
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CERTIFIED ROBUSTNESS TRAINING: CLOSED-FORM
CERTIFICATES VIA CROWN

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial training reshapes neural network decision boundaries by pushing
them away from adversarial examples, but this approach ignores a crucial geomet-
ric factor: the local curvature that determines how steeply network outputs change
with input perturbations. We introduce a fundamentally different approach that
optimizes certified robustness by directly reshaping decision boundary geometry
during training. Our key insight is that CROWN’s linear bounds encode both the
safety margin and input sensitivity needed for closed-form certified radius compu-
tation, transforming expensive verification into efficient geometric analysis. We
derive differentiable expressions that enable direct optimization of the margin-
over-slope ratio underlying certified robustness, creating networks with inherently
robust decision regions rather than boundaries hardened against specific attacks.
Our hybrid training method combines adversarial training’s broad coverage with
geometric certified objectives applied to hard examples, achieving 98.33% clean
accuracy and 71.1% certified robustness at ϵ = 0.03 on MNIST—outperforming
both PGD adversarial training (61.7%) and randomized smoothing (53.1%) in
ReLU-based networks. On DC optimal power flow regression, we demonstrate
controllable accuracy-safety trade-offs critical for engineering applications. By
making certified robustness certificates both computationally tractable and differ-
entiable, our approach enables robustness-aware learning that produces networks
robust by geometric design rather than adversarial accident.

1 INTRODUCTION

Adversarial training has emerged as the dominant approach for learning robust neural networks, but
it suffers from a fundamental limitation: it primarily moves decision boundaries without changing
their local geometry. When a network encounters adversarial examples during training, gradient-
based methods shift the boundary away from these threats while preserving the network’s inherent
sensitivity to input perturbations. This creates a cat-and-mouse dynamic where stronger attacks find
new vulnerabilities in regions that remain geometrically fragile, leading to thin vulnerable slivers
that evade detection during training but compromise robustness in deployment.

We propose a fundamentally different approach that addresses robustness at its geometric root: in-
stead of merely pushing decision boundaries away from adversarial examples, we reshape their local
curvature to create inherently more robust decision regions. Our key insight is that certified robust-
ness bounds encode precise information about both the safety margin at a point and the network’s
input sensitivity—and optimizing these quantities directly during training leads to decision bound-
aries that are robust by construction rather than by adversarial hardening.

The central contribution of this work is showing that linear bound propagation methods like CROWN
(Zhang et al., 2020b), widely used for post-hoc verification, can be transformed into differentiable
training objectives that optimize certified radius bounds in closed form. Specifically, CROWN’s
affine bounds ℓs(x) = aTs x + βs ≤ s(x) ≤ us(x) = ãTs x + β̃s naturally encode the geometric
quantities needed for radius computation: the safety margin m(c) = aTs c + βs and the worst-case
input sensitivity ∥as∥1. The certified radius becomes a simple margin-over-slope ratio: r(c) =
m(c)/∥as∥1.

This geometric perspective reveals why certified training succeeds where adversarial training strug-
gles. While adversarial methods implicitly optimize margin through example-based learning, they

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Attack-only training moves the boundary; our certified objective changes its curva-
ture (with ℓ∞ radii). Hatched polygons mark activation-stable (locally affine) regions of a ReLU
network; colors denote classes. Left: adversarial/smoothing training largely translates the boundary
along the decision direction, leaving thin vulnerable slivers. Right: adding the β-CROWN–driven
radius loss enlarges per-sample certified ℓ∞ balls (drawn as circles for readability) by simultane-
ously increasing margin and reducing input slope on neighboring facets, effectively reshaping local
curvature and aligning better with the true boundary.

ignore the equally important sensitivity term. Our approach optimizes both simultaneously: increas-
ing margin while reducing input sensitivity creates larger certified neighborhoods and fundamentally
changes the local decision geometry. Figure 1 illustrates this difference—adversarial training trans-
lates boundaries, while our certified objectives reshape their curvature.

The practical implications are significant. Because CROWN coefficients are differentiable func-
tions of network parameters, our certified radius bounds inherit this differentiability, enabling direct
gradient-based optimization during training. This transforms expensive post-hoc verification into an
efficient training signal that guides the network toward inherently robust representations.

Our hybrid training approach combines the broad coverage of adversarial training with the geo-
metric precision of certified radius optimization. We apply adversarial training to all examples for
baseline robustness, then selectively apply certified radius penalties to hard examples where geo-
metric reshaping provides the greatest benefit. This selective approach balances computational cost
with robustness gains while avoiding the optimization difficulties that can arise from applying strong
certified constraints globally.

Contributions and experimental validation. We make certified robustness both theoretically
principled and practically effective through four key contributions:

• Closed-form certified radii: We derive exact formulas converting CROWN bounds into
certified radius expressions, enabling O(d)-time robustness assessment versus exponential
MILP complexity.

• Differentiable certified training: We provide explicit matrix formulations showing how
CROWN coefficients depend on network parameters, making certified radii fully differen-
tiable for gradient-based optimization.

• Geometric robustness insight: We demonstrate that certified training reshapes decision
boundary curvature rather than merely translating boundaries, addressing the fundamental
limitations of adversarial training.

• Superior empirical performance: Our hybrid method achieves 98.33% clean accuracy
and 71.1% certified robustness at ϵ = 0.03 on MNIST, outperforming both PGD adversarial
training (61.7%) and randomized smoothing (53.1%) on ReLU-based neural networks.

We validate our approach across two distinct domains: MNIST classification, where our method
demonstrates clear improvements over established baselines in both clean accuracy and certified
robustness; and DC-OPF power system control, where we show how certified violation penalties

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

enable principled navigation of the accuracy-safety trade-off critical in engineering applications.
Together, these results demonstrate that optimizing certified geometry during training produces net-
works that are robust by design rather than by adversarial accident.

2 BACKGROUND: CERTIFIED BOUNDS AND LINEAR RELAXATIONS

Having motivated the geometric perspective on certified robustness, we now establish the mathe-
matical foundation for our approach. We review how linear bound propagation methods compute
affine bounds that encode the geometric structure of neural network decision boundaries.

Network architecture and problem formulation. We consider a feedforward neural network
fθ : Rd → Rk with parameters θ = (W (1), b(1), . . . ,W (L), b(L)), where L denotes the number of
layers. For an input x ∈ Rd, the network output is fθ(x) = (f1(x), . . . , fk(x)).

For classification tasks, we focus on adversarial robustness: given a correctly classified input with
true class t ∈ {1, . . . , k}, we study pairwise logit margins mt,j(x) = ft(x)− fj(x) for j ̸= t. The
network maintains its prediction when all margins mt,j(x) > 0. Without loss of generality, we can
focus on bounding scalar quantities s(x) ∈ R derived from network outputs—for regression, s(x)
might represent constraint violations; for classification, it typically represents logit margins where
maintaining s(x) > 0 ensures correct prediction. We omit explicit dependence on θ when clear from
context.

Input regions and perturbation models. We work with compact regions in input space. The
axis-aligned box is

[L,U] = {x ∈ Rd : L ≤ x ≤ U (elementwise)}.
Given a center c ∈ Rd and radius r ≥ 0, the ℓ∞-ball is

B∞(c, r) = {x ∈ Rd : ∥x− c∥∞ ≤ r}.
We focus on ℓ∞ perturbations as they naturally model pixel-wise bounded adversarial attacks in
image domains and element-wise operational tolerances in control applications. Throughout, [L,U]
denotes a fixed domain, and we seek to certify balls B∞(c, r) ⊆ [L,U] around centers c.

