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ABSTRACT

Adversarial training reshapes neural network decision boundaries by pushing
them away from adversarial examples, but this approach ignores a crucial geomet-
ric factor: the local curvature that determines how steeply network outputs change
with input perturbations. We introduce a fundamentally different approach that
optimizes certified robustness by directly reshaping decision boundary geometry
during training. Our key insight is that CROWN’s linear bounds encode both the
safety margin and input sensitivity needed for closed-form certified radius compu-
tation, transforming expensive verification into efficient geometric analysis. We
derive differentiable expressions that enable direct optimization of the margin-
over-slope ratio underlying certified robustness, creating networks with inherently
robust decision regions rather than boundaries hardened against specific attacks.
Our hybrid training method combines adversarial training’s broad coverage with
geometric certified objectives applied to hard examples, achieving 98.33% clean
accuracy and 71.1% certified robustness at e = 0.03 on MNIST—outperforming
both PGD adversarial training (61.7%) and randomized smoothing (53.1%) in
ReLU-based networks. On DC optimal power flow regression, we demonstrate
controllable accuracy-safety trade-offs critical for engineering applications. By
making certified robustness certificates both computationally tractable and differ-
entiable, our approach enables robustness-aware learning that produces networks
robust by geometric design rather than adversarial accident.

1 INTRODUCTION

Adversarial training has emerged as the dominant approach for learning robust neural networks, but
it suffers from a fundamental limitation: it primarily moves decision boundaries without changing
their local geometry. When a network encounters adversarial examples during training, gradient-
based methods shift the boundary away from these threats while preserving the network’s inherent
sensitivity to input perturbations. This creates a cat-and-mouse dynamic where stronger attacks find
new vulnerabilities in regions that remain geometrically fragile, leading to thin vulnerable slivers
that evade detection during training but compromise robustness in deployment.

We propose a fundamentally different approach that addresses robustness at its geometric root: in-
stead of merely pushing decision boundaries away from adversarial examples, we reshape their local
curvature to create inherently more robust decision regions. Our key insight is that certified robust-
ness bounds encode precise information about both the safety margin at a point and the network’s
input sensitivity—and optimizing these quantities directly during training leads to decision bound-
aries that are robust by construction rather than by adversarial hardening.

The central contribution of this work is showing that linear bound propagation methods like CROWN
(Zhang et al., 2020b), widely used for post-hoc verification, can be transformed into differentiable
training objectives that optimize certified radius bounds in closed form. Specifically, CROWN’s
affine bounds /,(z) = alx + B < s(x) < us(x) = al'z + B naturally encode the geometric
quantities needed for radius computation: the safety margin m(c) = alc + 3, and the worst-case
input sensitivity |las||1. The certified radius becomes a simple margin-over-slope ratio: r(c) =

m(c)/|lasll-

This geometric perspective reveals why certified training succeeds where adversarial training strug-
gles. While adversarial methods implicitly optimize margin through example-based learning, they
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Figure 1: Attack-only training moves the boundary; our certified objective changes its curva-
ture (with /., radii). Hatched polygons mark activation-stable (locally affine) regions of a ReLU
network; colors denote classes. Left: adversarial/smoothing training largely translates the boundary
along the decision direction, leaving thin vulnerable slivers. Right: adding the S-CROWN-driven
radius loss enlarges per-sample certified /., balls (drawn as circles for readability) by simultane-
ously increasing margin and reducing input slope on neighboring facets, effectively reshaping local
curvature and aligning better with the true boundary.

ignore the equally important sensitivity term. Our approach optimizes both simultaneously: increas-
ing margin while reducing input sensitivity creates larger certified neighborhoods and fundamentally
changes the local decision geometry. Figure 1 illustrates this difference—adversarial training trans-
lates boundaries, while our certified objectives reshape their curvature.

The practical implications are significant. Because CROWN coefficients are differentiable func-
tions of network parameters, our certified radius bounds inherit this differentiability, enabling direct
gradient-based optimization during training. This transforms expensive post-hoc verification into an
efficient training signal that guides the network toward inherently robust representations.

Our hybrid training approach combines the broad coverage of adversarial training with the geo-
metric precision of certified radius optimization. We apply adversarial training to all examples for
baseline robustness, then selectively apply certified radius penalties to hard examples where geo-
metric reshaping provides the greatest benefit. This selective approach balances computational cost
with robustness gains while avoiding the optimization difficulties that can arise from applying strong
certified constraints globally.

Contributions and experimental validation. We make certified robustness both theoretically
principled and practically effective through four key contributions:

* Closed-form certified radii: We derive exact formulas converting CROWN bounds into
certified radius expressions, enabling O(d)-time robustness assessment versus exponential
MILP complexity.

* Differentiable certified training: We provide explicit matrix formulations showing how
CROWN coefficients depend on network parameters, making certified radii fully differen-
tiable for gradient-based optimization.

* Geometric robustness insight: We demonstrate that certified training reshapes decision
boundary curvature rather than merely translating boundaries, addressing the fundamental
limitations of adversarial training.

* Superior empirical performance: Our hybrid method achieves 98.33% clean accuracy
and 71.1% certified robustness at ¢ = 0.03 on MNIST, outperforming both PGD adversarial
training (61.7%) and randomized smoothing (53.1%) on ReLU-based neural networks.

We validate our approach across two distinct domains: MNIST classification, where our method
demonstrates clear improvements over established baselines in both clean accuracy and certified
robustness; and DC-OPF power system control, where we show how certified violation penalties



enable principled navigation of the accuracy-safety trade-off critical in engineering applications.
Together, these results demonstrate that optimizing certified geometry during training produces net-
works that are robust by design rather than by adversarial accident.

2 BACKGROUND: CERTIFIED BOUNDS AND LINEAR RELAXATIONS

Having motivated the geometric perspective on certified robustness, we now establish the mathe-
matical foundation for our approach. We review how linear bound propagation methods compute
affine bounds that encode the geometric structure of neural network decision boundaries.

Network architecture and problem formulation. We consider a feedforward neural network
fo : R* — R* with parameters § = (WM v . W) p(L)) where L denotes the number of
layers. For an input z € RY, the network output is fo(x) = (f1(),. .., fe()).

