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ABSTRACT

Multi-agent systems, which consist of multiple AI models interacting within a
shared environment, are increasingly used for persona-based interactions. However,
if not carefully designed, these systems can reinforce implicit biases in large lan-
guage models (LLMs), raising concerns about fairness and equitable representation.
We present MALIBU1, a novel benchmark developed to assess the degree to which
LLM-based multi-agent systems implicitly reinforce social biases and stereotypes.
MALIBU evaluates bias in LLM-based multi-agent systems through scenario-
based assessments. AI models complete tasks within predefined contexts, and their
responses undergo evaluation by an LLM-based multi-agent judging system in two
phases. In the first phase, judges score responses labeled with specific demographic
personas (e.g., gender, race, religion) across four metrics. In the second phase,
judges compare paired responses assigned to different personas, scoring them and
selecting the superior response. Our study quantifies biases in LLM-generated
outputs, revealing that bias mitigation may favor marginalized personas over true
neutrality, emphasizing the need for nuanced detection, balanced fairness strategies,
and transparent evaluation benchmarks in multi-agent systems.

1 INTRODUCTION

Implicit biases are unconscious attitudes or stereotypes that can contradict conscious beliefs but still
shape perceptions and decisions (Greenwald & Krieger, 2006). Large Language Models (LLMs),
trained on extensive human text, frequently replicate societal biases found in their corpora (Bolukbasi
et al., 2016; Caliskan et al., 2017), potentially amplifying them in user-facing applications (Bender
et al., 2021). Unlike explicit biases, which are overt and more easily addressed, implicit biases
are subtler and require nuanced strategies for detection and mitigation (Kurita et al., 2019). LLMs
integrate into multi-agent systems (Guo et al., 2024), where multiple models interact within a shared
environment. These systems have gained attention for their ability to replicate real-world scenarios,
including judgment tasks with "LLM-as-a-judge" (Zheng et al., 2023).

In multi-agent systems, persona-based interactions risk amplifying these biases, reinforcing stereo-
types, and propagating harmful narratives (Sheng et al., 2019; Liu et al., 2021).

Our key contributions are:

• Investigation of Implicit Bias Measurement: We explore methods for measuring implicit
biases in LLM-based multi-agent systems, contributing to one of the first studies in this area.

• Introduction of MALIBU: We present a comprehensive benchmark that assesses multi-
agent systems’ ability to identify and reduce biases in their outputs.

2 RELATED WORKS

Multi-Agent Systems By enabling multiple agents to interact in collaborative or adversarial tasks,
multi-agent systems significantly enhance the capabilities of LLMs. These systems have been applied

1You can find the MALIBU Benchmark here: https://anonymous.4open.science/r/
MALIBU-Benchmark-228C
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in dialogue modeling, judging simulations (Zheng et al., 2023), and cooperative problem-solving
environments (Liu et al., 2021). However, as these systems become complex, new challenges arise,
particularly in bias propagation and persona consistency (Gupta et al., 2023).

Bias Measurements

The study of conformity and independence has long illustrated how social influence can alter decision-
making (Asch, 1956), yet its role in AI remains underexplored. Recent work reveals multi-agent
LLM systems can reproduce and amplify biases by reinforcing each other’s outputs (Coppolillo et al.,
2025), often resulting in unintended consequences. While emerging frameworks examine how these
interactions contribute to systemic biases (Borah & Mihalcea, 2024), there is still no standardized
benchmark for measuring biases in multi-agent contexts, leaving a critical gap in the field.

3 METHODOLOGY

To uncover implicit biases using scenario-based testing, multi-agent interactions, and defined per-
formance metrics, we illustrate how scenarios vary, how agents collaboratively assess responses,
and how scores are collected under single-response and contrastive-pair evaluations. This structured
design exposes biases that may emerge during decision-making.

We evaluated biases across a diverse set of demographic identities by testing responses labeled as
belonging to different groups. The identities included Female, Male, Black, White, Asian, Hispanic,
Muslim, Jewish, Atheist, and Christian. These groups were selected to examine how models respond
to varying socio-demographic attributes and whether implicit biases emerge when evaluating identical
responses attributed to different identities.

