
Learn Beneficial Noise as Graph Augmentation

Siqi Huang * 1 2 Yanchen Xu * 1 2 Hongyuan Zhang 2 3 Xuelong Li 2

Abstract
Although graph contrastive learning (GCL) has
been widely investigated, it is still a challenge
to generate effective and stable graph augmen-
tations. Existing methods often apply heuristic
augmentation like random edge dropping, which
may disrupt important graph structures and result
in unstable GCL performance. In this paper, we
propose Positive-incentive Noise driven Graph
Data Augmentation (PiNGDA), where positive-
incentive noise (pi-noise) scientifically analyzes
the beneficial effect of noise under the information
theory. To bridge the standard GCL and pi-noise
framework, we design a Gaussian auxiliary vari-
able to convert the loss function to information
entropy. We prove that the standard GCL with
pre-defined augmentations is equivalent to esti-
mate the beneficial noise via the point estimation.
Following our analysis, PiNGDA is derived from
learning the beneficial noise on both topology
and attributes through a trainable noise generator
for graph augmentations, instead of the simple
estimation. Since the generator learns how to
produce beneficial perturbations on graph topol-
ogy and node attributes, PiNGDA is more reliable
compared with the existing methods. Extensive
experimental results validate the effectiveness and
stability of PiNGDA.

1. Introduction
With the development of Contrastive Learning (CL) in com-
puter vision (Chen et al., 2020; He et al., 2020; Bachman
et al., 2019; Falcon & Cho, 2020), natural language process-
ing (Gao et al., 2021a; Yan et al.), and other fields(Radford
et al., 2021), more and more researchers have paid great
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efforts on how to extend CL to graph, which is known as
Graph Contrastive Learning (GCL) (Veličković et al., 2018;
Zhu et al., 2021; Peng et al., 2020; Gao et al., 2021b; Rong
et al., 2020). Compared with traditional contrastive learn-
ing methods, GCL considers not only how to contrast data
points but also how to generate augmentation by leveraging
the topological structure (Hassani & Khasahmadi, 2020;
Zhu et al., 2021), local features (Veličković et al., 2018;
Peng et al., 2020), and global context of graphs (Sun et al.,
2020).

Despite the progress in GCL methods, graph data augmenta-
tion remains a key challenge, which is substantially different
from visual data. Unlike the reliable and stable visual aug-
mentations (e.g., cropping, flipping, translation) that play
the core roles in visual contrastive models (He et al., 2020;
Chen et al., 2020), graph topology is more complex with
non-Euclidean structure. It results in difficulties of defining
efficient and stable augmentation to retain crucial topologi-
cal properties.

In early GCL models, typical graph augmentations included
random modifications to edges and nodes. For example,
random edge dropping (Gao et al., 2021b; Rong et al., 2020)
stochastically removes a portion of edges, while random
node dropping (Feng et al., 2020) removes nodes and their
links from the graph. Such random methods increase di-
versity but may disrupt inherent graph structure. More
recent works propose adaptive augmentation techniques.
GCA (Zhu et al., 2021) sets the probability of dropping an
edge based on centrality measures of the involved nodes,
aiming to better preserve graph connectivity. NCLA (Shen
et al., 2023) learns adaptive graph augmentations and em-
beddings using a multi-head graph attention mechanism and
a neighbor contrastive loss. Although providing more flex-
ibility than completely random schemes, these predefined
augmentation rules can still be considered as a priori as-
sumptions. The heuristic methods usually lead to instability,
since the perturbations may introduce severe topological
noise and hinder GCL pre-training and downstream tasks.

To address the challenges by learning effective graph aug-
mentations, some works have explored learning-based ap-
proaches. JOAO (You et al., 2021b) proposes a optimization
framework to automatically select data augmentation meth-
ods for each sample. It treats augmentation selection as
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a hyperparameter optimization problem to improve GCL.
Similarly, Suresh et al. proposes adversarial-GCL (AD-
GCL) (Suresh et al., 2021b), which optimizes adversarial
graph augmentation in GCL to prevent redundant informa-
tion capture. It designs a practical instantiation based on
trainable edge-dropping graph augmentation. These meth-
ods either select from predefined operations or focus on
specific structural perturbations like edge modifications.

In summary, the existing learning-based graph augmenta-
tions introduce topological noise to graph. In this paper,
we seek a more explainable approach and focus on how
to directly control the beneficial noise with a theoretical
framework, i.e., Positive-incentive Noise (Pi-Noise or π-
noise) (Li, 2022) framework. π-noise is defined as the
beneficial noise that reduces the task complexity. We design
the Pi-Noise driven Graph Data Augmentation (PiNGDA).
Owing to the theory about noise, the noisy graph augmenta-
tions can be easily applied to both topology and attributes.
Note that the augmentations on node attributes are mainly
heuristic methods, such as random permutation (Hassani
& Khasahmadi, 2020) and random mask (Zhu et al., 2021).
Roughly speaking, PiNGDA utilizes learnable noise genera-
tors to produce beneficial noise perturbations. The contribu-
tions are listed as follows:

• We design a Gaussian auxiliary variable related to the
GCL training loss to quantify the GCL complexity,
which bridges the π-noise framework and GCL. It
shows us that the predefined augmentation is just a
point estimation of π-noise, which provides a novel
perspective of GCL (Section 3.3).

• The theoretical analysis directly reveals a significant
drawback of the standard GCL models. The predefined
augmentations that are widely used in GCL may fail
to serve as strong point estimations of π-noise. In
other words, they are too unreliable to be regarded as
a strong priori like augmentations of vision data. We
therefore propose PiNGDA to exactly minimize the π-
noise principle. PiNGDA leverages a π-noise generator
to learn beneficial noise for topology and attributes as
augmentations (Section 3.3).

• To ensure the differentiability of noise generation, we
develop an efficient differentiable algorithm (Section
4).

