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ABSTRACT

Dynamic Graph Neural Networks (DyGNNs) have garnered increasing research
attention for learning representations on evolving graphs. Despite their effective-
ness, the limited expressive power of existing DyGNNs hinders them from captur-
ing important evolving patterns of dynamic graphs. Although some works attempt
to enhance expressive capability with heuristic features, there remains a lack of
DyGNN frameworks with provable and quantifiable high-order expressive power.
To address this research gap, we firstly propose the k-dimensional Dynamic WL
tests (k-DWL) as the referencing algorithms to quantify the expressive power of
DyGNNs. We demonstrate that the expressive power of existing DyGNNs is up-
per bounded by the 1-DWL test. To enhance the expressive power, we propose
Dynamic Graph Neural Network with High-order expressive power (HopeDGN),
which updates the representation of central node pair by aggregating the interac-
tion history with neighboring node pairs. Our theoretical results demonstrate that
HopeDGN can achieve expressive power equivalent to the 2-DWL test. We then
present a Transformer-based implementation for the local variant of HopeDGN.
Experimental results show that HopeDGN achieved performance improvements
of up to 3.12%, demonstrating the effectiveness of HopeDGN.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as dominant tools for learning low-dimensional rep-
resentations of graph-structured data (Kipf & Welling, 2017; Veličković et al., 2017; Hamilton et al.,
2017; Gasteiger et al., 2018). However, many real-world graphs exhibit dynamic properties with
continuously evolving topological structures. Due to this prevalence, an increasing number of re-
search has focused on learning effective representations of dynamic graphs using Dynamic Graph
Neural Networks (DyGNNs). Most DyGNNs employ a message-passing framework, where histor-
ically interacted nodes are aggregated using techniques such as sum-pooling (Wen & Fang, 2022),
local self-attention (Xu et al., 2020; Fan et al., 2021), and Transformers (Yu et al., 2023). DyGNNs
have been successfully applied to various tasks such as financial fraud detection (Huang et al., 2022),
traffic prediction (Han et al., 2021), and sequential recommendation (Kumar et al., 2019).

One crucial requirement for designing (dynamic) GNNs is sufficient expressive power; that is, the
(dynamic) GNNs should be capable of distinguishing non-isomorphic (dynamic) graphs. Xu et al.
(2019) and Morris et al. (2019) underscored that the expressive power of message-passing-based
GNNs is bounded by the 1-Weisfeiler-Lehman (WL) test, which prompts extensive studies on GNNs
with expressive power beyond 1-WL test (Maron et al., 2019a; Zhang et al., 2024). However, these
investigations have predominantly focused on static graphs. As we discuss in Section 4.1, existing
DyGNNs remain facing limitations in expressive power when applied to dynamic graphs. Conse-
quently, existing DyGNNs fail to detect some evolving substructures such as triangle structures (an
illustrative example is provided in Figure 1), which are important for capturing the evolution patterns
of dynamic graphs (Paranjape et al., 2017; Zhou et al., 2018; Zitnik et al., 2019). Few works have
targeted at designing DyGNNs with stronger expressive power. Souza et al. (2022) proposed rela-
tive positional features to enhance the expressive power of DyGNNs. However, from a theoretical
perspective, it remains unclear how the relative positional features quantitatively affect DyGNNs’
expressive power. To summarize, how to design DyGNNs with provably and quantitatively high-
order expressive power remains unexplored.
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Figure 1: An example of limited expressive power of DyGNNs. Suppose the model is distinguish-
ing node pairs (A,C) and (A,D) at time t4. Because A and C have historical interaction with B
while A and D do not have common historical interacted nodes, (A,C) and (A,D) are not isomor-
phic at time t4. Since nodes C and D are isomorphic on the historical interaction graph before t4,
DyGNNs will output the same embeddings for (C, t4) and (D, t4). Thus, DyGNNs fails to distin-
guish (A,C, t4) and (A,D, t4). Conversely, HopeDGN will notice that node B interacts with A and
C at t1 and t2 respectively, thus being capable of distinguish these node pairs.

To address this research gap, we begin by presenting a theoretical framework to quantify the expres-
sive power of existing DyGNNs. Specifically, we extend the Weisfeiler-Lehman (WL) hierarchy
tests and propose the k-dimensional Dynamic WL (DWL) tests (k ≥ 1) as the referencing algo-
rithms to check the isomorphism on dynamic graphs. We demonstrate that the expressive power
of existing DyGNNs is upper bounded by the proposed 1-DWL test. To enhance the expressive
power of existing DyGNNs, we propose the Multi-Interacted Time Encoding (MITE), which en-
codes the bi-interaction history of target node pairs with other nodes, thereby capturing the indirect
dependencies between target node pairs. MITE is a plug-and-play module that can be seamlessly
integrated into a wide range of models. Equipped with MITE, we introduce the Dynamic Graph
Neural Network with High-order expressive power (HopeDGN), which updates the representations
of target node pairs by aggregating their neighboring node pairs as well as the multi-interaction
history. Our theoretical results demonstrate that HopeDGN can achieve expressive power equiv-
alent to the 2-DWL test with injective aggregation and updating functions. We further present a
Transformer-based implementation of the local version of the proposed HopeDGN. Experimental
results demonstrate that the proposed HopeDGN achieves superior performance on seven datasets
compared to other baselines, underscoring the effectiveness of the proposed HopeDGN. In summary,
the main contributions of this work are three-fold:

• We establish a theoretical framework to quantify the expressive power of DyGNNs, and
prove that the expressive power of existing DyGNNs is upper bounded by the 1-DWL test.

• We propose HopeDGN which can achieve expressive power equivalent to the 2-DWL test,
thus being provably and quantitatively more expressive than existing DyGNNs.

• Extensive experiments on both link prediction and node classification tasks demonstrate
the superiority of the proposed HopeDGN over existing models.

2 RELATED WORKS

Dynamic Graphs Neural Networks. A dynamic graph is a network whose topological structure
or node attributes evolve over time. Depending on whether the timestamps are discrete or con-
tinuous, dynamic graphs can be categorized into Discrete-Time Dynamic Graphs (DTDGs) and
Continuous-Time Dynamic Graphs (CTDGs). Existing studies on DTDGs typically integrate Graph
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Neural Networks (GNNs) with sequential models to learn structural representations of graph snap-
shots and their evolution patterns (Yu et al., 2017; Sankar et al., 2020; You et al., 2022; Zhu et al.,
2023; Zhang et al., 2023b). Some approaches also utilize sequential models to update the weights
of GNNs (Pareja et al., 2020). Recently, CTDGs have emerged as a more general form of dynamic
graphs, garnering increasing attention from the research community. Most existing works on CT-
DGs adopt an aggregation-then-update framework (see Section 3) (Wen & Fang, 2022; Souza et al.,
2022). Various aggregation techniques have been proposed, including local self-attention (Xu et al.,
2020), Transformers (Yu et al., 2023; Wang et al., 2024), and MLP-mixers (Cong et al., 2023).
Memory mechanisms have also been employed to retain long-term interaction information (Kumar
et al., 2019; Trivedi et al., 2019; Rossi et al., 2020). Additionally, some studies leverage temporal
random walks to learn representations (Wang et al., 2021b; Jin et al., 2022). Compared to existing
works, the proposed HopeDGN learns representations of node pairs rather than individual nodes.
More importantly, the proposed HopeDGN achieves the equivalent expressive power of the 2-DWL
test, which is significantly more powerful than existing DyGNNs.

Expressive power of GNNs. The expressive power of Graph Neural Networks (GNNs) is mea-
sured by their ability to distinguish non-isomorphic graphs. Since the seminal works of Xu et al.
(2019) and Morris et al. (2019) demonstrated that the expressive power of message-passing based
GNNs is upper-bounded by the 1-WL test, extensive efforts have been made to enhance the ex-
pressive power of GNNs. Some methods proposed high-order GNNs that mimic the procedure
of higher-order WL tests (Maron et al., 2018; 2019b; Azizian & Lelarge, 2020; Geerts & Reut-
ter, 2022). Other methods aggregated the learned node representations on pre-generated subgraphs
(Cotta et al., 2021; Zhao et al., 2021; Bevilacqua et al., 2021). Furthermore, some works incorpo-
rated substructure information into the learning of node representations (Chen et al., 2020; Bouritsas
et al., 2022; Horn et al., 2021). Zhang et al. (2023a) also proposed evaluating the expressive power
of GNNs via graph biconnectivity. While the expressive power of static GNNs has been extensively
studied, few works have investigated the expressive power of Dynamic GNNs (DyGNNs). Souza
et al. (2022) proposed a DyGNN with an expressive power equivalent to the 1-Temporal WL test,
further enhanced by relative position features. Gao & Ribeiro (2022) studied the equivalent expres-
sive power of two types of dynamic graphs, namely time-then-graph and time-and-graph. Despite
these efforts, DyGNNs with quantifiable high-order expressiveness are still lacking.

