
Under review as submission to TMLR

Robust Reinforcement Learning in a Sample-Efficient
Setting

Anonymous authors
Paper under double-blind review

Abstract

The performance of reinforcement learning (RL) in real-world applications can be hindered
by the absence of robustness and safety in the learned policies. More specifically, an RL
agent that trains in a certain Markov decision process (MDP) often struggles to perform well
in MDPs that slightly deviate. To address this issue, we employ the framework of Robust
MDPs (RMDPs) in a model-based setting and introduce a second learned transition model.
Our method specifically incorporates an auxiliary pessimistic model, updated adversarially,
to estimate the worst-case MDP within a Kullback-Leibler uncertainty set. In comparison to
several existing works, our method does not impose any additional conditions on the training
environment, such as the need for a parametric simulator. To test the effectiveness of the
proposed pessimistic model in enhancing policy robustness, we integrate it into a practical
RL algorithm, called Robust Model-Based Policy Optimization (RMBPO). Our experimen-
tal results indicate a notable improvement in policy robustness on high-dimensional control
tasks, with the auxiliary model enhancing the performance of the learned policy in distorted
MDPs, while maintaining the data-efficiency of the base algorithm. Our methodology is also
compared against various other robust RL approaches. We further examine how pessimism
is achieved by exploring the learned deviation between the proposed auxiliary world model
and the nominal model. By introducing a pessimistic world model and demonstrating its
role in improving policy robustness, our research presents a general methodology for robust
reinforcement learning in a model-based setting.

1 Introduction

Reinforcement learning (RL) has been shown to perform well in many environments. However, the perfor-
mance of a trained RL agent can rapidly decrease when the agent is evaluated in a slightly altered environment
(Christiano et al., 2016; Rusu et al., 2017). This is one of the issues that has limited the adoption of RL in
real-world scenarios, more specifically due to the simulation-to-reality (sim2real) gap and inherent variability
in real control systems. These control systems could for example be robots, where the friction changes over
time due to the oil in the joints. Therefore, there is a need for policies that are robust enough to perform well
in environments that differ from the training environment. Due to this necessity, various approaches tackle
the sim2real issue, often using different problem formulations (Zhao et al., 2020). Some of these approaches
include domain randomization or transfer learning. In our work, however, we aim to maximize the worst-case
performance of the RL agent under bounds on the uncertainty, commonly formalized as a robust Markov
decision process (RMDP). This formalism defines an uncertainty set of multiple Markov decision processes
(MDPs), where the agent is oblivious to which MDP of the set it is acting in. The objective in an RMDP
then becomes to maximize the return in the worst (i.e., lowest cumulative reward) MDP of the uncertainty
set. In previous research, methods that work within the RMDP formalism have demonstrated enhanced
robustness against perturbations between the train and test environment (Gadot et al., 2024; Pinto et al.,
2017). However, these works often impose extra requirements on the training environment, such as the abil-
ity to re-sample a transition multiple times or to have access to a parametric environment during training.
A second challenge for RL in some real-world applications is the sample efficiency, since it is often slow to
perform exploration (e.g., on a physical robot). Model-based reinforcement learning (MBRL) is an approach
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that has demonstrated significant progress in sample efficiency, such as the work of Janner et al. (2019) for
simulated robotics or the more general work by Hafner et al. (2023) that allows visual state representations.

This paper adopts the RMDP setting and proposes an algorithm that improves the robustness of a learned
policy, without placing any additional requirements on the training environment. Importantly, we work
within the MBRL framework and aim to maintain the sample efficiency of these methods. Inspired by the
ideas of Rigter et al. (2022) and Pinto et al. (2017), our approach introduces an auxiliary model that acts as an
adversary to minimize the cumulative reward under the current policy. This auxiliary objective then defines
a two-player Markov game with the policy optimization objective. By sequentially optimizing these two
competing objectives, our algorithm can optimize towards a more robust policy. Our main contributions
are firstly (i), proposing a robust MBRL algorithm to improve robustness in an online setting, while remaining
sample efficient. This is achieved by adding an auxiliary model to model-based policy optimization (MBPO)
which learns a pessimistic world model via adversarial updates. Secondly (ii), we evaluate the empirical
performance of our algorithm on high-dimensional Multiple Joint Control (MuJoCo) and Deepmind Control
Suite (DMC) benchmarks under simultaneous parameter distortions 1 2. Thirdly (iii), we interpret and
quantify how the predictions of the learned robust model differ from the nominal model, demonstrating
how the agent achieves robustness. The remainder this work will first highlight relevant background to
our approach. Then, our methodology is described in detail. Subsequently, the results demonstrate the
improvement in robustness that our method provides to MBPO (Janner et al., 2019) in multiple MuJoCo
(Todorov et al., 2012) and DMC (Tassa et al., 2018) control environments. Finally, we draw conclusions and
outline future research directions.

2 Background

In this section, we first introduce MBRL within the broader context of MDPs. Secondly, RMDPs are
described and an adversarial framework to tackle them is highlighted. Finally, the Kullback-Leibler (KL)
uncertainty set is defined.

2.1 Model-Based Reinforcement Learning

MBRL (Moerland et al., 2023) operates within the framework of an MDP, defined by the tuple (S,A, P, γ, ρ0),
where S and A denote the state and action space. R is a real interval, denoting the set of possible rewards.
The transition distribution P (s′, r|s, a) defines the transition and reward probabilities given a state s and
an action a. γ is the discount factor, and ρ0(s) is the initial state distribution. The objective in RL is to
identify an optimal policy π∗ that maximizes the expected sum of discounted rewards:

π∗ = arg max
π

Eπ,P

[ ∞∑
t=0

γtrt

]
(1)

In addition, we denote the state visitation distribution of the MDP as dπ, which defines the likelihood of
being in a certain state when following policy π. In MBRL, the agent learns a model of the environment’s
dynamics, represented by pθ(s′, r|s, a), from the data collected through its interactions with the MDP. This
model is then used to simulate future states and rewards, reducing the number of interactions with the
real environment. In most MBRL algorithms, the agent’s policy is updated based on both real experiences
and simulated experiences from the learned model, balancing between exploration for model learning and
exploitation of the learned model for policy improvement. For notational simplicity, we will use s, a and s′

to denote st, at, st+1 respectively, when it is clear from context.

2.2 Robust Markov Decision Processes

In a traditional MDP, the agent optimizes its policy in a static transition model P . However, in
some real-world problems, the dynamics can change over time. Hence, we can define a Robust MDP

1Evaluation code and weights available at https://github.com/rmbpo-eval/rmbpo-tmlr
2Recorded examples available at https://sites.google.com/view/rmbpo
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(Wiesemann et al., 2013) where the agent acts on an uncertain transition distribution P (·, ·|s, a) that is
assumed to lie within an uncertainty set Ps,a. Following other works, we only consider sa-rectangular uncer-
tainty sets, as finding the optimal robust policy for general uncertainty sets is NP-hard (Gadot et al., 2024;
Zhou et al., 2024; Wiesemann et al., 2013). This assumption ensures that the uncertainty set in a (s, a)-pair
is independent from the uncertainty set in other (s, a)-pairs. Furthermore, we define the global uncertainty
set P as the Cartesian product of each independent marginal uncertainty set Ps,a. The robust objective
Jrobust(π) can now be defined as the objective function in the worst-case MDP of a given uncertainty set.
This objective is stated in Eq. 2.