Linear bound propagation and certified affine bounds. The key insight behind linear bound
propagation methods like CROWN is to replace nonlinear activations with linear relaxations, en-
abling efficient bound computation through matrix operations. These methods provide certified
affine bounds on scalar network quantities s(x) that are valid uniformly over input boxes [L,U]
(Zhang et al., 2020b; Wang et al., 2021b).

Specifically, for any scalar function s(x) induced by the network, CROWN computes affine func-
tions:

ℓs(x) = a⊤s x+ βs, (1)

us(x) = ã⊤s x+ β̃s, (2)

where the coefficients (as, βs, ãs, β̃s) depend on both the network parameters θ and the input domain
[L,U]. These bounds satisfy the certified sandwich inequality

ℓs(x) ≤ s(x) ≤ us(x) for all x ∈ [L,U].

The coefficients are computed through a backward pass that propagates linear bounds layer by layer,
making the approach scalable to large networks. The bounds become tighter when the input region
is smaller or when the network exhibits more stable activation patterns within that region.

Computational efficiency and geometric structure. CROWN bound computation requires only
one forward and one backward pass through the network, scaling polynomially with network size.
Crucially for our approach, the resulting affine bounds reveal the local geometric structure of the
network’s decision boundary within the specified region. The coefficient vectors as and ãs capture
how the network output changes with input variations, while the offset terms βs and β̃s reflect the
network’s behavior at the reference point.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

This geometric information, encoded directly in CROWN’s affine bounds, will serve as the founda-
tion for deriving closed-form expressions for certified robustness radii in the following sections.

3 FROM CROWN BOUNDS TO CLOSED-FORM RADII

The power of our geometric approach lies in transforming CROWN’s linear bounds into explicit
certified radius expressions. We begin by examining the computational challenges of exact veri-
fication, then show how CROWN bounds contain precisely the geometric information needed for
closed-form radius computation.

3.1 THE COMPUTATIONAL CHALLENGE OF EXACT VERIFICATION

For a ReLU network fθ : Rd → Rk and scalar safety property s(x) ∈ R (e.g., classification margin
mt,j(x) = ft(x)− fj(x)), the exact certified radius at center c is:

r⋆(c) = min
x∈Rd

∥x− c∥∞ subject to s(x) ≤ 0. (3)

This optimization can be solved exactly using mixed-integer linear programming by encoding ReLU
constraints with binary variables δℓi ∈ {0, 1} for each neuron (Fischetti & Jo, 2018; Tjeng et al.,
2019; Bunel et al., 2018; Chehade et al., 2025):

hℓ
i ≥ zℓi , hℓ

i ≥ 0, (4)

hℓ
i ≤ zℓi − Lℓ

i(1− δℓi), hℓ
i ≤ U ℓ

i δ
ℓ
i , (5)

where (Lℓ
i , U

ℓ
i) are pre-computed activation bounds.

While MILP formulations provide exact solutions, they suffer from fundamental limitations: expo-
nential worst-case complexity in the number of neurons, sensitivity to activation bound tightness,
and incompatibility with gradient-based optimization due to discrete variables. These constraints
motivate our search for tractable approximations that preserve geometric insight.

3.2 THE GEOMETRIC STRUCTURE IN CROWN BOUNDS

CROWN (Zhang et al., 2020b) transforms the discrete verification problem into continuous op-
timization by replacing ReLU constraints with linear relaxations. For scalar function s(x) over
domain [L,U], CROWN computes certified affine bounds:

ℓs(x) = a⊤s x+ βs ≤ s(x) ≤ us(x) = ã⊤s x+ β̃s (6)
valid for all x ∈ [L,U].

The key insight is that these linear bounds encode the geometric quantities needed for distance com-
putation: the safety margin at any point and the network’s worst-case sensitivity to input changes.

Theorem 3.1 (Closed-form ℓ∞ radius bounds). Given CROWN bounds on s(x) and center
c ∈ [L,U], define safety margins:

mLB(c) = a⊤s c+ βs, (7)

mUB(c) = ã⊤s c+ β̃s. (8)

Then the exact robust radius r⋆(c) satisfies:

rLB(c) :=

[
mLB(c)

∥as∥1

]
+

≤ r⋆(c) ≤
[
mUB(c)

∥ãs∥1

]
+

=: rUB(c) (9)

where [·]+ = max{·, 0}.

Proof sketch. CROWN bounds induce set containments {x : us(x) ≤ 0} ⊆ {x : s(x) ≤ 0} ⊆ {x :
ℓs(x) ≤ 0} within [L,U]. The certified radius bounds follow from distance monotonicity and the
dual-norm characterization of half-space distances. Complete proof in Appendix B. ■

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Geometric interpretation and practical benefits. The theorem reveals certified robustness as
a margin-over-slope ratio: the numerator m(c) represents safety margin, while the denominator
∥as∥1 captures input sensitivity. This interpretation provides several advantages:

• Computational efficiency: O(d) arithmetic operations versus exponential MILP complex-
ity

• Geometric insight: Direct visualization of margin-sensitivity trade-offs

• Optimization compatibility: Smooth dependence on network parameters enables
gradient-based training

The bounds are often tight in practice because neural networks are locally approximately linear,
making CROWN’s linear relaxations accurate in activation-stable regions.

3.3 DIFFERENTIABLE IMPLEMENTATION FOR TRAINING

To integrate certified radius bounds into training objectives, we express them as explicit functions
of network parameters θ = {W (k), b(k)}Lk=1.

Proposition 3.2 (Parameterized radius bounds). The radius bounds become parameter-
dependent functions:

rLB(c; θ) =

[
as(θ)

⊤c+ βs(θ)

∥as(θ)∥1

]
+

, (10)

rUB(c; θ) =

[
ãs(θ)

⊤c+ β̃s(θ)

∥ãs(θ)∥1

]
+

. (11)

For piecewise-linear networks, these expressions are piecewise smooth in θ, enabling gradient-
based optimization.

The parameter dependence enters entirely through CROWN coefficients (as, βs, ãs, β̃s), which ad-
mit explicit matrix representations:

Proposition 3.3 (CROWN coefficient structure (Zhang et al., 2020b; Wang et al., 2021a)).
CROWN coefficients can be expressed as products of modified weight matrices:

ãs(θ)
⊤ = ρ⊤W (L)D(L−1)W (L−1) · · ·D(1)W (1), (12)

as(θ)
⊤ = ρ⊤W (L)D̂(L−1)W (L−1) · · · D̂(1)W (1), (13)

where D(k) and D̂(k) are diagonal matrices encoding relaxation slopes for each layer. Com-
plete matrix expressions appear in Appendix B.2.1.

This explicit parameterization enables automatic differentiation through our radius expressions,
making certified robustness objectives fully compatible with standard gradient-based training
pipelines. The geometric insight of margin-over-slope optimization can now be directly incorpo-
rated into neural network learning.

4 TRAINING WITH CERTIFIED ROBUSTNESS OBJECTIVES

Having derived closed-form expressions for certified radii, we now show how to integrate them
into neural network training to reshape decision boundary geometry. The key insight is that our
margin-over-slope formulation enables direct optimization of both safety margin and input sensitiv-
ity simultaneously.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Algorithm 1 Certified Robustness Training

Require: Network θ, domain [L,U], robustness weight λ, penalty ϕ
1: for mini-batch B = {(ci, yi)}Bi=1 do
2: FORWARD: Compute predictions fθ(ci) and task loss
3: BOUNDS: Run (β-)CROWN on [L,U] to obtain (as,i, βs,i) for all s ∈ S
4: RADII: Compute r

(s)
LB(ci; θ) using expressions from Proposition 3.2

5: AGGREGATE: Apply soft-min aggregation via equation (16)
6: LOSS: Add λ · ϕ(rLB(ci; θ)) to total loss
7: UPDATE: θ ← θ − η∇θLtrain(θ)
8: end for

4.1 FROM VERIFICATION TO TRAINING OBJECTIVES

Geometric motivation for radius-based training. Traditional adversarial training optimizes mar-
gin implicitly by pushing decision boundaries away from adversarial examples. However, this ap-
proach ignores the equally important sensitivity term ∥as∥1 that captures how steeply the network’s
output changes with input perturbations. Our certified radius formulation reveals that true geometric
robustness requires optimizing both quantities: increasing the safety margin while simultaneously
reducing input sensitivity. This creates decision regions with fundamentally different local curva-
ture, as illustrated in Figure 1.