• By learning the noise generative model, PiNGDA im-
proves GCL performance and stability compared to
baselines from the extensive experiments (Section 5).

2. Related Work
2.1. Graph Contrastive Learning

Recent advancements in graph contrastive learning meth-
ods (Grover & Leskovec, 2016; Hamilton et al., 2017b;
Perozzi et al., 2014; Hassani & Khasahmadi, 2020) have
introduced a variety of data augmentation strategies, such
as node dropping (You et al., 2020), edge perturbation (Zhu
et al., 2020), and feature masking (Zhu et al., 2021). While
effective in creating diverse graph views, these traditional
techniques struggle with the inherent complexity of graph
topology. Recognizing these limitations, more adaptive ap-
proaches have been developed to better reflect the intrinsic
properties of graph data. One notable example is GCA (Zhu
et al., 2021), which proposes an augmentation method that
adapts both topological and semantic aspects of the graph.
Recent innovations such as JOAO (You et al., 2021b) and
AD-GCL (Suresh et al., 2021b) have been developed to ad-
dress these challenges through more sophisticated strategies.
JOAO employs an augmentation-aware projection head that
dynamically selects augmentations during training. AD-
GCL adopts an adversarial approach where the model learns
to optimize edge-dropping strategies in real-time, allow-
ing it to adaptively modify the graph structure to enhance
generalization and robustness in learned representations.

2.2. Methods of Learning Graph Structure

Except for GCL, graph structure learning aims at modify-
ing the structure of a graph to achieve specific goals (Hu
et al., 2019; Veličković et al., 2017; Kipf & Welling, 2016;
Xu et al., 2018; Wu et al., 2019; Hamilton et al., 2017a).
While these methods differ from the heuristic approach of
edge dropping, they are still an important research direction.
For example, a neural network-based method (Zheng et al.,
2020) automatically selects the most important nodes and
edges to obtain a more compact and robust graph repre-
sentation. VIB-GSL (Sun et al., 2022) employs variational
inference to learn the structure of a graph by maximizing
the information bottleneck of its representation. In sum-
mary, these methods typically require supervised informa-
tion when modifying the graph structure, which differs from
the unsupervised nature of GCL.

2.3. The Positive Impact of Noise

Noise may not always be harmful as it has been demon-
strated that random noise helps improving performance,
e.g., random forest (Breiman, 2001), Dropout (Srivastava
et al., 2014), noisy augmentations in contrastive learning
(Verma et al., 2021; Chen et al., 2020). Verma et al. (Verma
et al., 2021) proposed a method that introduces noise in
the form of diverse transformations to improve contrastive
learning across different domains. The paper (Lin et al.,

2



Learn Beneficial Noise as Graph Augmentation

Figure 1: This figure illustrates the PiNGDA framework, which consists of a π-noise generator and contrastive learning
module. The core innovation lies in its joint noise generator, which consists of two synergistic components: a topological
generator for perturbing graph structures and an attribute generator for perturbing node features. A contrastive loss function
is applied between original and noise graph representations. By jointly training the generator and encoder, PiNGDA
dynamically learns optimal perturbation patterns tailored to downstream tasks.

2023) proposes a CNN-based hydroacoustic signal recog-
nition method for ship noise classification. VPN (Zhang
et al., 2023) shows that certain types of noise can benefit
model. Similarly, other methods (Zhang et al., 2024; Huang
et al., 2025) extended this insight to contrastive learning
and vision-language alignment, respectively. EPAGCL (Xu
et al., 2025) demonstrates that introducing structurally effec-
tive noise into graph structures can enhance representation
quality. In this paper, we follow the definition in (Li, 2022).
Formally, the noise ε ∈ E , where E represents the noise set
is defined as the π-noise if it satisfies

I(T , E) > 0 ⇔ H(T ) > H(T |E). (1)

H(T ) represents the information entropy of task T and
I(·, ·) denotes the mutual information. It informs us that
the additional components should reduce task uncertainty
H(T ) after introducing noise. From this perspective, we
can find that the predefined augmentations, widely used in
existing GCL, may not reduce the task entropy. In this paper,
we start from the above framework to learn the noisy graph
augmentation with theoretical guarantee.

3. π-Noise Driven Graph Data Augmentation
In this section, we focus on how to apply π-Noise to GCL.
As mentioned previously, it is imperative to mathematically
quantify the difficulty of the target task T . Roughly speak-
ing, we design an auxiliary Gaussian variable based on the
GCL training loss and compute its information entropy to
quantify the complexity of task T . We assume that the

contrastive element is the node for simplicity, while it is
straightforward to extend the analysis to graph-level
GCL models as well as hybrid models, which uses both
graphs and nodes for contrast. Although we only discuss
the node-level GCL in Section 3 and 4, we also report
the experimental results of graph tasks in Section 5. In
the succeeding sections, a graph G = (V,S) consists of
node set V and edge set S . θ∗ denotes the optimal solution
minimizing the loss L(V;θ) where θ represents parameters.

3.1. General Formulation of GCL

Before the formal analysis, on a given graph G = (V,S),
we formulate the base GCL loss based on InfoNCE (van den
Oord et al., 2018) as

LInfoNCE = − 1

|V|
∑
u∈V

log
ℓpos(u;θ)

ℓpos(u;θ) + ℓneg(u;θ)
. (2)

ℓpos(u;θ) and ℓneg(u;θ) represent the positive and nega-
tive loss associated with node u parameterized by θ, respec-
tively. |V| is the node number. Note that there is usually a
temperature hyper-parameter τ in ℓpos and ℓneg. Since we
aim at learning π-Noise for a specific GCL model (i.e., fixed
τ ), we assume that a GCL model is given with a fixed τ and
the hyperparameter τ is therefore omitted.

To simplify the analysis, the contrastive loss can be sepa-
rated into multiple node-level formulations

ℓ(u;θ) = − log
ℓpos(u;θ)

ℓpos(u;θ) + ℓneg(u;θ)
, (3)
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so that LInfoNCE = 1/|V| ·
∑
u ℓ(u;θ).