Jrobust(π) = min
P∈P

Eπ,P

[ ∞∑
t=0

γtrt

]
(2)

The goal of robust reinforcement learning is then to find the optimal robust policy π∗
P that maximizes this

worst-case performance:
π∗

P = arg max
π∈Π

Jrobust(π) (3)

Additionally, the algorithm is dependent on knowing the worst-case MDP at every time step, we call this the
inner-loop problem. Under the rectangularity assumption, for a small uncertainty set, the inner-loop problem
can be solved iteratively evaluating transitions in each MDP P ∈ P. However, when the uncertainty set
becomes very large or continuous, the inner-loop problem can be challenging. We will follow related works
by considering this combined optimization objective as a two-player zero-sum Markov game (Rigter et al.,
2022; Pinto et al., 2017). In this game, one player optimizes the policy, to maximize the return, whilst the
other player tries to find P ∗ ∈ P, which minimizes the expected return.

2.3 KL Uncertainty set

Since the "true" uncertainty set is often not known or ill-defined, a common choice is the KL uncertainty
set, denoted as Ps,aKL (Hu & Hong, 2013; Gadot et al., 2024; Shi & Chi, 2024). The KL uncertainty set for a
transition from a state-action pair s, a is defined as:

Ps,aKL =
{
P (·, ·|s, a) ∈ ∆S×R | DKL(P (·, ·|s, a)||P̄ (·, ·|s, a)) ≤ ϵs,a

}
, (4)

where P̄ is the nominal kernel, i.e., the environment with which the agent interacts during training. ∆S×R
denotes the probability simplex over S ×R. Furthermore, DKL(P (·, ·|s, a)||P̄ (·, ·|s, a)) is the KL divergence
between the transition distributions of model P and the nominal model P̄ , given a current state and action.
Again, we can define the global KL uncertainty set PKL in an analogous manner to P, denoting the Cartesian
product of independent marginal sets Ps,aKL. In our work, we consider a constant threshold, i.e. ϵs,a = ϵ for all
s, a. Notably, a limitation of the KL uncertainty set is the dependence on a stochastic transition model, since
it would require the (ill-defined) KL-divergence between two Dirac functions in the deterministic setting.
However, this limitation can be circumvented without loss of generality by adding action noise between the
agent and the MDP (Gadot et al., 2024; Zhou et al., 2024).

3 Auxiliary Model Learning

The goal of this section is to tackle the inner-loop problem of the robust objective, as defined by the
minimization problem in Eq. 2, i.e. approximating the worst-case MDP, denoted as P ∗ ∈ P, where we choose
P to be the global KL uncertainty set centered around the nominal model P̄ . This choice of uncertainty set
follows a common choice in literature (Gadot et al., 2024; Hu & Hong, 2013). To describe our methodology,
Section 3.1 introduces the auxiliary adversarial model as an addition to traditional world model learning
(e.g. via maximum likelihood estimation (Janner et al., 2019)). The auxiliary model has a well-defined KL
divergence with the approximated nominal model. Secondly (Section 3.2), we introduce the loss function to
train the auxiliary model to maintain a low KL divergence with the normal learned transition model, whilst
also learning to be pessimistic (i.e., minimizing the return of the transition).
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3.1 Auxiliary Model

Since we work within the context of MBRL, we have direct access to a parameterized approximation,
pθ(s′, r|s, a), of the nominal transition model P̄ (s′, r|s, a). However, this does not directly provide us with a
method to approximate DKL(pθ(s, a)||P̄ (s, a)), since we do not have access to the transition probabilities of
the training environment P̄ , needed to construct the KL uncertainty set. Hence, we propose to not directly
try to approximate the pessimistic transition model, thus leaving pθ untouched. As an alternative, we pro-
pose an auxiliary parameterized model, gψ, which takes as input the outputs of the learned transition model
pθ, in addition to s and a. Both gψ and pθ are parametrized as neural networks (multilayer perceptrons).
Next states and rewards can now be sampled according to Eq. 5.

s′, r ∼ gψ(s, a, pθ(s′, r|s, a)) (5)

As it is not practical to compute DKL(gψ(s, a)||P̄ (s, a)) we compute DKL(gψ(s, a)||pθ(s, a)) and use this
divergence for the uncertainty set. This practical step introduces an error if pθ does not perfectly capture
the training environment, we rely on the empirical results to demonstrate that our algorithm still succeeds
in improving the robustness of a learned policy. In our work, both pθ and gψ define the mean and covariance
matrix of a diagonal multivariate Gaussian distribution, so the KL divergence can be computed closed-form.
In practice, we provide the predicted mean µθ and covariance matrix Σθ as inputs to the auxiliary model
gψ, since a Gaussian is fully defined by these two components. Strictly speaking, the addition of pθ as an
input to the auxiliary model is not necessary, however, this greatly eases the optimization of gψ, which will
be explained in Section 3.2.

3.2 Training the Auxiliary Model

The goal of the auxiliary model is to minimize the value of each transition under the current pol-
icy while remaining within the desired uncertainty set PKL. We employ an expected uncertainty set
E(·) [DKL(gψ(·)||pθ(·))] instead of bounding the element-wise divergence. This allows us to use common
deep learning techniques for optimization. Note that it follows from the Markov inequality that a limited
expected KL divergence also limits the probability of high individual KL divergences (see Appendix E.1).
Using this inequality, one could set the bound on expected KL divergence (denoted by ϵe) in function of
an acceptable probability that the element-wise KL divergence (i.e., ϵ) is violated. By applying Lagrangian
relaxation to the constraint problem, we can formulate this objective as a dual problem in Eqn. 6. The first
term is proposed by Rigter et al. (2022) and forces the auxiliary model to minimize the value of transitions.
V θ,ϕψ denotes the learned value function, parametrized by ϕ, which are the parameters of the agent used to
solve the outer-loop problem. The second term limits the expected KL divergence between the auxiliary
model and the approximate model.

max
λ≥0

min
gψ

[
E(s′,r)∼gψ,s∼dπ

ψ,θ
,a∼π

[
log(gψ(s′, r|s, a, pθ(·|·))(r + γV θ,ϕψ (s′)) + λ(KL(gψ(·)||pθ(·))− ϵe)

]]
(6)

Eqn. 6 can directly be approached by Lagrangian dual descent. However, this method is known to be
unstable and oscillate around the constraint boundary (Stooke et al., 2020; Platt & Barr, 1987). Following
Rigter et al. (2022) and a practice used in other works that theoretically rely on a constrained objective (such
as Higgins et al. (2017)), we choose to fix λ as a static hyperparameter and optimize the linear combination of
the primal objective and the constraint. Therefore, we optimize the auxiliary model using gradient descent,
following the gradient provided in Eqn. 7 (note that the constant λ in the second term can be replaced by
η in the first term, which is equivalent up to a scaling factor).

