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Abstract

Ensuring robust model performance in diverse real-
world scenarios requires addressing generalizabil-
ity across domains with covariate shifts. However,
no formal procedure exists for statistically evaluat-
ing generalizability in machine learning algorithms.
Existing predictive metrics like mean squared error
(MSE) help to quantify the relative performance be-
tween models, but do not directly answer whether
a model can or cannot generalize. To address this
gap in the domain of causal inference, we propose
a systematic framework for statistically evaluat-
ing the generalizability of high-dimensional causal
inference models. Our approach uses the frugal pa-
rameterization to flexibly simulate from fully and
semi-synthetic causal benchmarks, offering a com-
prehensive evaluation for both mean and distribu-
tional regression methods. Grounded in real-world
data, our method ensures more realistic evaluations,
which is often missing in current work relying on
simplified datasets. Furthermore, using simulations
and statistical testing, our framework is robust and
avoids over-reliance on conventional metrics, pro-
viding statistical safeguards for decision making.

1 INTRODUCTION

Model generalizability has garnered significant interest in
causal inference [Bareinboim and Pearl, 2016, |Curth et al.,
2021}, Johansson et al., 2018} [Buchanan et al., [2018, [Ling
et al., |2022| [Bica and van der Schaar, |2022]]. This encom-
passes transportability under covariate shifts between do-
mains and extrapolation. In causal inference, it specifically
refers to the ability of a causal model to make accurate
predictions or draw valid conclusions when applied to a do-
main different from the one it was trained on. This concept
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is crucial when the objective involves understanding and
predicting the effects of interventions across various settings.
It holds particular importance in clinical contexts, where the
interest in personalized treatment and patient stratification
underscores the need to generalize inferences across diverse
populations.

Current approaches for evaluating model generalizability
generally involve using predictive metrics like AUC for clas-
sification or mean squared error for regression [Zhou et al.,
2022, [Yu et al., [2024]]. However, these metrics do not di-
rectly assess the evidence for whether a model generalizes
across domains, nor do they provide error-controlled deci-
sion thresholds. Does an MSE of 5 on another domain imply
that the model does not generalize? How about an MSE of 1?
Are these results and interpretations reproducible with statis-
tical guarantees? How much does random noise affect these
metrics? These are critical problems that should be carefully
considered in causal inference questions involving multiple
domains. It is essential to establish a systematic evaluation
framework for generalizability performance, which offers
a robust, reproducible evaluation of model performance on
relevant tasks.

One approach to this problem is statistical testing, where we
set the question of interest as the hypothesis we test against.
However, it is difficult to obtain power against a wide-range
of alternative hypotheses when performing tests conditional
on a high-dimensional covariate set. This is a problem for
causal practitioners as they are often interested in modeling
quantities such as the individual treatment effect.

Main Contributions We propose a systematic frame-
work for statistically evaluate the generalizability of high-
dimensional causal inference algorithms by targeting low-
dimensional causal margins. Complementing existing pre-
dictive metrics such as MSE, we provide a testing frame-
work that statistically evaluates the transportability of both
mean and distributional regression methods.

Our method includes a semi-synthetic simulation framework
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using two domains, training (A) and testing (B), which have
different covariate (Z) and treatment (X)) distributions, but
whose conditional outcome distribution (COD, Y (z) | Z)
is assumed to be the same. First, we fit a frugally parame-
terized model [Evans and Didelez, 2024]] to learn the COD
Py ()| z on domain B. The frugal parameterization allows
us to obtain the marginal outcome distribution (MOD) of
Y (z) on domain B explicitly as part of the joint. We then
generate semi-synthetic outcome samples of domain A by
applying the COD of domain B, while using the covariates
and treatments from domain A.

Next, we train the causal model of interest on these semi-
synthetic samples in domain A, and use it to estimate
marginal causal quantities for domain B. The model’s gen-
eralizability is assessed by statistically testing its ability to
recover marginal causal quantities from domain B against
the explicitly known ground truth inferred earlier. By re-
ducing the complexity from higher-dimensional to a lower-
dimensional causal effect, we simplify the evaluation pro-
cess, enabling more powerful statistical testing.

The availability of exact marginal quantities in domain B
enables us to construct our proposed workflow. In some real
applications, it is usually the marginal quantities that are
reported. For example, in many studies analyzing COVID-
19 outcomes, researchers reported untreated outcomes, such
as mortality rates or symptom progression, to contextualize
treatment effects. The untreated mortality rate for severe
COVID-19 in RECOVERY Collaborative Group| [2021]]
is often cited as a benchmark for evaluating interventions
like dexamethasone. Our method thus provides a simple
and effective solution for assessing generalizability of an
algorithm in complicated (real-world) data with statistical
guarantees, including Type-I error control.

The code wused for this paper can be found in
https://github.com/rjed42/DomainChange.

2 BACKGROUND

Consider a static treatment model with an outcome Y €
Y C R and a general treatment X, which can be either con-
tinuous or discrete. In addition, we also make the standard
causal assumptions of consistency, positivity, and condi-
tional ignorability outlined in [Pearl|[2009] throughout the
paper. Let the set of measured pretreatment covariates be
Z € Z C RP. We then define the marginal causal treatment
density as

Py () (y(z)) = /;DY\ZX(Z/|Z>SE) pz(2) dz;
this is marginalized over the covariates. Here Y () is the
potential outcome for Y given that X is set to a value x.

We also use u(z) = E'Y(x) to denote the expected outcome
given an intervention that sets {X = z}, and p(z,2) =

E[Y(X =x) | Z = 2] to denote the conditional expecta-
tion given covariate values. Note that Y(x) is essentially
equivalent to Y | do(X = z) in the notation of [Pearl|[2009].
When the treatment is binary, we define 7 = E[Y (1) —Y(0)]
as the average treatment effect (ATE), quantifying the over-
all impact of a treatment change across the entire population.
Similarly, let 7(z) = E[Y (1) = Y(0) | Z = z] be the condi-
tional average treatment effect (CATE), giving the result for
specific subgroups or individuals, and therefore capturing
treatment effect heterogeneity.

Denote the probability measures in domain A and domain
B as P4, PP respectively. Since our scenario requires that
the conditional outcome distributions are the same we have
P{ﬁ‘(x)l 7= P;?(m)‘ > however, since the covariate and treat-
ment distributions may differ, the corresponding equality
between the marginal causal distributions does not neces-
sarily hold.

We aim to evaluate the generalizability of an outcome re-
gression model f(z,x) that predicts the expected outcome
Y. Predicted outcomes are denoted by § := f(z, z).

2.1 GENERALIZABILITY IN CAUSAL
INFERENCE

Extensive research has focused on generalizability in causal
inference, as mentioned in the introduction. As highlighted
by |Ling et al.[[2022], three common approaches are used to
assess treatment effect generalizability: inverse probability
of sampling weighting (IPSW) methods that adjust for dif-
ferences between study and target populations by weighting
based on sample inclusion probabilities [Buchanan et al.,
2018]]; outcome models that estimate the conditional out-
come directly [Kern et al., 2016]]; and hybrid approaches
that combines both [Dahabreh et al.,[2019].

In this paper, we focus on algorithms that generalize con-
ditional outcome predictions across different domains, en-
abling accurate CATE or COD estimation. This is crucial for
understanding individual-level treatment effect heterogene-
ity and ensuring that models can adapt to new populations or
environments with varying covariate distributions. A sum-
mary of common CATE estimation methods is provided by
Caron et al.|[2022].

