 10 to 24 to tighten the CROWN bounds by optimizing
 1127 the linear relaxation parameters for ambiguous ReLU units.

1128 The certified radius penalty uses a mixed objective function:

$$1130 \phi(r) = 0.3(-\log r) + 0.7 \max(0, r_{\text{goal}} - r) \quad (39)$$

1131 where the logarithmic term provides smooth gradients encouraging radius growth and the hinge
 1132 term enforces minimum radius targets. We set the target radius $r_{\text{goal}} = \alpha_{\text{target}} \cdot \epsilon$ where $\alpha_{\text{target}} \in$
 1133 $\{0.65, 0.70, 0.75\}$ varies across training.

1134 Additional regularization components include spectral norm penalties on weight matrices toward
1135 targets (2.0, 2.0, 1.5) for layers 1, 2, and 3 respectively; clean margin loss with softplus penalty
1136 and weight 0.3; gradient clipping with threshold 0.8; and Exponential Moving Average with decay
1137 0.997. We use cosine learning rate scheduling from 3×10^{-3} to 8×10^{-4} with weight decay 5×10^{-4}
1138 over 8 training epochs.

1139

1140 C.1.3 CERTIFICATION METHODOLOGY

1141

1142 All certified robustness metrics are computed using the `auto_LiRPA` library with "CROWN-
1143 Optimized" method, which implements state-of-the-art linear bound propagation with optimized
1144 envelope selection. For each test input, we compute CROWN bounds on all network logits over the
1145 ℓ_∞ perturbation region $[x - \epsilon\mathbf{1}, x + \epsilon\mathbf{1}] \cap [0, 1]^d$.

1146

1147 Our certification protocol checks the multi-class margin condition: for an input (x, y) with true
1148 class y , we compute the CROWN lower bound $\underline{f}_y(x)$ on the true class logit and CROWN upper
1149 bounds $\overline{f}_j(x)$ on all other class logits $j \neq y$. The input is certified at perturbation level ϵ if and
1150 only if $\underline{f}_y(x) > \max_{j \neq y} \overline{f}_j(x)$, ensuring that the true class logit remains largest under all possible
1151 perturbations within the specified region.

1152

1153 For individual certified radius computation, we employ bisection search over the perturbation budget
1154 ϵ . Starting with $\epsilon_{\text{low}} = 0$ and $\epsilon_{\text{high}} = 1.0$, we repeatedly test the midpoint $\epsilon_{\text{mid}} = (\epsilon_{\text{low}} + \epsilon_{\text{high}})/2$
1155 using the CROWN certification procedure described above. If the input is certified at ϵ_{mid} , we
1156 update $\epsilon_{\text{low}} = \epsilon_{\text{mid}}$; otherwise, we set $\epsilon_{\text{high}} = \epsilon_{\text{mid}}$. We terminate the search when either the interval
1157 width falls below tolerance 10^{-4} or when no improvement is observed for 10 consecutive iterations,
1158 indicating convergence to a certification plateau.

1159

1160 Table 2: Certification Protocol Parameters

1161 Parameter	1162 Value
1162 CROWN Implementation	1163 <code>auto_LiRPA</code> "CROWN-Optimized"
1163 Certification Condition	1164 $\underline{f}_y(x) > \max_{j \neq y} \overline{f}_j(x)$
1164 Bisection Tolerance	1165 10^{-4}
1165 Early Stop Threshold	1166 10 iterations without improvement
1166 Test Set Size	1167 10,000 samples

1168

1169 C.1.4 STATISTICAL ANALYSIS AND IMPLEMENTATION DETAILS

1170

1171 For statistical significance analysis, we treat accuracy measurements as binomial random variables
1172 with success probability p and sample size $n = 10,000$. The standard error is $\text{SE} = \sqrt{p(1-p)/n} \approx$
1173 0.14% when $p \approx 0.98$. The 0.75% clean accuracy improvement of our hybrid method over PGD-AT
1174 corresponds to 5.4 standard errors, indicating extremely high statistical significance. Similarly, the
1175 9.4 percentage point certified fraction increase at $\epsilon = 0.03$ represents approximately 4.2 standard
1176 errors.