3.2. A General Framework to Bridge π-Noise and
Training Loss

Given an arbitrary loss function L(V;θ) =
∑
u∈V ℓ(u;θ),

let θ∗ be the optimum that minimizes L(V;θ) over the pa-
rameter space. It is clear that the quantity L(V;θ∗) usually
provides a direct measurement of the task difficulty. In
other words, a smaller L(V;θ∗) implies a simpler task on
V . However, it is important to point out that L(V;θ∗) is
neither a random variable nor a probability quantity, so it is
impracticable to be directly applied to computing the task
entropy. To address this problem, we introduce an auxil-
iary random variable α. To keep notations uncluttered,
we simply substitute θ∗ with θ. We define a monotonously
increasing mapping function f : R 7→ R+ such that

p(α|u) = N
(
0, f

(
ℓ(u;θ)

))
. (4)

Here N (·, ·) represents a Gaussian distribution. Due to the
monotonous increasing property of f , a smaller contrastive
loss implies a higher similarity between samples and cor-
responds to a smaller variance of its auxiliary Gaussian
distribution. It indicates a smaller entropy H

(
p(α|u)

)
,

i.e., a much easier task. The above definition provides us a
natural scheme to define the task entropy of a given task by
converting its loss ℓ(u;θ). Formally,

H(T ) = Eu∼p(u)H
(
p(α|u)

)
= Eu∼p(u)H

(
N
(
0, f(ℓ(u;θ))

))
.

(5)

3.3. Rethink GCL under π-Noise Framework

With the framework formulated in the previous subsection,
we provide a new perspective for the existing GCL mod-
els. We show that a general GCL model with predefined
augmentations is equivalent to learning parameters with a
point estimation of π-noise. Under the π-noise framework,
as the optimal parameters θ∗ are unknown, the optimization
principle of GCL should be

max
E,θ

−H(T |E). (6)

According to the definition of H(T ) shown in Eq. (5), the
conditional entropy is formulated as

H(T |E)

= −
∫

p(α|u, ε)p(ε|u)p(u) log p(α|u, ε)dudεdα

≈ − 1

n

∑
u

∫
p(α|u, ε)p(ε|u) log p(α|u, ε)dεdα.

(7)

In this step, we use Monte Carlo method since the dataset
V can be regarded as a sample drawn from p(u). For GCL,

we let f( · ) = exp( · ) so that

p(α|u) = N (0, κθ(u)
−1), (8)

where κθ(u) =
ℓpos(u;θ)

ℓpos(u;θ)+ℓneg(u;θ)
is defined to keep the

derivation uncluttered.

There are two probabilities remained in Eq. (7) to be dis-
cussed. p(ε|u) is the distribution of π-noise we want to
learn. A critical step in the process is to model p(α|u, ε)
accurately. We define ℓpos(u, ε;θ) and ℓneg(u, ε;θ) as
contrastive losses with augmentation views generated by
ε. Then we follow the definitions of Eq. (4) and Eq. (8) to
define

p(α|u, ε) = N (0, κθ(u, ε)
−1), (9)

where κθ(u, ε) =
ℓpos(u,ε;θ)

ℓpos(u,ε;θ)+ℓneg(u,ε;θ)
. Without loss of

generality, we suppose that only one augmentation is used
for contrast. Clearly, the following analysis can be easily
extended to the case with multiple augmentations. If the
given data augmentation is regarded as a strongly definite
noise, then augmentation can be viewed as a hypothesis as
follows

p(ε|u) → δε0(ε), (10)

where δε0(ε) is the Dirac delta function with translation ε0,
i.e., δε0(ε) = 0 except for ε = ε0 and

∫
ε
δε0(ε)dε = 1.

With this assumption, −H(T |E) is equivalent to

−H(T |E) ≈ 1

n

∑
u

∫
p(α|u, ε0) log p(α|u, ε0)dα = L.

(11)
We can expand the density of N (0, κθ(u, ε)

−1) and substi-
tute it into L,

L =
1

n

∑
u

(
logC +

1

2
log κθ(u, ε0)−

1

2

)
, (12)

where C in the above equation represents a constant inde-
pendent of learnable parameters. The detailed derivations
can be found in Appendix A. To sum up, the original goal
to maximize the mutual information is converted to

max
E,θ

I(T , E) ⇔ max
θ

1

n

∑
u

log κθ(u, ε0)

⇔min
1

n

∑
u

− log
ℓpos(u, ε0;θ)

ℓpos(u, ε0;θ) + ℓneg(u, ε0;θ)
,

(13)

which is the same as the standard contrastive learning
paradigm.

In conclusion, the standard contrastive learning paradigm
is equivalent to optimizing a contrastive learning module
with a point estimation of the π-noise, where the prede-
fined data augmentation is the point estimation. It is easy to
obtain a further conclusion: the heuristic graph augmenta-
tion often fails to be a good point-estimation of π-noise
(shown in Eq. (10)), which causes the instability of GCL
using heuristic graph augmentations.

4



Learn Beneficial Noise as Graph Augmentation

3.4. Loss of π-Noise Driven Data Augmentation

Driven by the analysis of the previous subsection, there
is a natural idea to obtain a stable augmentation for GCL:
learning π-noise by optimizing Eq. (6), instead of randomly
editing edges/nodes in a heuristic way (Gao et al., 2021b;
Rong et al., 2020; Feng et al., 2020). It is named Pi-Noise
driven Graph Data Augmentation (PiNGDA). It should be
emphasized that PiNGDA is fully compatible with existing
graph contrastive learning models.