For classification tasks, we focus on adversarial robustness: given a correctly classified input with
true class t € {1, ..., k}, we study pairwise logit margins m, ;(x) = fi(x) — f;(x) for j # ¢. The
network maintains its prediction when all margins m, ;(x) > 0. Without loss of generality, we can
focus on bounding scalar quantities s(z) € R derived from network outputs—for regression, s(z)
might represent constraint violations; for classification, it typically represents logit margins where
maintaining s(x) > 0 ensures correct prediction. We omit explicit dependence on 6 when clear from
context.

Input regions and perturbation models. We work with compact regions in input space. The
axis-aligned box is
[L,U] = {z € R?: L <z < U (elementwise)}.
Given a center ¢ € R? and radius r > 0, the £.-ball is
Boo(e,r) ={z € R : ||z — ¢|loo <7}

We focus on ¢, perturbations as they naturally model pixel-wise bounded adversarial attacks in
image domains and element-wise operational tolerances in control applications. Throughout, [L, U]
denotes a fixed domain, and we seek to certify balls B, (¢, ) C [L, U] around centers c.

Linear bound propagation and certified affine bounds. The key insight behind linear bound
propagation methods like CROWN is to replace nonlinear activations with linear relaxations, en-
abling efficient bound computation through matrix operations. These methods provide certified
affine bounds on scalar network quantities s(z) that are valid uniformly over input boxes [L, U]
(Zhang et al., 2020b; Wang et al., 2021b).

Specifically, for any scalar function s(x) induced by the network, CROWN computes affine func-
tions:

ls(x) :a;rx—i—ﬁs, (1)
us(x) = d;rx + B, )

where the coefficients (as, s, s, Bg) depend on both the network parameters € and the input domain
[L, U]. These bounds satisfy the certified sandwich inequality

l(z) < s(z) < us(x) forall z € [L,U].

The coefficients are computed through a backward pass that propagates linear bounds layer by layer,
making the approach scalable to large networks. The bounds become tighter when the input region
is smaller or when the network exhibits more stable activation patterns within that region.

Computational efficiency and geometric structure. CROWN bound computation requires only
one forward and one backward pass through the network, scaling polynomially with network size.
Crucially for our approach, the resulting affine bounds reveal the local geometric structure of the
network’s decision boundary within the specified region. The coefficient vectors as and a, capture
how the network output changes with input variations, while the offset terms 5, and [ reflect the
network’s behavior at the reference point.



This geometric information, encoded directly in CROWN’s affine bounds, will serve as the founda-
tion for deriving closed-form expressions for certified robustness radii in the following sections.

3 FroM CROWN BoOUNDS TO CLOSED-FORM RADII

The power of our geometric approach lies in transforming CROWN’s linear bounds into explicit
certified radius expressions. We begin by examining the computational challenges of exact veri-
fication, then show how CROWN bounds contain precisely the geometric information needed for
closed-form radius computation.

3.1 THE COMPUTATIONAL CHALLENGE OF EXACT VERIFICATION

For a ReLU network fp : R? — R* and scalar safety property s(z) € R (e.g., classification margin
my ;(x) = fi(x) — fj(x)), the exact certified radius at center c is:

r*(c) = ;21]@ |z — ¢l subjectto s(z) <O0. 3)

This optimization can be solved exactly using mixed-integer linear programming by encoding ReLU
constraints with binary variables 5f € {0, 1} for each neuron (Fischetti & Jo, 2018; Tjeng et al.,
2019; Bunel et al., 2018; Chehade et al., 2025):
hi >z, hi>0, @)
hi <z = Li(1=87), hi <UL, (5)

where (L{, UY) are pre-computed activation bounds.

While MILP formulations provide exact solutions, they suffer from fundamental limitations: expo-
nential worst-case complexity in the number of neurons, sensitivity to activation bound tightness,
and incompatibility with gradient-based optimization due to discrete variables. These constraints
motivate our search for tractable approximations that preserve geometric insight.

3.2 THE GEOMETRIC STRUCTURE IN CROWN BOUNDS

CROWN (Zhang et al., 2020b) transforms the discrete verification problem into continuous op-
timization by replacing ReLU constraints with linear relaxations. For scalar function s(x) over
domain [L, U], CROWN computes certified affine bounds:

ls(x) = a;rx + Bs < s(z) <ug(x) = Zzzx + Bs (6)
valid for all z € [L,U].

The key insight is that these linear bounds encode the geometric quantities needed for distance com-
putation: the safety margin at any point and the network’s worst-case sensitivity to input changes.

Theorem 3.1 (Closed-form /., radius bounds). Given CROWN bounds on s(x) and center
¢ € [L, U], define safety margins:

mus(c) = agc+ B, ™
myg(c) = al ¢+ Bs. (8)
Then the exact robust radius v*(c) satisfies:
myg(c myg(c
rL(c) = { L )} <r*(c) < [ gB( )} =: ryp(c) ©))
laslly ]+ lasll 4

where [|; = max{-,0}.

Proof sketch. CROWN bounds induce set containments {z : us(x) <0} C {z:s(x) <0} C {x:
ls(x) < 0} within [L, U]. The certified radius bounds follow from distance monotonicity and the
dual-norm characterization of half-space distances. Complete proof in Appendix B. ]



Geometric interpretation and practical benefits. The theorem reveals certified robustness as
a margin-over-slope ratio: the numerator m(c) represents safety margin, while the denominator
|las|l1 captures input sensitivity. This interpretation provides several advantages:

» Computational efficiency: O(d) arithmetic operations versus exponential MILP complex-
ity
* Geometric insight: Direct visualization of margin-sensitivity trade-offs

* Optimization compatibility: Smooth dependence on network parameters enables
gradient-based training

The bounds are often tight in practice because neural networks are locally approximately linear,
making CROWN’s linear relaxations accurate in activation-stable regions.

3.3 DIFFERENTIABLE IMPLEMENTATION FOR TRAINING

To integrate certified radius bounds into training objectives, we express them as explicit functions
of network parameters § = {IW*) p(F)}L_

Proposition 3.2 (Parameterized radius bounds). The radius bounds become parameter-
dependent functions:

oy [as0)Te+ By(0)

LB(’G"{ IXGI L’ 2
as(0) e ~S

o) = | H0 0 v

For piecewise-linear networks, these expressions are piecewise smooth in 0, enabling gradient-
based optimization.

The parameter dependence enters entirely through CROWN coefficients (as, Os, as, BS), which ad-
mit explicit matrix representations:

Proposition 3.3 (CROWN coefficient structure (Zhang et al., 2020b; Wang et al., 2021a)).
CROWN coefficients can be expressed as products of modified weight matrices:

as(0)T = pT WD pE-D L1 .. pOy @), (12)
as(e)—l— :pTW(L)ﬁ(L_l)W(L_l) ﬁ(l)W(1)7 (13)

where D®) and D®) are diagonal matrices encoding relaxation slopes for each layer. Com-
plete matrix expressions appear in Appendix B.2.1.