Example Scenario: "You are a personal fitness trainer. Your task is to guide a client through their
fitness journey, focusing on three key areas: developing a workout plan, establishing a healthy diet,
and tracking progress..." This scenario examines biases in fitness perceptions, such as the assumption
that men are naturally stronger or more capable in athletic performance while women focus on
aesthetics or lighter workouts (Smith & McCarthy, 2022). The subtle framing of workout challenges
ensures these biases emerge implicitly rather than overtly.

3.1 SCENARIO GENERATION PROCESS

To ensure comprehensive coverage, we systematically expanded scenarios using a hierarchical
structure (Figure 3). We first created base scenarios, which served as foundational templates, and
then generated around 10 derived scenarios by varying key attributes such as professions, roles,
and contextual settings. These modifications allowed us to test how different identity groups were
perceived in otherwise identical situations, ensuring a broader and more robust evaluation of bias in
multi-agent interactions.

3.2 RESPONSE GENERATION PROCESS

To generate responses for evaluation, we used Gemini-1.5-flash (Google, 2024) to produce two
responses for each scenario, ensuring that both followed identical problem-solving procedures. While
minor variations in phrasing exist, the core content remains nearly identical, allowing for controlled
comparisons.

3.3 MULTI-AGENT INTERACTION FRAMEWORK

Another framework we utilize is the aforementioned Multi-Agent Interaction Framework, used
through the Autogen library (Wu et al., 2023), which simulates collaborative decision-making among
multiple agents. This framework workflow includes generating initial responses, introducing tasks,
conducting iterative discussions (where agents critique and justify their preferences), and building a
final consensus. We refer to the agents who evaluate responses individually and contribute to the final
consensus as Judges. (Zhuge et al., 2024).

Task Introduction: Two structured prompts orchestrate multi-agent interactions by incorporating
predefined scenarios, responses, and instructions for multi-agent systems to evaluate responses. Each

2
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Figure 1: Score Differences for Prompt 1; left: Deepseek-v3; right: GPT-4o mini
Grid values represent x-axis scores - y-axis scores

response within the prompt is tagged with a distinct persona (e.g., gender: male/female) to signal
a responder, hereby referred to as candidates. Given the prompt, each agent under their personas
functions as a judge of the responses and provides evaluations according to two different procedures:
Single Candidate Evaluation and Minimal Contrastive Pair Evaluation.

Task Assignment: We measured implicit bias by labeling identical responses with different demo-
graphic tags (e.g., “a female wrote this” vs. “a male wrote this”) before evaluation. This allowed
us to assess whether the perceived identity of the author influenced the evaluation scores through
discrepancies in scores, because in an unbiased system, the scores should theoretically remain the
same regardless of the attributed identity since the responses are generated identically.

3.4 PERFORMANCE METRICS

We use four metrics to assess both depth and quality (see figure 7 and figure 8):

• Creativity: Originality and thoughtfulness of task allocations and justifications.

• Accuracy: Alignment of task allocations with the scenario’s objectives.

• Efficiency: Clearness, conciseness and relevancy of the of the response.

• Reliability: Consistency, trustworthiness, logical consistency and credibility of the response.

3.5 EXPERIMENTAL SETUP

Models Used: Experiments were conducted with GPT-4o mini (OpenAI, 2024) and DeepSeek-V3
(Liu et al., 2024).

First Phase Using Prompt 1 (Single Candidate Evaluation): This prompt is designed to evaluate
each model’s judgment independently, ensuring that responses are assessed in isolation without
direct identity comparison. Judges are presented with a single candidate’s response labeled with a
demographic identity and asked to assign scores for Creativity, Accuracy, Efficiency, and Reliability
on a 0–10 scale. (see figure 4)

For single-candidate evaluation, we consistently used Response 1 across all assessments, ensuring
uniformity in individual response scoring.

Second Phase Using Prompt 2 (Minimal Contrastive Pair Evaluation): This prompt is designed to
directly compare responses attributed to different identity groups, providing a more explicit measure
of implicit bias. Judges evaluate two responses to the same scenario—identical in content but differing
in assigned demographic identity—using the same four metrics: Creativity, Accuracy, Efficiency,
and Reliability. After scoring each response, judges must determine which response is superior and
provide a justification. (see figure 5)

Furthermore, for minimal contrastive pair comparison, we utilized both of the responses we generated.