Compared with the visual contrastive learning, there is no
stable method to generate an augmented graph with reliable
topology and attributes. The instable augmentation implies
that Eq. (10) fails to hold with a high probability. It results
in the biased training of GCL models. In our proposed
method, we denote pψ(ε|u) as the learnable distribution
with π-noise generator function parameterized by ψ which
will be discussed in Section 4. Then H(T |E) estimated
by the Monte Carlo method (formulated by Eq. (7)) can be
rewritten as H(T |E) ≈

1

n

∑
u

∫
Eε∼pψ(ε|u)p(α|u, ε) log p(α|u, ε)dα. (14)

Accordingly, the loss of PiNGDA is formulated as

Lπ = − 1

n

∑
u

Eε∼pψ(ε|u) log
ℓpos(u, ε;θ)

ℓpos(u, ε;θ) + ℓneg(u, ε;θ)
,

(15)
where θ represents the parameters of the contrast model. For
node u, the feature embedding zu in the original graph and
the augmented zεu generated π-noise constitutes a positive
sample. And the other nodes are treated as negative samples.
Specifically speaking, the formulations of ℓpos and ℓneg are

ℓpos(u) = exp
( ⟨zu, zεu⟩

τ

)
,

ℓneg(u) = exp
( ⟨zu, zv⟩

τ

)
+ exp

( ⟨zu, zεv⟩
τ

)
,

(16)

where ⟨ · , · ⟩ is the similarity function and the cosine simi-
larity is used in this paper.

Since a graph neural network usually takes two components
as input, edge set and node attributes, the noise also consists
of two components, topological noise εedge and attribute
noise εattr. In Section 4, we will discuss how to generate
the topological noise and attribute noise, respectively.

4. Implementation Details of Topological Noise
and Attribute Noise

In this section, we provide a detailed explanation of the
implementation of both topological and attribute noise gen-
eration within our framework. We first discuss the gen-
eration of topological noise εedge, and then describe how

Algorithm 1 Pseudo code of PiNGDA

Input: G = (V,S): Graph data with nodes V and edges
S, k: number of loops
Output: Node embeddings of G
for epoch in range(max epochs) do

Generate topological noise εedge

Generate attribute noise εattr

Get the noisy graph view Gε.
Obtain node embeddings Z = Enc(G),Zε =
Enc(Gε).
Compute the loss Lπ by Eq. (15)
Update parameters by applying stochastic gradient as-
cent to minimize Lπ by Eq. (15) and Eq. (16)

end for

node attribute noise εattr is generated using a parameterized
Gaussian distribution . The whole algorithm is summarized
in Algorithm 1.

4.1. Topological Noise

In this subsection, our goal is to model the conditional dis-
tribution of topological noise p(εedge|u), which determines
edge-dropping probabilities for node u. To keep simplicity,
we assume the topological noise εedge follows a factored
distribution over edges connected to node u,

p(εedge|u) =
∏

⟨u,v⟩∈S

p(εv|u), (17)

where S denotes the set of edges incident to node u. Each
edge ⟨u,v⟩ may be dropped subject to

Pr(dropping ⟨u,v⟩) = p(εv|u). (18)

The edge-dropping probability is parameterized by a learn-
able module gψ(u,v) that operates on node pairs. While
different distribution families can be employed, we use the
Bernoulli distribution as our default choice due to its natural
interpretation for binary edge operations. For each edge, the
preceding probability is formulated as

p(εv|u) = Bernoulli(gψ(u,v)) (19)

where gψ(u,v) outputs the probability of edge deletion.
We implement gψ as a two-layer Multi-Layer Perceptron
(MLP) that processes concatenated node features.

To maintain gradient flow through discrete edge-dropping
decisions, we employ the Gumbel-Softmax reparameteriza-
tion trick (Jang et al., 2016). This provides a differentiable
approximation of Bernoulli sampling:

εv = Gumbel-Softmax(gψ(u,v)) (20)
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This formulation enables learnable, node-specific edge
dropout patterns that adapt during training while maintain-
ing differentiability through the Gumbel-Softmax approxi-
mation.

4.2. Attribute Noise

In this subsection, we detail the process of generating at-
tribute noise εattr. The objective is to introduce noise to
the node attributes in a way that is both effective for model
training and differentiable. We model the attribute noise
εattr as a Gaussian distribution conditioned on the node
attributes u,

p(εattr|u) = N (µ,Σ), (21)

where µ is the learnable mean vector and Σ is the learnable
covariance matrix of the distribution. These parameters are
learned by an MLP that takes the node attributes u as input.
Similarly, we employ the reparameterization trick (Kingma,
2013) to ensure that the model is differentiable. Similar
to (Kingma, 2013), we assume the Gaussian noise on at-
tribute, which is discussed in Section 4.2, is uncorrelated,
i.e., Σ = diag(σ2) where σ ∈ Rd. The assumption can
drastically decrease the parameters from d2 to d. Using the
reparameterization trick, the attribute noise can be generated
by

εattr = µ+ σ · ϵ, (22)

where ϵ ∼ N (0, I) is a standard normal random vari-
able. This reparameterization ensures that the sampling
process is differentiable, enabling backpropagation of gradi-
ents through the noise term during training.

We then add the noise to the attributes to obtain the perturbed
attributes. By introducing noise into the node attributes in
this way, we effectively perturb the node features.

5. Experiments
In this section, we conduct experiments to evaluate our
model by answering the following questions.

• Q1: Does our proposed PiNGDA on graph outperform
existing baseline methods?

• Q2: Is the π-noise we trained more useful than random
noise? How does each component affect model perfor-
mance?

•Q3: How does our method perform in terms of time and
space efficiency?

•Q4: How does the π-noise look like?

We begin with a brief introduction of experimental settings,
followed by a detailed presentation of the experimental
results and their analysis.