3 PRELIMINARIES

Graph Isomorphism. A graph is defined as G = {V, E} where V = {1, 2, ..., N} is the node
set and E = {(u, v) ⊆ V × V} is the edge set. The k-node tuple is defined as s = (v1, ..., vk)
with vi ∈ V and all k-node tuples constitutes the set [V]k. The neighbor set of node u is defined
as N (u) = {v|(u, v) ∈ E ∨ (v, u) ∈ E}. Two graphs G = {V, E} and G′ = {V ′, E ′} are said
isomorphic if there exists a bijective mapping φ : V → V ′ such that (u, v) ∈ E if and only if
(φ(u), φ(v)) ∈ E ′, denoted as G ∼= G′. If G and G′ are the same graphs, we call φ an automorphism.
Given two k-node tuple s and s′, we say s and s′ are isomorphic if there exists a graph isomorphic
mapping φ : V → V ′ such that u ∈ S if and only if φ(u) ∈ S′. A labeling of G is a function that
maps a k-node tuple s to a label: l : [V]k → N.

Dynamic Graph. Unless otherwise specified, we use Dynamic Graph to denote Continuous-Time
Dynamic Graph in the following sections. A Dynamic Graph is defined as DG = (V, E), where
V = {1, 2, ..., N} is the node set and E = {(u1, v1, t1), (u2, v2, t2), ...} with ti ≤ ti+1 is a sequence
of node interactions labeled with timestamps. (ui, vi, ti) represents that node ui and node vi have an
interaction event at time ti. The node feature matrix of DG is denoted X ∈ R|V|×dN , and the edge
feature matrix is denoted as E ∈ RdE . For datasets without predefined node (edge) features, the
node (edge) features are set as zero vectors. Note that the same node pair may interact multiple times
in the dynamic graph. Given the historical interactions before time t, we aim to learn the temporal
embeddings of each k-node tuple s ∈ [V]k at time t with a mapping function f : [V]k → Rd. k = 1
and k = 2 correspond to the temporal node embeddings and edge embeddings, respectively. The
learned temporal embeddings can be leveraged for downstream tasks such as link prediction and
node classification.
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Dynamic Graph Neural Networks (DyGNNs). The workflows of the DyGNN consist of two
modules: AGG and UPDATE. The AGG module aggregates the messages of historical neighbors.
The aggregation is then passed to the UPDATE module to update the embedding of the root node.
Specifically, the historical neighbor of node u at time t is defined as N (u, t) = {(w, t′)|t′ <

t, (u,w, t′) ∈ E∨(w, u, t′) ∈ E}. The 0-th layer embedding of node u is the node feature h(0)
t (u) =

Xu. The l-th layer (l > 0) embedding is computed as:

h̃
(l)
t (u) = AGG({{([h(l−1)

t′ (w)||σ(t− t′)]|(w, t′) ∈ N (u, t)}}),

h
(l)
t (u) = UPDATE(h(l−1)

t (u), h̃
(l)
t (u))

(1)

where σ : R+ → RdT projects the time interval to a vector and || denotes the concatenation. {{·}}
denotes the multiset. AGG can be implemented as local self-attention (Vaswani et al., 2017; Xu
et al., 2020), MLP-Mixer (Tolstikhin et al., 2021; Cong et al., 2023), etc. For link prediction task,
to predict the existence of interaction (u, v) at time t, the temporal embeddings ht(u) and ht(v)
are merged to generate the probability. Some methods (Kumar et al., 2019; Rossi et al., 2020)
also leverage memory mechanisms to record the long-term historical interactions of each node.
Specifically, the memory state of node u at t = 0 is initialized as s0(u) =Xu. When an interaction
associated with u happens, say (u, v, t), su is updated as:

mt(u) = MSG(st−(u), st−(v),∆t, eij(t))

st(u) = MEMUPD(st−(u),mt(u))
(2)

where MSG is a message function implemented as Multi-Layer Perception (MLP) or identity, and
∆t is the time interval since last update. MEMUPD is a memory update function usually imple-
mented as a recurrent neural network such as GRU (Cho et al., 2014). With the memory state, the
0-th layer node embedding is modified as h(0)

t (u) = st(u).

4 METHODS

In this section, we propose the k-Dynamic WL (DWL) test based on the isomorphism on dynamic
graphs, and prove that the expressive power of DyGNNs is upper bounded by 1-DWL test (Sec. 4.1).
To enhance the expressive power, we propose MITE, which allows DyGNNs to capture the temporal
dependency between node pairs (Sec. 4.2). Equipped with MITE, we propose HopeDGN, which is
as powerful as 2-DWL test (Sec. 4.3). Finally, we present a Transformer-based implementation of
the local HopeDGN(Sec. 4.4). Proofs for all propositions are provided in Appendix B.

4.1 LIMITED EXPRESSIVE POWER OF DYGNN

In this section, we study the expressive power of DyGNNs, which are characterized by their capabil-
ities to distinguish non-isomorphic dynamic graphs. In contrast to static graphs, the isomorphism of
two dynamic graphs requires that the complete interaction time sequences of corresponding nodes
are identical. However, most existing DyGNNs process mini-batches of interactions in chronologi-
cal order, making it challenging to capture the global evolving structure of dynamic graphs. To this
end, we propose Dynamic Adjacency Tensor, which represents the interactions within the dynamic
graph as a timestamp-labeled multigraph.

Dynamic Adjacency Tensor. Let DG = {V,G} be a dynamic graph and T be the maximum
interaction counts among all node pairs . The Dynamic Adjacency Tensor (DAT) of DG is defined
as a tensor A ∈ R|V|×|V|×T , where Au,v,: = [t1, t2, ..., tq(u,v),∞, ...,∞] with ti ≤ ti+1 recording
(u, v)’s interaction timestamp sequence {t1, t2, ..., tq(u,v)}. q(u, v) is the interaction count of the
node pair (u, v). ∞ is padded if q(u, v) < T . In addition, given the current time t, to depict the
interaction timestamps before t, we define the Historical DAT (HDAT) as:

A<t
i,j,k =

{
Ai,j,k if Ai,j,k < t
∞ else (3)

Isomorphism on Dynamic Graphs. With DAT, we are now ready to define the isomorphism on
dynamic graphs. Let DG = {V, E} and DG′ = {V ′, E ′} be two dynamic graphs, and A and A′ be
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their corresponding DATs. We say DG and DG′ are isomorphic if there exists a bijective mapping φ:
V → V ′ such that Ai,j,: = A′

φ(i),φ(j),: for all (i, j) ∈ V × V , denoted as DG ∼= DG′. If DG = DG′,
we call φ an automorphism. Considering the HDAT, we say DG and DG′ are isomorphic until t
if there exists bijective mapping φ: V → V ′ such that A<t

i,j,: = A′<t
φ(i),φ(j),: for all (i, j) ∈ V × V ,

denoted as (DG, t) ∼= (DG′, t). Additionally, we say two k-node tuples s ∈ [V]k and s′ ∈ [V ′]k are
isomorphic if there exists a bijection φ from s to s′ and φ is an isomorphism from DG to DG′.

It is challenging to quantify the number of non-isomorphic dynamic graphs that an algorithm can
distinguish. The Weisfeiler-Lehman (WL) test (Leman & Weisfeiler, 1968) is a classical algorithm
for determining graph isomorphism and is widely used to quantify the expressive power of Graph
Neural Networks (GNNs) (Xu et al., 2019; Morris et al., 2019). To quantify the expressive power of
DyGNNs, we extend WL tests to dynamic graphs and propose Dynamic WL tests.

Dynamic WL (DWL) tests. To compute the color of the center node at a specific time, the 1-DWL
test aggregates the color and complete interaction history of its neighbors, then hashes them into a
unique node color. Specifically, given a dynamic graph DG = {V, E} and a node labeling function
l : V → N at timestamp t, the 1-DWL test initializes the node color at t as c(0)t (u) = l(u). Then, at
j-th iteration (j > 0), the node color is refined as:

c
(j)
t (u) = HASH(c

(j−1)
t (u), {{(c(j−1)

t (w),A<t
u,v,:)|(v, ·) ∈ N (u, t)}}) (4)

where HASH is a hashing function. To test whether two graphs DG and DG′ are isomorphic until
t, we run 1-DWL test on both graphs in parallel. If the multisets of node colors in two graphs are
not equal at any iteration, the 1-DWL test concludes that G and G′ are not isomorphic until t. In
addition, the k-DWL (k ≥ 2) tests process as follows. Let s = (v1, ..., vk) be a k-node tuple and l
be a node tuple labeling function, the k-DWL test initializes the node color of each k-node tuple as
c
(0)
t (s) = l(s). Then, at j-th iteration (j > 0), the color of node tuple is refined as:

c
(j)
t (s) = HASH

(
c
(j−1)
t (s), {{ϕ(j−1)

t (s, w)|w ∈ V}}
)