Multi-constraint aggregation. For a training sample c with multiple safety constraints S (e.g.,
all pairwise classification margins {st,j(x) = ft(x) − fj(x) : j ̸= t} for true class t), we compute
constraint-specific radii using the parameterized expressions from Proposition 3.2 and aggregate via:

rLB(c; θ) := min
s∈S

r
(s)
LB(c; θ). (14)

Training objective design. We augment standard task loss with a certified robustness penalty that
directly optimizes radius bounds:

Ltrain(θ) =
1

|B|
∑

(c,y)∈B

[Ltask(fθ(c), y) + λ · ϕ(rLB(c; θ))] , (15)

where ϕ is a monotone decreasing penalty function that encourages larger certified radii. We con-
sider two practical choices:

• Target hinge: ϕ(r) = max(0, τ − r) encourages radii to exceed threshold τ

• Inverse penalty: ϕ(r) = 1/(r + ε) provides smooth, unbounded incentive for larger radii

Smooth aggregation for stability. The hard minimum in equation (14) can create unstable gradi-
ents when multiple constraints are nearly active. We therefore use a smooth approximation:

rLB(c; θ) ≈ −κ log

(∑
s∈S

exp

(
−
r
(s)
LB(c; θ)

κ

))
, (16)

where κ > 0 controls the smoothness, recovering the hard minimum as κ→ 0.

4.2 PRACTICAL TRAINING ALGORITHM

Computational considerations. The primary computational cost comes from (β-)CROWN
bound computation, which scales as O(network size × d × |S|) where d is input dimension and
|S| is the number of constraints. The radius computation itself requires only O(d) arithmetic opera-
tions on the computed coefficients. For classification with k classes, |S| = k − 1 pairwise margins,
making the overhead manageable even for large vocabularies.

Bound tightening during training. To strengthen the training signal, we optionally apply a few
steps of β-CROWN joint-α optimization before computing certified radii. This tightens the lin-
ear relaxations without changing their affine structure, providing more accurate radius estimates at
modest computational cost.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

4.3 THEORETICAL FOUNDATIONS

Our training approach is supported by several theoretical guarantees that connect certified radii to
fundamental network properties:

Corollary 4.1 (Certified safety guarantee). If rLB(c) ≥ ε and B∞(c, ε) ⊆ [L,U], then s(x) >
0 for all x ∈ B∞(c, ε). Hence the network’s decision is invariant throughout that neighborhood.

This provides the fundamental certification: once we achieve certified radius ε, safety is guaranteed
within that neighborhood.

Theorem 4.2 (Local exactness under activation stability). When all ReLUs maintain activation
signs on B∞(c, ε)∩ [L,U], the network becomes locally affine s(x) = w⊤x+b and our bounds
are exact: r⋆(c) = rLB(c) = rUB(c) = s(c)/∥w∥1.

This explains why CROWN-based bounds are often tight in practice: neural networks are locally
approximately linear, and our relaxations become exact in activation-stable regions.

Proposition 4.3 (Sensitivity control through radius optimization). Meeting certified radius re-
quirement rLB(c) ≥ ε automatically bounds network sensitivity: ∥as∥1 ≤ (a⊤s c+ βs)/ε.

Proposition 4.4 (Connection to margin-based learning). For linear models f(x) = Wx + b,
maximizing rLB is equivalent to normalized margin maximization, connecting our approach to
classical generalization theory.

Putting it together: geometric robustness by design. Algorithm 1 operationalizes the geometric
insight illustrated in Figure 1: rather than merely pushing decision boundaries away from adversar-
ial examples, we reshape their local curvature by optimizing both margin and sensitivity simulta-
neously. This creates networks with fundamentally different geometric properties—larger certified
neighborhoods and inherently more robust decision regions that resist adversarial perturbations by
construction rather than by hardening.

5 EXPERIMENTAL VALIDATION

We validate our approach across two complementary domains: MNIST classification, which demon-
strates the effectiveness of our geometric training approach against established baselines, and DC
optimal power flow (DC-OPF) regression, which illustrates the accuracy-safety trade-offs funda-
mental to certified robustness in engineering applications. Together, these experiments show that
our closed-form radius bounds enable practical certified training across diverse problem types.

5.1 MNIST CLASSIFICATION

We evaluate our hybrid training method against three established robust training approaches on
a fully-connected network with two hidden layers of 128 units each, trained on standard MNIST
(60k/10k train/test split). Our architecture uses ReLU activations with 784→128→128→10 dimen-
sions, totaling 118,282 parameters.

Experimental setup and baselines. We compare against three state-of-the-art methods: Pro-
jected Gradient Descent Adversarial Training (PGD-AT) (Madry et al., 2018), which generates
adversarial examples via iterative PGD attacks (ϵ = 0.08, 10 iterations, 2 restarts); Randomized
Smoothing (Cohen et al., 2019), which trains on Gaussian-noised inputs (σ = 0.25, 4 samples
per input) combined with ℓ2 adversarial training and Jensen-Shannon consistency regularization;
and our Hybrid Method, which combines PGD-AT with our differentiable certified radius penalty
applied selectively to hard examples identified via margin screening.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Our training objective augments PGD adversarial training with certified radius penalties: Ltotal =
LPGD-AT + λ

∑
i∈H ϕ(rLB(xi; θ)), where H contains up to 24 hard examples per batch and ϕ(r) =

0.3(− log r) + 0.7max(0, τ − r) encourages target radius τ = 0.65ϵ to 0.75ϵ. We use joint-α
optimization with 6 gradient steps to tighten CROWN bounds before penalty computation.

Evaluation metrics. We assess clean accuracy on unperturbed inputs, certified fraction (per-
centage of test inputs where CROWN margins remain positive under ℓ∞ perturbations), and median
certified radius computed via bisection search across test examples.

Table 1: MNIST results: clean accuracy and ℓ∞ certified robustness comparison.

Method Clean Acc. Cert. @ 0.02 Cert. @ 0.03 Median Radius
Standard Training 97.52% 55.5% 13.3% 0.0211
PGD-AT 97.58% 89.8% 61.7% 0.0331
Randomized Smoothing 97.62% 87.5% 53.1% 0.0312
Hybrid (Ours) 98.33% 94.5% 71.1% 0.0343

Results and key findings. Our hybrid approach achieves superior performance across all metrics.
The 0.75% clean accuracy improvement over PGD-AT represents 5.4 standard errors, demonstrating
statistical significance and showing that certified training objectives can enhance rather than harm
clean performance when properly balanced through selective hard-example targeting.

For certified robustness, our method provides substantial improvements: at ϵ = 0.03, we certify
71.1% of examples versus 61.7% for PGD-AT—a 15.2% relative improvement. At the more chal-
lenging ϵ = 0.02 level, we achieve 94.5% certification compared to 89.8% for PGD-AT. The median
certified radius improves from 0.0331 to 0.0343, a 3.6% relative gain that translates to meaningful
improvements in practical deployment scenarios.