Despite advancements in CATE estimation, a systematic
framework for evaluating generalizability remains underde-
veloped. For example, Johansson et al.|[2018] validate their
model using both simulated and real world data. The simu-
lated data examples assess predictive generalizability with
MSE in the absence of any treatment mechanism, making
causal verification impossible. Additionally, their analysis
of the IHDP dataset [Hill, 2011]] does not involve covari-
ate or treatment shifts, so it does not effectively test gen-
eralizability. Another relevant paper is [Shi et al.| [2021]],
which measures out-of-domain generalization performance
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using the mean absolute error (MAE). While their method
achieves the lowest MAE among competitors, there is no
formal criterion to determine whether a specific MAE value
signifies sufficient generalization to a new domain.

We highlight these issues not as criticisms of the papers, but
to emphasize that robust generalizability evaluation methods
of causal models are missing and challenging. Furthermore,
existing benchmarks like IHDP are not specifically designed
for out-of-domain generalization tests. To address this gap,
we propose a systematic semi-synthetic framework to evalu-
ate how well CATE algorithms perform across domains with
different covariate distributions, offering a more practical
assessment of whether a given approach will generalize well.
In Section[4.2] we adapt the IHDP experiments presented
in Johansson et al.|[2018]] and extend them by generating
datasets from different domains, while making the marginal
quantity explicitly known. Furthermore, we contrast the pre-
dictive MSE scores with the p-values derived from our tests
to show how the latter provides a more actionable metric for
whether a model successfully generalizes or not.

2.2 FRUGAL PARAMETERIZATION

A frugal parameterization of an observational joint distribu-
tion, Pzxy, factorizes the distribution into a set of causally
relevant components [Evans and Didelez| 2024]. This de-
composition explicitly parameterizes the marginal causal
distribution, Py(m), or other lower dimensional causal distri-
bution Py (;)jw, W C Z, and builds the rest of the model
around it. Frugal models require that the three usual as-
sumptions for causal inference (consistency, positivity, no
unmeasured confounding) in addition to any additional regu-
larity assumptions (further details can be found in Appendix
A of [Evans and Didelez| [2024]]).

Let us start by first parameterizing the conditional outcome
distribution (COD), Py ;) z. Frugal models can parameter-
ize the COD in terms of the marginal causal distribution,
Py (), and a conditional copula distribution, Cy(,) z. Here,
Cy («)|z models the joint dependency between the marginal
causal distribution and each of the univariate marginal co-
variate distributions, { Pz, }; such that

Py (2)|Zz = PY(z) * C¥(2)|Z>

where cy () z is a copula density function that parameter-
izes the dependence between Y () and the covariates. Mul-
tivariate copulas, particularly when parameterized using
pair copula constructions or vine copulas [Czado and Na
gler] [2022]], offer a rich flexible framework for modeling
complex multivariate distributions, whilst also capturing (or
allowing the user) to encode specific dependency constraints
in the target data generating process. See Appendix [A] for
further details on copulas and how they can be be fitted to
real-world datasets.

This leaves the distribution of the past, i.e. the covariate
distribution and the propensity score. We assume that all
covariates are strictly pretreatment, so Z does not include
any mediators of the causal effect of X on Y. If we use a
conditional copula then the past and the COD are variation
independent, in the sense that they parameterize separate,
non-overlapping aspects of the joint distribution. This allows
the past to be freely specified without affecting either the
conditional copula, or the marginal causal distribution.

The frugal parameterization also allows us to chose a condi-
tional estimand. For example, if we were interested in a con-
ditional average treatment effect given W C Z, we could
WIite Py (2)|z = Py (z)|W ° Cy ()| Z:W where Z = Z \ W.
Here ¢y, z,w is a pair-copula between Y (x) and Z con-
ditional upon W. This enables us to condition on a small
subset of covariates that we consider to be particularly im-
portant in terms of predicting the outcome.

3 METHOD

Figure|l|provides an overview of our workflow. We begin
by defining both a test and a training domain, each with a
distribution over the pretreatment covariates and the treat-
ment, allowing for distribution shifts across covariates and
treatment allocation. The COD is frugally parameterized
with a conditional copula, where the covariates’ cumulative
distribution functions (CDFs) are derived from the test do-
main’s covariate densities. This ensures that samples from
the test dataset follow a known, customizable marginal
causal density, py ().

The training data is generated from the same COD, though
since the covariate densities may not match the CDFs used
to parameterize the conditional copula we do not have ac-
cess to the marginal causal distribution in closed-form. We
then learn a model, f(z, z), on the training data. Finally, a
statistical test is performed to validate whether the lower-
dimensional marginal quantity (such as the ATE or an ex-
pected potential outcome) estimated using model outcomes
equals the ground truth in the test domain.

3.1 DATA SIMULATION

In this section we describe how to simulate the data.

3.1.1 Multi-domain Simulation with Frugal Models

We begin by specifying two data generating processes: the
training data, D4 ~ PZy-, and the test data, DB ~ P2, .
Our goal is to construct a COD that parameterizes the
joint density across both domains, while ensuring that the
marginal causal density in domain B is parameterized by
pg(m). The supports of covariates in domains A and B are

denoted 24, 25,
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Figure 1: Workflow of the Proposed Method.

Recall from Section [2.2]that a general observational density
can be factorized into the past, pzx, and the COD:
Py ()2 (Y] 2) = Py (2) (y) %
ov(@)z (Fy@) W) | Fz,(21), ..., Fz,(2a))

where Fy () is the CDF associated with the marginal causal
density py(z)-

e))

Note that the copula density in (I) is not only determined
by the copula’s family and its parameterization, but also by
the choice of marginal CDFs for the covariates, Z. If the
conditional copula density is marginalized over the densities
corresponding to the covariate CDFs, then the ranks of the
marginal causal density will be uniformly distributed:

/dZCy(w‘Z |Z szd Zd —1

This uniformity is guaranteed if the marginal covariate densi-
ties {pz, }2_, correspond to the CDFs used to parameterize
the copula. Thus, data simulated using our method matches
the marginal causal quantity we specify.

FY(ZE

For evaluating generalization, we set the CDFs within the
copula density to be derived from the covariate densities in
the test domain PZ . This allows us to construct the COD
density across all covariate and treatment spaces:

Py z (¥|2) = Pg(z) (y) x

Fyp(2p))

which will sample from a known marginal causal density
equal to pg(w) if the covariate CDFs in the copula are de-
rived from the test domain covariate densities.

K a)|z (Ff(z)(y) ‘ Fyo(z1),. ..,

For two joint distributions with the same marginal covari-
ate densities but different marginal causal densities, their

CODs must differ. We can thus evaluate differences between
CODs via comparing the lower-dimensional marginal causal
densities instead.

This offers a great deal of flexibility in testing method gen-
eralizability. One can draw training and test datasets with
different covariate densities and propensity scores, while
guaranteeing that the CODs remain consistent, and that the
test data is drawn from a distribution with a marginal causal
density parameterized by pg(x). However, we note that a

key assumption of our testing framework is Z4 C ZB,
as evaluating py(;|z requires evaluation of all marginal
covariate CDF defined on domain B.

Algorithm 1 Semi-synthetic Data Generation.

Input: Original test data; original covariates and treat-
ment from training data.

Parameter estimations on test domain B

Estimate the joint covariate-treatment density, f)gx;
marginal causal density, ﬁg(m); conditional copula,
Ciyz: .

Data simulation on domain B

Sample (28, 28) ~ p5;

Sample the causal effect rank ﬁg(m)‘ 7~ U[0,1];

~ 1 (A N
Calculate y¥ = (Ff(m)) (C)]?(a:ﬂz(u}]i(x)\z | zB)>.