1177

1178 All experiments use PyTorch with fixed random seeds (`torch.manual_seed(0)` and
1179 `np.random.seed(0)`) for reproducibility. Training batch sizes are 256 for training and 512
1180 for testing, with single GPU training and deterministic CUDA operations where possible. The joint-
1181 α optimization requires careful implementation with temperature annealing and gradient clipping
1182 for numerical stability. Our certification evaluation uses the latest stable `auto_LiRPA` version with
1183 optimized envelope selection settings.

1184

1185 This comprehensive setup enables full reproduction and provides detailed analysis of both theoretical
1186 foundations and practical implications of our certified robustness approach.

1187

1188
1189

1190 C.2 DC-OPF REGRESSION 1191

1192 **Problem formulation and significance.** The DC optimal power flow (DC-OPF) problem
1193 represents a linearized approximation of the fundamental power system optimization challenge, where
1194 generators must be dispatched to meet electrical demand while respecting transmission line limits
1195 and generator constraints. This problem has become a standard benchmark in the formal verification
1196 community due to its combination of practical relevance and mathematical tractability.

1197 In our regression formulation, we learn a neural network surrogate $f_\theta : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ that maps demand
1198 vectors x to optimal generator dispatch decisions y . The critical challenge is ensuring that learned
1199 dispatch decisions remain feasible under demand uncertainties represented by ℓ_∞ perturbations of
1200 magnitude ϵ around nominal demand points.

1201
1202

1203 **Network architecture and training objective.** We employ a compact fully-connected architec-
1204 ture with 3 input units (representing demand at 3 buses), a single hidden layer of 16 ReLU units,
1205 and 3 output units (representing dispatch decisions for 3 generators). This architecture contains
1206

$$1207 (3 \times 16 + 16) + (16 \times 3 + 3) = 115$$

1208
1209
1210

1211 trainable parameters, making it suitable for detailed analysis while remaining representative of prac-
1212 tical surrogate models.

1213
1214

1215 The complete training objective balances prediction accuracy with certified constraint satisfaction:

$$1216 \mathcal{L}_{\text{total}}(\theta) = \frac{1}{|\mathcal{B}|} \sum_{(x,y) \in \mathcal{B}} \|f_\theta(x) - y\|_2^2 \quad (40)$$

$$1217 + \lambda \cdot \frac{1}{|\mathcal{B}|} \sum_{x \in \mathcal{B}} \sum_{j=1}^3 \left[V_j^+(x; \epsilon) + V_j^-(x; \epsilon) \right], \quad (41)$$

1218
1219

1220 where the violation terms are defined as

$$1221 V_j^+(x; \epsilon) = \max \left(0, \bar{f}_{\theta,j}(x; \epsilon) - y_j^{\max} \right), \quad (42)$$

$$1222 V_j^-(x; \epsilon) = \max \left(0, y_j^{\min} - \underline{f}_{\theta,j}(x; \epsilon) \right). \quad (43)$$

1223
1224

1225 Here $\underline{f}_{\theta,j}(x; \epsilon)$ and $\bar{f}_{\theta,j}(x; \epsilon)$ denote β -CROWN lower and upper bounds on output j over the ℓ_∞
1226 perturbation region

$$1227 \{x' : \|x' - x\|_\infty \leq \epsilon\},$$

1228
1229

1230 with $\epsilon = 1.0$ in our scaled coordinate system.

1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1230 **Constraint specification and data preprocessing.** Generator limits $[y_j^{\min}, y_j^{\max}]$ are determined
1231 from the training data distribution to represent realistic operational constraints while avoiding test
1232 set leakage. Specifically, we compute the 5th and 95th percentiles of each generator output in
1233 the training set, providing reasonable bounds that reflect the range of normal operation without
1234 overfitting to specific test cases.

1235 Input and output scaling follows standard practice: we normalize demand vectors to zero mean and
1236 unit variance, and similarly standardize generator outputs. This preprocessing ensures numerical
1237 stability during β -CROWN bound computation and prevents any single variable from dominating
1238 the constraint violation penalties.

1242 **D LLMs**
1243

1244 We used large language models as assistive tools for coding and implementation, writing, discov-
1245 ery and summarization of related work, and for developing and presenting theoretical results. The
1246 authors take full responsibility for the content.
1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295