These results validate our core theoretical contributions: CROWN bounds contain sufficient geomet-
ric information for tight certified radius computation, these radii integrate effectively into gradient-
based training without optimization instabilities, and certified objectives improve robustness without
sacrificing accuracy. The hybrid approach demonstrates that attack-based and certification-based
training are complementary strategies for robust neural networks.

5.2 DC-OPF POWER SYSTEM CONTROL

We evaluate our approach on DC optimal power flow regression, a canonical benchmark from power
system optimization that emphasizes a different aspect of certified robustness: ensuring that neural
network surrogates maintain feasibility constraints under input perturbations representing demand
uncertainties.

Problem formulation and methodology. We train a compact fully-connected network
(3→16→3) that maps electrical demand vectors to generator dispatch decisions. The training ob-
jective combines mean squared error with our β-CROWN certified violation penalty—a variation of
our certified loss framework where we penalize violations of generator capacity limits rather than
classification margins. Specifically, we enforce that certified output bounds [f

j
(x; ϵ), f j(x; ϵ)] re-

main within engineering limits [ymin
j , ymax

j] over ℓ∞ balls of radius ϵ = 1.0 (scaled units) for each
generator j. Generator limits are derived from training data percentiles to avoid test leakage.

Trade-off analysis and results. We systematically vary the robustness penalty weight λ to char-
acterize the fundamental accuracy-safety trade-off in certified regression. Figure 2 demonstrates
several key insights: (a) increasing λ consistently reduces certified violations across perturbation
budgets, (b) violation reductions occur uniformly across all three generators, and (c-d) qualitative
analysis shows that robust training produces outputs that maintain larger margins from capacity
limits while accepting modest degradation in numerical accuracy.

This experiment validates our framework’s applicability beyond classification to regression tasks
where certified safety constraints are paramount. The smooth trade-off curves demonstrate that

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 2: DC-OPF certified feasibility study. (a) Certified violation versus perturbation budget for
different robustness weights—larger λ consistently reduces violations. (b) Per-generator violation
breakdown at ϵ = 1.0 shows uniform improvement across all outputs. (c-d) Output trajectories
for λ = 0 versus λ = 0.1 illustrate the accuracy-safety trade-off: robust training maintains larger
margins from capacity limits (shaded regions) while slightly relaxing numerical fit.

practitioners can navigate accuracy-safety tensions in a principled manner, selecting operating points
based on their specific risk tolerance. More experimental details appear in Appendix C.2.

6 CONCLUSION

We have presented a unified framework that transforms CROWN’s affine bounds into closed-form
certified radius expressions, enabling direct optimization of certified robustness during training. Our
key insight is that these linear bounds encode the geometric quantities—safety margins and input
sensitivities—needed for radius computation as a margin-over-slope ratio, eliminating expensive
iterative verification while maintaining formal guarantees. Unlike adversarial training, which pri-
marily translates decision boundaries away from attacks, our approach directly optimizes both mar-
gin and sensitivity to reshape local curvature, creating networks with larger certified neighborhoods
that resist perturbations by geometric design. Experimental validation on MNIST classification and
DC-OPF regression demonstrates superior certified performance while maintaining computational
tractability, transforming verification from a post-hoc analysis tool into a practical training objective
for safety-critical applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Brian Bell, Michael Geyer, David Glickenstein, Keaton Hamm, Carlos Scheidegger, Amanda S.
Fernandez, and Juston Moore. Persistent classification: A new approach to stability of data and
adversarial examples. arXiv preprint arXiv:2404.08069, 2024.

Rudy Bunel, Ilker Turkaslan, Philip Torr, Pushmeet Kohli, and M. Pawan Kumar. A unified view
of piecewise linear neural network verification. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

Rudy Bunel, João Lu, Laurent Meunier, Alban Desmaison, Pushmeet Kohli, Philip H.S. Torr, and
M. Pawan Kumar. Branch and bound for piecewise linear neural network verification. Journal of
Machine Learning Research, 21(42):1–39, 2020.

Mohamad Fares El Hajj Chehade, WENTING LI, Brian Wesley Bell, Russell Bent, Saif R Kazi,
and Hao Zhu. Levis: Large exact verifiable input spaces for neural networks. In Forty-second
International Conference on Machine Learning, 2025.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In international conference on machine learning, pp. 1310–1320. PMLR, 2019.

Matteo Fischetti and Jason Jo. Deep neural networks as mixed integer linear programs. In Con-
straints. Springer, 2018. doi: 10.1007/s10601-018-9285-6.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, et al. On the effectiveness of interval
bound propagation for training verifiably robust models. arXiv preprint arXiv:1810.12715, 2018.

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classi-
fier against adversarial manipulation. In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient SMT solver for verifying deep neural networks. In Computer Aided Verification (CAV),
2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation for prov-
ably robust neural networks. In International Conference on Machine Learning (ICML), 2018.

Gagandeep Singh, Markus Püschel, and Martin Vechev. An abstract domain for certifying neural
networks. In Proceedings of the ACM on Programming Languages (POPL), 2019.

Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming. In International Conference on Learning Representations (ICLR), 2019.
URL https://openreview.net/forum?id=HyGIdiRqtm.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter.
Beta-CROWN: Efficient bound propagation with per-neuron split constraints for complete and
incomplete neural network robustness verification. arXiv preprint arXiv:2103.06624, 2021a. URL
https://arxiv.org/abs/2103.06624.

Shiqi Wang, Kaili Zhang, Kai Wang, and Peng Zhang. Efficient and accurate certified robust-
ness with PAC-LiRPA. In International Conference on Learning Representations, 2021b. URL
https://openreview.net/forum?id=i9i9C1r6B2M.

Eric Wong and J. Zico Kolter. Provable defenses via the convex outer adversarial polytope. In
International Conference on Learning Representations (ICLR), 2018.

Huan Zhang, Hongge Chen, Chaowei Xiao, and Bo Zhang. Towards deeper and better certified
defenses against adversarial attacks. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=rJgG92A2m.

10

https://openreview.net/forum?id=HyGIdiRqtm
https://arxiv.org/abs/2103.06624
https://openreview.net/forum?id=i9i9C1r6B2M
https://openreview.net/forum?id=rJgG92A2m

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, et al. Towards stable and efficient training
of verifiably robust neural networks. In International Conference on Learning Representations
(ICLR), 2020a.

Huan Zhang, Wen Liu, Chaowei Xiao, and Bo Zhang. CROWN-Optimized: A new certified robust-
ness verification for deep neural networks. In International Conference on Learning Representa-
tions, 2020b. URL https://openreview.net/forum?id=HygSg0VKwS.