5.1. Experimental Settings

For every experiment of node classification, we follow
the linear evaluation scheme introduced by Veličković et
al. (Veličković et al., 2018). Firstly, every model is trained
in an unsupervised manner and then the resulting embed-
dings are utilized to train and test a simple l2-regularized
logistic regression classifier. For each dataset, we conducted
20 random splits of training /validation/test, and reported
the averaged performance. We then calculated the average
performance on each dataset based on these runs. In these
experiments, we measured performance using accuracy as
the evaluation metric. For graph classfication, all methods
are trained with the corresponding self-supervised objective
and then evaluated with a linear classifier. We follow the
conventional 10-Fold evaluation. All our experiments are
performed 10 times with different random seeds and we
report mean and standard deviation of the corresponding
test metric for each dataset. We use accuracy to measure the
performance.

5.2. Baselines

For node classification, we compare PiNGDA with state-
of-the-art methods for node classification. These meth-
ods include two supervised graph neural networks (GNNs),
namely GCN (Kipf & Welling, 2016) and GAT (Veličković
et al., 2017). Additionally, we compare PiNGDA with
self-supervised GCL methods, which are DGI (Veličković
et al., 2018), GMI (Peng et al., 2020), GCA (Zhu et al.,
2021), BGRL (Thakoor et al., 2021), GREET (Liu et al.,
2023), SGRL (He et al., 2024), GRACEIS (Liu et al., 2024),
GOUDA (Zhuo et al., 2024), GASSL (Yang et al., 2021)
and two learnable method AD-GCL (Suresh et al., 2021a)
and JOAO (You et al., 2021a). These methods represent
the current state-of-the-art in the field of semi-supervised
node classification, and we compare the performance of
PiNGDA against them to evaluate its effectiveness. For
all baselines, we implement them based on their official
codes and conduct a hyperparameter search according to the
original paper.

5.3. Performance on Graph Tasks (Q1)

5.3.1. NODE CLASSIFICATION RESULTS

In Table 1, we present the node classification accuracy re-
sults of various methods across seven benchmark datasets.
The bold numbers indicate the best performance and un-
derlined numbers represent the second-highest accuracy for
each dataset. We applied two types of augmentation to our
method: learning the beneficial noise on both the topology
and attributes through a trainable noise generator. A de-
tailed analysis of these components will be provided in the
following ablation study.
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Table 1: Node classification accuracy on seven datasets. The bold numbers represent the best results and the second
highest results are underlined. OOM indicates the Out-Of-Memory exception on a 24GB GPU. *JOAO is marked with an
asterisk to clarify that it does not learn augmentation parameters directly. It adaptively selects augmentations based on a
similarity-driven policy.

Methods Learnable Cora CiteSeer PubMed Wiki-CS Amazon-Photo Coauthor-Phy ogbn-arxiv Rank
GCN ✗ 84.22 ± 1.14 71.59 ± 0.75 85.19 ± 0.21 80.27 ± 0.55 92.55 ± 0.25 95.75 ± 0.05 69.42 ± 0.06 -
GAT ✗ 83.74 ± 0.50 72.11 ± 0.36 84.79 ± 0.28 80.41 ± 0.58 92.48 ± 0.21 95.40 ± 0.08 OOM -
DGI ✗ 83.25 ± 0.77 72.01 ± 0.83 85.12 ± 0.18 79.34 ± 0.42 89.01 ± 0.98 OOM OOM 7.2
GMI ✗ 83.60 ± 1.06 69.11 ± 1.07 84.12 ± 0.37 79.99 ± 0.51 90.13 ± 1.39 OOM OOM 8
GCA ✗ 85.20 ± 0.21 71.76 ± 0.24 87.07 ± 0.25 81.26 ± 0.11 93.19 ± 0.24 94.96 ± 0.25 69.23 ± 0.01 3.4

BGRL ✗ 83.80 ± 0.68 71.51 ± 0.65 85.60 ± 0.17 81.38 ± 0.14 93.19 ± 0.43 95.54 ± 0.06 68.60 ± 0.23 4.2
GREET ✗ 80.47 ± 0.55 72.28 ± 0.59 86.07 ± 0.53 79.92 ± 0.28 93.61 ± 0.35 96.05 ± 0.12 OOM 4.3
SGRL ✗ 83.63 ± 0.49 71.89 ± 0.25 86.34 ± 0.16 81.28 ± 0.16 92.97 ± 0.32 95.64 ± 0.10 68.03 ± 0.04 4.3

GRACEIS ✗ 84.57 ± 0.41 71.40 ± 0.53 84.55 ± 0.37 79.33 ± 0.27 91.26 ± 0.58 94.28 ± 0.43 65.97 ± 0.20 7.1
GOUDA ✗ 82.25 ± 0.54 70.25 ± 1.24 85.82 ± 0.71 - 89.61 ± 1.17 94.54 ± 0.59 - -
GASSL ✗ 81.82 ± 0.79 69.51 ± 0.84 84.91 ± 0.57 - 92.14 ± 0.23 94.93 ± 0.21 - -

AD-GCL ✓ 83.88 ± 0.25 68.74 ± 0.53 84.23 ± 0.21 80.57 ± 0.27 91.92 ± 0.37 95.63 ± 0.10 68.45 ± 0.11 6
JOAO ✓* 82.77 ± 0.71 72.09 ± 0.17 83.83 ± 0.32 80.43 ± 0.27 78.23 ± 2.63 94.30 ± 0.38 68.66 ± 0.09 6.8
Ours ✓ 86.25 ± 0.25 72.44 ± 0.14 87.34 ± 0.08 82.07 ± 0.10 93.29 ± 0.17 95.81 ± 0.06 68.72 ± 0.04 1.4

The results show that our method maintains high accuracy
across diverse graphs. Moreover, our method exhibits lower
variance, demonstrating greater stability in its performance.
When compared to other methods that employ learnable
components, our method stands out. Notably, while AD-
GCL is also a learnable method, it focuses only on learning
the topology of the graph, which limits its effectiveness
in many datasets. In contrast, our method leverages both
the topology and attribute information, leading to more
comprehensive and robust representation learning. As a
result, our method consistently outperforms AD-GCL on
most datasets, showcasing the advantages of augmenting
both graph topology and node features.