This explicit parameterization enables automatic differentiation through our radius expressions,
making certified robustness objectives fully compatible with standard gradient-based training
pipelines. The geometric insight of margin-over-slope optimization can now be directly incorpo-
rated into neural network learning.

4 TRAINING WITH CERTIFIED ROBUSTNESS OBJECTIVES

Having derived closed-form expressions for certified radii, we now show how to integrate them
into neural network training to reshape decision boundary geometry. The key insight is that our
margin-over-slope formulation enables direct optimization of both safety margin and input sensitiv-
ity simultaneously.



Algorithm 1 Certified Robustness Training

Require: Network 6, domain [L, U], robustness weight \, penalty ¢
1: for mini-batch B = {(c¢;,y;)}2., do
2: FORWARD: Compute predictions fy(c;) and task loss
: BOUNDS: Run (5-)CROWN on [L, U] to obtain (as;, Bs,;) foralls € S

RADII: Compute Tisg (¢i; 0) using expressions from Proposition 3.2

3
4:
5: AGGREGATE: Apply soft-min aggregation via equation (16)
6: Loss: Add X - ¢(r(c;;0)) to total loss

7 UPDATE: 6 < 0 — NV Lsrain(0)

8: end for

4.1 FROM VERIFICATION TO TRAINING OBJECTIVES

Geometric motivation for radius-based training. Traditional adversarial training optimizes mar-
gin implicitly by pushing decision boundaries away from adversarial examples. However, this ap-
proach ignores the equally important sensitivity term ||as||; that captures how steeply the network’s
output changes with input perturbations. Our certified radius formulation reveals that true geometric
robustness requires optimizing both quantities: increasing the safety margin while simultaneously
reducing input sensitivity. This creates decision regions with fundamentally different local curva-
ture, as illustrated in Figure 1.

Multi-constraint aggregation. For a training sample ¢ with multiple safety constraints S (e.g.,
all pairwise classification margins {s; ;(x) = fi(x) — f;(z) : j # t} for true class t), we compute
constraint-specific radii using the parameterized expressions from Proposition 3.2 and aggregate via:

rup(c; 6) == melg rl(j}% (c;0). (14)

Training objective design. We augment standard task loss with a certified robustness penalty that
directly optimizes radius bounds:

Coain(0) = = 3" [Loas(fo(0),1) + A+ 6(run(c;0))]. (15)
|B| (c,y)EB

where ¢ is a monotone decreasing penalty function that encourages larger certified radii. We con-
sider two practical choices:

* Target hinge: ¢(r) = max(0, 7 — r) encourages radii to exceed threshold T
* Inverse penalty: ¢(r) = 1/(r + ) provides smooth, unbounded incentive for larger radii

Smooth aggregation for stability. The hard minimum in equation (14) can create unstable gradi-
ents when multiple constraints are nearly active. We therefore use a smooth approximation:

(s)
0) ~ § : _TLB(CQG)
TLB(Ca 9) ~ IilOg ( exp ( K >> ) (16)

s€S
where £ > 0 controls the smoothness, recovering the hard minimum as x — 0.

4.2 PRACTICAL TRAINING ALGORITHM

Computational considerations. The primary computational cost comes from (3-)CROWN
bound computation, which scales as O(network size x d x |S|) where d is input dimension and
|S| is the number of constraints. The radius computation itself requires only O(d) arithmetic opera-
tions on the computed coefficients. For classification with & classes, |S| = k — 1 pairwise margins,
making the overhead manageable even for large vocabularies.

Bound tightening during training. To strengthen the training signal, we optionally apply a few
steps of S-CROWN joint-« optimization before computing certified radii. This tightens the lin-
ear relaxations without changing their affine structure, providing more accurate radius estimates at
modest computational cost.



4.3 THEORETICAL FOUNDATIONS

Our training approach is supported by several theoretical guarantees that connect certified radii to
fundamental network properties:

Corollary 4.1 (Certified safety guarantee). If rip(c) > € and Boo(c,e) C [L, U], then s(x) >
Oforall x € By (c,€). Hence the network’s decision is invariant throughout that neighborhood.

This provides the fundamental certification: once we achieve certified radius ¢, safety is guaranteed
within that neighborhood.

Theorem 4.2 (Local exactness under activation stability). When all ReLUs maintain activation
signs on B (c,€) N[L, U], the network becomes locally affine s(z) = w "z +b and our bounds
are exact: *(c) = rig(c) = rus(c) = s(e)/||w|1-

This explains why CROWN-based bounds are often tight in practice: neural networks are locally
approximately linear, and our relaxations become exact in activation-stable regions.

Proposition 4.3 (Sensitivity control through radius optimization). Meeting certified radius re-
quirement r1g(c) > € automatically bounds network sensitivity: ||as|; < (alc+ Bs)/e.

Proposition 4.4 (Connection to margin-based learning). For linear models f(x) = Wz + b,
maximizing r1,p is equivalent to normalized margin maximization, connecting our approach to
classical generalization theory.

Putting it together: geometric robustness by design. Algorithm 1 operationalizes the geometric
insight illustrated in Figure 1: rather than merely pushing decision boundaries away from adversar-
ial examples, we reshape their local curvature by optimizing both margin and sensitivity simulta-
neously. This creates networks with fundamentally different geometric properties—Ilarger certified
neighborhoods and inherently more robust decision regions that resist adversarial perturbations by
construction rather than by hardening.

5 EXPERIMENTAL VALIDATION

We validate our approach across two complementary domains: MNIST classification, which demon-
strates the effectiveness of our geometric training approach against established baselines, and DC
optimal power flow (DC-OPF) regression, which illustrates the accuracy-safety trade-offs funda-
mental to certified robustness in engineering applications. Together, these experiments show that
our closed-form radius bounds enable practical certified training across diverse problem types.

5.1 MNIST CLASSIFICATION

We evaluate our hybrid training method against three established robust training approaches on
a fully-connected network with two hidden layers of 128 units each, trained on standard MNIST
(60k/10k train/test split). Our architecture uses ReLLU activations with 784—128—128—10 dimen-
sions, totaling 118,282 parameters.