∇ψJg(ψ) = E(s′,r)∼gψ,s∼dπ
ψ,θ

,a∼π

[
η · (r + γV θ,ϕψ (s′)) · ∇ψ log(gψ(s′, r|s, a, pθ(·|·)) +∇ψKL(gψ(·)||pθ(·))

]
(7)

The hyperparameter η controls the influence of the value function: for a small η, the auxiliary model will
be almost identical to the approximate model and therefore our method will not any significant pessimism.
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Figure 1: A toy experiment where we learn a pessimistic auxiliary model. The nominal model is a standard
Gaussian, the associated value function is highlighted on each plot.

For larger values of η, gψ will grow more pessimistic and therefore the auxiliary model can learn to be
significantly more pessimistic than the approximate model. Values of η that were used in this work can be
found in Appendix C. Formal guarantees that the auxiliary model remains in the uncertainty set are left for
future work.

3.3 A Supervised Toy Experiment

Before moving to a RL algorithm in the next section, we set up a supervised toy problem, this will allow
us to choose some hand-crafted value functions and interpret their effect on the pessimistic model learning
visually. We create a dataset with samples of a standard normal distribution. This dataset represents
samples of the transition model, given a single state and action. As a next step we learn nominal parameters
θ = {µnominal, σnominal} that define the approximated nominal distribution. In the final step, we follow the
methodology of Sec. 3.2 to learn the parameters ψ = {µpessimistic, σpessimistic}, which define the pessimistic
auxiliary distribution. Note that it is not strictly necessary to approximate θ, and we could just provide
the ground truth nominal model to compute the KL-divergence. However, we wanted to remain as close as
possible to the setting of Section 4.

The following three value functions are used: v1(x) = x, v2(x) = −x and v3(x) = x2. For v1, we expect the
pessimistic model to biased towards lower values of x, since there is a linear correlation between x and the
value of x. For v2 we make an analogous reasoning for a bias towards higher values of x. Lastly, we expect an
unbiased distribution for v3, however the standard deviation is expected to be smaller. This follows from the
fact that the normal distribution is already centered around the point where the value function is minimized,
i.e. x = 0. The results of these experiments are shown in Fig. 1, which confirm that the auxiliary model
is biased towards low-value points, and that this bias scales with η. We also performed experiments when
learning a categorical distribution instead of a Gaussian, these can be found in Appendix B, together with
a summary of the supervised algorithm that was used.

4 Robust Policy Learning

We propose robust model-based policy optimization (RMBPO), a RL algorithm that incorporates the aux-
iliary model to improve the robustness of the learned policy. Furthermore, we discuss the implications of
RMBPO on the performance bound of MBPO, where we motivate the choice for the KL uncertainty set.

4.1 Proposed Reinforcement Learning Algorithm

To improve policy robustness, we combine the auxiliary model with MBPO (Janner et al., 2019) to create
RMBPO. MBPO approximates the training environment by maximizing the log likelihood of experienced
transitions under its learned model pθ. This model is a neural network that predicts a mean and covariance
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matrix over the next states and rewards, conditioned on the current state and action. On-policy rollouts are
then performed on the learned model. Finally, the unrolled data is used to update a policy via Soft Actor-
Critic (SAC) (Haarnoja et al., 2018). We modify MBPO by training an auxiliary model in addition to the
existing model, via Eq. 7. Since these two models are trained separately, the auxiliary model learning does
not hinder the accuracy or precision of pθ. During the model unroll, we pass the current state through the
learned model pθ, after which we use the output of that model (µθ,Σθ) as input to the auxiliary model. The
auxiliary model will then predict a modified (µψ,Σψ), predicting a pessimistic transition. This procedure is
fully described in Algorithm 1, where our additions are highlighted in blue. Following other works (Gadot
et al., 2024; Zhou et al., 2024), we add a small amount of action noise to the environment, otherwise, the
uncertainty set would not be well-defined. More details on the action noise are provided in Appendix D.

Algorithm 1 RMBPO (Additions in blue)
1: Initialize policy πϕ, predictive model pθ , auxiliary model gψ,
2: environment dataset Denv, model dataset Dmodel
3: for N epochs do
4: while improving on holdout set do
5: Update model parameters θ on environment data Denv via maximum likelihood
6: end while
7: while improving on holdout set do
8: Update auxiliary model parameters ψ according to Eq. 7: ψ ← ψ − λa∇̂ψJg(ψ,Denv, pθ, πϕ)
9: end while

10: for E steps do
11: Take action in environment according to πϕ; add to Denv
12: for M model rollouts do
13: Sample st uniformly from Denv
14: On-policy rollout according to Eq. 5 starting from st using policy πϕ; add to Dmodel
15: end for
16: Perform (soft) actor-critic updates on ϕ using samples from Dmodel.
17: end for
18: end for

4.2 Implications on the performance bound

Letting the auxiliary model minimize the value of transitions, is a direct application of the definition of an
RMDP. However, we also want to limit the difference in returns in the nominal MDP. This section will
motivate that bounding the KL divergence is a way to limit this loss in episode returns. By starting from
the theoretical insights, provided by Janner et al. (2019), we can see that a certain policy has a bounded
difference between the returns under the real model (environment) and the learned model (pθ). The data
collecting policy is defined as πD. If the expected total variation (TV) distance between two transition
distributions is bounded at each time step by ϵm = maxtEs∼D,t[DTV (P̄ (s, a)||pθ(s, a))] and the policy
divergence be bounded by ϵπ ≥ maxs[DTV (π(s)||πD(s))], then the difference between the true returns and
the approximate model returns is bounded, this bound is restated by Eqn. 8. The true return G[π] denotes
the expected return of a policy in the nominal environment. The model return Ĝ[π] denotes the expected
return of a policy in the approximate model pθ.

G[π] ≥ Ĝ[π]−
[

2γrmax(ϵm + 2ϵπ)
(1− γ)2 + 4rmaxϵπ

(1− γ)

]
(8)

We can employ this insight to bound the difference in returns of the optimal policy on the learned model
and the auxiliary model, as the learned model serves as the data-generating "environment" for the auxiliary
model. I.e., we are interested in lower bounding the return under pθ, given the return under gψ. This would
mean that improving the policy under the auxiliary model also improves the policy under the nominal learned
model, which provides a lower bound on the performance in the real training environment. Therefore, we
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define ϵmaux = maxtEs∼π,t[DTV (gψ(s′, r|s, a)||pθ(s′, r|s, a))] as the expected maximum TV distance between
the auxiliary model and the learned model. Let Ĝaux[π] be defined as the expected return of a policy under
the auxiliary model. Furthermore, because the two models are unrolled under the same policy, we know that
the policy divergence ϵπaux is 0. Employing Eqn. 8 in this setting provides Eqn. 9.