Parameter estimation on training domain A
Estimate the joint covariate-treatment density, p7 .
Data simulation on domain A

Sample (24, 24) ~ pgy;

Sample the causal effect rank ﬂg‘}(x)‘ 7~ U[0,1];

NN X
Calculate y* = (Fy%,)) (C’g(mz(u{}( 22z | zA)).

Output: Training sample D4 = ( A, A7yA)

Test sample DP = (28 yP).

Our primary workflow follows the approach outlined in Al-
gorithm [I] First, we estimate the joint covariate-treatment
density of the test data, denoted as pZ.. We then estimate
the marginal causal density ﬁ{f(l_) and the conditional copula

é}‘?(z)l - capturing the f:ovariate-(.)utcorne dependency condi-
tional on treatment. Given covariate and treatment samples,
we can calculate the causal density rank, iy ;) using the
conditional copula. The outcome can be calculated using

-1 .
the inverse transform (F B( )) . For the training data, we

follow a similar approach.

3.2 STATISTICAL TESTING

Tests of hypotheses about high-dimensional objects have
very little power if we wish to consider a wide range of
alternatives. The lower-dimensional objects can potentially
increase the chance of rejection substantially if the null hy-
pothesis fails to hold. Given that we know the marginal



Algorithm 2 Generalizability Evaluation on Mean Regres-
sion Models.

©4: parameters for training domain,
(S parameters for test domain,
uB(z): reference.
forb=1,..., Ny do
A N4 .
Draw Di* := {(2;, 7}, ygp)}iﬂ ~ Poa;
Fit the regression model, f, on DA,
B
Draw DP = {(zip, xip)}}, ~ Pos;

Input:

Apply f on DE to get predictions { f(z, z:) }V};
Calculate
B ~
ﬂB(xO) _ Zf\; Yap = Io}f(zib, Tip)
b - B .
Zi]\il Uz = 2V}
end for

Get the p-value by conducting a t-test to compare
the target parameter p”(2°) and the distribution of

(i (%) by
Return p.

causal Qengity parameterized by p}B,(z) fro.m.the frugal pa-
rameterization, we are able to develop statistical testing on
wB () rather than 1”(z, x) for mean regression models,

and Pf(w) instead of Pf(l_”  for distributional regression.

Our testing algorithms require some parameters: Ny, as
the number of bootstrap iterations, N A and NB as the
number of samples simulated from training domain and
test domain for each bootstrap iteration, respectively. We
provide the mean regression test in Algorithm 2] but our
algorithm can be extended to distributional regression
models: after applying f to DP, for eachA i, we sample
{ygb};yz"l from the predicted distribution, Py (;,,)|z,,» and
estimate marginal causal distributions such as Pf(zo) =

Nt NE | Ny

b:1p Ui:l U_j:l
tribution tests, e.g. the Kolmogorov-Smirnov test, for H, :
P{:J’(mo) = P{?(xo) and get the p-value.

{y{b | zip = CCO}. We then conduct dis-

Our testing algorithm is flexible in the choice of testing ref-
erence, €.g. in Algorithm we can replace p () with 72
as the reference target when X is binary, which is what we
used in our experiments. The testing method used for dis-
tributional regression models can also be replaced by other
statistical tests, such as the Maximum Mean Discrepancy
Test [Gretton et al., [2012] or the Cramér-von Mises Test
[[Andersonl, |1962]].

A summary of this workflow is presented in Figure[I]

4 EXPERIMENTS

In this section, we use our workflow to evaluate the general-
izability of a range of modern causal models.

As discussed in several review papers like|Curth et al.|[2021]],
Ling et al.|[2022] and Kiriakidou and Diou| [2022]], meth-
ods such as Meta-Learners (e.g. T- and S-learners) [Kiinzel
et al.,[2019]], CausalForest [Wager and Atheyl 2018]], TAR-
Net [Shalit et al., 2017]], and BART [Chipman et al.,[2010]
are widely used for CATE estimation, each offering advan-
tages in different scenarios. Our evaluation focuses on their
performance under covariate distribution shifts, specifically
examining the accuracy of their CATE estimations. Further
details about these models can be found in Appendix [B]

Another interesting algorithm to be evaluated is engression,
introduced in [Shen and Meinshausen| [2024]]. It approxi-
mates the conditional distribution using a pre-additive noise
model. Targeting at a distributional regression, the model is
capable of extrapolating to unseen or underrepresented data
points through its learned non-linear transformations. The
key factors which affect engression’s generalizability are
the distances between two domains, and whether the true
underlying function must be strictly monotonic in the extrap-
olation region. In our experiments, we evaluate engression
in both the S-learner and T-learner settings.

4.1 SYNTHETIC DATA

We first conduct experiments on synthetic data to demon-
strate and validate our method. While our approach can
handle various data types and is particularly effective with
high-dimensional covariates and continuous treatment in-
terventions, for clarity, in this simple example, we focus
on two continuous confounders, Z; and Z5, sampled from
identical gamma distributions, with a binary intervention X .
We initially assume that both datasets come from random-
ized controlled trials (RCT), so that X ~ Bernoulli(0.5)
under P4 and PZ. We parameterize the Gaussian copula,
CZY () with Spearman correlation coefficients pz, z, = 0,
pziv(@ = 0.1 and pz,y(;) = 0.9. The distribution of
Y (x) is defined as N'(2z + 1, 1) in the test domain. For the
simulation, we generate N4 = 200 training samples and
NEB = 50 test samples per bootstrap, with Ny, = 200 boot-
straps in total, repeating this process for 50 iterations. The
marginal distributions of Z; and Z5 in the training domain
follow identical Gamma distributions with shape k£ = 1 and
rate = 1.

We examine two settings: in Setting 1, the test domain has a
slight covariate shift, with Z; and Z, following a Gamma
distribution of k = 2, § = 1. In Setting 2, the shift is more
significant (k = 4, § = 1). Despite these shifts, the COD
remains the same due to frugal parameterization, as shown
in Figure 2]
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Figure 2: Synthetic Data Generated from Setting 1 (Top)
and Setting 2 (Bottom).

The p-values in Figure 3] illustrate the differences across
models. As expected, with a more significant domain shift
in Setting 2, models face greater difficulty in generalizing,
as reflected by the smaller p-values generally compared to
Setting 1. T-BART and T-engression showed good gener-
alizability performances in this specific setting with their
p-values being uniformly distributed. TARNet struggles,
likely due to the complexity of its representation learning
network design and hyperparameter tuning.
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Figure 3: p-values of Mean Regression Testing, Synthetic
Data of 50 Iterations.

With our method, we are able to test the generalizability
of distributional regression. Figure [4] demonstrates the p-
values of distributional regression testing of S-engression

under the two settings, with Ny = 50. Not surprisingly,
since the covariate distribution shift in Setting 1 is smaller,
S-engression demonstrates better generalizability compared
to that in Setting 2.

p-values of Testing Py, Py(). Pya)
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Figure 4: p-values of Distributional Regression Testing (Kol-
mogorov—Smirnov Test) of S-engression, Synthetic Data of
50 Iterations.

Supported by flexible simulations based on actual data, our
method is useful for stress testing and model diagnostics.
Figure [5] shows how varying the training set size affects
the generalizability of T-BART and T-engression; the per-
formance worsen as N4 exceeds 100. This issue may stem
from problems like overfitting, but solving these problems is
not our focus. Rather, our method serves as a tool to detect
and highlight potential issues when making predictions on
real data, which is feasible with the simulation based on
actual data using the frugal parameterization. We also wish
to remark on the difference between the performances of
S- and T-learners. In CATE estimation, T-learners fit sep-
arate models for each treatment group while S-learners fit
a single model across both, with treatment included as a
feature. Hence, T-learners offer greater flexibility for model-
ing patient heterogeneities and it is unsurprising that they
consistently outperform S-learners in our experiments.