11

https://openreview.net/forum?id=HygSg0VKwS

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

CONTENTS

1 Introduction 1

2 Background: Certified Bounds and Linear Relaxations 3

3 From CROWN Bounds to Closed-Form Radii 4

3.1 The Computational Challenge of Exact Verification 4

3.2 The Geometric Structure in CROWN Bounds . 4

3.3 Differentiable Implementation for Training . 5

4 Training with Certified Robustness Objectives 5

4.1 From Verification to Training Objectives . 6

4.2 Practical Training Algorithm . 6

4.3 Theoretical Foundations . 7

5 Experimental Validation 7

5.1 MNIST Classification . 7

5.2 DC-OPF Power System Control . 8

6 Conclusion 9

A Related Work and Positioning 14

A.1 Robustness Verification Methods . 14

A.2 Training for Certified Robustness . 14

A.3 Methodological Distinctions and Contributions 15

B Mathematical Foundations and Proofs 16

B.1 Notation and Standing Assumptions . 16

B.2 Geometric Tools . 16

B.2.1 β-CROWN Affine Bounds and Matrix Forms 17

B.3 Closed-Form Radius Bounds and Consequences 18

B.4 Auxiliary Results . 19

C Experimental Details and Additional Results 20

C.1 Complete MNIST Experimental Setup and Results 20

C.1.1 Dataset and Architecture Specification . 20

C.1.2 Training Method Implementations . 20

C.1.3 Certification Methodology . 22

C.1.4 Statistical Analysis and Implementation Details 22

C.2 DC-OPF Regression . 23

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

D LLMs 24

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

APPENDIX

A RELATED WORK AND POSITIONING

A.1 ROBUSTNESS VERIFICATION METHODS

Exact verification approaches. Mixed-Integer Linear Programming (MILP) encodings provide
complete robustness verification by introducing binary variables to model ReLU activations: zi =
max(0, yi) becomes zi ≥ yi, zi ≥ 0, zi ≤Miδi, and yi ≤Mi(1− δi) where δi ∈ {0, 1} (Fischetti
& Jo, 2018; Tjeng et al., 2019; Bunel et al., 2018). SMT-based approaches like Reluplex (Katz
et al., 2017) use directed case-splitting with simplex reasoning. Branch-and-bound frameworks
(Bunel et al., 2018; 2020) combine tight relaxations with intelligent branching to improve scalabil-
ity. While these methods provide mathematical guarantees, their exponential worst-case complexity
limits practical applicability, particularly for real-time certification or training integration.

Scalable approximation methods. Tractable over-approximations replace exact verification with
polynomial-time alternatives. Wong and Kolter (Wong & Kolter, 2018) construct convex relaxations
using linear programming, enabling differentiable training surrogates. CROWN (Zhang et al., 2019;
2020b) achieves significant advances through optimized linear bound propagation, computing affine
bounds ℓ(x) = aTx + b ≤ f(x) ≤ ãTx + b̃ = u(x) that hold uniformly over input regions. Ad-
vanced variants (α-CROWN, β-CROWN (Wang et al., 2021b)) optimize relaxation parameters and
introduce dual variables for split constraints, achieving near-exact performance on many practical
problems while maintaining polynomial complexity.

Abstract interpretation methods (Singh et al., 2019) use geometric domains like zonotopes and poly-
hedra to track correlations between variables. Differentiable abstract interpretation (Mirman et al.,
2018) makes these techniques trainable by ensuring differentiability with respect to network pa-
rameters. These approaches share our strategy of propagating geometric objects through layers but
typically focus on membership queries rather than explicit distance bounds.

Specialized and geometric approaches. Lipschitz-based methods (Hein & Andriushchenko,
2017) provide closed-form bounds through sensitivity analysis but can be conservative. Randomized
smoothing (Cohen et al., 2019) offers probabilistic guarantees through noise injection. Recent work
explores topological perspectives: Bell and Gangrade (Bell et al., 2024) analyze decision boundary
evolution through persistent homology, providing insights into adversarial geometry but not explicit
ℓp distance bounds needed for practical certification.

A.2 TRAINING FOR CERTIFIED ROBUSTNESS

Relaxation-based training. Integration of verification into training has evolved from post-hoc
analysis toward robust-by-construction learning. Wong and Kolter (Wong & Kolter, 2018) pioneered
differentiable convex relaxations, replacing intractable adversarial objectives with LP-dual bounds.
Mirman et al. (Mirman et al., 2018) extended this using zonotope domains for tighter but more
expensive bounds.

Interval Bound Propagation (IBP) training (Gowal et al., 2018) achieves extreme efficiency through
interval arithmetic but requires careful scheduling to handle loose bounds. CROWN-IBP (Zhang
et al., 2020a) combines IBP efficiency with CROWN tightness through hybrid approaches. Zhang
et al. (Zhang et al., 2019) analyze training stability, showing how bound propagation methods affect
optimization dynamics and proposing scheduling strategies for convergence.

Advanced training strategies. Recent advances explore multi-objective approaches balancing
clean accuracy, adversarial robustness, and certified robustness. Progressive training starts with
loose constraints and gradually tightens them. Hybrid methods combine adversarial training with
verification objectives to leverage benefits of both approaches.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A.3 METHODOLOGICAL DISTINCTIONS AND CONTRIBUTIONS

Direct radius optimization. Our approach fundamentally differs from existing methods by op-
timizing certified radii directly rather than proxy objectives. While methods like CROWN-IBP
optimize dual bounds or abstract surrogates that correlate with robustness, we derive explicit closed-
form radius expressions and optimize these quantities directly. This ensures that training objective
improvements translate immediately to certified neighborhood size improvements.

Geometric insight and center optimization. We show that CROWN affine bounds encode pre-
cisely the geometric quantities needed for radius computation—safety margin and input sensitiv-
ity—enabling single-pass certification without iterative optimization. Our center optimization ap-
proach addresses a literature gap by casting the bilevel problem of finding optimal verification points
as a tractable linear program, making robust center selection practical for the first time.

Theoretical connections. Our margin-over-slope characterization connects certified robustness to
classical margin-based learning theory while preserving formal verification guarantees. This geo-
metric interpretation complements topological approaches like Bell et al. (2024) by providing ac-
tionable, quantitative information about local neighborhoods that can be directly optimized during
training.

Practical implications. The differentiability of our closed-form expressions enables new robust
optimization possibilities beyond standard adversarial training. Single-pass radius computation
makes real-time robustness assessment feasible, potentially enabling interactive design tools. Our
framework provides a foundation for extending to multi-property scenarios and hierarchical robust-
ness specifications through the flexible LP formulation.

Compared to exact methods, we avoid combinatorial search while maintaining geometric precision.
Compared to existing relaxation-based training, we optimize explicit radii rather than bound surro-
gates using closed-form expressions that eliminate repeated bound-tightening during learning. This
represents a step toward making formal verification a routine part of machine learning practice rather
than specialized post-hoc analysis.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

B MATHEMATICAL FOUNDATIONS AND PROOFS

This appendix provides complete mathematical foundations for our closed-form robustness certifi-
cation approach. We develop the geometric tools needed for distance computation, derive explicit
expressions for β-CROWN coefficients, and establish the theoretical guarantees underlying our prac-
tical algorithms. Throughout, p ∈ [1,∞] and q⋆ denotes its dual exponent (1/p+ 1/q⋆ = 1).

B.1 NOTATION AND STANDING ASSUMPTIONS

Consider a feedforward network with L layers and weight matrices W (k) ∈ Rnk×nk−1 where nk is
the width of layer k:

z(0) = x, (17)

y(k) = W (k)z(k−1) + b(k), (18)

z(k) = σ(y(k)) for k = 1, . . . , L− 1, (19)

and output fθ(x) = z(L) = W (L)z(L−1) + b(L). Unless otherwise stated, σ is the ReLU activation
and all norms are vector norms.

We work on a fixed input domain

[L,U] := {x ∈ Rd : Li ≤ xi ≤ Ui}, (20)

and we only claim radius certificates for balls contained in this domain, i.e., Bp(c, r) ⊆ [L,U] when
needed.