Ĝ[π] ≥ Ĝaux[π]− 2γrmax(ϵmaux)
(1− γ)2 (9)

We can combine Eqn. 8 and Eqn. 9 to become:

G[π] ≥ Ĝaux[π]−
[

2γrmax(ϵm + 2ϵπ + ϵmaux)
(1− γ)2 + 4rmaxϵπ

(1− γ)

]
(10)

This makes intuitive sense, if gψ is very different from pθ, our agent will perform poorly in the training
environment. If gψ is (almost) identical to pθ, the RL agent learns from a model that is identical to
the nominal MBPO model, and the performance bound becomes identical. Since ϵmaux denotes the TV
distance, and we know from Pinkster’s inequality that the KL-divergence bounds the TV distance, we know
that minimizing the KL divergence will lower-bound the performance in the nominal environment (Pinsker,
1964). With a very small η, the auxiliary model will focus on minimizing the KL divergence, and hence the
TV distance. The more η is increased, the less the loss function will focus on the KL divergence compared to
value minimization, hence becoming more pessimistic, but losing performance in the nominal environment
(and probably everywhere). This trade-off between adversarial robustness and optimality is well studied in
literature. Empirical results on the relation between η and the KL divergence can be found in Appendix
A.2.

5 Main Results

The following section aims to answer three main research questions emperically: (i) "Can the auxiliary model
make a learned policy more robust?", (ii) "How does RMBPO compare against other robust RL approaches in
simulated locomotion tasks?" and (iii) "Can we gain some insight in how the auxiliary model modifies state
tranistions to be pessimistic?". The first two questions are investigated in Section 5.1 and Section 5.2, where
we investigate the effect of the auxiliary model, after which RMBPO is compared against SAC and robust
natural actor-critic (RNAC) (Zhou et al., 2024), robust adversarial reinforcement learning (RARL) (Pinto
et al., 2017), Quantal Adversarial RL (QARL) (Reddi et al., 2024), mixed Nash Equilibrium via Langevin
dynamics (MixedNE-LD) (Kamalaruban et al., 2020) and Estimate the Worst Kernel (EWoK) Gadot et al.
(2024). The final question is investigated in Section 5.3, where we perform a limited case study on the
Hopper-v4 environment to examine which changes are made by the auxiliary model. For all our results, each
algorithm is trained five times using different initial seeds.

5.1 Effect of the auxiliary model

We evaluate the hypothesis that our proposed auxiliary model aids MBRL algorithms in being more robust.
Therefore, we evaluate RMBPO under two simultaneous distortions. For the MuJoCo environments, we
follow Pinto et al. (2017) and perform a sensitivity analysis on the combination of torso mass and friction
distortions. The results are displayed in Fig. 2. We include the results for Walker2d-v4 in Appendix A.1.
In all three tested environments, it is clear that RMBPO is more robust than MBPO, confirming that the
auxiliary model aids the robustness in this setting. Additionally, we investigate the performance of our
method in DMC Walker Run and Walker Walk. These results are shown in Fig. 3 (a and c). In both of
there DMC tasks, RMBPO improves the robustness, compared to MBPO. Using the data displayed in Fig. 2
and Fig 3 (a and c), we make a cumulative proportion plot in Fig. 4. This figure demonstrates a significant
reduction in the number of distortion combinations that deliver a (very) low return. The improvement
in robustness can be related to a decrease in optimality in the nominal environment, as can be seen in
our experiments in HalfCheetah-v4 and DMC Walker Run. The trade-off between nominal optimality and
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Figure 2: Comparing MBPO, SAC, RNAC, RARL, QARL, EWoK and RMBPO (ours) under two distortions
on MuJoCo Hopper-v4 and HalfCheetah-v4. Results for Walker2d-v4 can be found in Appendix A.1
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Figure 3: Comparing MBPO, SAC, MixedNE-LD, RARL, QARL, EWoK and RMBPO (ours) under two
distortions on DMC Walker-Walk and Walker-Run.
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Figure 4: Emperical cumulative density plot demonstrating the robustness of our method. RMBPO success-
fully reduces the number of low-return episodes. Samples are combined distortions, as displayed in Fig. 2
for MuJoCo and in Fig. 3 (a and c) for DMC.

robustness is controlled by the hyperparameter η. This relates to the theory in Section 4.2 and is a well-
known trade-off that is affirmed by previous work (Lee et al., 2024; Gadot et al., 2024). It can be seen in the
results that we choose a significantly higher value of η for Hopper-v4, compared to the other environments.
This is related to a much lower variance on state transitions in the Hopper environment, we provide more
details on this in Appendix F. Additional results on the magnitude of η can be found in Appendix A.4.

5.2 Comparing with robust RL approaches

In this section, the robustness of RMBPO will be compared with six other algorithms. As commonly done,
we use SAC as a baseline, this algorithm is trained using the same action noise as RMBPO for 1M steps.
Secondly, we compare with EWoK, an algorithm that approximates a uncertainty set by sampling multiple
next states in the environment, after which importance resampling is performed, based on the value of these
sampled states (Gadot et al., 2024). Notably, this requires the environments to support sampling multiple
next states for a certain (s, a)-pair. EWoK is trained for 1M steps in each environment, except HalfCheetah-
v4, where it performs 3M steps. Furthermore, RNAC is included as a baseline as well using 3M samples
in all experiments, as described in the original paper (Zhou et al., 2024). For the most direct comparison,
we compare against the integral probability metric (IPM) version of RNAC, since this version produces the
strongest results. Additionally, we compare our approach with QARL (Reddi et al., 2024) and RARL (Pinto
et al., 2017). These algorithms are both based on the inclusion of an adversary that has direct access to the
training simulator, allowing it to apply perturbation forces on the simulated locomotion problems. Notably,
this means that these approaches assume a simulator that allows such functionality. We follow Reddi et al.
(2024) and train these algorithms for 1M environment steps in DMC Walker, with an update-to-data (UTD)
ratio of 1/3. However, in the MuJoCo tasks, we increase the UTD ratio to the more common value of 1,
as 1/3 did not converge in these environments within 1M steps. Also, the total step count was increased
to 3M steps for HalfCheetah-v4, as is common practice for SAC-type algorithms, and was necessary for
convergence to a good policy. Finally, we included the MixedNE-LD algorithm (Kamalaruban et al., 2020).
For MixedNE-LD, we also followed Reddi et al. (2024) for the hyperparameters. RMBPO (ours) uses 125k
samples for Hopper-v4, 300k for Walker2d-v4, 400k for HalfCheetah-v4, and 200k for DMC Walker, leaving
the data-efficient setting of MBPO unaltered. To compare the algorithms, our first experiment (MuJoCo
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Table 1: The difference in transition predictions between gψ and pθ. Values indicate angular velocity (ω) or
lateral velocity (v). Expressed in rad/s and m/s respectively.