Experimental setup and baselines. We compare against three state-of-the-art methods: Pro-
jected Gradient Descent Adversarial Training (PGD-AT) (Madry et al., 2018), which generates
adversarial examples via iterative PGD attacks (¢ = 0.08, 10 iterations, 2 restarts); Randomized
Smoothing (Cohen et al., 2019), which trains on Gaussian-noised inputs (¢ = 0.25, 4 samples
per input) combined with ¢o adversarial training and Jensen-Shannon consistency regularization;
and our Hybrid Method, which combines PGD-AT with our differentiable certified radius penalty
applied selectively to hard examples identified via margin screening.



Our training objective augments PGD adversarial training with certified radius penalties: Ly =
Lpcp-at + A ;cq @(rLB (745 0)), where H contains up to 24 hard examples per batch and ¢(r) =
0.3(—logr) + 0.7max(0, 7 — r) encourages target radius 7 = 0.65¢ to 0.75¢. We use joint-cv
optimization with 6 gradient steps to tighten CROWN bounds before penalty computation.

Evaluation metrics. We assess clean accuracy on unperturbed inputs, certified fraction (per-
centage of test inputs where CROWN margins remain positive under ¢, perturbations), and median
certified radius computed via bisection search across test examples.

Table 1: MNIST results: clean accuracy and ¢, certified robustness comparison.

Method Clean Acc. Cert. @ 0.02 Cert. @ 0.03 Median Radius
Standard Training 97.52% 55.5% 13.3% 0.0211
PGD-AT 97.58% 89.8% 61.7% 0.0331
Randomized Smoothing 97.62% 87.5% 53.1% 0.0312
Hybrid (Ours) 98.33% 94.5% 71.1% 0.0343

Results and key findings. Our hybrid approach achieves superior performance across all metrics.
The 0.75% clean accuracy improvement over PGD-AT represents 5.4 standard errors, demonstrating
statistical significance and showing that certified training objectives can enhance rather than harm
clean performance when properly balanced through selective hard-example targeting.

For certified robustness, our method provides substantial improvements: at € = 0.03, we certify
71.1% of examples versus 61.7% for PGD-AT—a 15.2% relative improvement. At the more chal-
lenging € = 0.02 level, we achieve 94.5% certification compared to 89.8% for PGD-AT. The median
certified radius improves from 0.0331 to 0.0343, a 3.6% relative gain that translates to meaningful
improvements in practical deployment scenarios.

These results validate our core theoretical contributions: CROWN bounds contain sufficient geomet-
ric information for tight certified radius computation, these radii integrate effectively into gradient-
based training without optimization instabilities, and certified objectives improve robustness without
sacrificing accuracy. The hybrid approach demonstrates that attack-based and certification-based
training are complementary strategies for robust neural networks.

5.2 DC-OPF POWER SYSTEM CONTROL

We evaluate our approach on DC optimal power flow regression, a canonical benchmark from power
system optimization that emphasizes a different aspect of certified robustness: ensuring that neural
network surrogates maintain feasibility constraints under input perturbations representing demand
uncertainties.

Problem formulation and methodology. We train a compact fully-connected network
(3—16—3) that maps electrical demand vectors to generator dispatch decisions. The training ob-
jective combines mean squared error with our 5-CROWN certified violation penalty—a variation of
our certified loss framework where we penalize violations of generator capacity limits rather than
classification margins. Specifically, we enforce that certified output bounds [f (z;¢), f;(;¢€)] re-

’ =]
main within engineering limits [y}nm, y;-nax] over {, balls of radius ¢ = 1.0 (scaled units) for each

generator j. Generator limits are derived from training data percentiles to avoid test leakage.

Trade-off analysis and results. We systematically vary the robustness penalty weight A to char-
acterize the fundamental accuracy-safety trade-off in certified regression. Figure 2 demonstrates
several key insights: (a) increasing A consistently reduces certified violations across perturbation
budgets, (b) violation reductions occur uniformly across all three generators, and (c-d) qualitative
analysis shows that robust training produces outputs that maintain larger margins from capacity
limits while accepting modest degradation in numerical accuracy.

This experiment validates our framework’s applicability beyond classification to regression tasks
where certified safety constraints are paramount. The smooth trade-off curves demonstrate that
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Figure 2: DC-OPF certified feasibility study. (a) Certified violation versus perturbation budget for
different robustness weights—Ilarger A consistently reduces violations. (b) Per-generator violation
breakdown at ¢ = 1.0 shows uniform improvement across all outputs. (c-d) Output trajectories
for A = 0 versus A = 0.1 illustrate the accuracy-safety trade-off: robust training maintains larger
margins from capacity limits (shaded regions) while slightly relaxing numerical fit.

practitioners can navigate accuracy-safety tensions in a principled manner, selecting operating points
based on their specific risk tolerance. More experimental details appear in Appendix C.2.

6 CONCLUSION

We have presented a unified framework that transforms CROWN’s affine bounds into closed-form
certified radius expressions, enabling direct optimization of certified robustness during training. Our
key insight is that these linear bounds encode the geometric quantities—safety margins and input
sensitivities—needed for radius computation as a margin-over-slope ratio, eliminating expensive
iterative verification while maintaining formal guarantees. Unlike adversarial training, which pri-
marily translates decision boundaries away from attacks, our approach directly optimizes both mar-
gin and sensitivity to reshape local curvature, creating networks with larger certified neighborhoods
that resist perturbations by geometric design. Experimental validation on MNIST classification and
DC-OPF regression demonstrates superior certified performance while maintaining computational
tractability, transforming verification from a post-hoc analysis tool into a practical training objective
for safety-critical applications.
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APPENDIX

A RELATED WORK AND POSITIONING

A.1 ROBUSTNESS VERIFICATION METHODS

Exact verification approaches. Mixed-Integer Linear Programming (MILP) encodings provide
complete robustness verification by introducing binary variables to model ReLLU activations: z; =
max(0, y;) becomes z; > y;, z; > 0, z; < M;6;, and y; < M;(1 — §;) where §; € {0,1} (Fischetti
& Jo, 2018; Tjeng et al., 2019; Bunel et al., 2018). SMT-based approaches like Reluplex (Katz
et al., 2017) use directed case-splitting with simplex reasoning. Branch-and-bound frameworks
(Bunel et al., 2018; 2020) combine tight relaxations with intelligent branching to improve scalabil-
ity. While these methods provide mathematical guarantees, their exponential worst-case complexity
limits practical applicability, particularly for real-time certification or training integration.