On the large-scale ogbn-arxiv dataset, several methods en-
counter out-of-memory issues. While the supervised method
GCN achieve the best results, our method performs almost
equally well, with a very small margin of difference. This in-
dicates that our approach is highly competitive when graph
is large.

Table 2: Classification accuracy on graph classification
datasets. The bold numbers represent the best results and
the second highest results are underlined.

Methods NCI1 MUTAG PROTEINS DD RDT-B

RU-GIN 62.98±0.10 87.61±0.39 69.03±0.33 74.22±0.30 58.97±0.13

InfoGraph 68.13±0.59 87.71±1.77 72.57±0.65 75.23±0.39 78.79±2.14

GraphCL 68.54±0.55 88.29±1.31 72.86±1.01 74.70±0.70 82.63±0.99

AD-GCL 69.67±0.51 89.70±1.03 73.81±0.46 75.10±0.39 85.52±0.79

OURS 69.35±0.63 89.71±0.73 73.21±0.40 75.51±0.57 83.99±0.34

5.3.2. GRAPH CLASSIFICATION RESULTS

In Table 2, we evaluate the performance of various graph
classification methods across five datasets. We compare
with four unsupervised/self-supervised learning baselines,
which include randomly initialized untrained GIN (RU-
GIN) (Xu et al., 2018), InfoGraph (Sun et al., 2020),
GraphCL (You et al., 2020) and AD-GCL (Suresh et al.,
2021a). They generally outperform in graph-level tasks. For
all baselines, we report their performance based on AD-
GCL (Suresh et al., 2021a). Our method achieves top or
near-top performance on all datasets, demonstrating its ro-
bustness and ability to generalize across various tasks. Our
method and AD-GCL (both learnable methods) perform bet-
ter than the other methods across most datasets. However,
Ours demonstrates superior generalization, particularly ex-
celling on MUTAG and RDT-B, whereas AD-GCL performs
slightly better on NCI1 and PROTEINS. Despite these slight
differences, Ours achieves a balanced and consistent perfor-
mance, providing strong evidence of its capability to handle
diverse graph classification tasks effectively.

5.3.3. HETEROGENEOUS GRAPH RESULTS

In this section, we evaluate the performance of our method
on node classification tasks using three heterogeneous graph
datasets: Texas, Cornell, and Wisconsin (Pei et al., 2020).
As summarized in Table 4, our approach consistently sur-
passes other methods on the Texas and Cornell datasets,
achieving the best classification outcomes. This demon-
strates the effectiveness of our model in capturing and
leveraging the structural diversity inherent in heterogeneous
graphs. On the Wisconsin dataset, our method delivers com-
petitive results, ranking closely behind the top-performing
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Table 3: Ablation study on the impact of feature and edge augmentation methods. In this table, the red values represent
the highest classification accuracy for each dataset in each row, while the cells with a background indicate the highest
performance in each column.

Feature
Edge Cora PubMed Wiki-CS

Without Aug. Random Learnable Without Aug. Random Learnable Without Aug. Random Learnable

Without Aug. 82.59 ± 0.66 84.40 ± 0.99 84.28 ± 0.54 85.11 ± 0.19 86.61 ± 0.25 86.81 ± 0.23 80.34 ± 0.25 81.05 ± 0.23 80.99 ± 0.15

Random 83.12 ± 0.82 85.84 ± 0.44 85.99 ± 0.29 84.97 ± 0.14 86.89 ± 0.13 87.07 ± 0.25 80.12 ± 0.49 81.61 ± 0.19 82.03 ± 0.07

Learnable 83.36 ± 0.54 85.83 ± 0.37 86.25 ± 0.25 85.37 ± 0.07 87.04 ± 0.20 87.34 ± 0.08 80.13 ± 0.18 81.51 ± 0.14 82.17 ± 0.15

Table 4: Classification accuracy on three heterogeneous
datasets. The bold numbers represent the best results and
the second highest results are underlined.

Methods Texas Cornell Wisconsin
GCN 57.69 ± 4.46 48.44 ± 4.82 58.01 ± 1.90
GAT 56.19 ± 2.16 47.62 ± 4.06 55.12 ± 3.23
DGI 57.55 ± 2.94 47.89 ± 2.05 47.56 ± 5.56
GMI 48.98 ± 3.60 41.09 ± 5.24 51.24 ± 3.93
GCA 58.57 ± 2.10 47.45 ± 0.88 52.04 ± 3.34

BGRL 54.88 ± 3.35 35.15 ± 10.43 48.59 ± 3.77
GREET 62.79 ± 2.57 51.90 ± 2.47 63.11 ± 0.74
SGRL 60.00 ± 0.27 50.07 ± 0.33 56.92 ± 0.24

GRACEIS 61.90 ± 2.40 48.57 ± 1.95 59.10 ± 0.96
AD-GCL 60.82 ± 2.49 49.52 ± 2.93 57.01 ± 2.70

JOAO 62.45 ± 2.96 51.02 ± 0.96 60.90 ± 0.87
Ours 65.31 ± 1.29 53.06 ± 1.05 61.99 ± 1.36

approach. These findings highlight the strong generalization
ability of our method across diverse heterogeneous graph
structures.

5.4. Ablation Study (Q2)

5.4.1. EFFECT OF AUGMENTATION STRATEGIES

In this ablation study, We assess the influence of various
augmentation strategies on classification accuracy across
multiple datasets, comparing three approaches: no augmen-
tation, random augmentation, and learnable augmentation.
The results are detailed in the Table 3. Specifically, “without
augmentation” refers to using the original data without any
additional operations. “Random augmentation” involves
randomly dropping nodes or edges according to a certain ra-
tio, while “learnable augmentation” leverages our proposed
learnable method, which allows for adaptive manipulation
of node features and edge structures.