Torso (ω) Thigh Hinge (ω) Leg Hinge (ω) x-Coordinate Torso (v)

η = 0.25 4.29e-4 3.02e-4 1.20e-4 2.89e-5
η = 0.5 1.01e-3 5.10e-4 2.83e-4 2.11e-4
η = 1 1.39e-3 1.14e-3 4.16e-4 2.01e-4
η = 2 3.16e-3 1.39e-3 1.22e-3 3.13e-4
η = 4 4.08e-3 2.17e-3 1.79e-3 8.30e-4

environments) evaluates the mean performance in two environments, under two simultaneous distortions.
In the experiments shown in Fig. 2, RMBPO performs competitively, showing a high degree of robustness
compared to the baselines. Interestingly, EWoK outperforms all other algorithms by a large margin in
our tests of HalfCheetah-v4. In the experiments shown in figure Fig. 3, we compare RMBPO with the
mentioned baselines on DMC Walker Walk and Walker Run. We follow Gadot et al. (2024) by distorting
the Joint Damping and Torso Length parameters in these environments. To allow for a fair comparison
with QARL, RARL and MixedNE-LD using the hyperparameters provided by Reddi et al. (2024), we follow
their experimental setting and compare with these algorithms using an horizon of 500, instead of 1000.
These comparisons with an horizon of 500 can be found in Fig. 3 (b and d), the comparisons with the
other baselines in the traditional setting of 1000 steps can be found in 3 (a and c). Additionally, we also
compare with QARL, RARL and MixedNE-LD when distorting the same parameters as Reddi et al. (2024)
in Appendix A.3. In all DMC experiments, RMBPO performs competitively compared to the baselines,
often outperforming other algorithms. Notably, EWoK is often the strongest baseline.

5.3 What is the model learning (in Hopper-v4)?

Figure 5: A render of Hopper-v4, an-
notated with the four largest modifi-
cations of the auxiliary model. An in-
crease in (angular) velocity is denoted
with ’++’, a decrease with ’- -’.

In addition to the quantitative results in this section, we perform a
limited case study on how gψ modifies the state transitions compared
to the approximated nominal model pθ. In Hopper-v4, the observa-
tion space consists of 11 values describing the angles and angular
velocities of the joints in the robot and the position and (angular)
velocity of the top of the robot. For an exhaustive list, the reader is
deferred to Todorov et al. (2012). The goal of the environment is to
use three rotors (in the foot, leg, and thigh) to make the robot move
forward as fast as possible, without falling. Therefore, we would
expect the auxiliary model to modify the transitions in such a way
that the robot moves forward more slowly and becomes more prone
to falling. To examine the learned model, we display the four largest
modifications that are made by the auxiliary model in Table 1. It
can be seen that increasing η consistently increases the distance of
the robust predictions from the predictions of the nominal model.
The four state variables that are the most influenced by the adver-
sarial updates are the angular velocity of the torso, the thigh hinge,
the leg hinge and the x-velocity. More importantly, it is shown that
the robust model increases the angular velocity of the torso, whilst
it decreases the other two angular velocities. This aligns with the
intuition of the system, since higher mobility of the torso makes the
Hopper harder to control and therefore increases the probability of
it falling. The results also demonstrate a lower angular velocity on
the actuated parts (such as the leg and thigh). Since these limbs are used to control the robot, this makes
the system harder to control. Finally, the lateral velocity of the robot is lowered, which directly reduces the
step-wise reward of the environment. All these transition modifications are visually illustrated in Fig. 5.
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6 Related Works

Many works focus on robust reinforcement learning in a tabular setting. These works include a robust
policy gradient (Wang & Zou, 2022; Kumar et al., 2024) and a tractable approach to tackle non-rectangular
RMDPs (Goyal & Grand-Clement, 2023). In a step towards generality, Wang & Zou (2021) and Morimoto &
Doya (2005) consider robust reinforcement learning with function approximation on the inverted pendulum
problem. Recently, Wang et al. (2024) provide a robust RL algorithm with sample complexity analysis. As
many works exist that consider tabular robust RL, the reader is referred to Moos et al. (2022) for more
information on the topic.

In the context of high-dimensional state and action spaces, Pinto et al. (2017) propose adversarial RL for
robustness. They show that an adversarial approach can make RL robust towards differences between the
training and evaluation environment. In contrast to our work, the adversary in their methodology has access
to parameters of the simulator during training. Gadot et al. (2024) propose a methodology where multiple
next states are sampled at each time step from a stochastic transition model. Subsequently, a single next
state is resampled with an importance weight, based on the value of that state. Similar to this work, the KL
uncertainty set is considered, however, their methodology requires a simulator where multiple next states
can be sampled at any time step. Rajeswaran et al. (2017) investigate an approach that, similar to ours,
makes use of MBRL with ensemble world models. However their methodology explicitly requires training
randomization over the distortion parameter that is evaluated. Rigter et al. (2022) propose an approach
similar to ours, with the goal of being robust to out-of-distribution data in offline RL. More recently, Zhou
et al. (2024) provide a model-free alternative to our work. Improved robustness against transition dynamics
is demonstrated in the MuJoCo environment, in addition to exhaustive theoretical motivation. Recently,
Liu et al. (2024) introduce a robust RL algorithm, with theoretical guarantees on the robustness and sample
complexity of their approach. However, their work is restricted to an action robust setting. Additionally,
the work of Rigter et al. (2024) demonstrates the benefit of adversarial robustness in a reward-free RL
setting. Queeney et al. (2024) introduce a novel uncertainty set, called Optimal Transport Perturbations,
and demonstrate its effectiveness in improving robustness and safety in a simulated robotics setting. Finally,
Queeney & Benosman (2024) also consider model-free robust RL to improve the safety of a learned policy.

7 Conclusion and Future Works

This work proposed a novel approach for robust adversarial RL in an online, high-dimensional setting.
We have motivated the use of an auxiliary model to tackle the inner-loop optimization problem of the
RMDP formulation and provided a version of this auxiliary model, based on the KL uncertainty set. This
pessimistic auxiliary model was then implemented in a practical MBRL algorithmm, called RMBPO. Our
experiments demonstrate that the auxiliary model improves the robustness of MBRL, while remaining in
the same data-efficient setting. Secondly, our method was compared to other recent model-free robust RL
approaches. RMBPO matched or outperformed the robustness of these algorithms in most experiments
using significantly less data. Finally, we performed a limited case study which interprets the way in which
the auxiliary model helps policy robustness. A limitation of our work is that we compute the KL divergence
w.r.t. the approximate model instead of the real nominal model, future research could try to quantify the
error that arises from this practical approach. Another limitation is the fixed Lagrangian hyperparameter,
which does not tackle the constrained problem as a hard constraint. We believe that improved Lagrangian
methods such as the modified method of differential multipliers (MDMM) might be an interesting research
direction (Platt & Barr, 1987). As future work, we want to tackle the setting of very noisy nominal MDPs,
such as explored in Gadot et al. (2024). Other interesting areas for future work could include policy mixing
between a traditional and a robust policy, to limit the potential downside of not exploiting the environment
optimally. Furthermore, it might be interesting to look at a way to formally ensure that the auxiliary model
remains within the desired uncertainty set, combined with theoretical guarantees on the robustness of the
policy, as we believe that this is a vital step towards RL in industrial applications.
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A Additional Results

A.1 Evaluation on Walker2d-v4
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Figure 6: Walker2d-v4

A.2 Emperical effect of η on KL divergence
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Figure 7: The KL divergence between the approximated nominal model and the auxiliary model, in function
of η. Linear fit included for visual reference.
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A.3 Extra results in Deepmind Control Suite
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Figure 8: Evaluation of DMC Walker Walk and Walker Run in the disturbance setting of Reddi et al. (2024).
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A.4 Effect of η on robustness
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Figure 9: Influence of auxiliary model on policy robustness under two distortions. All experiments demon-
strate that larger η increases robustness, possibly at the cost of optimality.
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Figure 10: Cumulative proportion of samples below a certain mean return. A higher η value successfully
reduces more low-return episodes. Samples are combined distortions, identical to Fig. 9.