Note that extrapolation performance for models like engres-
sion is typically evaluated visually, one dimension at a time.
Our method, however, offers significant advantages by pro-
viding statistical evaluation of extrapolation performance in
high-dimensional covariates.

4.2 REAL DATA

We evaluate algorithm generalizability using the Infant
Health and Development Program (IHDP) dataset, a ran-
domized experiment conducted between 1985 and 1988 to
study the effect of home visits on infants’ cognitive test
scores [Hill, 2011]]. This dataset has become widely used
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Figure 5: p-values of Mean Regression Testing of 50 Itera-
tions, Varying N4, Setting 2, Synthetic Data.

in domain adaptation research [[Curth et al.|[2021] [Shi et al.,
2021]).

In this section, we extend the experiments presented by
Johansson et al.[[[2018]] which train a range of causal ML
algorithms on IHDP data and measure in-domain predictive
performance using MSE. We extend these experiments by
showing how our validation framework can be used to test
out-of-domain predictive performance. Specifically, we com-
pare the MSE metric against the p-values obtained via our
proposed testing framework, highlighting how our method
provides a more informative metric of whether a model can
generalize robustly across different domains.

The IHDP dataset contains 7' = 1000 trials, each consist-
ing of the same 747 subjects and 25 pretreatment covari-
ates, with the first six being continuous and the rest binary.
The potential outcomes Y'(1) and Y'(0) are provided in the
data. In each trial Y (z) ~ N(Zf; + 4t, 1), and j; is ran-
domly chosen from values (0, 1, 2, 3, 4) with probabilities
(0.5,0.2,0.15,0.1,0.05). Thus, the potential outcomes vary
across trials, while the covariates, CATE and ATE remain
constant.

First we treat both domains as RCTs, that is, setting the
propensity score model as X ~ Bernoulli(0.5) for all units.
The observed outcome is then Y = XY (1) + (1 — X)Y(0)
by consistency. We randomly select 50 trials from the 1000
available, with each trial used to create one training-test
pair, and evaluate the model’s generalizability on them. To
introduce domain shift, we keep all covariate values iden-
tical between the training and test domains, except for 21,
which is set to 1.5 times the original value in the test domain
compared to the training domain. For each training-test pair,
we learn the parameters following Algorithm|[I] specifying
the marginal causal distribution to follow a Gamma distri-

bution with its parameters estimated from the IHDP data by
fitting a generalized linear model. We denote the resulting
data generation distributions as Pga, Pgr for the training
and test domains, respectively. We sample training data of
N4 = 1000 from Pga, and NZ = 200 test data from Pgs.
The number of bootstraps is set to be Ny, = 200. Note that
in our experiments, the outcomes were shifted to ensure they
are strictly positive, allowing us to use the parametric form
of the Gamma distribution to obtain an explicit expression
for the mean.

Figure [/|shows the boxplot of the log,,(p-values) of each
model and Table [I] contains the percentage of p-values
greater than 0.05 across the 50 trials. T-/S-engression
demonstrate better generalizability in this setting among
all these methods. We also give the result of distributional
regression testing in Figure

77 Density: Train vs Test Domain

Train
Test

Zy

Figure 6: Density of Z; of Training and Test Domains.

Model RCT Non-RCT
TARNet 0% 0%
CausalForest  12% 6%
S-BART 12% 8%
T-BART 12% 6%
S-engression  18% 6%
T-engression  24% 8%

Table 1: Percentage of p > 0.05 across 50 Trials.

While we use the RCT setting as an example above to
demonstrate our method, it is also applicable to observa-
tional studies. In a non-randomized setting where treat-
ment arms are imbalanced by setting P(X =1 | Z) =
logit(Zs + Z3 + Z4), the percentage of p > 0.05 across
50 trials of each algorithm is shown in Table[I] Since our
paper’s focus is on providing a systematic generalizability
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Figure 7: log,,(p-values) of Mean Regression Testing of 50
Trials in IHDP.

evaluation method, we omit further analysis here.

Although we present such percentage, all p-values, includ-
ing their distributions, are highly informative. We provide
guidance of interpreting the testing results in Appendix [E]

Note that this framework of constructing statistical tests
on marginal quantities is not restricted to out-of-domain
generalization testing. We adapt the original experiments
in Johansson et al.| [2018]], in which the in-domain model
performance was evaluated on IHDP data, and show how our
framework can be easily adapted to performance evaluation
for in-domain tasks. Since our method was designed for out-
of-domain generalizability assessment, we do not discuss
this further and leave a detailed discussion in Appendix[D.1]

Details on hyperparameters and additional experiments, in-
cluding performance comparisons with or without domain
shift when the CATE is known to be linear, are provided in

Appendix [C|and Appendix

5 DISCUSSION
‘We make a few discussion remarks in this section.

Flexibility of vine copula specification In Section[d] we
present both fully simulated examples and a semi-synthetic
experiments based on the IHDP dataset commonly used
to validate generalization in causal inference tasks. We ex-
perimented with only Gaussian copulas with a fully con-
nected dependency structure on a relatively small number
of covariates. However, our framework can be extended
to high-dimensional covariates settings and more complex
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Figure 8: p-values of Distributional Regression Testing of
50 Trials in IHDP.

dependency structures. For example, pair-copula construc-
tions allow for flexible modeling of non-Gaussian copu-
las with complex dependency structures. Additionally, one
may consider using models such as Frugal Flows [de Vas{
simon Manela et al., [2024] which fit a more flexible, non-
parametric generative frugal model to real world data. Fur-
ther details and experiments for each of these cases can
be found in Appendix [A3] and Appendix [D.3] Although
our approach is mainly designed for evaluation, we pro-
vide additional experiments addressing capability of our
method handling model misspecification when generating
semi-synthetic data (see the end of Appendix [D.3).

Equivalence testing While our approach of rejecting the
null hypothesis shows that a model is not generalizable, it
does not quantify the extent of failure. An extension of this
approach may be to develop a more flexible testing method,
inspired by equivalence testing [Wellek, [2002]. This would
assess not just whether a model fails but also by how much,
determining if its performance is significantly worse than
a given threshold, offering a more nuanced view than tra-
ditional hypothesis testing. We provides some results in
Appendix In this paper, we only consider marginal
causal quantities as the validation references, but our frame-
work can be easily adapted to use low-dimensional CODs
as the reference instead with the flexibility of frugal param-
eterization (see Section[2.2)).

Validity of using low-dimensional proxy We would also
like to emphasize the objective of our method, which is
to test the quality of fit of a conditional quantity against a
lower dimensional marginal target instead. By introducing
a low-dimensional proxy that would be identifiable under
the true model, we aim to provide a quantity that is more
tractable for testing, even if it sacrifices identification of a
unique, correct CATE. While different CATEs can lead to



the same marginal outcomes, we argue that this degeneracy
is not a critical limitation in our setting. A lack of rejection
simply indicates insufficient evidence that the model fails to
generalize, instead of guaranteeing correctness of the CATE.
We recognize that a model could fit an incorrect CATE while
still producing accurate marginal outcomes. However, our
empirical results suggest that such cases are rare in practice.
Here, we appeal to a general result of the following form:
the set of distributions where the COD fails to generalize
but the marginal estimand does is a measure zero subset
of distributions where the COD fails. This is analogous to
the so-called ‘faithfulness’ argument for causal discovery
algorithms [Spirtes et al., [2000], or the ‘completeness’ of
d-separation. In finite samples we would need a stronger as-
sumption (more analogous to ‘strong faithfulness’ in|Zhang
and Spirtes, [2002) to avoid such false negatives. This is
beyond the scope of our paper.