ϕ
(j−1)
t (s, w) =

(
c
(j−1)
t

(
r1(s, w)

)
, ..., c

(j−1)
t

(
rk(s, w)

)
,A<t

w,v1,:, ...,A
<t
w,vk,:

) (5)

where ri(s, w) = (v1, ..., vi−1, w, vi+1, ..., vk). The following procedures work analogously to 1-
DWL. Here the ”neighboring node tuple” of s is obtained by replacing each element in s with other
nodes. Intuitively, k-DWL test refines the color of the central k-node tuple at time t by aggregating
the colors and complete interaction history of neighboring node tuples. Note that the proposed k-
DWL test has a similar procedure as the Folklore variant of k-WL test (Cai et al., 1992) in static
graphs, which groups and hashes the node tuple with the same replacing nodes. The following
proposition states that (k+1)-DML test is at least as powerful as k-DWL test in distinguishing non-
isomorphic dynamic graphs (k ≥ 1), which demonstrates that the proposed k-DWL tests provide a
valid hierarchical framework for checking the isomorphism of dynamic graphs.
Proposition 1. Let DG = {V, E} and DG′ = {V ′, E ′} be two dynamic graphs. Suppose the initial
labeling function of k-DWL test be constant. Then, for all k ≥ 1, if k-DWL test decides DG and
DG′ are non-isomorphic, then (k + 1)-DWL test also decides DG and DG′ are non-isomorphic.

Next, we show the expressive power of existing DyGNNs is strictly bounded by 1-DWL test. Specif-
ically, at any iterations of 1-DWL test and DyGNNs, if 1-DWL assigns the same colors for nodes u
and v at time t, then DyGNN will also output the same temporal embeddings of u and v at time t.
Proposition 2. Let DG = {V, E} and DG′ = {V ′, E ′} be two dynamic graphs, and X and X ′ be
their corresponding node features. Given a node labeling function l : V → N satisfying l(u) = l(v)

if and only if Xu = X ′
v for any u ∈ V and v ∈ V ′. Let c(j)t denotes the color at time t obtained

by 1-DWL test initialized with label function l in the j-th iteration, and h(j)
t be the temporal node

embeddings outputted by the DyGNN. Then for all j ≥ 0, c(j)t (u) = c
(j)
t (v) =⇒ h

(j)
t (u) = h

(j)
t (v).

Souza et al. (2022) proves that adding a memory mechanism will not change the expressive power
of DyGNNs. Therefore, the expressive power of DyGNNs can be fully characterized by the 1-DWL
test. Although the 1-DWL test is effective in detecting two non-isomorphic nodes in dynamic graphs,
it often fails to detect two non-isomorphic multi-node tuples. The reason is that the 1-DWL test
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independently aggregates the historical neighbors of each node, but ignores the evolving dependency
between multiple nodes such as common historical neighbors (see the example in Fig. 1). These
indirect dependencies are important for multi-node level tasks such as future link prediction.

4.2 MULTI-INTERACTED TIME ENCODING

As stated in the previous section, 1-DWL and DyGNNs cannot capture the dependencies between
multiple nodes. To address this limitation, we propose Multi-Interacted Time Encoding (MITE).
Intuitively, MITE encodes the complete bi-interaction history of target node pairs with other nodes
in the dynamic graph, thereby capturing dependency information such as common neighbors. Un-
like static graphs, dynamic graphs may have multiple interactions between two nodes at different
timestamps. Encoding the interaction time series provides valuable information, such as interaction
frequency and the time interval since the last interaction, which aids in learning better representa-
tions. Specifically, Let DG = {V, E} be a dynamic graph and its DAT is denoted as A. At time t,
the Time Interval Tensor (TIT) Bt ∈ R|V|×|V|×T is computed as:

Bt
i,j,k =

{
t− A<t

i,j,k if A<t
i,j,k < t

∞ else
(6)

Given the target node pair s = (u, v) at time t, its MITE with respect to a node w ∈ V is defined as:

Xt
M,w = f([Bt

w,u,:||B
t
w,v,:]) ∈ RdB (7)

where f(·) is implemented as a two-layer MLP in our work. For implementations, a normalization
operator such as logarithm is applied to B due to its possible large variance. In addition, as the
maximum interaction count T may be very large, we preserve the last K(K < T ) non-infinite
timestamps of Bw,·,:. Bw,·,: is padded if the number of non-infinite timestamps is less than K.

The proposed MITE can be integrated with existing DyGNNs by incorporating it with node fea-
tures. As such, the DyGNN model will capture the dependency information of node pairs, which
enhance the expressive power of original DyGNNs. The following proposition shows a case of
non-isomorphic node pairs that DyGNNs with MITE can distinguish while vanilla DyGNNs cannot.
Proposition 3. There exists two dynamic graphs DG = {V, E} and DG′ = {V ′, E ′} which have
non-isomorphic node pairs s ∈ [V]2 and s′ ∈ [V ′]2 until some time t that DyGNN with MITE can
distinguish while vanilla DyGNN cannot.

Connections with Neighbor Co-Occurrence Encoding (Yu et al., 2023). Yu et al. (2023) pro-
posed the Neighbor Co-Occurrence Encoding (NCOE) which encodes the interaction count of the
target node pairs to other nodes. For example, suppose the historical interaction sequences of nodes
u and v are {a, b, a} and {b, b, a, c}, respectively, then the NCOEs of a, b, c are [2, 1], [1, 2], [0, 1],
respectively. Note that MITE degenerates to NCOE by setting f in Eq. (7) to output the number of
non-infinity elements. Compared to NCOE, MITE additionally captures the timestamps information
of bi-interaction, which contains richer semantic information.

4.3 DYNAMIC GRAPH NEURAL NETWORK WITH HIGH-ORDER EXPRESSIVE POWER

Equipped with MITE, in this section, we propose the Dynamic Graph Neural Network with High-
order expressive power (HopeDGN), which works analogously to the 2-DWL test. HopeDGN
update the temporal embedding of a central node pair by aggregating its neighboring node pairs as
well as the their interaction history with central node pair. Specifically, given the dynamic graph
DG = {V, E} and the node feature X . The TIT at time t is denoted as Bt. The 0-th layer temporal
embedding of the node pair s = (u, v) at time t is h(0)

t (s) = [Xu||Xv]. Then, the l-th layer (l > 0)
embedding of s at time t is computed as:

h
(l)
t (s) = UPDATE

(
h
(l−1)
t (s), h̃

(l)
t (s)

)
h̃
(l)
t (s) = AGG

({{
ψt(s, w)

∣∣ w ∈ V
}})

ψt(s, w) =
[
f1

(
[h

(l−1)
t

(
(u,w)

)
||h(l−1)

t

(
(v, w)

)
]
) ∣∣∣∣ f2([Bt

u,w,: ||B
t
v,w,:]

)
︸ ︷︷ ︸

MITE of w

] (8)
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where f1 and f2 are projecting functions, which are implemented as MLPs in our work. Here
the replacing node w can be chosen from entire node set V , thus we call this formulation as Global
HopeDGN. However, the number of nodes may be enormous on large-scale dynamic graphs, and the
computation cost of Eq. (8) may be expensive. Therefore, we propose a local version of HopeDGN,
which only takes the historical neighbors of u and v as replacing nodes:

h
(l)
t (s) = UPDATE

(
h
(l−1)
t (s), h̃

(l)
t (s)

)
h̃
(l)
t (s) = AGG

({{
ψt(s, w)

∣∣ (w, ·) ∈ N (u, t) ∪N (v, t)
}}) (9)

Similar to Proposition 2, we will now show that the expressive power of HopeDGN is upper bounded
by 2-DWL test, i.e., any non-isomorphic node pairs that can be distinguished by HopeDGN will also
be distinguished by 2-DWL test.

Proposition 4. Let DG = {V, E} and DG′ = {V ′, E ′} be two dynamic graphs, and X and X ′

be their corresponding node features. Given a node labeling function l : [V]2 → N satisfying
l((u, v)) = l((u′, v′)) if and only if [Xu||Xv] = [X ′

u′ ||X ′
v′ ] for all (u, v) ∈ [V]2 and (u′, v′) ∈

[V ′]2. Let c(j)t denotes the color at time t obtained by 2-DWL test , initialized with label function l in
the j-th iteration, and h(j)

t be the temporal node embeddings output by the Global HopeDGN. Then
for all j ≥ 0, c(j)t

(
(u, v)

)
= c

(j)
t

(
(u′, v′)

)
=⇒ h

(j)
t

(
(u, v)

)
= h

(j)
t

(
(u′, v′)

)
.

Additionally, we will prove that if the UPDATE , AGG, f1 and f2 in Eq. (8) meet the injective
requirement, the HopeDGN is as powerful as the 2-DWL test, as shown in following proposition.