Table 2: Hyperparameters

Hyperparameter Hopper-v4 Walker2d-v4 HalfCheetah-v4 DMC Walker

η 4 0.5 0.25 / 0.5 0.25
λa 1e-4 1e-4 1e-4 1e-4
Total environment steps 125k 300k 400k 200k

B Toy Experiment Details

A summary of the algorithm that was used in the toy experiments is provided in Algorithm 2.

Algorithm 2 Supervised Pessimistic Distribution Learning with an Auxiliary Model
1: Choose an arbitrary value function v : Rn → Rn
2: Initialize dataset D with samples from the training distribution
3: Initialize nominal parameters θ
4: Initialize pessimistic parameters ψ
5: while improving do
6: Update model parameters θ on environment data: θ ← θ − λp∇̂θJp(θ,D)
7: end while
8: while improving do
9: Update model parameters ψ according to Eq. 7: ψ ← ψ − λa∇̂ψJg(ψ,D, pθ, v)

10: end while

Furthermore, to demonstrate that the methodology is not exclusive to Gaussians, we also perform exper-
iments on categorical distributions. A dataset was generated by sampling from a categorical distribution
with 10 categories, with the following (randomly generated) probabilities: [0.0364, 0.1024, 0.1335, 0.1107,
0.0668, 0.1367, 0.0558, 0.1067, 0.0981, 0.1529]. Identical to the Gaussian experiments, we follow Algorithm 2
to learn a nominal and an auxiliary model from this data. Instead of parametrizing a mean and variance, we
now parametrize the 10 logits. We perform experiments with two value functions. The first value function
provides a value of 1 for even categories (0, 2, ...) and −1 for odd categories, the results are shown in Fig.
11a. The second value function just returns the number of the category (e.g. category 4 has a value of 4),
these results are shown in Fig. 11b.

C Hyperparamters

We "tune" η by performing a sweep and taking the largest value for which we still find an adequate nominal
performance. Note that this hyperparameter is actually more of a design choice, since it trades optimality
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(a) Value function rewards even categories (0, 2, 4, 8).
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(b) Value function is equal to the label of the category (1, 2, 3, ...).

Figure 11: Difference between nominal categorical model and pessimistic categorical model.

for robustness. The desired magnitude of η is influenced by the variance on transitions of the nominal
environment. Namely, a large transition variance already allows for meaningful pessimism introduced by gψ
at lower η values. Environments with less variance need a higher η (and therefore a higher KL) to introduce
pessimism. For more details on this, see Appendix F. The pessimistic model learning rate (λa) is set to 1

10
of the normal MBPO model learning rate, this significantly reduces variance on the return during training.
Note that we use the same amount of environment steps as MBPO in all environments.

All other hyperparameters remain identical to MBPO (Janner et al., 2019), the auxiliary model gψ also has
the same architecture as a single model of the the MBPO ensemble world model.

D Implementation details and reproducibility

Following related work (Zhou et al., 2024), we add uniform noise to the action: at ← at+U(−5e−3, 5e−3).
Since this action noise is invisible to the agent, it introduces stochasticity in the MDP. Inspired by the existing
MBPO world model, we standardize the outputs of pθ before providing them as inputs to gψ, this showed
incremental stability improvements in some training runs. As proposed in appendix A.1 of Rigter et al.
(2022), we subtract V θ,ψϕ (s) as a baseline from the return in Eq. 7, this does not influence the expectation
of the gradient but significantly reduces its variance. Note that MBPO/RMBPO does not employ a value
network directly, however, we can approximate this with on-policy samples from the Q-value network. We
want to highlight that pθ is an ensemble of seven neural networks in MBPO and RMBPO, in contrast, gψ is
a single neural network. This provides two advantages. First, the computational effort is only increased by
a small fraction (not doubled). Secondly, the ability pθ to capture the epistemic uncertainty during training
is maintained by including samples of the ensemble as input to gψ.

Experiments were run on a Ubuntu20.04 (Docker) machine with a single NVIDIA Quadro RTX4000 GPU, two
CPU cores, and 38GB of memory. We provide the trained weights of the learned policies as supplementary
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materials, together with the modified environments and an evaluation script 3. This allows for a clear
comparison with our research. We choose to distort the same model parameters as Pinto et al. (2017) and
Zhou et al. (2024) to add perspective to the results and ease future benchmarking in the community, also,
this avoids cherry-picking the best conditions for RMBPO. To ease implementation, we also release the
source code of the toy experiment. Furthermore, we include a relevant part of the source code in Appendix
G, this code should be regarded as pseudo code and serves to provide necessary implementation details.
The authors are not able to release the full source code of RMBPO at the time of submission of this paper,
however, the reader is encouraged to contact the first author of this work with any related questions.

To implement the robust baselines, we used the code provided by the authors for RNAC (Zhou et al., 2024).
Similarly, we directly use the author code for EWoK. Following Gadot et al. (2024) we always use a normal
distribution with a standard deviation of 0.2 for EWoK and we fix the temperature parameter κ to 2. For all
other baselines (QARL, RARL, MixedNE-LD), we use the implementation provided by Reddi et al. (2024).
This means that both RARL and MixedNE-LD are "modernized" versions, using SAC as the base algorithm
instead of TRPO and TD3 respectively. As all these algorithms were already tuned for DMC, we did not
have to do any tuning there. However, for the MuJoCo experiments, we changed the UTD ratio from 1/3
to 1 and the actor learning rate from 1e− 4 to 3e− 4, as the lower UTD and learning rate failed to converge
after 1M steps in MuJoCo. Additionally, we allowed a maximum adversary force of 5 in MuJoCo for RARL,
compared to 1 for QARL, following the original RARL paper Pinto et al. (2017).

E Probability bound on KL divergence

In this section, we explore the relationship between the expected approximate uncertainty set and the
approximate uncertainty set. We begin by employing the Markov inequality as a worst-case bound, which
provides a probabilistic limit on the size of the approximate uncertainty set. This analysis is followed by
empirical measurements that demonstrate how minimizing the expected divergence can effectively bound
DKL(gψ(s, a)||pθ(s, a)) with a certain confidence.