Scalable approximation methods. Tractable over-approximations replace exact verification with
polynomial-time alternatives. Wong and Kolter (Wong & Kolter, 2018) construct convex relaxations
using linear programming, enabling differentiable training surrogates. CROWN (Zhang et al., 2019;
2020b) achieves significant advances through optimized linear bound propagation, computing affine
bounds /(z) = ax + b < f(x) < a’x + b = u(x) that hold uniformly over input regions. Ad-
vanced variants (a-CROWN, 8-CROWN (Wang et al., 2021b)) optimize relaxation parameters and
introduce dual variables for split constraints, achieving near-exact performance on many practical
problems while maintaining polynomial complexity.

Abstract interpretation methods (Singh et al., 2019) use geometric domains like zonotopes and poly-
hedra to track correlations between variables. Differentiable abstract interpretation (Mirman et al.,
2018) makes these techniques trainable by ensuring differentiability with respect to network pa-
rameters. These approaches share our strategy of propagating geometric objects through layers but
typically focus on membership queries rather than explicit distance bounds.

Specialized and geometric approaches. Lipschitz-based methods (Hein & Andriushchenko,
2017) provide closed-form bounds through sensitivity analysis but can be conservative. Randomized
smoothing (Cohen et al., 2019) offers probabilistic guarantees through noise injection. Recent work
explores topological perspectives: Bell and Gangrade (Bell et al., 2024) analyze decision boundary
evolution through persistent homology, providing insights into adversarial geometry but not explicit
¢, distance bounds needed for practical certification.

A.2 TRAINING FOR CERTIFIED ROBUSTNESS

Relaxation-based training. Integration of verification into training has evolved from post-hoc
analysis toward robust-by-construction learning. Wong and Kolter (Wong & Kolter, 2018) pioneered
differentiable convex relaxations, replacing intractable adversarial objectives with LP-dual bounds.
Mirman et al. (Mirman et al., 2018) extended this using zonotope domains for tighter but more
expensive bounds.

Interval Bound Propagation (IBP) training (Gowal et al., 2018) achieves extreme efficiency through
interval arithmetic but requires careful scheduling to handle loose bounds. CROWN-IBP (Zhang
et al., 2020a) combines IBP efficiency with CROWN tightness through hybrid approaches. Zhang
et al. (Zhang et al., 2019) analyze training stability, showing how bound propagation methods affect
optimization dynamics and proposing scheduling strategies for convergence.

Advanced training strategies. Recent advances explore multi-objective approaches balancing
clean accuracy, adversarial robustness, and certified robustness. Progressive training starts with
loose constraints and gradually tightens them. Hybrid methods combine adversarial training with
verification objectives to leverage benefits of both approaches.
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A.3 METHODOLOGICAL DISTINCTIONS AND CONTRIBUTIONS

Direct radius optimization. Our approach fundamentally differs from existing methods by op-
timizing certified radii directly rather than proxy objectives. While methods like CROWN-IBP
optimize dual bounds or abstract surrogates that correlate with robustness, we derive explicit closed-
form radius expressions and optimize these quantities directly. This ensures that training objective
improvements translate immediately to certified neighborhood size improvements.

Geometric insight and center optimization. We show that CROWN affine bounds encode pre-
cisely the geometric quantities needed for radius computation—safety margin and input sensitiv-
ity—enabling single-pass certification without iterative optimization. Our center optimization ap-
proach addresses a literature gap by casting the bilevel problem of finding optimal verification points
as a tractable linear program, making robust center selection practical for the first time.

Theoretical connections. Our margin-over-slope characterization connects certified robustness to
classical margin-based learning theory while preserving formal verification guarantees. This geo-
metric interpretation complements topological approaches like Bell et al. (2024) by providing ac-
tionable, quantitative information about local neighborhoods that can be directly optimized during
training.

Practical implications. The differentiability of our closed-form expressions enables new robust
optimization possibilities beyond standard adversarial training. Single-pass radius computation
makes real-time robustness assessment feasible, potentially enabling interactive design tools. Our
framework provides a foundation for extending to multi-property scenarios and hierarchical robust-
ness specifications through the flexible LP formulation.

Compared to exact methods, we avoid combinatorial search while maintaining geometric precision.
Compared to existing relaxation-based training, we optimize explicit radii rather than bound surro-
gates using closed-form expressions that eliminate repeated bound-tightening during learning. This
represents a step toward making formal verification a routine part of machine learning practice rather
than specialized post-hoc analysis.
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B MATHEMATICAL FOUNDATIONS AND PROOFS

This appendix provides complete mathematical foundations for our closed-form robustness certifi-
cation approach. We develop the geometric tools needed for distance computation, derive explicit
expressions for 3-CROWN coefficients, and establish the theoretical guarantees underlying our prac-
tical algorithms. Throughout, p € [1, co] and ¢, denotes its dual exponent (1/p + 1/¢, = 1).

B.1 NOTATION AND STANDING ASSUMPTIONS

Consider a feedforward network with L layers and weight matrices W (%) € R"**"~1 where ny, is
the width of layer k:

RON. (17
YO = ) k=) | (k) (18)
2 (k) :a(y(k)) fork=1,...,L—1, (19)

and output fy(z) = 2(F) = W) (L= 1 p(L) Unless otherwise stated, o is the ReLU activation
and all norms are vector norms.

We work on a fixed input domain
[L,U] :={z eR?: L; <z; <U;}, (20)

and we only claim radius certificates for balls contained in this domain, i.e., B,(c,r) C [L, U] when
needed.

Throughout, we focus on scalar network outputs obtained via linear readouts s(z) = p” fo(z) + po,
which encompasses both regression objectives (p selects an output component) and classification
margins (p computes logit differences). For such scalar functions, we define the exact robust radius

r*(c) := distp(c, {z : s(z) < 0}) = inf{|lz — ¢||, : s(z) <0} (21)

Activation-envelope setup. For each hidden neuron (k, ) with pre-activation bounds ll(k) <

ygk) < uz(-k), we select valid linear envelopes

r(y) = oSy + 45D, (22)
KO y) = o)y ++8), 23)

such that h(k) <o < h(k) on [l(k) u; )] and a(k) > 0. For ReLLU activations, these reduce to
standard convex/concave relaxatlons in activation-stable regions they recover exact slopes in
{0, 1} with zero intercept corrections.

B.2 GEOMETRIC TOOLS

The following result provides the explicit formula for computing distances to affine decision bound-
aries, which appear as surrogates for the true network decision boundary.