Proposition 5. Let M : [V]2 → Rd be a Global HopeDGN. Suppose the 2-DWL test is initial-
ized with a node labeling function l : [V]2 → N satisfying l((u, v)) = l((u′, v′)) if and only if
[Xu||Xv] = [X ′

u′ ||X ′
v′ ] for all (u, v) ∈ [V]2 and (u′, v′) ∈ [V ′]2. If the AGG, UPDATE, f1 and

f2 of M are injective, then at any time t, if 2-DWL test assigns different colors to two node pairs,
M will also output different temporal embeddings of these two node pairs.

The injectiveness of each function in Global HopeDGN can be approximated with MLP or other
neural networks due to the universal approximation theorem Hochreiter & Schmidhuber (1997).

4.4 IMPLEMENTATION DETAILS

In this section, we present the implementation details of local HopeDGN. Considering that some
interactions may happen long time ago, we leverage Transformer (Vaswani et al., 2017) as the back-
bone due to its capability of modeling long-term dependency.

Neighborhood Encodings. Let DG = {V, E} be a dynamic graph, and its node feature and edge
feature are denoted as X ∈ R|V|×dN and E ∈ R|E|×dE , respectively. Based on Eq. (8), given
the target node pair s = (u, v) at time t, we need to aggregate the joint neighborhood of u and
v, denoted as N (u, t) and N (v, t), respectively. Here we only learn from the one-hop joint neigh-
borhood for efficiency of computation. For each (w, t′) ∈ N (u, t) ∪ N (v, t), the combined node
encodings of w is represented as XC,w = [Xw||Xu||Xv] ∈ RdC . The edge encodings of (w, t′)
are retrieved from E, denoted as XE,w ∈ RdE . Following Xu et al. (2020), the time encoding
of w is learned by applying random Fourier feature on time interval ∆t = t − t′, computed as
XT,w =

√
2/dT [cos(w1∆t), sin(w1∆t), ..., cos(wdT/2

∆t), sin(wdT/2
∆t)] ∈ RdT . The MITE of

w with respect to (u, v) is denoted as XB,w ∈ RdB (Section 4.2). The corresponding encodings
of the complete joint neighborhood are denoted as XC ∈ RS×dC , XE ∈ RS×dE , XT ∈ RS×dT ,
XM ∈ RS×dM with S = |N (u, t) ∪N (v, t)|.

Patching Technique. Since the length of joint neighborhood may be very large, inspired by Doso-
vitskiy et al. (2021), we leverage the patching technique to divide the neighborhood sequence into
non-overlapping patches. Let P denote the patch size. we take the combined node encoding XC

as an example. XC ∈ RS×dC will be reshaped into RNp×(P ·dC) with Np = ⌈S/P ⌉ (neighborhood
sequence is padded if S cannot be divided by P ). Similarly, XE , XT and XM will be reshaped
into RNp×(P ·dE), RNp×(P ·dT ) and RNp×(P ·dM ), respectively.

7
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Transformer Encoder. Further, we apply a linear transformation to align the dimensions of var-
ious encodings. Specifically, given an encoding X∗ ∈ RNp×(P ·d∗), we apply learnable weights
W∗ ∈ R(P ·d∗)×d and bias b∗ ∈ Rd on it (∗ can be C, E, T , M ):

Z∗ =X∗W∗ + b∗ (10)

Then, we concatenate all these encodings Z = [ZC ||ZE ||ZT ||ZM ] ∈ RNp×4d. We set the input of
HopeDGN asH(0) = Z. The l-th layer (1 ≤ l ≤ L) of HopeDGN is defined as:

H̃(l) = MHSA(LN(H(l−1))) +H(l−1)

H(l) = FFN(LN(H̃(l))) + H̃(l)
(11)

where MHSA, LN and FFN are the abbreviations of Multi-head Self-Attention, Layer Normalization
and Feed-Forward Networks, respectively (Vaswani et al., 2017). The input and output dimensions
of HopeDGN layer are set as same. After the final layer of Transformer encoder, the mean pooling
with respect to the neighborhood is applied to obtain the embeddings of node pair s = (u, v) at t:

ht(s) = MEAN(H(L))Wout + bout ∈ Rdout (12)

whereWout ∈ R4d×dout and bout ∈ Rdout are learnable weights.

Computation complexity. Given a batch of B interactions, the expected cost of sampling the
historical neighbors is O(B log(ng)), where ng is the average number of historical neighbors of
temporal nodes in the dataset. Computing MITE costs O(BS) since we traverse all the one-hop
neighbors of the interactions in this batch. Forwarding propagation using the Transformer encoder
costs O(dS2/P 2) since the input length has been reduced to ⌈S/P ⌉. Therefore, the overall com-
plexity cost is O(B(log(ng)+S)+dS2/P 2). This complexity is same as the DyGFormer (Yu et al.,
2023). We will compare the efficiency of HopeDGN and other baselines in Appendix D.4.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the performance of the proposed Hope-
DGN and MITE. Additional experiments are presented in Appendix D.

5.1 EXPERIMENTAL SETTINGS

Datasets and Baselines. Seven publicly available datasets are adopted for evaluation, namely,
Reddit, Wikipedia, UCI, Enron, LastFM, MOOC and CanParl. These datasets are collected by
Poursafaei et al. (2022). In addition, nine DyGNN baseline methods are leveraged for performance
comparison, including JODIE (Kumar et al., 2019), DyRep (Trivedi et al., 2019), TGAT (Xu et al.,
2020), TGN (Rossi et al., 2020), CAWN (Wang et al., 2021b), TCL (Wang et al., 2021a), PINT
(Souza et al., 2022), GraphMixer (Cong et al., 2023) and DyGFormer (Yu et al., 2023).A detailed
introduction to the datasets is presented in Appendix C.1.

Evaluation Tasks and Metrics. Our evaluation protocols closely follow Xu et al. (2020); Rossi
et al. (2020). Specifically, we adopt future link prediction and temporal node classification tasks
for evaluation. For the link prediction task, we randomly sample negative node pairs and train us-
ing the Binary Cross Entropy (BCE) loss function. The future link prediction task is divided into
transductive and inductive settings. For both settings, we split the total time range [0, T ] into three
time intervals [0, 0.7T ), [0.7T, 0.85T ) and [0.85T, T ], and the interactions within each time interval
formulate the training, validation and test sets, respectively. The model processes the interactions
chronologically and predicts their existence based on interaction history. In the inductive setting, we
randomly select 10% of nodes from the test set as masking nodes. The interactions associated with
these masking nodes are removed during training, and the model is required to predict the interac-
tions involving masking nodes only during the validation and testing phases. Average Precision (AP)
and Area Under the Receiver Operating Characteristic curve (AUC) are used as evaluation metrics.
The experimental settings of the dynamic node classification are presented in the Appendix D.2.
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Table 1: The AP results of link prediction experiments. The values are multiplied by 100. The
values of the best and second best performance are highlighted in bold and underlined, respectively.

Model Reddit Wikipedia UCI LastFM Enron MOOC CanParl
Tr

an
sd

uc
tiv

e
JODIE 98.24±0.05 95.58±0.07 88.70±0.12 72.94±1.47 80.31±4.02 79.31±1.50 69.30±0.36
DyRep 98.07±0.13 94.08±0.12 60.31±3.35 71.54±0.19 78.82±0.92 80.15±0.93 70.17±2.85
TGAT 98.18±0.03 96.74±0.16 79.51±0.33 72.99±0.29 68.17±1.15 84.04±0.43 70.23±3.08
TGN 98.62±0.02 98.15±0.07 90.25±0.26 77.15±2.01 85.73±1.60 87.76±0.21 68.82±1.01

CAWN 99.11±0.00 98.77±0.02 94.92±0.01 89.15±0.00 88.92±0.19 79.78±0.16 71.13±1.50
GraphMixer 96.89±0.00 96.67±0.04 92.97±0.68 75.63±0.15 82.24±0.01 81.96±0.11 77.53±0.11

TCL 96.97±0.01 96.21±0.22 84.72±0.66 75.52±2.77 76.99±0.24 81.72±0.01 68.87±1.04
PINT 99.03±0.01 98.78±0.01 96.01±0.10 88.06±0.70 88.71±1.30 71.54±2.62 68.39±0.10

DyGFormer 99.22±0.01 98.96±0.00 95.43±0.14 91.90±0.04 92.20±0.12 85.63±0.34 97.35±0.33
HopeDGN 99.31±0.01 99.17±0.03 97.18±0.06 93.16±0.03 92.67±0.08 90.19±0.29 98.33±0.60

Relative imprv.(%) 0.09 0.21 1.22 1.37 0.51 2.77 1.01

Model Reddit Wikipedia UCI LastFM Enron MOOC CanParl

In
du

ct
iv

e

JODIE 96.45±0.09 93.61±0.02 76.96±1.79 82.42±0.54 79.84±2.11 80.24±2.03 53.74±2.03
DyRep 95.91±0.29 91.82±0.07 54.80±0.45 83.31±0.02 69.92±1.72 79.47±2.06 52.77±0.76
TGAT 96.56±0.13 96.07±0.08 79.30±0.01 78.27±0.25 62.70±0.33 83.56±0.66 53.99±0.63
TGN 97.35±0.09 97.51±0.03 84.26±1.31 85.02±0.96 78.71±3.99 87.37±0.26 54.43±2.92