E.1 Applying the Markov Inequality as a worst-case bound

The well-known Markov inequality states that for a nonnegative random variable X and a real number t > 0:

P(X ≥ t) ≤ E [X]
t

.

To apply this to the auxiliary model loss function, we note that the KL term of Eq. 6 (and Eq. 7) does not
depend on s′ or r, therefore we have:

E(s′,r)∼gψ(s,a),s∼dπ
ψ,θ

,a∼π [DKL(gψ(s, a)||pθ(s, a))] = Es∼dπ
ψ,θ

,a∼π [DKL(gψ(s, a)||pθ(s, a))] .

As the KL divergence is calculated between two continuous distributions, it is nonnegative everywhere. This
means that we can apply the Markov inequality, for any t > 0:

P(DKL(gψ(s, a)||pθ(s, a)) ≥ t) ≤
Es∼dπ

ψ,θ
,a∼π [DKL(gψ(s, a)||pθ(s, a))]

t
, (11)

which provides us with a bound that limits the probability (defined by P(.)) of encountering states outside
of the desired (approximate) uncertainty set. Another known form of the Markov inequality can be stated
by setting t̃ = t/(Es∼dπ

ψ,θ
,a∼π [DKL(gψ(s, a)||pθ(s, a))]), this allows us to rewrite Eqn. 11 as follows:

P
(
DKL(gψ(s, a)||pθ(s, a)) ≥ t̃ · Es∼dπ

ψ,θ
,a∼π [DKL(gψ(s, a)||pθ(s, a))]

)
≤ 1
t̃
. (12)

The form in Eqn. 12 is useful, since it can compare how well algorithms fit the expected uncertainty set,
regardless of the size of that expected uncertainty set.

3https://github.com/rmbpo-eval/rmbpo-tmlr
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Figure 12: Probability of encountering values larger than a factor of the expected divergence. The η values of
4, 0.5 and 0.5 were used for Hopper-v4, Walker2d-v4 and HalfCheetah-v4 respectively. We used P(KLs,a ≥
t̃ ∗ E[KL]) as a shorthand notation for P(DKL(gψ(s, a)||pθ(s, a)) ≥ t̃ · Es∼d,a∼π[DKL(gψ(s, a)||pθ(s, a))]).
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Figure 13: Hopper-v4, multiple η values. The probability of encountering values larger than a factor of the
expected divergence. We used P(KLs,a ≥ t̃∗E[KL]) as a shorthand notation for P(DKL(gψ(s, a)||pθ(s, a)) ≥
t̃ · Es∼d,a∼π[DKL(gψ(s, a)||pθ(s, a))]).

E.2 Empirical Measurements

We now measure the empirical performance of RMBPO. Figure 12 shows the relationship between the
expected KL divergence and the probability of encountering larger KL divergences for specific (s, a)-samples.
Note that the probabilities remain significantly below the Markov inequality bound in all environments. The
probability of encountering a value that is larger than double the measured expectation is already lower than
10%. Additionally, for Hopper-v4, we measure this quantity for a large array of η values in Figure 13. Again,
for all measured η values, the probabilities remain significantly below the Markov inequality bound and the
probability of encountering double the expectation remains below 10%. For visual clarity, all plots are shown
in function of t̃ instead of t, however, we also include Table 3, that contains all unscaled KL values.
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Table 3: The expected KL divergence and the maximum KL divergence between pθ and gψ. Note that higher
η values monotonically increase the KL divergence in all our measurements. Measurements are computed
on a holdout set during training, values are reported as the average over the final 10% of training.

Min KL Expected KL Max KL

Hopper-v4 η = 0.25 7.53e-04 1.77e-02 1.06e-01
Hopper-v4 η = 0.5 3.13e-03 3.92e-02 1.33e+00
Hopper-v4 η = 1.0 6.81e-03 9.07e-02 6.52e+00
Hopper-v4 η = 2.0 1.73e-02 2.69e-01 7.80e+00
Hopper-v4 η = 4.0 5.55e-02 7.84e-01 3.29e+01

Walker2d-v4 η = 0.25 4.87e-04 1.32e-02 1.09e+00
Walker2d-v4 η = 0.5 1.25e-03 4.91e-02 3.35e+00

HalfCheetah-v4 η = 0.25 3.95e-04 1.08e-02 1.30e+00
HalfCheetah-v4 η = 0.5 1.49e-03 3.73e-02 4.58e+00

Table 4: The measured variance of the training environment P and the predicted variances of the approximate
model pθ and the auxiliary model gψ. The variance is defined over next states and rewards, given the same
current state and action (for on-policy rollouts). Variance is calculated independently per state dimension,
average over dimensions is reported.

P pθ gψ

Hopper-v4 4.67e-06 2.57e-06 2.58e-06
Walker2d-v4 2.39e-04 2.68e-04 2.69e-04
HalfCheetah-v4 2.51e-04 8.19e-04 8.22e-04

F More details on the hyperparameter η

A natural question that arises from the results of this work is why the hyperparameter η is set at a significantly
higher value for Hopper-v4 than Walker2d-v4 or HalfCheetah-v4. This arises from the significantly lower
variance on state transitions in Hopper-v4 compared to the other two environments, as shown in Table
4. The KL divergence between two distributions increases much faster for low-variance distributions than
high-variance distributions, given a certain difference in their means. This means that, to allow significant
average changes between the approximate model and the auxiliary model, η should be set higher in Hopper-
v4. We quantify this reasoning in Table 5, which confirms that Hopper-v4 needs relatively larger η values
to allow a certain average difference on state transitions, compared to Walker2d-v4 or HalfCheetah-v4. The
assumption that a larger η setting allows for larger KL divergences was already confirmed in Table 3.
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Table 5: The average absolute differences of predictions between gψ and pθ (measured). The five state
dimensions with the largest average absolute differences are shown per environment. Note the significantly
lower values of Hopper-v4 than the other environments, at the same η levels. Differences are measured over
holdout set during training, reported metrics are averaged over the final 10% of training.

Avg. diff. 1 Avg. diff. 2 Avg. diff. 3 Avg. diff. 4 Avg. diff. 5

Hopper-v4 η = 0.25 4.29e-04 3.02e-04 1.20e-04 2.89e-05 2.53e-05
Hopper-v4 η = 0.5 1.01e-03 5.10e-04 2.83e-04 2.11e-04 1.41e-04
Hopper-v4 η = 1.0 1.39e-03 1.14e-03 4.16e-04 2.02e-04 1.48e-04
Hopper-v4 η = 2.0 3.16e-03 1.39e-03 1.22e-03 3.13e-04 3.11e-04
Hopper-v4 η = 4.0 4.08e-03 2.17e-03 1.79e-03 8.31e-04 3.19e-04

Walker2d-v4 η = 0.25 9.92e-03 5.16e-03 2.29e-03 1.63e-03 1.12e-03
Walker2d-v4 η = 0.5 2.39e-02 1.13e-02 5.08e-03 4.06e-03 2.71e-03

HalfCheetah-v4 η = 0.25 4.65e-04 4.60e-04 4.50e-04 2.91e-04 1.51e-04
HalfCheetah-v4 η = 0.5 1.26e-02 8.69e-03 7.34e-03 4.39e-03 2.14e-03

G Code Snippet

Listing 1 provides an implementation of the function to compute the gradient of the auxiliary model (as
defined by Eqn. 7) and upgrade the model parameters according to this gradient.