6 SUMMARY

In this paper, we develop a statistical method for evalu-
ating the generalizability of causal inference algorithms
using actual application data, facilitated by the frugal pa-
rameterization. Our approach introduces a semi-synthetic
simulation framework that bridges the gap between syn-
thetic simulations and real-world applications, supporting
the generalizability evaluation of both mean and distribu-
tional regression models. With flexible, user-defined data
generation processes, our framework provides a principled,
binary decision about whether or not a model is generaliz-
able to a specific domain. This is essential for model selec-
tion. In practice, our method helps structure the selection
process into two stages:

 Stage 1: Apply the proposed testing procedure to iden-
tify models that generalize across domains.

» Stage 2: Among the models that pass the test, use a
metric like MSE to choose the best-performing one.

This two-stage approach ensures that model selection is
both statistically sound and practically robust, as it priori-
tizes generalizability before performance evaluation. Fol-
lowing this framework, we select models that are “good
and generalizable”, rather than just “relatively good” with-
out generalizability assessment via MSE alone. We provide
more details of the comparison between our method and
MSE in Appendix [

Through experiments on the synthetic and IHDP datasets,
we assess the generalizability of algorithms such as TAR-
Net, CausalForest, S-/T-BART, and S-/T-engression under
domain shift. Our method acts as a valuable diagnostic tool,
allowing us to explore how factors like training set size or
covariate shifts impact generalizability. These insights can
help identify model strengths and weaknesses and inform
how causal inference models adapt to different settings.

We hope that this work inspires a more careful consideration
of model evaluation, encourages simulations that better re-
flect real-world conditions, and highlights the importance of
stress testing in advancing causal inference methodologies.
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A COPULA BACKGROUND

Copulas provide a powerful tool to model joint dependencies, independent of the univariate margins. This aligns well with
the requirements of the frugal parameterization, where dependencies need to be varied without altering specified margins
(the most critical being the specified causal effect). Understanding the constraints and limitations of copula models ensures
that causal models remain accurate and consistent with the intended parameterization.

A.1 SKLAR’S THEOREM

Sklar’s theorem [Sklar, 1959, |Czadol [2019] provides the fundamental foundation for copula modelling by providing a bridge
between multivariate joint distributions and their univariate margins. It allows one to separate the marginal behaviour of
each variable from their joint dependence structure, with the latter being the copula itself.

Theorem 1. For a d-variate distribution function Fy.q € F(Fy,...,Fy), with jth univariate margin F;, the copula
associated with F is a distribution function C : [0,1]% — [0, 1] with uniform margins on (0, 1) that satisfies

Fr.a(y) = C(Fi(y1), - - - Fa(ya)), y € R%

1. If F is a continuous d-variate distribution function with univariate margins Fi,...,Fy and rank functions
FTY . F; ! then
C(u) = Fra(Fy "(u1),.... Fy  (ua),  wel0,1]%

2. If F1.q4 is a d-variate distribution function of discrete random variables (more generally, partly continuous and partly
discrete), then the copula is unique only on the set

Range(Fy) X - -+ x Range(Fy).
The copula distribution is associated with its density c(-),

fy) =c(F1(y1),- - Falya)) - fr(ya) - - fa(ya)s

where f;(-) is the univariate density function of Y;.

Note that Sklar’s theorem explicitly refers to the univariate marginals of the variable set {Y7, ..., Yy} to convert between
the joint of univariate margins C'(u) and the original distribution F'(y). For absolutely continuous random variables, the
copula function C' is unique. This uniqueness no longer holds for discrete variables, but this does not severely limit the
applicability of copulas to simulating from discrete distributions.

“Equal contribution.
“Equal contribution.
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An equivalent definition (from an analytical purview) is C' : [0, 1] — [0, 1] is a d-dimensional copula if it has the following
properties:

l. Cug,...,0,...,uq) =0;
2. C(l,...,l,ui71,...71):ui;

3. C'is d-non-decreasing.

Definition 1. A copula C is d-non-decreasing if, for any hyper-rectangle H = H?:l [us, yi] € [0,1]%, the C-volume of H
is non-negative

/H Clu) du > 0,

A.2 COPULAS FOR DISCRETE VARIABLES

Modelling the dependency between discrete and mixed data is particularly challenging, as copulas for discrete variables
are not unique. Additionally, copulas encode ordering in the joint, and hence should only be used for count or ordinal data
models. In order to deal with discrete variables, we use a the Generalized Distributional Transform of a random variable
found originally proposed by Riischendort| [2009].

Theorem 2. On a probability space (Q, A, P) let X be a real random variable with distribution function F and let
V ~ U(0,1) be uniformly distributed on (0, 1) and independent of X. The modified distribution function F(x,\) is defined
by

F(z,\):=P(X <z)+ A\P(X =x).

We define the (generalized) distributional transform of X by
U:=FX,V).
An equivalent representation of the distributional transform is

U=FX-)+V({F(X)-F(X-)).
Riischendorf| [2009] makes a key remark about the generalized transform’s lack of uniqueness for discrete variables.

A.3 PAIR COPULA CONSTRUCTIONS AND VINE COPULAS

Pair copula constructions (PCCs) provide a flexible framework for modelling multivariate dependence by decomposing a
high-dimensional copula into a sequence of bivariate copulas [Bedford and Cooke, |2002]]. A vine copula is a specific class
of PCCs that employs a graphical model to structure these pairwise dependencies, extending traditional copulas to describe
complex dependency structures in high-dimensional data.

Vine copulas allow for flexible modelling of more complex conditional dependence structures, enabling a richer representation
of statistical relationships. This flexibility makes vine copulas particularly useful when modelling more complex multivariate
distributions where different pairwise interaction types and conditional dependencies must be specified [|[Czado and Nagler,
2022} |Czado, [2019]. Vine copulas extend this concept by decomposing a multivariate copula into a sequence of bivariate
copulas arranged in a hierarchical structure. This decomposition enables the flexible modelling of dependencies among
variables while preserving computational tractability.

There is a vast literature in showing how vines can parametrize different dependency structures, and allow for more complex
and richer dependencies to be expressed using different vine tree structures and choices of copula families for each of the
bivariate copulas in the vine.

The hierarchical organization of dependencies in vine copulas is achieved through a sequence of trees {71, 75, ... Tk }.
Each tree consists of nodes and edges that represent variables and their dependencies, respectively. The first tree 77 defines
the marginal pairwise dependencies between variables. Each subsequent tree T} defines the dependencies conditional on
the edges of the previous tree T),_;. Each edge in T} is associated with a bivariate copula that models the conditional



dependency between two variables. Mathematically, the joint density defined over a set of d marginally uniform random
variables, c(u1, ..., uq) of a vine copula can be expressed as:

d—1
C(ulv"'vud) = H H Cij|D;; (uiauj|uDi_7’)a (2

k=1 (i,j)€Ex

where E}, represents the edges in the kth tree, and D;; denotes the conditioning set for the pair (4, j).

Vine copulas model complex dependencies by combining bivariate copulas—such as Gaussian, Clayton, Gumbel, or
Frank—that capture various types of correlation, including tail dependence and forms of asymmetry. The tree structure
defines the choice of the order of dependence, and parameters are estimated from empirical data or assumptions. Their main
strength lies in decomposing high-dimensional problems into tractable lower-dimensional components, enabling efficient
sampling and inference. It does all this while preserving computational tractability. In our experimental framework, we
leverage these properties to evaluate the impact of different dependency structures on causal inference generalizability.