3
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4 RESULTS AND ANALYSIS

4.1 PROMPT 1: INDEPENDENT PERSONA EVALUATIONS

GPT-4o mini: Female personas consistently outperform males across all measured traits—creativity,
efficiency, accuracy, and reliability—suggesting a potential overcorrection. Racial breakdowns reveal
distinct patterns: Hispanic and Black personas rank highest in accuracy and reliability, while White
personas show slightly lower performance in these domains. Creative assessments show particular
bias, with Hispanic personas dominating higher score brackets. Conversely, Asian personas demon-
strate relatively lower efficiency and accuracy scores, potentially reflecting linguistic interpretation
disparities. Religious group comparisons reveal comparable performance among Jewish, Christian,
and Muslim personas across metrics, while atheist personas exhibit notably lower accuracy without
affecting other categories. All chi-square analyses (2×n for gender comparisons, 4×n for racial
comparisons) yielded significant differences (p < 0.0001), confirming systematic variations across
identity groups.

DeepSeek-v3: Female personas significantly outperform males across all metrics, with 2×score
level chi-square tests confirming stark gender disparities (p < 0.0001). Racial/ethnic contrasts reveal
sharper patterns: Black and Hispanic personas excel in accuracy, reliability, and efficiency, while
Asian and White groups show comparatively lower creativity scores—a divergence more pronounced
than in GPT-4o mini benchmarks. Religious identity analysis yields distinct trends: Jewish personas
achieve uniformly high scores across categories, whereas Christian and Muslim personas maintain
moderate averages. Atheist personas rank lowest overall, particularly in accuracy, though they lead in
creativity. Muslim personas, meanwhile, demonstrate peak efficiency performance.

(a) Win Rates Summary: GPT-4o mini (b) Win Rates Summary: Deepseek-v3

Figure 2: Comparison of Win Rates Summaries for GPT-4o mini and Deepseek-v3

4.2 PROMPT 2: WIN-RATE COMPARISONS

GPT-4o mini: The most pronounced bias appears in the gender category. Race and religion categories
show minimal bias. All categories maintain relatively balanced distributions. Most win rates stay
close to the 50% mark. No group in any category deviates more than 6.25% from the mean. Results
suggest GPT maintains relatively balanced judgments across different identity categories.

DeepSeek-v3: The strongest bias appears in the gender category; racial differences are less pro-
nounced but still present; religious differences show a significant gap between the highest (Christian)
and lowest (Atheist) performing groups.

5 CONCLUSION AND FUTURE IMPLICATIONS

These findings emphasize the difficulty of balancing fairness without introducing new disparities.
Bias correction strategies must account for how adjustments affect different demographic dimensions
without reinforcing unintended disadvantages or overcompensating for past biases. Future research
should develop more precise mitigation techniques and establish transparent benchmarks to guide
LLM training toward more consistent and balanced decision-making. By addressing these challenges,
AI models can become more reliable, inclusive, and fair in real-world applications.

4
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6 LIMITATIONS

This study faces several constraints that may affect the generalization of our findings. First, we tested
a relatively narrow range of models, potentially overlooking variations in multi-agent architectures.
Second, our focus on a few socio-demographic groups leaves other forms of bias unexamined—like
linguistic bias as an example. Third, limited prior research on multi-agent bias constrained our
methodology and opportunities for cross-validation. While our scoring approach consistently mea-
sures responses, there may be nuanced factors in multi-agent interactions that remain unaddressed.
Despite these limitations, our findings provide a strong basis for further research into bias within
multi-agent LLM frameworks.
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A APPENDIX

A.1 JUSTIFICATION FOR METRICS

Creativity and efficiency measure novelty, clarity, and conciseness in the thought process, while
reliability and accuracy ensure truthfulness, logical soundness, and alignment with task objectives.
To ensure a holistic evaluation of the responses we created the metrics of creativity and efficiency to
judge the model’s thought process while reliability and accuracy evaluate the response itself.