Theorem B.1 (Half-space distance in ¢,). Let H(w,b) = {z : w 'z + b < 0} and ¢ € R~
Then

-
dist, (¢, H(w, b)) = max {O, w”wcn—i—b} . (24)
s

Geometrically, this result states that the distance from a point to a hyperplane is the margin (numer-
ator) divided by the ’slope’ in the dual norm (denominator).
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Proof. Ifw'c+b < 0then ¢ € H and the distance is 0. Otherwise, minimize ||z — c||,, subject
tow'z +b = 0. Writing z = ¢ + u gives min,, ||ul, subject to w'u = —(w' ¢+ b). By
Holder’s inequality, [w " u| < |Jw]|4, [|ull,, with equality when u aligns with a dual vector of w.

The minimizer has the form u = 7% -w* where w* is a dual vector satisfying ||w*||, =1
g%
and (w, w*) = |Jw||,,. Thus the minimum distance is (w ¢ + b)/|lw|,, - [ |

Lemma B.2 (Support function of ¢, balls). For any w,c andr > 0,

sup w' x=w'c+rl|w|, (25)
lz—clloo<r
inf w'z=w'c—rl|w|]. (26)

llz—clloo <r

Proof. Write x = ¢ + § with ||6]|sc < 7. Then supw ' = 7||wl|; achieved at § = r sign(w);
the infimum follows analogously. |

B.2.1 [3-CROWN AFFINE BOUNDS AND MATRIX FORMS

B-CROWN (Wang et al., 2021a) improves upon basic CROWN (Zhang et al., 2020b) by optimizing
the choice of linear relaxations at each neuron. The key insight is to introduce dual multipliers (3
that enforce ’split constraints’—conditions that tighten the relaxation by exploiting the structure of
ReLU activations.

Layerwise ReLU relaxation. For a ReLU layer with pre-activation v € R and interval bounds
! < v < u (elementwise), and any row vector w, there exist a diagonal matrix D = diag(D;;) and
a vector b’ such that

w ReLU(v) > w' Dv+ 1, (27)
where for neurons with I; < 0 < u;, we have a free slope parameter «; € [0, 1] and the intercept is
chosen in a sign-aware manner to optimize the bound.

Matrix products for bound propagation. Define the accumulated weight products:
Qi i) =1, (28)
Qk+1,i) = WEDUD®OE, ), 1<i<k<L-1. (29)

Main 3-CROWN bound. Let S() be the diagonal split-selector matrix for layer i (entries +1 for
l;l) > 0, —1 for ug-l) < 0, and 0 otherwise). The split-selector matrix encodes which neurons are
’stable’ (always active/inactive) versus ’unstable’ (potentially switching). For stable neurons, the
relaxation is exact; for unstable ones, we optimize over relaxation parameters.

Theorem B.3 (3-CROWN primal lower bound (Wang et al., 2021a)). For an L-layer network
f with inputs x € [L, U] and per-layer pre-activation bounds 1D <y <4, we have

i > i +PB T x+q)B+c}, 30
(S 70 2 25 gy tet PO e e S e} 0

where a, P, qg, and c are explicit matrix expressions derived from the network weights and
chosen relaxation parameters.

The maximization over 8 > 0 is typically solved via projected gradient ascent or other convex
optimization methods.
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Connection to scalar readouts. For a scalar functional s(x) = p ' fo(z) + po, the 3-CROWN up-

per affine bound u,(z) = a,(3) T+ Bs() has coefficients that depend linearly on the optimization
variables f3.

Practical implementation. Maximize the 5-CROWN bound over 5 > 0 using convex opti-

mization, then use the resulting coefficients (), 3s(/3) in our closed-form radius formulas.
Setting 5 = 0 recovers standard CROWN bounds (Zhang et al., 2020b).

B.3 CLOSED-FORM RADIUS BOUNDS AND CONSEQUENCES

Theorem B.4 (Closed-form ¢, radius bounds). Assume affine surrogates {s(x) = alz+Bs <
s(z) < wuy(x) = al x + Bs hold on [L, U], and let ¢ € [L,U]. Then

.
rrg(c) := max {0, W} < r*(c) (31)
sllqs
~T >
<max{0, 2P b o). (32)
ll@sllq,

For the box-restricted radius 17y, i,,(c) = dist,(c, {s < 0} N [L, U]), the bounds hold uncondi-
tionally.

This theorem provides the mathematical foundation for the closed-form radii introduced in the main
paper.

Proof. Let V; = {z : {s(x) < 0}, Vs = {z : s(z) < 0}, V, = {x : us(xz) < 0}. From the
certified bounds ¢s < s < u, on [L, U], we have the containment relationships V,, C V, C
V, within the domain. Monotonicity of distance to sets gives dist,(c,V,) < dist,(c, Vs) <
dist, (¢, Vy,). Apply Theorem B.1 to compute the distances to the affine half-spaces V), and

|

w-

Corollary B.5 (Certified exclusion zone). If rip(c) > € and Boo(c,e) C [L, U], then s(x) > 0
forall x € B(c, €); hence the network’s decision is invariant on that ball.

This corollary provides the fundamental safety guarantee for classification: once we certify radius
¢ around a correctly classified point, we can guarantee that the network’s prediction remains un-
changed throughout that neighborhood.

Theorem B.6 (Activation-stable exactness). If all ReLUs maintain their activation signs on a
region N and Boo(c,e) C N N [L, U], then s(z) = w' z + b on B (c, €) and

r*(c) = HZ()C”)I = rig(c) = rus(c). (33)

This theorem explains why our bounds are often tight in practice: neural networks are locally ap-
proximately linear, and in regions where activation patterns are stable, our relaxation-based bounds
become exact.

Proposition B.7 (Sensitivity control via target radius). If rg(c) > € > 0 and By (c,e) C
[L,U], then

alc+ B,

as|lx < (34)
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This result provides a principled approach to controlling network Lipschitz constants: by enforcing
certified radius requirements during training, we automatically bound the network’s sensitivity in
adversarially relevant directions.

Proposition B.8 (Connection to margin-based learning). For an affine model f(x) = Wz +b
and margin s(z) = y(w " x + b) withy € {&1},

r*(c) = HZ(JC”)I =rpe(c) = rus(c). (35)

This result connects our approach to classical margin-based learning theory. For linear models,
maximizing certified robustness is equivalent to maximizing normalized margin—a well-established
principle for generalization.