1 def update_rmbpo (
2 auxiliary_model : TrainState ,
3 mle_model : TrainState ,
4 batch: DatasetDict ,
5 obs_mean : jnp.ndarray ,
6 obs_std : jnp.ndarray ,
7 critic : TrainState ,
8 actor: TrainState ,
9 rng: jax.Array ,

10 eta: float ,
11 elites : jax.Array ,
12 termination_fn : Callable [[ jnp. ndarray ], jnp. ndarray ],
13 ) -> Tuple[TrainState , Dict[str , float], jnp.ndarray , jnp. ndarray ]:
14 state = batch[" observations "]
15

16 def rmbpo_loss_fn (
17 aux_model_params : Params ,
18 ) -> Tuple[jnp.ndarray , Dict[str , jnp. ndarray ]]:
19 policy = jax.lax. stop_gradient (actor. apply_fn ({" params ": actor. params },

state))
20 local_rng , seed = jax. random .split(rng)
21 on_policy_actions = policy .mode ()
22 pred_mle_dist = jax.lax. stop_gradient (
23 mle_model . apply_fn (
24 {" params ": mle_model . params },
25 state ,
26 on_policy_actions ,
27 obs_mean ,
28 obs_std ,
29 )
30 )
31 # Sample mixture
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32 mle_means = pred_mle_dist .mean ()
33 mle_var = pred_mle_dist . variance ()
34 batch_size , _ = mle_means .shape [0], mle_means .shape [1]
35 local_rng , seed = jax. random .split( local_rng )
36 # Only select from elites
37 random_elite_indices = jax. random . randint (
38 seed , shape =( batch_size ,), minval =0, maxval = elites .shape [0]
39 )
40 random_indices = elites [ random_elite_indices ]
41 mle_means = mle_means [jnp. arange ( batch_size ), random_indices , :]
42 mle_var = mle_var [jnp. arange ( batch_size ), random_indices , :] + 1e-8
43 pred_mle_dist = distrax . MultivariateNormalDiag (
44 loc=mle_means , scale_diag =jnp.sqrt( mle_var )
45 )
46 # Forward auxiliary model
47 pred_state_dist = auxiliary_model . apply_fn (
48 {" params ": aux_model_params },
49 state ,
50 on_policy_actions ,
51 mle_means ,
52 jnp.log( mle_var ),
53 obs_mean [0],
54 obs_std [0],
55 )
56 # KL loss
57 kl_loss = jnp.mean( pred_state_dist . kl_divergence ( pred_mle_dist ))
58 # Robustness loss
59 local_rng , seed = jax. random .split( local_rng )
60 prediction = pred_state_dist . sample (seed=seed)
61 log_probs = pred_state_dist . log_prob (jax.lax. stop_gradient ( prediction ))
62 pred_state , pred_reward = prediction [... , :-1], prediction [... , -1]
63 local_rng , seed = jax. random .split( local_rng )
64 next_action = jax.lax. stop_gradient (
65 actor. apply_fn ({" params ": actor. params }, pred_state )
66 ).mode ()
67 # Baseline
68 q_baseline = jax.lax. stop_gradient (
69 critic . apply_fn ({" params ": critic . params }, state , on_policy_actions )
70 ).min(axis =0)
71 # Next q
72 next_q = jax.lax. stop_gradient (
73 critic . apply_fn ({" params ": critic . params }, pred_state , next_action )
74 ).min(axis =0)
75 terminals = termination_fn ( pred_state )
76 critic_value = pred_reward + 0.99 * next_q * jnp. logical_not ( terminals )
77 advantage = critic_value - q_baseline
78 adv_mean , adv_std = jnp.mean( advantage ), jnp.std( advantage )
79 normalized_advantage = ( advantage - adv_mean ) / ( adv_std + 1e -8)
80 robustness_loss = jnp.mean(
81 jax.lax. stop_gradient ( normalized_advantage ) * log_probs
82 )
83 combined_loss = kl_loss + eta * robustness_loss
84 return combined_loss
85

86 grads = jax.grad( rmbpo_loss_fn )( auxiliary_model . params )
87 new_model = auxiliary_model . apply_gradients (grads=grads)
88 return new_model

Listing 1: RMBPO Auxiliary Model Update Function.
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Where the forward function of the auxiliary model (as called by auxiliary_model.apply_fn(...) ) is defined
by Listing 2.

1

2 class SimpleGaussianAuxiliaryModel (nn. Module ):
3 hidden_dims : int
4 num_layers : int
5 obs_dim : int
6

7 @nn. compact
8 def __call__ (
9 self ,

10 observations : jnp.ndarray , # Real observation vector
11 action : jnp.ndarray , # Real action vector
12 mle_means : jnp.ndarray , # Mean of pred. nominal distr.
13 mle_logvars : jnp.ndarray , # Log variances of pred. nominal distr.
14 mean: jnp.ndarray , # Current observation / action batch means
15 std: jnp.ndarray , # Current observation / action batch stds
16 ) -> distrax . Distribution :
17 # Output of network are means and variances of state vector and reward
18 layers = [self. hidden_dims ] * (self. num_layers ) + [2*( self. obs_dim +1)]
19 # Standardize the real state and action vector
20 state = jnp. concatenate ([ observations , action ], axis =-1)
21 state_inp = (state - mean) / (std + 1e -8)
22 # Standardize the next state predictions of the nominal (MLE) model
23 mean_pred = ( mle_means [... , :-1] - mean [: self. obs_dim ]) / (
24 std [: self. obs_dim ] + 1e-8
25 )
26 # Concatenate real state + action and nominal (MLE) predictions
27 input = jnp. concatenate (
28 [
29 state_inp ,
30 mean_pred ,
31 jnp. expand_dims ( mle_means [... , -1], axis =-1),
32 mle_logvars ,
33 ],
34 axis =-1,
35 )
36 outputs = MLP(layers , activations =nn.silu , activate_final =False)(input)
37 means_and_rewards , logvar = jnp.split(outputs , 2, -1)
38 # Only learn to predict deltas
39 means_and_rewards = jax.lax. stop_gradient ( mle_means ) + means_and_rewards
40 logvar = jax.lax. stop_gradient ( mle_logvars ) + logvar
41 # Return pessimistic (s’, r) distribution
42 return distrax . MultivariateNormalDiag (
43 loc= means_and_rewards , scale_diag =jnp.exp (0.5 * logvar )
44 )

Listing 2: The forward function of the auxiliary model.
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