A4 FITTING AND CUSTOMIZING FRUGAL COPULA FITS

Vine copulas allow for a great deal of flexibility for customizing complex variable dependency structures in addition to
efficient method for fitting real world datasets.

High Dimensional Covariate Fits For real world or semi-synthetic data examples, we recommend the use of vine copulas
for higher-dimensional and more complex dependency structures. For model selection, a popular choice is the Dissmann
algorithm, which fits vine copulas iteratively from the lowest tree level upwards [Dissmann et al., [2013]]; the choice of
bivariate copula families can be performed afterwards. We use the implementation in rvinecopulib [Nagler and Vatter, 2025,
which performs structure selection and optimal bivariate copula family fitting. For more flexible nonparametric alternatives,
we also highlight frugal flows as a viable generative model for learning expressive causal marginals via normalizing flows,
although its performance suffers in very high dimensional settings [[de Vassimon Manela et al.,2024].

Computational Efficiency of Vine Copula Fits Fitting vine copula models is not computationally prohibitive, even in
high dimensional covariate settings. To further aid reproducibility and assess feasibility, Table | presents the time taken to fit
vine copulas (both structure and bivariate family selection) across different dimensions, using a dataset with N = 200 and a
MacBook Pro M1 Pro, 2023. The results are averaged over 10 different fits.

. D
Sample Size 10 25 50 100 200
10 013 +001 090+025 35+004 14+007 61+140
25 021+0.01 1404004 574009 23+007 94+ 036
50 0374001 245+005 1004009 414025 169+ 4.56
100 071 +£007 466+009 1914023 774046 3144254
200 150 £0.10 9.62+0.16 3944041 158+3.19 625+ 2.88

Table 2: Computation time (seconds) for vine copula fitting across dimensions D and sample sizes, on a MacBook Pro M1
Pro (2023). The results were averaged over 10 different datasets, per dimension/datasize pair.

B MODELS
We provide details of the models evaluated in our paper.

Engression Engression, proposed in|Shen and Meinshausen| [2024], approximates the conditional distribution Y | X
using a pre-additive noise model Y = g(WX + ) + 3" X, where g : R? — R is a non-linear function that captures
non-linear relationships and = h(e) introduces flexible noise. Built on a neural network architecture that efficiently learns
this structure, it optimizes the energy score loss for accurate distributional regression.



Meta-learners Meta-learners are flexible frameworks in causal inference designed to estimate individualized treatment
effects by leveraging machine learning models. Two common types are T-learners and S-learners. Details can be found in
Kiinzel et al.|[2019].

T-learners work by training separate models for the treated and untreated groups, predicting outcomes under each treatment
condition, and then calculating the difference between these predictions to estimate the treatment effect. S-learners combine
both treated and untreated data into a single model by including treatment as an input feature, allowing the model to learn the
outcome function across both treatment conditions simultaneously. These learners provide a modular approach to estimating
conditional average treatment effects (CATE) and can adapt to different settings and model complexities.

CausalForest CausalForest is an extension of random forests designed to estimate heterogeneous treatment effects by
partitioning the data into subgroups with similar treatment responses. Introduced by Wager and Athey| [2018], it uses a
tree-based ensemble method to non-parametrically estimate the CATE by building separate models for different covariate
regions, while ensuring a balance between treated and control units in each partition. This method is flexible and adapts to
complex data structures, making it a powerful tool for understanding treatment effect heterogeneity.

BART Bayesian Additive Regression Trees, first introduced in/Chipman et al.|[2010], is a non-parametric machine learning
method that uses an ensemble of regression trees to model complex relationships between covariates and outcomes. The
BART model estimates the posterior distribution of the outcome by summing the contributions from many trees, each of
which is trained to explain part of the residual error left by the others. This ensemble approach makes BART particularly
effective at capturing complex, non-linear relationships between the covariates and the outcome. Unlike standard decision
trees, BART applies a Bayesian framework, allowing it to quantify uncertainty in its predictions and avoid overfitting
through regularization priors.

TARNet Treatment-Agnostic Representation Network, first introduced in Johansson et al.| [2016], is a neural network-
based model for estimating heterogeneous treatment effects in causal inference. It works by learning a shared representation
of covariates, independent of treatment assignment, and then using this representation to estimate potential outcomes for

both the treated and untreated groups. By focusing on treatment-agnostic representation learning, TARNet aims to improve
the generalizability and accuracy of treatment effect estimates, particularly in high-dimensional settings.

C COMPUTATION DETAILS

We provide computation details in Section f] We use default recommended hyperparameters for each model.

Table 3: Hyperparameters of Each Model.

Model Key Hyperparameters Package
number of layers = 2
batch size = 64 Python
TARNet learning rate = 0.0001 catenets [Curth et al.} 2021]]
number of epochs = 2000
CausalForest number of trees = 100 Python, econml
maximum depth = 3 [Microsoft Researchl |2019]]

number of trees = 75
number of iterations = 4 .
S-/T-BART number of burn-in iterations = 200 R, dparts [Dorie etal} 2024]

posterior draws = 800

number of layers = 3
batch size = 64 Python, engression

learning rate = 0.01 [Shen and Meinshausen), 2023
number of epochs = 500

S-/T-engression

All experiments were conducted on a MacBook with an Apple M3 chip, 8-core CPU, and 32GB RAM.



D ADDITIONAL EXPERIMENTS

D.1 IN-DOMAIN MODEL PERFORMANCE TESTING ON THE IHDP DATASET

Although our proposed method mainly tackles the out-of-domain generalizability assessment, which is a challenging task as
demonstrated in Section [21] it can be easily adapted to performance evaluation for in-domain tasks. As an illustration, we
present the in-domain test results and MSE for the THDP dataset, using the same experimental setup as in Section .2 but
without introducing any domain shift (i.e. Z; remains unchanged in the test domain) in Figure 9]

Boxplot of log10(MSE) for Different Models Boxplot of logio(p — value) for Different Models
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Figure 9: log,,(MSE) and log,,(p-value) of Mean Regression Testing on the IHDP Dataset, No Domain Shift.

Figure@demonstrates the contrasts of log;,(MSE) and log;,(p-value) performance assessment results.Each model was
trained with its default hyperparameters, and we evaluated them under those same conditions. The test results therefore
reflect each model’s generalizability given its default settings. As expected, we see alignments of the MSE and tests results:
TARNet (with default hyper-parameter settings) exhibits large MSE, and the p-values are generally very small. Meanwhile,
S-engression and T-engression yield comparatively lower MSEs; however, MSE alone can be insufficiently persuasive. By
incorporating p-values and the corresponding statistical guarantees offered by our method, we can make stronger assertions
about the generalizability of these two engression approaches. These findings emphasize the usefulness and significance of
our proposed method in model assessment, as discussed at the end of Section 2.1}

D.2 TESTING GENERALIZABLE MODELS

We include an additional experiment in this section, which is based on the synthetic data setting in Section 1] but without
domain shift. We set the marginal distribution of Z;, Zs to be A(1,1), and Y (X) ~ N (2X +1,1), X ~ Bernoulli(0.5).
In this case, the conditional average treatment effect should be linear.

The result when there is no domain shift can be found in Figure[T0} We see that the p-values of both S-Linear (Regression)
and T-Linear (Regression) are uniformly distributed. Given the true CATE function is indeed linear, this result validates our
proposed method.



Boxplot of p-values for Different Models
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Figure 10: p-values of Mean Regression Testing, Synthetic Data of 50 Iterations, No Domain Shift.

We next test when there is domain shift, i.e. we keep all the settings the same as above for training set, but we change the
marginal distribution of Z;, Z in the test set to be N(3, 2). Figure shows the results. Linear regressions still demonstrate
good generalizability performance! However for algorithms like S-engression and S-BART the results worsen, likely due to
problems such as overfitting.
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Figure 11: p-values of Mean Regression Testing, Synthetic Data of 50 Iterations, with Domain Shift.