Overall, we observe that learnable augmentation consis-
tently outperforms random augmentation, and random aug-
mentation in turn performs better than the no augmentation
approach. This pattern holds across most datasets, with both
augmentation strategies improving performance in compar-
ison to using the original data. However, the effects of
augmenting edge and feature structures vary across datasets.
For instance, on Cora and PubMed, augmenting the edge

structure yields a greater improvement than augmenting the
node features. Compared to other datasets, WikiCS has a
relatively higher number of average edges. The learnable
augmentation method may not effectively enhance model
performance when modifying the edge structure. Moreover,
the node features in WikiCS have relatively low dimen-
sionality. It indicates that edges may be more important
than features in WikiCS. As a result, modifying features
without adjusting edges might lead to suboptimal perfor-
mance. Overall, in cases where random augmentation is
applied, it can sometimes cause excessive disruption to the
graph structure, especially on datasets where the edge rela-
tionships are more crucial to the performance. Therefore,
our learnable augmentation method offers a more adaptive
and data-aware alternative in preserving the underlying data
distribution while improving performance.

Table 5: Performance comparison of GRACE and Sp2GCL
before and after applying the proposed PiNGDA augmenta-
tion across benchmark datasets.

Methods Cora CiteSeer PubMed Amazon-Photo Coauthor-Phy

GRACE 83.43 ± 0.32 70.93 ± 0.21 85.90 ± 0.24 93.13 ± 0.17 95.74 ± 0.06

+PiNGDA 84.28 ± 0.24 71.47 ± 0.20 86.79 ± 0.27 93.19 ± 0.18 95.81 ± 0.05

Sp2GCL 82.45 ± 0.35 65.54 ± 0.51 84.26 ± 0.29 93.05 ± 0.23 95.73 ± 0.04

+PiNGDA 83.89 ± 0.48 67.21 ± 0.63 84.73 ± 0.23 93.11 ± 0.14 95.74 ± 0.04

5.4.2. GENERALIZATION TO OTHER GCL MODELS

To evaluate the generalizability of our proposed noise aug-
mentation method, we conducted an ablation study by ex-
tending it to other GCL frameworks. Specifically, we se-
lected a classical GCL method (GRACE (Zhu et al., 2020))
and a more recent approach (Sp2GCL (Bo et al., 2023)) to
validate the robustness and effectiveness of our approach
when applied to diverse contrastive methods. As shown
in Table 5, our method consistently improves performance
across various datasets when integrated into both models.
This highlights the generalizability and robustness of our
method when incorporated into various contrastive learning
frameworks.
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Figure 2: Comparison in terms of training time of one epoch, and memory costs between different graph representation
learning methods. On Amazon-Photo, the model is trained with a batch size of 256 due to the memory limit.

Figure 3: Visualization of noise in graph data. Nodes are selected from the graph which are colored according to their labels,
edges are colored to differentiate between intra-class (solid gray) and inter-class (dashed red) relationships. The node layout
is determined by their connectivity relationships. The width of the edges corresponds to the learned weights.

5.5. Efficiency Analysis (Q3)

Figure 2 reports the time and memory efficiency of our
learnable method compared to other methods across mul-
tiple datasets. Compared with some GCL methods, our
method has an advantage in occupying less memory. Mean-
while, in terms of runtime, our method is not significantly
different from other methods. While some more complex
methods may marginally outperform our approach in terms
of computational cost, they come at a poor performance on
accuracy. On the other hand, our learnable augmentation
method offers an optimal trade-off between accuracy and
computational efficiency.

5.6. Topological Noise Visualization (Q4)

Although our method introduces noise to both edges and
node attributes, we only visualize the topological (edge-
based) component here. This is because node attributes
are typically high-dimensional and lack an inherent spatial
structure, making them difficult to visualize intuitively. In
Figure 3, we visualize the effects of topological noise on
graph through edge weights. Specifically, nodes are selected
from the full graph and different classes are represented us-
ing distinct colors. The node layout is determined by their
connectivity relationships. Edges connecting nodes of the
same class are shown as solid gray lines, while edges link-
ing nodes of different classes are displayed as dashed red

lines. The width of the edges in the figure corresponds to
the learned weights, which are indicative of the strength of
the connections between nodes. It highlights the trend of
our method towards removing inter-class edges while main-
taining intra-class connections. By focusing on the removal
of inter-class edges and preserving intra-class edges, our
method ensures that the most relevant class-specific infor-
mation is retained. It leads to more reliable augmentations.

6. Conclusion
In this paper, we propose Pi-Noise driven Graph Data Aug-
mentation (PiNGDA), a novel method for graph data aug-
mentation in graph contrastive learning (GCL). PiNGDA
leverages the concept of positive-incentive noise to mitigate
the instability commonly observed in traditional augmen-
tation methods by learning adaptive noise. Furthermore,
we introduce the notion of task entropy for classical GCL,
showing that standard GCL can be viewed as an approxima-
tion under the optimization framework of positive-incentive
noise. By employing a noise generator that learns beneficial
noise, PiNGDA achieves performance improvements across
various graph tasks. Additionally, future work may explore
alternative strategies for incorporating positive-incentive
noise with diverse noise distributions.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Appendix

A. Derivation of Eq. (12)
We can expand the density of N (0, κθ(u, ε)

−1) and substitute it into L,

L =
1

n

∑
u

(
logC +

1

2
log κθ(u, ε0)−

1

2

)
, (23)

where the details can be found in Appendix A as

p(α|u, ε0) = C
√
κθ(u, ε0) exp(−

α2

2
· κθ(u, ε0))

=⇒ log p(α|u, ε0) = logC +
1

2
log κθ(u, ε0)−

α2

2
κθ(u, ε0).