CAWN 98.65±0.02 98.20±0.02 92.29±0.12 91.50±0.00 85.26±0.15 80.98±0.16 55.64±0.23
GraphMixer 94.93±0.01 96.11±0.07 90.82±0.58 82.22±0.32 75.42±0.08 80.34±0.21 56.19±0.52

TCL 94.03±0.35 96.11±0.14 82.53±0.77 80.43±2.40 73.43±0.25 79.98±0.06 54.25±0.51
PINT 98.25±0.04 98.38±0.04 93.97±0.10 91.76±0.70 81.05±2.40 73.10±2.92 49.57±1.57

DyGFormer 98.83±0.02 98.53±0.04 93.66±0.13 93.29±0.02 89.57±0.16 85.04±0.33 86.79±2.31
HopeDGN 98.97±0.01 98.87±0.00 95.56±0.05 94.45±0.08 89.84±0.02 90.10±0.34 88.84±0.74

Relative imprv.(%) 0.15 0.34 1.69 1.24 0.30 3.12 2.35

Model Configurations. We train the proposed HopeDGN and other baseline methods for 50
epochs using the early stopping strategies of patience of 10. The model achieving the best per-
formance on validation set is selected for testing. For all models, the optimizer, learning rate and
batch size are set as 0.0001, 200 and Adam (Kingma & Ba, 2014), respectively. We repeat the exper-
iments three times with different random seeds and report the mean and standard deviation results.
Other configurations of HopeDGN and baseline methods are presented in Appendix C.2.

5.2 RESULTS AND DISCUSSION

The AP results of the proposed HopeDGN and other baselines on the link prediction task are pre-
sented in Table 1. The AUC results are presented in Table 5. From Table 1, we have following ob-
servations. Firstly, under both transductive and inductive settings, the proposed HopeDGN achieves
the best performance on all datasets among the eight baseline methods. Specifically, the proposed
HopeDGN achieves an average AP improvement of 1.02% and 1.31% for transductive and inductive
experiments over the second-best baselines, respectively. These results demonstrate the effective-
ness of HopeDGN. Secondly, the MITE used in HopeDGN is a generalized form of NCOE used in
DyGFormer. Compared to DyGFormer, the proposed HopeDGN shows an improvement of 4.56%
in the transductive setting and 5.06% in the inductive setting on the MOOC dataset. This may be be-
cause the proposed HopeDGN leverages MITE, which encodes the complete bi-interaction history
to the target node pairs, thus enriching more semantic information than NCOE used in DyGFormer.
The experimental results of the dynamic node classification are presented in the Appendix D.2.

5.3 ABLATION STUDIES

In this section, we conduct ablation studies to validate the effectiveness of key components of Hope-
DGN , including MITE and Time Encoding (TE). We respectively remove MITE (denoted as ”w/o
MITE”) and TE (denoted as ”w/o TE”), and compare their performance with original model. The
evaluating datasets include UCI, CanParl, Enron and MOOC. The results are presented in Fig. 2.
From Fig. 2, we observe that the MITE plays the most significant role in the performance of Hope-
DGN, as removing this module causes significant performance drop. In addition, time encoding is
vital for some datasets such as CanParl and MOOC.
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w/o TEw/o MITE HopeDGN

Figure 2: Ablation studies on the components of HopeDGN.

5.4 INCORPORATING MITE WITH OTHER BASELINES

To validate the flexibility of the proposed MITE, we evaluate the performance of incorporating MITE
with other baselines using link prediction tasks. The AP results are presented in Table 2. From Table
2, we observe that the performance of the baseline models significantly boosts after incorporating
MITE. In particular, on the Enron dataset, the performance of TGAT improves by 33.21% and
39.23% for transductive and inductive settings, respectively, after incorporating MITE encoding.
The reason may be that MITE can provide the indirect dependency information of node pairs as
additional feature information, which is helpful for link prediction tasks. Note that the proposed
HopeDGN still achieves the best performance among all the baselines incorporating MITE.

Table 2: The performance of incorporating MITE with baselines on link prediction tasks. The values
are multiplied by 100. The values of the best performance are highlighted in bold.

Transductive AP Inductive AP

LastFM Enron MOOC LastFM Enron MOOC

TGAT 72.99±0.29 68.17±1.15 84.04±0.43 78.27±0.25 62.70±0.33 83.56±0.66
TGAT w/ MITE 89.32±0.14 90.81±0.15 88.31±0.29 91.75±0.19 87.30±0.43 87.72±0.33

Relative Imprv. (%) 22.37 33.21 5.08 17.22 39.23 4.97

Graphmixer 75.63±0.15 82.24±0.01 81.96±0.11 82.22±0.32 75.42±0.08 80.34±0.21
Graphmixer w/ MITE 86.59±0.03 91.30±0.06 87.30±0.13 89.98±0.00 88.71±0.13 86.22±0.31

Relative Imprv. (%) 14.49 11.01 6.51 9.43 17.62 7.31

TCL 75.52±2.77 76.99±0.24 81.72±0.01 80.43±2.40 73.43±0.25 79.98±0.06
TCL w/ MITE 89.60±0.01 90.53±0.14 88.36±0.01 92.23±0.00 88.17±0.08 87.44±0.09

Relative Imprv. (%) 18.64 17.58 8.12 14.67 20.07 9.32

HopeDGN 93.16±0.03 92.67±0.08 90.19±0.29 94.45±0.08 89.58±0.20 90.10±0.34

6 CONCLUSIONS

In this work, we propose a novel DyGNN framework that can achieve provable and quantifiable
high-order expressive power. We propose the k-Dynamic WL (DWL) tests to quantify the expres-
sive power of DyGNNs. We underscore that the expressive power of existing DyGNNs is bounded
by the proposed 1-DWL test, which limits their capabilities to capture significant evolving patterns.
To address this limitation, we propose HopeDGN, which learns node-pair level representation by
aggregating interaction histories with neighboring node-pairs. We prove that HopeDGN can achieve
expressive power equivalent to the 2-DWL test. We present a Transformer-based implementation for
the local variant HopeDGN. Experiments on link prediction and node classification tasks demon-
strate the effectiveness of HopeDGN.

There are some promising future directions for this work. Firstly, the expressive power of the pro-
posed HopeDGN is bounded by 2-DWL test. It remains an open problem of designing DyGNNs
with higher order expressiveness than 2-DWL test. Secondly, some recent works study the expres-
siveness of GNNs via alternative metrics beyond WL test such as graph bi-connectivity (Zhang et al.,
2023a). Designing DyGNNs based on other metrics beyond DWL test may bring novel insights.
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Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Floris Geerts and Juan L Reutter. Expressiveness and approximation properties of graph neural
networks. International Conference on Learning Representations, 2022.

Martin Grohe. The logic of graph neural networks. In 2021 36th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), pp. 1–17. IEEE, 2021.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Liangzhe Han, Bowen Du, Leilei Sun, Yanjie Fu, Yisheng Lv, and Hui Xiong. Dynamic and multi-
faceted spatio-temporal deep learning for traffic speed forecasting. In Proceedings of the 27th
ACM SIGKDD conference on knowledge discovery & data mining, pp. 547–555, 2021.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten Borg-
wardt. Topological graph neural networks. In International Conference on Learning Representa-
tions, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xuanwen Huang, Yang Yang, Yang Wang, Chunping Wang, Zhisheng Zhang, Jiarong Xu, Lei Chen,
and Michalis Vazirgiannis. Dgraph: A large-scale financial dataset for graph anomaly detection.
Advances in Neural Information Processing Systems, 35:22765–22777, 2022.

Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware representation learn-
ing on continuous-time dynamic graphs. Advances in Neural Information Processing Systems,
35:19874–19886, 2022.

DP Kingma and Jimmy Ba. Adam: a method for stochastic optimization. In International Confer-
ence on Learning Representations, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
poral interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1269–1278, 2019.

Andrei Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and an algebra
arising during this reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12–16, 1968.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations, 2018.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019a.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In International conference on machine learning, pp. 4363–4371. PMLR, 2019b.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in temporal networks. In Proceed-
ings of the tenth ACM international conference on web search and data mining, pp. 601–610,
2017.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-
shi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional
networks for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 5363–5370, 2020.

Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better eval-
uation for dynamic link prediction. Advances in Neural Information Processing Systems, 35:
32928–32941, 2022.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural rep-
resentation learning on dynamic graphs via self-attention networks. In Proceedings of the 13th
international conference on web search and data mining, pp. 519–527, 2020.