D.3 MORE COMPLICATED DATA GENERATION

To demonstrate the flexibility of our approach, we run additional experiments across different data generation settings,
including increasing number of covariates, changing marginal distributions and changing dependency structures.

TablesEI and show the log,,(p-value) statistics from 50 trials conducted under a setting similar to Synthetic Setting 1 in
the main body of our paper, with only two changes: (1) we increase the number of covariates from 2 to 50 and 100, and



keep the covariate distribution shifts the same for each covariate; (2) we replace the dependency structures with randomly
sampled correlation matrices. CausalForest, T-engression and T-BART demonstrate good generalizability in these settings.

Table 4: log,, (p-values) Statistics under Synthetic Setting 1 with 50 Covariates.

Model Min 25% Median Mean 75 % Max

TARNet —36.8 —33.6 -324 =316 —-31.5 —30.8
CausalForest —2.35 -1.22 —-0.851 —-0.539 -0.214 —-0.077
S-BART —-8.32 —4.22 -3.36 —2.58 —2.66 —1.92
T-BART —-1.52 —-0.757 —0.326 —0.349 —0.187 —0.044
S-engression —20.0 —18.2 —17.3 —14.4 —16.7 —13.1
T-engression —2.53 —0.669 —0.283 —-0.324 —-0.211 —0.006

Table 5: log,,(p-values) Statistics under Synthetic Setting 1 with 100 Covariates.

Model Min 25% Median Mean 75 % Max

TARNet —-34.3 —-31.3 -309 —-299 =303 —-29.0
CausalForest —2.39 —-1.35 —-0.821 —-0.670 —0.479 —0.122
S-BART —-9.62  —7.32 —-6.68 =522 —-599 —3.96
T-BART -1.04 —0.76 -036 —-031 —0.12 0.00
S-engression —28.6  —26.1 —-253 —-23.6 —24.0 226
T-engression —2.46 —0.663 —0.393 —-0.366 —0.137 —0.107

Table E] present the log,,(p-values) statistics from 50 trials under the same setup as the first experiment inexcept for
altering the marginal causal distribution. Changing this from Gaussian to gamma introduces non-linear dependencies in the
conditional causal margin. While linear regression was generalizable in the original setup, it fails in the non-linear setting,
demonstrating the ability of our approach to show that some methods fail to generalize well.

Table 6: log,,(p-values) Statistics under the Same Set-up as Figure (10| with Non-linear Dependency.

Model Min 25% Median Mean 75 % Max

S-Linear —16.2 —13.0 —-11.7 —-10.9 -10.8 —9.93
T-Linear —13.3 —11.2 —10.6 —9.67 —-10.0 —8.61
TARNet —24.0 -—21.7 —-21.2 —195 —199 -—18.6
CausalForest —12.2 —10.8 —10.2 -9.16 —-9.34 -—-8.23

S-BART -134 —-10.3 -9.33 —-7.60 -850 —6.36
T-BART —-11.6 —8.40 —-7.84 —-6.38 —7.49 —5.12
S-engression —12.5 —9.89 -9.45 —-8.01 —-8.17 -—7.13
T-engression —9.69 —7.32 —6.83 —-5.23 —-6.32 —-3.99

A strength of our framework is that vine copula allows users to test their methods against various classes of copulas. We
demonstrate this in Table[/| with the following data generating process:

* Training Domain: Covariates’ marginal distributions are identical gamma distributions with shape £ = 8 and rate
0 =4,

e Testing Domain: Covariates’ marginal distributions are identical gamma distributions with shape & = 2 and rate § = 1,

¢ Marginal Causal Distribution: Modelled as an exponential distribution with k£ = 0.5z + 0.1;

* Treatment Assignment: Specified as X ~ Bernoulli(0.5);

¢ Copula: Randomly sampled R-vine structure, with each bivariate copula set to be a Clayton copula [Kreinovich et al.,
2013]] with a parameter of 2.



Table 7: log,,(p-values) Statistics for Experiment with a Non-Gaussian Copula.

Model Min 25% Median Mean 75 % Max

S-Linear —oco  —5.71 —4.92 —-3.89 —4.15 —2.81
T-Linear —oo  —3.47 —2.64 —-1.87 —-1.94 -0.929
TARNet —18.3 —15.9 —14.5 —-12.5 —-13.7 —11.2
CausalForest —10.9 —3.53 —-2.81 —-2.35 —-2.23 —1.49
S-BART —o0  —4.12 -3.47 —-2.91 =299 —2.04
T-BART —oco  —4.14 -3.24 —-262 —-2.62 —-1.73

S-engression —15.8 —4.06 -3.04 —-2.35 —-2.63 —1.54
T-engression —10.2 —3.70 —2.28 —-195 —-1.70 —1.40

Table [8| shows the log;,(p-values) of testing generalizability results with data generated from a Gaussian copula. The
covariate margins, the causal margins, the dependency structure, and the second moments of each bivariate copula are
identical to the previous example. We choose the rank correlation coefficient of the Gaussian copula, p = %, where 0
parameterizes the Clayton copula; this was set as 2 in the previous example. The only difference between the two processes
is the class of the copula family. The —oo in Tables [7]and [§]are due to the original p-values being 0.

Table 8: log;,(p-values) for Experiment with the Same Setting as in Table but with a Gaussian Coupla.

Model Min 25% Median Mean 75 % Max
S-Linear —oo —5.19 —4.68 —3.52 —3.49 —2.73

T-Linear —oo  —2.59 —-183 —-142 —-145 —-0.512
TARNet —-21.3 —15.6 -143 -135 -—-13.6 —12.7
CausalForest —5.45 —3.81 -294 -170 -2.01 -—-0.517
S-BART —oo  —3.48 -2.85 -—-213 —-2.09 -1.20
T-BART —oo  —2.85 -2.17 -—-174 -144 -1.07
S-engression —11.4 —3.16 —-2.62 —1.82 —1.68 —1.10
T-engression —9.24 —2.61 —-151 —-1.08 —-0.921 —-0.322

Contrasting Tables [7] and [§] shows that model generalizability is sensitive to copula families. Therefore, the flexibility
of simulating data from different copula families, which is a key advantage of our current parametric framework, is
important for model generalizability evaluation. We would also like to emphasize that in this paper we simulate from
frugal models parametrically, but there are methods that which can flexibly model copulas without parametric assumptions
[[de Vassimon Manela et al., [2024]], and others may not require copulas at all.

D.4 EQUIVALENCE TESTING

Our framework is flexible and naturally accommodates equivalence testing. Note that equivalence testing can be restrictive
due to its need to define an additional hyperparameter—the equivalence margin—which can influence test outcomes.
However, in certain applications, such as those requiring guarantees about not overlooking non-generalizable models,
equivalence testing (e.g. TOST: two one-sided tests) can be more appropriate. Here, the null hypothesis becomes Hy:
|#B — 7B| > 6, and the Type I error corresponds to the risk of falsely concluding that the model generalizes. We provide
additional experiment results on the synthetic datasets.

On synthetic data, we report TOST results for two margins, § = 0.1 and § = 0.2, using the same bootstrap configuration as
Algorithm@](NA = 200, Np = 50, Ny, = 200, 50 repetitions).