Throughout, we focus on scalar network outputs obtained via linear readouts s(x) = ρT fθ(x) + ρ0,
which encompasses both regression objectives (ρ selects an output component) and classification
margins (ρ computes logit differences). For such scalar functions, we define the exact robust radius

r⋆(c) := distp(c, {x : s(x) ≤ 0}) = inf{∥x− c∥p : s(x) ≤ 0}. (21)

Activation-envelope setup. For each hidden neuron (k, i) with pre-activation bounds l
(k)
i ≤

y
(k)
i ≤ u

(k)
i , we select valid linear envelopes

h
(k)
U,i(y) = α

(k)
U,i(y + γ

(k)
U,i), (22)

h
(k)
L,i(y) = α

(k)
L,i(y + γ

(k)
L,i), (23)

such that h(k)
L,i ≤ σ ≤ h

(k)
U,i on [l

(k)
i , u

(k)
i] and α

(k)
·,i ≥ 0. For ReLU activations, these reduce to

standard convex/concave relaxations; in activation-stable regions they recover exact slopes in
{0, 1} with zero intercept corrections.

B.2 GEOMETRIC TOOLS

The following result provides the explicit formula for computing distances to affine decision bound-
aries, which appear as surrogates for the true network decision boundary.

Theorem B.1 (Half-space distance in ℓp). Let H(w, b) = {x : w⊤x + b ≤ 0} and c ∈ Rd.
Then

distp(c,H(w, b)) = max

{
0,

w⊤c+ b

∥w∥q⋆

}
. (24)

Geometrically, this result states that the distance from a point to a hyperplane is the margin (numer-
ator) divided by the ’slope’ in the dual norm (denominator).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Proof. If w⊤c+ b ≤ 0 then c ∈ H and the distance is 0. Otherwise, minimize ∥x− c∥p subject
to w⊤x + b = 0. Writing x = c + u gives minu ∥u∥p subject to w⊤u = −(w⊤c + b). By
Hölder’s inequality, |w⊤u| ≤ ∥w∥q⋆∥u∥p, with equality when u aligns with a dual vector of w.
The minimizer has the form u = −wT c+b

∥w∥2
q∗
·w∗ where w∗ is a dual vector satisfying ∥w∗∥p = 1

and ⟨w,w∗⟩ = ∥w∥q∗ . Thus the minimum distance is (w⊤c+ b)/∥w∥q⋆ . ■

Lemma B.2 (Support function of ℓ∞ balls). For any w, c and r ≥ 0,

sup
∥x−c∥∞≤r

w⊤x = w⊤c+ r∥w∥1, (25)

inf
∥x−c∥∞≤r

w⊤x = w⊤c− r∥w∥1. (26)

Proof. Write x = c + δ with ∥δ∥∞ ≤ r. Then supw⊤δ = r∥w∥1 achieved at δ = r sign(w);
the infimum follows analogously. ■

B.2.1 β-CROWN AFFINE BOUNDS AND MATRIX FORMS

β-CROWN (Wang et al., 2021a) improves upon basic CROWN (Zhang et al., 2020b) by optimizing
the choice of linear relaxations at each neuron. The key insight is to introduce dual multipliers β
that enforce ’split constraints’—conditions that tighten the relaxation by exploiting the structure of
ReLU activations.

Layerwise ReLU relaxation. For a ReLU layer with pre-activation v ∈ Rd and interval bounds
l ≤ v ≤ u (elementwise), and any row vector w, there exist a diagonal matrix D = diag(Djj) and
a vector b′ such that

w⊤ReLU(v) ≥ w⊤Dv + b′, (27)

where for neurons with lj < 0 < uj , we have a free slope parameter αj ∈ [0, 1] and the intercept is
chosen in a sign-aware manner to optimize the bound.

Matrix products for bound propagation. Define the accumulated weight products:

Ω(i, i) = I, (28)

Ω(k + 1, i) = W (k+1)D(k)Ω(k, i), 1 ≤ i ≤ k ≤ L− 1. (29)

Main β-CROWN bound. Let S(i) be the diagonal split-selector matrix for layer i (entries +1 for
l
(i)
j > 0, −1 for u(i)

j < 0, and 0 otherwise). The split-selector matrix encodes which neurons are
’stable’ (always active/inactive) versus ’unstable’ (potentially switching). For stable neurons, the
relaxation is exact; for unstable ones, we optimize over relaxation parameters.

Theorem B.3 (β-CROWN primal lower bound (Wang et al., 2021a)). For an L-layer network
f with inputs x ∈ [L,U] and per-layer pre-activation bounds l(i) ≤ y(i) ≤ u(i), we have

min
x∈[L,U]

f(x) ≥ max
β≥0

min
x∈[L,U]

{
(a+ Pβ)⊤x+ q⊤β β + c

}
, (30)

where a, P , qβ , and c are explicit matrix expressions derived from the network weights and
chosen relaxation parameters.

The maximization over β ≥ 0 is typically solved via projected gradient ascent or other convex
optimization methods.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Connection to scalar readouts. For a scalar functional s(x) = ρ⊤fθ(x)+ρ0, the β-CROWN up-
per affine bound us(x) = ãs(β)

⊤x+ β̃s(β) has coefficients that depend linearly on the optimization
variables β.

Practical implementation. Maximize the β-CROWN bound over β ≥ 0 using convex opti-
mization, then use the resulting coefficients ãs(β), β̃s(β) in our closed-form radius formulas.
Setting β = 0 recovers standard CROWN bounds (Zhang et al., 2020b).

B.3 CLOSED-FORM RADIUS BOUNDS AND CONSEQUENCES

Theorem B.4 (Closed-form ℓp radius bounds). Assume affine surrogates ℓs(x) = a⊤s x+ βs ≤
s(x) ≤ us(x) = ã⊤s x+ β̃s hold on [L,U], and let c ∈ [L,U]. Then

rLB(c) := max

{
0,

a⊤s c+ βs

∥as∥q⋆

}
≤ r⋆(c) (31)

≤ max

{
0,

ã⊤s c+ β̃s

∥ãs∥q⋆

}
=: rUB(c). (32)

For the box-restricted radius r⋆[L,U](c) = distp(c, {s ≤ 0} ∩ [L,U]), the bounds hold uncondi-
tionally.

This theorem provides the mathematical foundation for the closed-form radii introduced in the main
paper.

Proof. Let Vℓ = {x : ℓs(x) ≤ 0}, Vs = {x : s(x) ≤ 0}, Vu = {x : us(x) ≤ 0}. From the
certified bounds ℓs ≤ s ≤ us on [L,U], we have the containment relationships Vu ⊆ Vs ⊆
Vℓ within the domain. Monotonicity of distance to sets gives distp(c,Vℓ) ≤ distp(c,Vs) ≤
distp(c,Vu). Apply Theorem B.1 to compute the distances to the affine half-spaces Vℓ and
Vu. ■

Corollary B.5 (Certified exclusion zone). If rLB(c) ≥ ε and B∞(c, ε) ⊆ [L,U], then s(x) > 0
for all x ∈ B∞(c, ε); hence the network’s decision is invariant on that ball.

This corollary provides the fundamental safety guarantee for classification: once we certify radius
ε around a correctly classified point, we can guarantee that the network’s prediction remains un-
changed throughout that neighborhood.

Theorem B.6 (Activation-stable exactness). If all ReLUs maintain their activation signs on a
region N and B∞(c, ε) ⊆ N ∩ [L,U], then s(x) = w⊤x+ b on B∞(c, ε) and

r⋆(c) =
s(c)

∥w∥1
= rLB(c) = rUB(c). (33)

This theorem explains why our bounds are often tight in practice: neural networks are locally ap-
proximately linear, and in regions where activation patterns are stable, our relaxation-based bounds
become exact.

Proposition B.7 (Sensitivity control via target radius). If rLB(c) ≥ ε > 0 and B∞(c, ε) ⊆
[L,U], then

∥as∥1 ≤
a⊤s c+ βs

ε
. (34)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

This result provides a principled approach to controlling network Lipschitz constants: by enforcing
certified radius requirements during training, we automatically bound the network’s sensitivity in
adversarially relevant directions.