Amauri Souza, Diego Mesquita, Samuel Kaski, and Vikas Garg. Provably expressive temporal graph
networks. Advances in neural information processing systems, 35:32257–32269, 2022.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in neural information processing systems, 34:24261–
24272, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning rep-
resentations over dynamic graphs. In International Conference on Learning Representations,
2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.
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A AN INTRODUCTION OF WEISFEILER-LEHMAN TEST

In this section, we briefly introduce the Weisfeiler-Lehman (WL) test. The WL tests for graph
isomorphism (Leman & Weisfeiler, 1968; Xu et al., 2019) are effective algorithms that have been
proven capable of discriminating a broad class of non-isomorphic graphs.

1-WL test. Given a G = {V, E} with a labeling function l, at iteration 0, the 1-WL test initializes
the color of each node c(0) = l. At iteration j > 0, the node color is refined as:

c(j)(u) = HASH(c(j−1)(u), {{c(j−1)(v)|v ∈ N (u)}}) (13)

where HASH is a hashing function and {{·}} denotes the multiset. To test whether two graphs G and
G′ are isomorphic, we run 1-WL test on both graphs in parallel. If the multisets of node colors in
two graphs are not equal at any iteration, the 1-WL test concludes that G and G′ are non-isomorphic.

Due to the limited expressive power of 1-WL test, the k-dimensional Weisfeiler-Lehman tests (k ≥
2) are proposed to serve as more powerful algorithms for checking graph isomorphism. In the
literature, there exists two variants of k-WL test, known as Folklore k-WL test (k-FWL) (Cai et al.,
1992) and Oblivious k-WL test (k-OWL) (Grohe, 2021). We will introduce the details of them.

k-FWL test. Given a graph G = {V, E}, and let s = (v1, ..., vk) ∈ [V]k be a k-node tuple. Let
c(j) : [V]k → N be a k-node tuple coloring function at iteration j. At iteration 0, two tuples s and s′
get the same color if there exists a isomorphism between s and s′. Then at iteration j (j ≥ 1), the
color of s is updated as follows:

c(j)(s) = HASH
(
c(j−1)(s), {{ϕ(j−1)(s, w)|w ∈ V}}

)
ϕ(j−1)(s, w) =

(
c(j−1)

(
r1(s, w)

)
, ..., c(j−1)

(
rk(s, w)

)) (14)

where ri(s, w) = (v1, ..., vi−1, w, vi+1, ..., vk). Here the neighboring node tuples of s is obtained
by replacing each element in s with other nodes. We run the algorithm on two graphs in parallel. If
two color multisets are not equal at any iteration, the k-FWL test will output that these two graphs
are non-isomorphic. The algorithm terminates if c(j)(s) = c(j)(s′) ⇐⇒ c(j+1)(s) = c(j+1)(s′)
holds for all s, s′ ∈ [V]k.

k-OWL test. At iteration j (j ≥ 1), k-OWL test has a slightly different update rule for the colors
of s ∈ [V]k:

c(j)(s) = HASH
(
c(j−1)(s),M (j−1)(s)

)
M (j−1)(s) =

(
{{c(j−1)

(
r1(s, w)

)
|w ∈ V}}, ..., {{c(j−1)

(
rk(s, w)

)
|w ∈ V}}

) (15)

Note that 1-OWL test and 2-OWL test have the same expressive power, and (k + 1)-OWL test has
the same expressive power as the k-FWL test for k ≥ 2 (Grohe, 2021). The reason why k-FWL test
inherits more expressive power than k-OWL test is that k-FWL firstly groups the color of k-node
tuple based on replacing nodes then makes aggregation, while k-OWL aggregates the colors for the
single replacing node.

B PROOF OF PROPOSITIONS

B.1 PROOF OF PROPOSITION 1

We restate Proposition 1 as follows.
Proposition 6. Let DG = {V, E} and DG′ = {V ′, E ′} be two dynamic graphs. Suppose the initial
labeling function of k-DWL test be constant. Then, for all k ≥ 1, if k-DWL test decides DG and
DG′ are non-isomorphic, then (k + 1)-DWL test also decides DG and DG′ are non-isomorphic.

Proof. Let sk ∈ [V]k and s′k ∈ [V ′]k be the k-node tuples on DG and DG′, respectively. We use
c
(i)
k (sk) to denote the color of sk at the i-th iteration of k-DWL test.
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Suppose after j iterations, k-DWL test determines DG and DG′ are non-isomorphic, but (k + 1)-
DWL test determines DG and DG′ are isomorphic. It follows that from iteration i = 0, 1, ..., j,
{{c(i)k+1(sk+1)|sk+1 ∈ [V]k+1}} = {{c(i)k+1(s

′
k+1)|s′k+1 ∈ [V ′]k+1}}. Let sk+1 = (v1, ..., vk, vk+1)

and s′k+1 = (v′1, ..., v
′
k, v

′
k+1). We will show that for i = 0, ..., j, c(i)k+1(sk+1) = c

(i)
k+1(s

′
k+1) =⇒

c
(i)
k ((v1, ..., vk)) = c

(i)
k ((v′1, ..., v

′
k)). We prove this by induction on the iteration i.

[Base Case]: For i = 0, c(0)k+1(sk+1) = c
(0)
k+1(s

′
k+1) =⇒ c

(0)
k ((v1, ..., vk)) = c

(0)
k ((v′1, ..., v

′
k))

immediately holds because the initial labeling function of k and (k + 1)-DWL tests are constant.

[Inductive Step]: Suppose c
(i)
k+1(sk+1) = c

(i)
k+1(s

′
k+1) =⇒ c

(i)
k ((v1, ..., vk)) = c

(i)
k ((v′1, ..., v

′
k))

holds for iteration i. Then, for iteration i+ 1, we discuss by cases:

• k = 1. Based on Eq. (5), c
(i+1)
k+1 (sk+1) = c

(i+1)
k+1 (s′k+1) implies: 1) c

(i)
k+1(sk+1) =

c
(i)
k+1(s

′
k+1). Based on the induction assumption, this implies:

c
(i)
k (v1) = c

(i)
k (v′1) (16)

2) {{ϕ(i−1)
t (sk+1, w)|w ∈ V}} = {{ϕ(i−1)

t (s′k+1, w
′)|w′ ∈ V ′}}, which implies that:

{{(c(i−1)
k+1 (w, v1),Aw,v1,:)|w ∈ V}} = {{(c(i−1)

k+1 (w′, v′1),Aw′,v′
1,:
)|w′ ∈ V ′}} (17)

Based on the induction assumption, this implies:

{{(c(i−1)
k (w),Aw,v1,:)|w ∈ V}} = {{(c(i−1)

k (w′, v′1),Aw′,v′
1,:
)|w′ ∈ V ′}} (18)

This implies:

{{(c(i−1)
k (w),Aw,v1,:)|w ∈ N (v1)}} = {{(c(i−1)

k (w′, v′1),Aw′,v′
1,:
)|w′ ∈ N (v′1)}} (19)

where N (v1) = {{w|w ∈ V,Aw,v1,: ̸= [∞]}} indicates the nodes that have interactions with
v1. Then based on Eq. (4), combining Eq. (16) and Eq. (19) yields c(i+1)

k (v1) = c
(i+1)
k (v′1)

• k > 1. Based on Eq. (5), c
(i+1)
k+1 (sk+1) = c

(i+1)
k+1 (s′k+1) implies: 1) c

(i)
k+1(sk+1) =

c
(i)
k+1(s

′
k+1). Based on the induction assumption, this implies:

c
(i)
k ((v1, ..., vk)) = c

(i)
k ((v′1, ..., v

′
k)) (20)

2) {{ϕ(i−1)
t (sk+1, w)|w ∈ V}} = {{ϕ(i−1)

t (s′k+1, w
′)|w′ ∈ V ′}}, which implies that:

{{(c(i−1)
k+1 ((w, v2, ..., vk+1)), ..., c

(i−1)
k+1 ((v1, ..., vk, w)),Aw,v1,:, ...,Aw,vk+1,:)|w ∈ V}}

={{(c(i−1)
k+1 ((w′, v′2, ..., v

′
k+1)), ..., c

(i−1)
k+1 ((v′1, ..., v

′
k, w

′)),Aw′,v′
1,:
, ...,Aw′,v′

k+1,:
)|

w′ ∈ V ′}}
(21)

Based on the induction assumption, this implies:

{{(c(i−1)
k (w, v2..., vk), c

(i−1)
k (v1, w..., vk), ..., c

(i−1)
k (v1, ..., vk−1, w),

Aw,v1,:, ...,Aw,vk,:)|w ∈ V}}

={{(c(i−1)
k (w′, v′2..., v

′
k), c

(i−1)
k (v′1, w

′..., v′k), ..., c
(i−1)
k (v′1, ..., v

′
k−1, w

′),

Aw′,v′
1,:
, ...,Aw′,v′

k,:
)|w′ ∈ V ′}}

(22)

Then based on Eq.(5), combining Eq.(20) and Eq.(22), yields c
(i)
k ((v1, ..., vk)) =

c
(i)
k ((v′1, ..., v

′
k))
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Combining the base case and inductive step, it holds that for i = 0, ..., j, c
(i)
k+1(sk+1) =

c
(i)
k+1(s

′
k+1) =⇒ c

(i)
k ((v1, ..., vk)) = c

(i)
k ((v′1, ..., v

′
k)). We use g to denote the mapping

(v1, ..., vk) = g(sk+1).. Then, from iteration i = 0, ..., j, it holds

{{c(i)k+1(sk+1)|sk+1 ∈ [V]k+1}} = {{c(i)k+1(s
′
k+1)|s′k+1 ∈ [V ′]k+1}}

=⇒{{c(i)k (g(sk+1))|sk+1 ∈ [V]k+1}} = {{c(i)k+1(g(s
′
k+1))|s′k+1 ∈ [V ′]k+1}}

=⇒{{c(i)k+1(g(sk))|sk ∈ [V]k}} = {{c(i)k (g(s′k))|s′k ∈ [V ′]k}}

(23)

This indicates that k-DWL test concludes that DG and DG′ are isomorphic. This causes the contra-
diction. Thus, the proposition is proved.