Setting 6 = 0.2 means the null hypothesis allows for a wider range of acceptable discrepancy than § = 0.1. As a result,
we expect higher rejection rates (or smaller p-values) when § = 0.2, since the criterion for equivalence is more lenient.
Conversely, with § = 0.1, the test is stricter, and p-values are generally larger. This is validated by comparing the results in
Tables @ and

Setting 2 involves larger domain shifts than Setting 1, making model generalizability more challenging. As expected, results



Table 9: Synthetic setting 1, § = 0.1 (TOST p-values)

Model Min Median Mean Max
TARNet 1.00 1.00 1.00 1.00
CausalForest 1.00x 107% 1.75x10™* 849 x 1073 0.119
S-BART 4.00x 107% 3838 x10* 9.04x 1073 0.126
T-BART 1.83 x107* 4.86x 1073 3.53x1072 0.381
S-engression  3.72 x 107*  8.13 x 1072 0.133 0.717
T-engression  7.70 x 10~ 2.31 x 1072 3.93 x 1072 0.226
Table 10: Synthetic setting 1, = 0.2 (TOST p-values)
Model Min Median Mean Max
TARNet 1.00 1.00 1.00 1.00
CausalForest 5.55 x 10716 1.20 x 1071° 5.10 x 1079 1.51 x 10"
S-BART 1.65 x 107  6.18 x 10~ 8.02x 1078 1.60 x 10~
T-BART 257 x 10710  6.45x107% 6.25x107° 1.96 x 1073
S-engression  1.66 x 1071 331 x 1076 126 x107* 287 x 1073
T-engression  2.76 x 1072  1.73 x 107> 2.64 x 10~* 2.80 x 1073

in Tables[TT]and [12]show generally higher p-values under Setting 2, reflecting the difficulty in rejecting the null hypothesis
of non-equivalence and non-generalizability.

We also ran equivalence testing under the same setting as in Figure[T0} where Linear Regression models are expected to
exhibit perfect transportability. Accordingly, when setting § = 0.1, we obtain the results in Table[I3] These are exactly as
expected—models should reject the null hypothesis in this setting, confirming their strong transportability under equivalence
testing.

E INTERPRETING TESTING RESULTS

We further explain the motivation of our paper, as well as guidance of reading the testing results.

All p-values, including their distributions, are highly informative in evaluating generalizability. For example, consistently
small p-values (as shown in Figure[7), indicate a clear failure of model generalizability in that setting. Conversely, uniform
distributions of p-values (e.g. linear regression results in Figure demonstrate more trust in the model’s generalizability.
Type-I error control serves a critical role in distinguishing between competing hypotheses with a minimal probability of error.
In our framework, controlling Type-I error ensures that conclusions about non-generalization when a model fails the test
are not driven by random noise. This rigour is crucial for causal inference, where decisions based on incorrect conclusions
can have significant consequences. In contrast, predictive performance measures like MSE lack statistical safeguards, and
interpretations of model performance under domain shifts would lack reliability and robustness.

We also provide explanations if all tests fail. As with any hypothesis test, failing to pass provides evidence against the tested
hypothesis. In our framework, this means the algorithm lacks sufficient generalizability to infer the conditional treatment
margin in new domains. If all algorithms fail, it signals none are suitable for reliable causal inference under the domain shift.

This highlights the need for alternative modelling approaches and underscores the value of our framework. Unlike MSE,
which compares predictive performance, our method directly identifies failures in causal generalizability—an essential
insight for researchers. We hope this clarifies how to interpret such results and guides researchers in determining next steps
when all models fail.

F COMPARISON WITH SCORES

Our testing framework is actionable in that it delivers a principled, binary decision on whether a model is generalizable to a
given domain. This is essential for model selection: rather than relying on metrics such as mean square error alone (which



Table 11: Synthetic setting 2, § = 0.1 (TOST p-values)

Model Min Median Mean Max
TARNet 1.00 1.00 1.00 1.00
CausalForest 4.00 x 1076  1.60 x 1072 1.99 x 1072  0.336
S-BART 1.00 x 107 221 x 1073 3.08 x 1072  0.391
T-BART 2.07 x 107% 454 x 1073 292 x 1072 0.282
S-engression  9.38 x 10~* 0.108 0.191 0.745
T-engression  2.30 x 1072 0.109 0.162 0.381

Table 12: Synthetic setting 2, § = 0.2 (TOST p-values)

Model Min Median Mean Max
TARNet 1.00 1.00 1.00 1.00
CausalForest 3.64 x 10712 2.64 x 10719 1.08 x 10~7 2.00 x 10~6
S-BART 410x 1079  8.02x 1073 4.32x 1072 0.275
T-BART 1.02x 1073 2.67x 1072 543 x 1072 0.329
S-engression  3.03 x 107¢  1.36 x 1073  2.26 x 1072 0.222
T-engression  1.85 x 1073 4.77 x 1072 6.37 x 1072 0.214

may favour non-generalizable models), we first use our test to filter out models that fail to generalize.

Our method structures selection into two stages:

Stage 1: Apply the proposed testing procedure to identify models that generalize across domains.

Stage 2: Among the models that pass the test, rank them with a predictive metric (such as MSE) and pick the best-performing
one.

This two-stage approach ensures selection is both statistically sound and practically robust: it prioritizes generalizability
before performance. In this framework we choose models that are “good and generalizable,” not merely “relatively good” by
the score alone. MSE is actionable only in the sense that it lets one compare already viable models and hyper-parameter
settings.

We do not argue against continuous score; instead, we view them and our test as complementary. Our test provides statistical
guarantees on generalizability. Once generalizable models are identified, MSE can rank their relative predictive performance.
Relying on a continuous score alone is insufficient—a model may achieve a comparatively low score in one domain, yet fail
to generalize elsewhere.

To highlight the discrepancy, we re-ran the experiments in the paper and recorded mean square error across 50 trials.

Tables and [16]show the minimum and maximum MSE values and the corresponding performance ranks (lower is
better) for each model.

MSE and rank summaries provide no statistical confidence that a model generalizes. For example, S-BART’s minimum
MSE in Synthetic setting 2 is 0.04, far smaller than TARNet’s, yet this does not prove S-BART generalizes. In contrast,
Figure 3] of our paper shows small p-values for S-BART, letting us reject the null hypothesis of generalizability at the 5%
level. Another limitation of MSE is that in heterogeneous or endogenous noise settings, cross-domain MSEs may diverge
even with a perfectly specified CATE model. Differing noise levels alone can create apparent performance gaps.



Table 13: Linear-regression transportability, synthetic (§ = 0.1)

Model Min Median Mean Max
S-Linear 1.47 x 10~ 147 x 10710 1.28x10~% 2.17x 1077
T-Linear 1.54 x 10~  1.10x107% 4.57x 1077 9.10 x 10~

Table 14: Synthetic Setting 1: MSE statistics over 50 trials

Model Min Max Min Rank Max Rank
TARNet 240  2.68 6 6
CausalForest 0.001 0.041 1 4
S-BART 0.040 0.067 1 4
T-BART 0.004 0.130 1 5
S-engression  0.016 0.144 2 5
T-engression  0.006 0.080 1 5

Table 15: Synthetic Setting 2: MSE statistics over 50 trials

Model Min Max Min Rank Max Rank
TARNet 2.09 2.92 5 6
CausalForest 0.012 0.230 1 3
S-BART 0.040 0.150 2 5
T-BART 0.030 0.200 1 3
S-engression  0.120  0.600 4 6
T-engression  0.020 0.180 1 4

Table 16: IHDP: MSE statistics over 50 trials

Model Min Max Min Rank Max Rank
TARNet 102  86.0 6 6
CausalForest 0.03  6.19 1 5
S-BART 0.03 6.72 1 4
T-BART 0.02 6.25 1 3
S-engression  0.10 10.16 2 5
T-engression 0.05  6.45 1 5
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