Proposition B.8 (Connection to margin-based learning). For an affine model f(x) = Wx+ b
and margin s(x) = y(w⊤x+ b) with y ∈ {±1},

r⋆(c) =
s(c)

∥w∥1
= rLB(c) = rUB(c). (35)

This result connects our approach to classical margin-based learning theory. For linear models,
maximizing certified robustness is equivalent to maximizing normalized margin—a well-established
principle for generalization.

Degenerate case handling. If ∥as∥1 = 0 while a⊤s c+βs > 0, the surrogate yields rLB = +∞;
in practice, cap certificates at the box margin mini{Ui− ci, ci−Li} to maintain validity within
[L,U].

B.4 AUXILIARY RESULTS

Proposition B.9 (Robust affine constraint characterization). For an affine function ℓ(x) =
a⊤x+ β and any center c and radius r ≥ 0,

min
∥x−c∥∞≤r

ℓ(x) ≥ 0 ⇐⇒ a⊤c+ β ≥ r∥a∥1. (36)

Proof. By Lemma B.2, min∥x−c∥∞≤r ℓ(x) = a⊤c+β−r∥a∥1. The inequality≥ 0 is equivalent
to a⊤c+ β ≥ r∥a∥1. ■

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

C.1 COMPLETE MNIST EXPERIMENTAL SETUP AND RESULTS

C.1.1 DATASET AND ARCHITECTURE SPECIFICATION

We conduct all experiments on the standard MNIST handwritten digit classification dataset, con-
sisting of 60,000 training images and 10,000 test images, each of size 28×28 pixels with grayscale
values originally in [0, 255]. Our preprocessing pipeline applies the standard ToTensor() trans-
formation, which converts PIL images to PyTorch tensors and automatically scales pixel values to
the range [0, 1]. We then flatten each 28×28 image into a 784-dimensional vector to serve as input to
our fully-connected architecture. No additional normalization, data augmentation, or preprocessing
steps are applied to maintain comparability across methods and ensure reproducible results.

All experiments use an identical three-layer fully-connected network architecture to ensure fair com-
parison. The network consists of an input layer (784 → 128 with bias), a hidden layer (128 → 128
with bias), and an output layer (128 → 10 with bias), with ReLU activations applied after the first
two layers. This yields a total of 118,282 trainable parameters: (784× 128 + 128) + (128× 128 +
128) + (128 × 10 + 10) = 100, 352 + 16, 512 + 1, 290 + 128 + 128 + 10. We deliberately avoid
batch normalization, dropout, or other architectural regularization techniques to isolate the effects
of our training methodologies.

C.1.2 TRAINING METHOD IMPLEMENTATIONS

Standard Training Baseline. Our standard training baseline employs conventional cross-entropy
loss minimization without any robustness-specific techniques. We optimize using the Adam opti-
mizer with learning rate 2×10−3, weight decay 10−4, and default Adam hyperparameters (β1 = 0.9,
β2 = 0.999, ϵ = 10−8). Training continues for 4-6 epochs with early stopping based on validation
performance. In some configurations, we apply optional label smoothing with factor 0.02. This
baseline serves two purposes: establishing the clean accuracy ceiling achievable with standard train-
ing, and quantifying the inherent robustness gap that motivates robust training approaches.

PGD Adversarial Training. Our PGD adversarial training implementation follows Madry et al.
(Madry et al., 2018) precisely. For each training batch, we generate adversarial examples using the
Projected Gradient Descent algorithm with the following parameters: perturbation budget ϵ = 0.08,
step size α = 0.01, 10 PGD iterations, and 2 random restarts to find stronger adversarial examples.

Algorithm 2 PGD Adversarial Example Generation

Require: Input (x, y), model fθ, ϵ = 0.08, α = 0.01, steps = 10
1: Initialize: x′ ← x+ Uniform(−ϵ, ϵ)
2: for step = 1 to 10 do
3: g ← ∇x′LCE(fθ(x

′), y)
4: x′ ← x′ + α · sign(g)
5: x′ ← clip(x′, x− ϵ, x+ ϵ) ▷ ℓ∞ projection
6: x′ ← clip(x′, 0, 1) ▷ Valid pixel range
7: end for
8: Return x′

The adversarial training objective becomes:

LPGD-AT(θ) =
1

|B|
∑

(x,y)∈B

LCE(fθ(xadv), y) (37)

where xadv is generated via the PGD procedure above. We train for 6 epochs using Adam optimizer
with learning rate 2× 10−3 and weight decay 10−4, maintaining a constant learning rate throughout
training.

Randomized Smoothing Training. Our randomized smoothing implementation creates smooth
classifiers that provide provable ℓ2 robustness guarantees following Cohen et al. (Cohen et al.,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

2019). The approach trains networks to be consistent across Gaussian-noised versions of each input,
creating a smoothed classifier g(x) = Ez∼N (0,σ2I)[fθ(x + z)] where σ = 0.25 controls the noise
level.

For each training input x, we sample K = 4 independent noise vectors z1, . . . , zK ∼ N (0, σ2I)
and create noisy inputs xk = x+zk for k = 1, . . . ,K. We then compute network outputs fθ(xk) for
each noisy input and apply Jensen-Shannon divergence consistency regularization to encourage sim-
ilar predictions across the noise samples. Additionally, we incorporate ℓ2 adversarial training with
perturbation budget ϵ = 1.0, step size 0.2, and 5 iterations, using Expected over Transformations
(EOT) with 4 samples per adversarial example.

The complete training objective combines three components:

Lsmooth(θ) = LCE + 0.5 · LJS + 0.1 · Lclean-mix (38)

where LJS is the Jensen-Shannon divergence between noisy predictions and Lclean-mix maintains
performance on clean examples. We train for 8 epochs using Adam optimizer with initial learning
rate 2× 10−3 and cosine learning rate scheduling. Exponential Moving Average (EMA) with decay
factor 0.999 is applied to model parameters, with the EMA model used for final evaluation.

Hybrid Method Implementation. Our hybrid approach represents the core contribution of this
work, combining the broad robustness benefits of PGD adversarial training with targeted optimiza-
tion of certified radius bounds on strategically selected hard examples. The method operates through
two parallel components within each training iteration.

Algorithm 3 Hybrid Training with Certified Penalty

Require: Dataset D, model fθ, hard sample threshold = 24
1: for batch B ⊂ D do
2: Generate adversarial examples using PGD (ϵ = 0.03, 10 steps)
3: Compute LPGD = 1

|B|
∑

i LCE(fθ(xadv,i), yi)

4: Screen examples using margin and radius criteria
5: Select hard subsetH ⊆ B with |H| ≤ 24
6: for xi ∈ H (limit to 6 examples) do
7: Compute IBP bounds at multiple ϵ levels
8: Apply joint-α optimization (6 steps, Adam lr=0.12)
9: Compute ri = rLB(xi; θ) using tightened bounds

10: Evaluate ϕ(ri) = 0.3(− log ri) + 0.7max(0, rgoal − ri)
11: end for
12: Ltotal = LPGD + λ

∑
i∈H ϕ(ri) + regularizers

13: Update parameters and EMA
14: end for

The first component applies standard PGD adversarial training to the entire batch using a smaller
perturbation budget (ϵ = 0.03 instead of 0.08) to balance robustness with the certified component.
The second component identifies hard examples within each batch using margin-based screening
and applies our differentiable certified radius penalty to a subset of up to 24 examples (processing
at most 6 per batch for computational efficiency).