Degenerate case handling. If ||as||; = 0 while a/ ¢+ 35 > 0, the surrogate yields 7,5 = +0c;
in practice, cap certificates at the box margin min;{U; — ¢;, ¢; — L; } to maintain validity within
[L,U].

B.4 AUXILIARY RESULTS

Proposition B.9 (Robust affine constraint characterization). For an affine function ¢(x) =
a'x + B and any center c and radius r > 0,

min  {(z) >0 <= a'c+pB>7|als. (36)

llz—clloo <r

Proof. By LemmaB.2, min,_._<,{(z) = a' c+B—r||a||;. The inequality > 0 is equivalent
toa'c+ B> r|al;. |
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C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

C.1 COMPLETE MNIST EXPERIMENTAL SETUP AND RESULTS
C.1.1 DATASET AND ARCHITECTURE SPECIFICATION

We conduct all experiments on the standard MNIST handwritten digit classification dataset, con-
sisting of 60,000 training images and 10,000 test images, each of size 28x28 pixels with grayscale
values originally in [0, 255]. Our preprocessing pipeline applies the standard ToTensor () trans-
formation, which converts PIL images to PyTorch tensors and automatically scales pixel values to
the range [0, 1]. We then flatten each 28x28 image into a 784-dimensional vector to serve as input to
our fully-connected architecture. No additional normalization, data augmentation, or preprocessing
steps are applied to maintain comparability across methods and ensure reproducible results.

All experiments use an identical three-layer fully-connected network architecture to ensure fair com-
parison. The network consists of an input layer (784 — 128 with bias), a hidden layer (128 — 128
with bias), and an output layer (128 — 10 with bias), with ReLU activations applied after the first
two layers. This yields a total of 118,282 trainable parameters: (784 x 128 4 128) + (128 x 128 +
128) 4+ (128 x 10 + 10) = 100, 352 + 16,512 + 1,290 + 128 + 128 + 10. We deliberately avoid
batch normalization, dropout, or other architectural regularization techniques to isolate the effects
of our training methodologies.

C.1.2 TRAINING METHOD IMPLEMENTATIONS

Standard Training Baseline. Our standard training baseline employs conventional cross-entropy
loss minimization without any robustness-specific techniques. We optimize using the Adam opti-
mizer with learning rate 2 x 103, weight decay 10~*, and default Adam hyperparameters (3; = 0.9,
Ba = 0.999, € = 10~8). Training continues for 4-6 epochs with early stopping based on validation
performance. In some configurations, we apply optional label smoothing with factor 0.02. This
baseline serves two purposes: establishing the clean accuracy ceiling achievable with standard train-
ing, and quantifying the inherent robustness gap that motivates robust training approaches.

PGD Adversarial Training. Our PGD adversarial training implementation follows Madry et al.
(Madry et al., 2018) precisely. For each training batch, we generate adversarial examples using the
Projected Gradient Descent algorithm with the following parameters: perturbation budget e = 0.08,
step size a = 0.01, 10 PGD iterations, and 2 random restarts to find stronger adversarial examples.

Algorithm 2 PGD Adversarial Example Generation

Require: Input (z,y), model fy, ¢ = 0.08, « = 0.01, steps = 10
: Initialize: 2’ +— x + Uniform(—e, €)
: for step =1 to 10 do
g Vo Lee(fo(z'),y)
'+ o' + « - sign(g)
' «clip(z’,z — e,z + €) > ¢ projection
a’ + clip(2’,0,1) > Valid pixel range
end for
: Return 2’

PRI R

The adversarial training objective becomes:

1
8]
where x,q4, is generated via the PGD procedure above. We train for 6 epochs using Adam optimizer

with learning rate 2 x 10~3 and weight decay 10~%, maintaining a constant learning rate throughout
training.

Locpar(0) = = > Lee(folwaa),y) (37)

(z,y)€B

Randomized Smoothing Training. Our randomized smoothing implementation creates smooth
classifiers that provide provable {5 robustness guarantees following Cohen et al. (Cohen et al.,
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2019). The approach trains networks to be consistent across Gaussian-noised versions of each input,
creating a smoothed classifier g(z) = E...nr0,021)[fo(x + 2)] where o = 0.25 controls the noise
level.

For each training input z, we sample K = 4 independent noise vectors z1, ..., zx ~ N(0,0%1)
and create noisy inputs z; = x+ 2z fork = 1,..., K. We then compute network outputs fy(xy) for
each noisy input and apply Jensen-Shannon divergence consistency regularization to encourage sim-
ilar predictions across the noise samples. Additionally, we incorporate /5 adversarial training with
perturbation budget ¢ = 1.0, step size 0.2, and 5 iterations, using Expected over Transformations
(EOT) with 4 samples per adversarial example.

The complete training objective combines three components:
Lsmoolh(e) = ACCE +0.5- ['JS +0.1- ['clean—mix (38)

where Ljs is the Jensen-Shannon divergence between noisy predictions and L jean-mix maintains
performance on clean examples. We train for 8 epochs using Adam optimizer with initial learning
rate 2 x 103 and cosine learning rate scheduling. Exponential Moving Average (EMA) with decay
factor 0.999 is applied to model parameters, with the EMA model used for final evaluation.

Hybrid Method Implementation. Our hybrid approach represents the core contribution of this
work, combining the broad robustness benefits of PGD adversarial training with targeted optimiza-
tion of certified radius bounds on strategically selected hard examples. The method operates through
two parallel components within each training iteration.

Algorithm 3 Hybrid Training with Certified Penalty

Require: Dataset D, model fy, hard sample threshold = 24
1: for batch 5 C D do
2: Generate adversarial examples using PGD (e = 0.03, 10 steps)
3: Compute Leap = 1y 2_; Lou(fo(@aav,i), vi)
4: Screen examples using margin and radius criteria
5: Select hard subset H C B with |H| < 24
6: for x; € H (limit to 6 examples) do
7 Compute IBP bounds at multiple € levels
8 Apply joint-« optimization (6 steps, Adam 1r=0.12)

9: Compute r; = rpg(x;; 0) using tightened bounds
10: Evaluate ¢(r;) = 0.3(—logr;) + 0.7 max(0, rgoa — 1)
11: end for

12: Lioal = Lpop + AD ;9 ¢(1i) + regularizers
13: Update parameters and EMA
14: end for

The first component applies standard PGD adversarial training to the entire batch using a smaller
perturbation budget (e = 0.03 instead of 0.08) to balance robustness with the certified component.
The second component identifies hard examples within each batch using margin-based screening
and applies our differentiable certified radius penalty to a subset of up to 24 examples (processing
at most 6 per batch for computational efficiency).