(24)

Substituting it into L, we can simplify L as

L =
1

n

∑
u

∫
p(α|u, ε0) ·

(
logC +

1

2
log κθ(u, ε0)−

α2

2
· κθ(u, ε0)

)
dα

=
1

n

∑
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2
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κθ(u, ε0)

2
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)
dα
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∑
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logC +

1

2
log κθ(u, ε0)−

1

2

)
,

(25)

where C in the above equation represents a constant independent of learnable parameters. In the final step, we use the fact
that

∫
α2p(α|u, ε0)dα = κθ(u, ε0)

−1.

B. More Experimental Details
B.1. Datasets

We use seven benchmark datasets for semi-supervised node classification, including Cora, Citeseer, Pubmed (Sen et al.,
2008), Wiki-CS (Mernyei & Cangea, 2020), Amazon-Photo, Coauthor-CS (Shchur et al., 2019) and ogbn-arxiv (Hu et al.,
2020). The detailed statistics of the datasets are summarized in Table 6. For all datasets, we randomly split the datasets,
where 10%, 10%, and the rest 80% of nodes are selected for the training, validation, and test set, respectively.

We evaluate our proposed framework in the semi-supervised learning setting on graph classification on the benchmark
TUDataset (Morris et al., 2020). The detailed statistics of the datasets are summarized in Table 7.

Table 6: Statistics of datasets used in node classification experiments.

Dataset Nodes Edges Features Classes
Cora 2,708 5,429 1,433 7

Citeseer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3
Wiki-CS 11,701 216,123 300 10

Amazon-Photo 7,650 119,081 745 8
Coauthor-CS 18,333 81,894 6,805 15
ogbn-arxiv 169,343 1,166,243 128 40

B.2. Implementation Details

Our experiments are conducted on an NVIDIA 4090 GPU (24 GB memory) for most datasets and on an NVIDIA A100 GPU
(40 GB memory) for OGB-arxiv. For our proposed method, we employ a two-layer GCN network with PReLU activation,
where the hidden layer dimension is set to 512, and the final embedding dimension is 256. Additionally, we utilize a
projection head, consisting of a 256-dimensional fully connected layer with ReLU activation, followed by a 256-dimensional
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Table 7: Statistics of datasets used in graph classification experiments.

Dataset Graphs Avg. Nodes Avg. Edges Classes
NCI1 4110 29.87 32.3 2

MUTAG 188 39.06 72.82 2
PROTEINS 1113 39.06 72.82 2

DD 1178 284.32 715.66 2
RDT-B 2000 429.6 497.75 2

linear layer. Edge noise generator uses an MLP to process node features and then applies Gumbel-Softmax sampling
method. Feature noise generator uses two MLPs to estimate the mean and variance of feature noise and then uses the
reparameterization trick.

B.3. Ablation Study on Graph Classification

Table 8: Ablation study on the impact of feature and edge augmentation methods. In this table, the red values represent
the highest classification accuracy for each dataset in each row, while the cells with a background indicate the highest
performance in each column.

Feature
Edge PROTEINS DD NCI1

Without Aug. Random Learnable Without Aug. Random Learnable Without Aug. Random Learnable

Without Aug. 72.49 ± 0.90 71.56 ± 0.41 73.16 ± 0.77 75.24 ± 0.21 73.07 ± 0.52 75.53 ± 0.76 68.59 ± 0.75 67.40 ± 1.24 68.83 ± 0.69

Random 72.38 ± 0.46 72.38 ± 0.79 72.49 ± 0.58 75.06 ± 0.88 74.23 ± 0.82 74.80 ± 0.46 69.05 ± 0.74 68.54 ± 1.02 68.84 ± 0.65

Learnable 72.45 ± 1.24 72.15 ± 0.37 73.21 ± 0.40 75.16 ± 0.71 74.83 ± 0.46 75.70 ± 0.42 69.11 ± 0.62 67.93 ± 1.22 69.35 ± 0.63

We also explore the impact of different augmentation on graph classification performance across three datasets: PROTEINS,
DD, and NCI1. Overall, the effectiveness of augmentation strategies varies across datasets, largely due to the differing
semantic roles that node attributes play in each graph. In some cases, neither random nor learnable perturbations alone can
fully capture the optimal augmentation pattern. Nevertheless, our results show that the combination of learnable feature and
edge augmentations consistently yields strong and stable performance across all datasets. This demonstrates the robustness
and generalizability of our augmentation framework, especially in adapting to diverse graph structures and attribute types.

B.4. Hyperparameter Analysis

Datasets epoch lr wd τ
Cora 500 5e-4 1e-4 0.3

CiteSeer 500 5e-4 1e-4 0.3
PubMed 1000 1e-3 1e-4 0.3
WikiCS 1500 5e-4 1e-4 0.3

Amazon-Photo 2000 1e-2 1e-4 0.3
Coauthor-Phy 2000 1e-2 1e-4 0.5

ogbn-arxiv 500 1e-3 1e-4 0.3

Table 9: Hyper-parameters that vary for different datasets.

Some hyper-parameters of the experiment vary on different datasets, which is shown in Table 9. For the learnable noise
generators, we use separate optimizers with learning rates of 0.0001 for edges and 0.001 for features, and apply a weight
decay of 0.0001 to both. Specifically, we carry out grid search for the hyper-parameters on the following search space:

• Number of training epochs: {500, 1000, 1500, 2000, 3000}.

• Learning rate for training: {1e − 2, 1e − 3, 5e − 4}

• Weight decay for training: {1e − 3, 1e − 4}
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• Random Edge dropping rates pe1, pe2: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}

• Random Feature masking rates pf1, pf2: {0.1, 0.3, 0.5}

• Temperature τ : {0.3, 0.4, 0.5}

For each dataset, a set of hyper-parameters is chosen to obtain the best average accuracy. Figures 4 and 5 show the results

Figure 4: The effect of the temperature τ .

Figure 5: The effect of the hidden dim.

of node classification with variable temperature τ and hidden dim. We can observe that our PiNGDA is not very sensitive to
temperature and hidden dim. For small graphs, smaller temperature leads to better performance.
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