For selected hard examples, we first compute Interval Bound Propagation (IBP) preliminary bounds
at multiple perturbation levels ϵ ∈ {0.010, 0.015, 0.020, 0.025, 0.030} to establish initial activation
intervals. We then apply joint-α optimization using 6 gradient steps with Adam optimizer (learning
rate 0.12) and temperature annealing from 10 to 24 to tighten the CROWN bounds by optimizing
the linear relaxation parameters for ambiguous ReLU units.

The certified radius penalty uses a mixed objective function:

ϕ(r) = 0.3(− log r) + 0.7max(0, rgoal − r) (39)

where the logarithmic term provides smooth gradients encouraging radius growth and the hinge
term enforces minimum radius targets. We set the target radius rgoal = αtarget · ϵ where αtarget ∈
{0.65, 0.70, 0.75} varies across training.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Additional regularization components include spectral norm penalties on weight matrices toward
targets (2.0, 2.0, 1.5) for layers 1, 2, and 3 respectively; clean margin loss with softplus penalty
and weight 0.3; gradient clipping with threshold 0.8; and Exponential Moving Average with decay
0.997. We use cosine learning rate scheduling from 3×10−3 to 8×10−4 with weight decay 5×10−4

over 8 training epochs.

C.1.3 CERTIFICATION METHODOLOGY

All certified robustness metrics are computed using the auto LiRPA library with ”CROWN-
Optimized” method, which implements state-of-the-art linear bound propagation with optimized
envelope selection. For each test input, we compute CROWN bounds on all network logits over the
ℓ∞ perturbation region [x− ϵ1, x+ ϵ1] ∩ [0, 1]d.

Our certification protocol checks the multi-class margin condition: for an input (x, y) with true
class y, we compute the CROWN lower bound fy(x) on the true class logit and CROWN upper
bounds fj(x) on all other class logits j ̸= y. The input is certified at perturbation level ϵ if and
only if fy(x) > maxj ̸=y fj(x), ensuring that the true class logit remains largest under all possible
perturbations within the specified region.

For individual certified radius computation, we employ bisection search over the perturbation budget
ϵ. Starting with ϵlow = 0 and ϵhigh = 1.0, we repeatedly test the midpoint ϵmid = (ϵlow + ϵhigh)/2
using the CROWN certification procedure described above. If the input is certified at ϵmid, we
update ϵlow = ϵmid; otherwise, we set ϵhigh = ϵmid. We terminate the search when either the interval
width falls below tolerance 10−4 or when no improvement is observed for 10 consecutive iterations,
indicating convergence to a certification plateau.

Table 2: Certification Protocol Parameters

Parameter Value
CROWN Implementation auto LiRPA ”CROWN-Optimized”
Certification Condition fy(x) > maxj ̸=y fj(x)

Bisection Tolerance 10−4

Early Stop Threshold 10 iterations without improvement
Test Set Size 10,000 samples

C.1.4 STATISTICAL ANALYSIS AND IMPLEMENTATION DETAILS

For statistical significance analysis, we treat accuracy measurements as binomial random variables
with success probability p and sample size n = 10, 000. The standard error is SE =

√
p(1− p)/n ≈

0.14% when p ≈ 0.98. The 0.75% clean accuracy improvement of our hybrid method over PGD-AT
corresponds to 5.4 standard errors, indicating extremely high statistical significance. Similarly, the
9.4 percentage point certified fraction increase at ϵ = 0.03 represents approximately 4.2 standard
errors.

All experiments use PyTorch with fixed random seeds (torch.manual seed(0) and
np.random.seed(0)) for reproducibility. Training batch sizes are 256 for training and 512
for testing, with single GPU training and deterministic CUDA operations where possible. The joint-
α optimization requires careful implementation with temperature annealing and gradient clipping
for numerical stability. Our certification evaluation uses the latest stable auto LiRPA version with
optimized envelope selection settings.

This comprehensive setup enables full reproduction and provides detailed analysis of both theoreti-
cal foundations and practical implications of our certified robustness approach.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

C.2 DC-OPF REGRESSION

Problem formulation and significance. The DC optimal power flow (DC-OPF) problem repre-
sents a linearized approximation of the fundamental power system optimization challenge, where
generators must be dispatched to meet electrical demand while respecting transmission line limits
and generator constraints. This problem has become a standard benchmark in the formal verification
community due to its combination of practical relevance and mathematical tractability.

In our regression formulation, we learn a neural network surrogate fθ : R3 → R3 that maps demand
vectors x to optimal generator dispatch decisions y. The critical challenge is ensuring that learned
dispatch decisions remain feasible under demand uncertainties represented by ℓ∞ perturbations of
magnitude ϵ around nominal demand points.

Network architecture and training objective. We employ a compact fully-connected architec-
ture with 3 input units (representing demand at 3 buses), a single hidden layer of 16 ReLU units,
and 3 output units (representing dispatch decisions for 3 generators). This architecture contains

(3× 16 + 16) + (16× 3 + 3) = 115

trainable parameters, making it suitable for detailed analysis while remaining representative of prac-
tical surrogate models.

The complete training objective balances prediction accuracy with certified constraint satisfaction:

Ltotal(θ) =
1

|B|
∑

(x,y)∈B

∥fθ(x)− y∥22 (40)

+ λ · 1

|B|
∑
x∈B

3∑
j=1

[
V +
j (x; ϵ) + V −

j (x; ϵ)
]
, (41)

where the violation terms are defined as

V +
j (x; ϵ) = max

(
0, fθ,j(x; ϵ)− ymax

j

)
, (42)

V −
j (x; ϵ) = max

(
0, ymin

j − f
θ,j

(x; ϵ)
)
. (43)

Here f
θ,j

(x; ϵ) and fθ,j(x; ϵ) denote β-CROWN lower and upper bounds on output j over the ℓ∞
perturbation region

{x′ : ∥x′ − x∥∞ ≤ ϵ },
with ϵ = 1.0 in our scaled coordinate system.

Constraint specification and data preprocessing. Generator limits [ymin
j , ymax

j] are determined
from the training data distribution to represent realistic operational constraints while avoiding test
set leakage. Specifically, we compute the 5th and 95th percentiles of each generator output in
the training set, providing reasonable bounds that reflect the range of normal operation without
overfitting to specific test cases.

Input and output scaling follows standard practice: we normalize demand vectors to zero mean and
unit variance, and similarly standardize generator outputs. This preprocessing ensures numerical
stability during β-CROWN bound computation and prevents any single variable from dominating
the constraint violation penalties.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

D LLMS

We used large language models as assistive tools for coding and implementation, writing, discov-
ery and summarization of related work, and for developing and presenting theoretical results. The
authors take full responsibility for the content.

24

	Introduction
	Background: Certified Bounds and Linear Relaxations
	From CROWN Bounds to Closed-Form Radii
	The Computational Challenge of Exact Verification
	The Geometric Structure in CROWN Bounds
	Differentiable Implementation for Training

	Training with Certified Robustness Objectives
	From Verification to Training Objectives
	Practical Training Algorithm
	Theoretical Foundations

	Experimental Validation
	MNIST Classification
	DC-OPF Power System Control

	Conclusion
	Related Work and Positioning
	Robustness Verification Methods
	Training for Certified Robustness
	Methodological Distinctions and Contributions

	Mathematical Foundations and Proofs
	Notation and Standing Assumptions
	Geometric Tools
	-CROWN Affine Bounds and Matrix Forms

	Closed-Form Radius Bounds and Consequences
	Auxiliary Results

	Experimental Details and Additional Results
	Complete MNIST Experimental Setup and Results
	Dataset and Architecture Specification
	Training Method Implementations
	Certification Methodology
	Statistical Analysis and Implementation Details

	DC-OPF Regression

	LLMs