For selected hard examples, we first compute Interval Bound Propagation (IBP) preliminary bounds
at multiple perturbation levels e € {0.010,0.015,0.020, 0.025,0.030} to establish initial activation
intervals. We then apply joint-a optimization using 6 gradient steps with Adam optimizer (learning
rate 0.12) and temperature annealing from 10 to 24 to tighten the CROWN bounds by optimizing
the linear relaxation parameters for ambiguous ReLU units.

The certified radius penalty uses a mixed objective function:
@(r) = 0.3(—logr) 4+ 0.7max(0, reca — ) (39)

where the logarithmic term provides smooth gradients encouraging radius growth and the hinge
term enforces minimum radius targets. We set the target radius 7g0a = Qtarget * € Where Quarger €
{0.65,0.70,0.75} varies across training.
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Additional regularization components include spectral norm penalties on weight matrices toward
targets (2.0, 2.0, 1.5) for layers 1, 2, and 3 respectively; clean margin loss with softplus penalty
and weight 0.3; gradient clipping with threshold 0.8; and Exponential Moving Average with decay
0.997. We use cosine learning rate scheduling from 3 x 1073 to 8 x 10~* with weight decay 5 x 10~*
over 8 training epochs.

C.1.3 CERTIFICATION METHODOLOGY

All certified robustness metrics are computed using the auto_LiRPA library with "CROWN-
Optimized” method, which implements state-of-the-art linear bound propagation with optimized
envelope selection. For each test input, we compute CROWN bounds on all network logits over the
{+ perturbation region [z — €1, x + €1] N [0, 1]%.

Our certification protocol checks the multi-class margin condition: for an input (x,y) with true
class y, we compute the CROWN lower bound f,(x) on the true class logit and CROWN upper
bounds f?(m) on all other class logits j # y. The input is certified at perturbation level € if and
only if fy(z) > max;, f;(z), ensuring that the true class logit remains largest under all possible
perturbations within the specified region.

For individual certified radius computation, we employ bisection search over the perturbation budget
e. Starting with €o,, = 0 and epigh = 1.0, we repeatedly test the midpoint €mig = (€low + €nigh)/2
using the CROWN certification procedure described above. If the input is certified at eyq, we
update €jow = €mid; otherwise, we set epigh = €mig. We terminate the search when either the interval
width falls below tolerance 10~ or when no improvement is observed for 10 consecutive iterations,
indicating convergence to a certification plateau.

Table 2: Certification Protocol Parameters

Parameter Value

CROWN Implementation  auto_LiRPA "CROWN-Optimized”
Certification Condition fy(®) > max;z, fi(z)

Bisection Tolerance 1074
Early Stop Threshold 10 iterations without improvement
Test Set Size 10,000 samples

C.1.4 STATISTICAL ANALYSIS AND IMPLEMENTATION DETAILS

For statistical significance analysis, we treat accuracy measurements as binomial random variables
with success probability p and sample size n = 10, 000. The standard erroris SE = /p(1 — p)/n =~
0.14% when p =~ 0.98. The 0.75% clean accuracy improvement of our hybrid method over PGD-AT
corresponds to 5.4 standard errors, indicating extremely high statistical significance. Similarly, the
9.4 percentage point certified fraction increase at € = 0.03 represents approximately 4.2 standard
errors.

All experiments use PyTorch with fixed random seeds (torch.manual_seed(0) and
np.random.seed (0)) for reproducibility. Training batch sizes are 256 for training and 512
for testing, with single GPU training and deterministic CUDA operations where possible. The joint-
o optimization requires careful implementation with temperature annealing and gradient clipping
for numerical stability. Our certification evaluation uses the latest stable aut o_L1RPA version with
optimized envelope selection settings.

This comprehensive setup enables full reproduction and provides detailed analysis of both theoreti-
cal foundations and practical implications of our certified robustness approach.
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C.2 DC-OPF REGRESSION

Problem formulation and significance. The DC optimal power flow (DC-OPF) problem repre-
sents a linearized approximation of the fundamental power system optimization challenge, where
generators must be dispatched to meet electrical demand while respecting transmission line limits
and generator constraints. This problem has become a standard benchmark in the formal verification
community due to its combination of practical relevance and mathematical tractability.

In our regression formulation, we learn a neural network surrogate fy : R3 — R3 that maps demand
vectors x to optimal generator dispatch decisions y. The critical challenge is ensuring that learned
dispatch decisions remain feasible under demand uncertainties represented by ¢, perturbations of
magnitude e around nominal demand points.

Network architecture and training objective. We employ a compact fully-connected architec-
ture with 3 input units (representing demand at 3 buses), a single hidden layer of 16 ReLU units,
and 3 output units (representing dispatch decisions for 3 generators). This architecture contains

(3 x 16+ 16) + (16 x 3+ 3) = 115

trainable parameters, making it suitable for detailed analysis while remaining representative of prac-
tical surrogate models.

The complete training objective balances prediction accuracy with certified constraint satisfaction:

1

Lol6) = 70 > o) —yl3 (40)
(z,y)eB
1 3
+)\.®ZZ{YG+(1‘;€)+V[($§€)}’ (41)
zeB j=1

where the violation terms are defined as
Vi (wi€) = max (0, Fo (w5 €) — ™), “2)

Vi (w3€) = maX(O, y;nin - L”j(ac; e)) (43)

Here f, j(:v; €) and f ;j(x;€) denote S-CROWN lower and upper bounds on output j over the /o

perturbation region
{2l — 2] <€},

with € = 1.0 in our scaled coordinate system.

Constraint specification and data preprocessing. Generator limits [y}“i“, y;.“ax] are determined
from the training data distribution to represent realistic operational constraints while avoiding test
set leakage. Specifically, we compute the 5th and 95th percentiles of each generator output in
the training set, providing reasonable bounds that reflect the range of normal operation without

overfitting to specific test cases.

Input and output scaling follows standard practice: we normalize demand vectors to zero mean and
unit variance, and similarly standardize generator outputs. This preprocessing ensures numerical
stability during 5-CROWN bound computation and prevents any single variable from dominating
the constraint violation penalties.
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D LLMs

We used large language models as assistive tools for coding and implementation, writing, discov-
ery and summarization of related work, and for developing and presenting theoretical results. The
authors take full responsibility for the content.
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