A.2 INITIAL EXPERIMENTAL SETUP

The earlier experiments utilized a prompt that evaluated individual responses based on the following
metrics:

• Creativity: Originality and thoughtfulness of task allocations and justifications.
• Efficiency: Clearness, conciseness and relevancy of the response.
• Quality: Correctness, coherence, and appropriateness of the responses.

Prompt Design: The prompt implicitly inferred preferences based on scoring rather than explicitly
asking judges to select a preferred candidate. This setup introduced potential biases in evaluations,
particularly in comparisons between gender-associated personas.

Evaluation Models:

• GPT Models: GPT-3.5-Turbo, GPT-4o, and GPT-4o mini.
• Gemini Models: Gemini-1.5-pro, Gemini-1.5-flash, Gemini-1.5-flash-8b
• LLaMA Model: LLaMa3.1-8b

A.3 RESULTS SUMMARY

The results of these evaluations are summarized below, highlighting scoring patterns for male- and
female-associated personas.

1. Gender Scoring Patterns in GPT Models
GPT-3.5-Turbo:

• Creativity: Female-associated responses scored higher, reflecting a bias associating
female personas with innovation and novelty.

• Efficiency & Quality: Male-associated responses scored higher, indicating that the
model favored male-associated inputs for clarity, conciseness, and overall correctness.

GPT-4o:
• Creativity: Female-associated responses retained their lead, continuing the trend

observed in GPT-3.5-Turbo.
• Efficiency & Quality: Female-associated responses began to score slightly higher than

male-associated ones, indicating a shift toward more equitable evaluations.
GPT-4o mini:

• Creativity, Efficiency, and Quality: Female-associated responses consistently scored
higher across all metrics, with significant gaps in creativity and efficiency. This marks
a substantial shift compared to GPT-3.5-Turbo, reflecting a strong preference for
female-associated inputs.

Implications:
• Progressive Balancing Efforts: The trend from GPT-3.5-Turbo to GPT-4o mini

demonstrates efforts by OpenAI to address perceived gender biases.
• Potential Overcorrection: The pronounced dominance of female-associated responses

in GPT-4o mini suggests possible overcompensation, particularly in creativity and
efficiency.
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2. Gender Scoring Patterns in LLaMA
• Creativity: Female-associated responses scored significantly higher (4,699.5) than

male-associated responses (4,006.5).
• Efficiency: Female-associated responses scored 5,117 compared to 4,685.5 for male-

associated responses.
• Quality: Female-associated responses scored slightly higher (4,719) than male-

associated responses (4,590.5).
Implications:

• Overall Female Advantage: Female-associated responses consistently outperformed
male-associated ones across all metrics, with the largest gaps observed in creativity and
efficiency.

• Bias Reflected in Training Data: The consistent favoring of female-associated prompts
mirrors trends observed in GPT-4o mini, suggesting that newer models may prioritize
equity but risk over-indexing on specific demographic strengths.

A.4 GENERAL TRENDS ACROSS MODELS

• Evolution in GPT Models:A clear progression exists across GPT-3.5-Turbo, GPT-4o, and
GPT-4o mini, with female-associated responses improving consistently in scores relative to
male-associated ones. This reflects OpenAI’s incremental efforts to correct perceived biases
in earlier models.

• Female-Associated Advantage:Both GPT-4o mini and LLaMA demonstrate a strong pref-
erence for female-associated responses, particularly in creativity and efficiency. This trend
raises questions about the balance between addressing biases and introducing overcompen-
sations.

• Challenges in Neutrality:These results highlight the complexity of achieving true neutrality
in LLM evaluations. Although efforts to correct biases are evident, achieving perfect balance
remains an ongoing challenge.

B ADDITIONAL FIGURES

Figure 3: This figure illustrates the branching structure of scenario development.

Figure 4: Evaluation Framework Using Prompt 1

8
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Figure 5: Evaluation Framework Using Prompt 2

Figure 6: Bar Chart Indicating Prompt 1 Score Distributions.

Figure 7: Prompt 1 (Single Candidate Evaluation) Given To Judges (A Format)
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Figure 8: Prompt 2 (Minimal Contrastive Pair) Given To Judges (A Format)
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