B.2 PROOF OF PROPOSITION 2

We restate Proposition 2 as follows.
Proposition 7. Let DG = {V, E} and DG′ = {V ′, E ′} be two dynamic graphs, and X and X ′ be
their corresponding node features. Given a node labeling function l : V → N satisfying l(u) = l(v)

if and only if Xu = X ′
v for any u ∈ V and v ∈ V ′. Let c(j)t denotes the color at time t obtained

by 1-DWL test initialized with label function l in the j-th iteration, and h(j)
t be the temporal node

embeddings outputted by the DyGNN. Then for all j ≥ 0, c(j)t (u) = c
(j)
t (v) =⇒ h

(j)
t (u) = h

(j)
t (v).

Proof. We prove this proposition by induction on the iteration j.

[Base Case]: For j = 0, we have:

c
(0)
t (u) = c

(0)
t (v)

(a)
=⇒ l(u) = l(v)

(b)
=⇒Xu =X ′

v =⇒ h
(0)
t (u) = h

(0)
t (u) (24)

where (a) is because 1-DWL test is initialized with l. (b) is due to the consistency assumption of l.

[Inductive Step]: Suppose c
(j)
t (u) = c

(j)
t (v) =⇒ h

(j)
t (u) = h

(j)
t (v) holds for iteration j. Then,

based on Eq. (4), at iteration j + 1, c(j+1)
t (u) = c

(j+1)
t (v) implies: 1) c

(j)
t (u) = c

(j)
t (v). 2)

{{(c(j)t (w),A<t
w,u,:)|(w, t′) ∈ N (u, t)}} = {{(c(j)t (r),A<t

r,v,:)|(r, t′) ∈ N (v, t)}}. Then we have:

c
(j)
t (u) = c

(j)
t (v) =⇒ h

(j)
t (u) = h

(j)
t (v) (25)

due to the inductive assumption. In addition,

{{(c(j)t (w),A<t
w,u,:)|(w, t′) ∈ N (u, t)}} = {{(c(j)t (r),A<t

r,v,:)|(r, t′) ∈ N (v, t)}}

=⇒{{(h(j)
t (w),A<t

w,u,:)|(w, t′) ∈ N (u, t)}} = {{(h(j)
t (r),A<t

r,v,:)|(r, t′) ∈ N (v, t)}}

=⇒{{(h(j)
t (w), t− t′)|(w, t′) ∈ N (u, t)}} = {{(h(j)

t (r), t− t′)|(r, t′) ∈ N (v, t)}}

(26)

where the last equation holds because the entire interaction sequence being the same implies that
each interaction time is the same. Combining Eq. (25) and Eq. (26), and based on Eq. (1), we have
h
(j+1)
t (u) = h

(j+1)
t (v), which concludes the proof.

B.3 PROOF OF PROPOSITION 3

We restate Proposition 3 as follows.
Proposition 8. There exists two dynamic graphs DG = {V, E} and DG′ = {V ′, E ′} which have
non-isomorphic node pairs s ∈ [V]2 and s′ ∈ [V ′]2 until some time t that DyGNN with MITE can
distinguish while vanilla DyGNN cannot.

Proof. We present a case of non-isomorphic node pairs that DyGNN with MITE can distinguish
while vanilla DyGNN cannot in Fig. 3. In Fig. 3, suppose the current time is t5. It can be seen that
node pair (a, c) in DG (a) is not isomorphic to the node pair (a, g) in DG (b) until t5, because the
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Figure 3: An example of Proposition 3. Suppose the raw node feature are same for all nodes, and
the current time is t5. The model is required to distinguish two node pairs (a, c) in (a) and (a, g) in
(b) at time t5.

common neighbor b interacts with (a, c) at time t1 and t2 in DG (a), while the common neighbor h
interacts with (a, g) at time t3 and t4 in DG (b).

For vanilla DyGNN, we denote the temporal node embeddings of DG (a) and (b) areh and q, respec-
tively. Then we have h(l)

t5 (a) = q
(l)
t5 (a) and h(l)

t5 (c) = q
(l)
t5 (g) for any l ≥ 0, because the correspond-

ing nodes are isomorphic. The node pair embedding of (a, c) in DG (a) at t5 is [h(l)
t5 (a)||h

(l)
t5 (c)], and

the node pair embedding of (a, g) in DG (b) at t5 is [q(l)t5 (a)||q
(l)
t5 (g)]. Therefore, vanilla DyGNN

cannot distinguish this two node pairs.

For DyGNN with MITE. we note that MITE of b with respect to (a, c) is [t5 − t1||t5 − t2] in DG
(a), while MITE of h with respect to (a, g) is [t5 − t4||t5 − t3] in DG (b). Therefore, when MITE is
concatenated with the raw node feature, aggregating neighbor information of node pair (a, c) in DG
(a) and node pair (a, g) in DG (b) will yield h(l)

t5 (a) ̸= q
(l)
t5 (a) and h(l)

t5 (c) ̸= q
(l)
t5 (g). Therefore,

DyGNN with MITE can distinguish this two node pairs.

B.4 PROOF OF PROPOSITION 4

We restate Proposition 4 as follows.

Proposition 9. Let DG = {V, E} and DG′ = {V ′, E ′} be two dynamic graphs, and X and X ′

be their corresponding node features. Given a node labeling function l : [V]2 → N satisfying
l((u, v)) = l((u′, v′)) if and only if [Xu||Xv] = [X ′

u′ ||X ′
v′ ] for all (u, v) ∈ [V]2 and (u′, v′) ∈

[V ′]2. Let c(j)t denotes the color at time t obtained by 2-DWL test , initialized with label function l in
the j-th iteration, and h(j)

t be the temporal node embeddings output by the Global HopeDGN. Then
for all j ≥ 0, c(j)t

(
(u, v)

)
= c

(j)
t

(
(u′, v′)

)
=⇒ h

(j)
t

(
(u, v)

)
= h

(j)
t

(
(u′, v′)

)
.

Proof. We prove this proposition by induction on the iteration j.

[Base Case]: For j = 0, we have:

c
(0)
t ((u, v)) = c

(0)
t ((u′, v′))

(a)
=⇒ l((u, v)) = l((u′, v′))

(b)
=⇒ [Xu||Xv] = [X ′

u′ ||X ′
v′ ]

=⇒ h
(0)
t ((u, v)) = h

(0)
t ((u′, v′))

(27)

where (a) is because we assign l as the initial coloring of 2-DWL and (b) is due to the consistency
assumption of l.

[Inductive Step]: Suppose c
(j)
t ((u, v)) = c

(j)
t ((u′, v′)) =⇒ h

(j)
t ((u, v)) = h

(j)
t ((u′, v′)) holds for

iteration j. Then, because of Eq. (5), c(j+1)
t ((u, v)) = c

(j+1)
t ((u′, v′)) implies: 1) c(j)t ((u, v)) =

18
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c
(j)
t ((u′, v′)), 2) {{ϕ(j)

t ((u, v), w)|w ∈ V}} = {{ϕ(j)
t ((u′, v′), w′)|w′ ∈ V ′}}. Based on the induc-

tive assumption, we have

c
(j)
t ((u, v)) = c

(j)
t ((u′, v′)) =⇒ h

(j)
t ((u, v)) = h

(j)
t ((u′, v′)) (28)

Also, there exists a mapping f : V → V ′ where ϕ(j)
t ((u, v), w) = ϕ

(j)
t ((u′, v′), f(w)).

This means that c(j)t ((u,w)) = c
(j)
t ((u′, f(w))), (c

(j)
t ((v, w)) = c

(j)
t ((v′, f(w)) and A<t

w,u,: =

A<t
f(w),u′,:,A

<t
w,v,: = A<t

f(w),v′,: holds for any w ∈ V . This indicates the followings:

• ∀w ∈ V, [h(j)
t ((u,w)) || h(j)

t ((v, w))] = [h
(j)
t ((u′, f(w))) || h(j)

t ((v′, f(w)))] by the
inductive assumption on iteration j.

• ∀w ∈ V, [Bt
u,w,: || Bt

v,w,:] = [Bt
u′,f(w),: || Bt

v′,f(w),:]. This is because all the interac-
tion times between node pairs (u,w) and (u′, f(w)) before time t are the same, they thus
generate the same TITs, and the same holds for node pairs (v, w) and (v′, f(w)).

Combining the above facts and Eq. (28), and based on Eq. (8), we have h(j+1)
t ((u, v)) =

h
(j+1)
t ((u′, v′)), which concludes the proof.

B.5 PROOF OF PROPOSITION 5

We restate Proposition 5 as follows.

Proposition 10. Let M : [V]2 → Rd be a Global HopeDGN. Suppose the 2-DWL test is initial-
ized with a node labeling function l : [V]2 → N satisfying l((u, v)) = l((u′, v′)) if and only if
[Xu||Xv] = [X ′

u′ ||X ′
v′ ] for all (u, v) ∈ [V]2 and (u′, v′) ∈ [V ′]2. If the AGG, UPDATE, f1 and

f2 of M are injective, then at any time t, if 2-DWL test assigns different colors to two node pairs,
M will also output different temporal embeddings of these two node pairs.

Proof. We will show that for all j ≥ 0, there exists an injective function φ where for all (u, v) ∈
[V]2, h(j)

t ((u, v)) = φ(c
(j)
t ((u, v))) holds. We prove this by induction on j.

[Base Case]: When j = 0, considering the consistency assumption of node labeling function l and
combined node features, we have:

c
(0)
t ((u, v)) ̸= c

(0)
t ((u′, v′)) =⇒ l((u, v)) ̸= l((u′, v′)) =⇒ [Xu||Xv] ̸= [X ′

u′ ||X ′
v′ ]

=⇒ h
(0)
t ((u, v)) ̸= h(0)

t ((u′, v′))
(29)

thus by the definition of injectiveness, there must exists an injective function φ such that
h
(0)
t ((u, v)) = φ(c

(0)
t ((u, v))).

[Inductive Case]: Suppose for iteration j, and suppose φ is the injective function satisfying
h
(j)
t ((u, v)) = φ(c

(j)
t ((u, v))). Then for iteration j + 1, we have

h
(j+1)
t ((u, v)) = UPDATE(h(j)

t ((u, v)), AGG({{[f1([h(j)
t ((u,w)) || h(j)

t ((v, w))]) ||
f2([Bt

u,w,: || Bt
v,w,:])] | w ∈ V}})

= UPDATE(φ(c(j)t ((u, v))), AGG({{[f1([φ(c(j)t ((u,w))) || φ(c(j)t ((v, w)))]) ||
f2([Bt

u,w,: || Bt
v,w,:])] | w ∈ V}})

(30)

Since the composition of injective functions is still injective, the above can be written as:

h
(j+1)
t ((u, v)) = f(c

(j)
t ((u, v)), {{(c(j)t ((u,w)), c

(j)
t ((v, w)),A<t

u,w,:,A
<t
u,w,:) | w ∈ V}}) (31)
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Where f is an injective function. The conversion from B to A is legal because of the bijective
mapping from TIT to DAT (Eq. (6)). Therefore, we have

h
(j+1)
t ((u, v)) = f ◦ HASH−1 ◦ HASH(c

(j)
t ((u, v)),

{{(c(j)t ((u,w)), c
(j)
t ((v, w)),A<t

u,w,:,A
<t
u,w,:) | w ∈ V}})

= f ◦ HASH−1(c
(j+1)
t ((u, v)))

(32)

By above equation, we have found an injective function φ′ = f◦HASH−1 for the (j+1)-th iteration,
thus the proposition is proven.

C DETAILS OF EXPERIMENTAL SETTINGS

C.1 DATASETS

The details of datasets included in our experiments will be introduced in the followings. The statis-
tics of these datasets are summarized in Table 3.

Reddit. Reddit1 is a dataset of user activities that includes subreddits posted by various users
within a single month on the Reddit website. It is a bipartite dataset that includes the 10,000 most
active users and 984 subreddits, offering detailed interaction features.

Wikipedia. Wikipedia2 captures the clicking actions on Wikipedia pages by various users. It is a
bipartite network which includes clicking actions on 1,000 pages over the course of one month with
detailed interaction features provided by the users.

UCI. UCI3 is a non-bipartite network that encompasses sent messages between users within an
online community of students from the University of California, Irvine. The nodes represent the
students, and the edges denote the messages exchanged among them.

Enron. Enron4 is a non-bipartite collection comprising around 0.5M emails exchanged among
employees of the Enron energy company over a period of three years.

MOOC. MOOC5 is a bipartite interaction network of online sources, where the nodes represent
students and course content units. Each link indicates a student’s access to a specific content unit
and is characterized by a 4-dimensional feature.

LastFM. LastFM6 is a bipartite dataset that contains information about which songs were listened
to by which users over the course of one month. In this dataset, users and songs are represented as
nodes, and the links indicate the users’ listening behaviors.

CanParl. Canparl7 is a dynamic political network documenting the interactions between Canadian
Members of Parliament (MPs) from 2006 to 2019. In this network, each node represents an MP from
an electoral district, and a link is formed when two MPs both vote ”yes” on a bill. The weight of
each link indicates the number of times one MP voted ”yes” alongside another MP within a year.

1https://snap.stanford.edu/jodie/reddit.csv
2https://snap.stanford.edu/jodie/wikipedia.csv
3https://konect.cc/networks/opsahl-ucsocial/
4https://www.cs.cmu.edu/˜enron/
5https://snap.stanford.edu/jodie/mooc.csv
6https://snap.stanford.edu/jodie/lastfm.csv
7https://github.com/shenyangHuang/LAD
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Table 3: Statistics of the datasets. Average Interaction Intensity λ = 2|E|/(|V|T ), where |E| and |V|
denote the number of interactions and nodes, respectively. T denotes the total duration (seconds).

Datasets #Nodes #Links #Node Feat. #Edge Feat. Bipartite Duration λ

Wikipedia 9,227 157,474 0 172 True 1 month 4.57× 10−5

Reddit 10,984 672,447 0 172 True 1 month 1.27× 10−5

MOOC 7,144 411,749 0 4 True 17 months 2.62× 10−6

LastFM 1,980 1,293,103 0 0 True 1 month 5.04× 10−4

Enron 184 125,235 0 0 False 3 years 1.20× 10−5

UCI 1,899 59,835 0 0 False 196 days 3.79× 10−6

CanParl 734 74,478 0 1 False 14 years 4.59× 10−7

C.2 IMPLEMENTATION DETAILS

Baseline implementations. We reproduce the experimental results of JODIE, DyRep, TGAT,
TGN, CAWN, Graphmixer, TCL and DyGFormer based on the dynamic graph learning library
DyGLib 8. Specifically, we fix the optimizer, learning rate and batch size are set as 0.0001, 200 and
Adam (Kingma & Ba, 2014), respectively, for all baselines. All the baseline methods for 50 epochs
using the early stopping strategies of patience of 10. The model achieving the best performance on
validation set is selected for testing. All other hyperparameters settings of the specific models, such
as dimensions of various encodings or the number of sampled neighbors follow the optimal configu-
rations provided by DyGLib. We repeat the experiments three times with different seeds. For PINT,
we report the results in their paper except MOOC and CanParl. For results on MOOC and CanParl,
we run official code of PINT 9. All hyper-parameters are set to their default values.

HopeDGN implementations. We implement the HopeDGN based on DyGLib. The optimizer,
learning rate, batch size, number of epochs and early stopping strategies are set same as baseline
methods. The number of preserved timestamps K in MITE is set as 32. The dimension of MITE
dB is set as 50. The dimension of time encoding dT is set as 100. The aligned dimension d is set
as 50. The number of Transformer layer is 2. The number of attention heads is 2. The maximum
input neighbor length |N | and the patching numbers P of datasets are summarized in Table 4. All
the experiments are conducted on a Linux Ubuntu 18.04 Server with a NVIDIA RTX2080Ti GPU.

Table 4: Maximum input neighbor length |N | and patching number P of datasets..
Reddit Wikipedia UCI Enron LastFM MOOC CanParl

|N | 64 32 32 256 128 256 2048
P 2 1 1 8 4 8 64

D ADDITIONAL EXPERIMENTS

D.1 THE AUC RESULTS OF LINK PREDICTION.

The AUC results of link prediction experiments are presented in Table 5. We observe that the
proposed HopeDGN achieves the best performance on all seven datasets for both transductive and
inductive settings.

D.2 NODE CLASSIFICATION

Following the settings of Rossi et al. (2020), we also compare the node classification performance
of proposed HopeDGN and other baselines. In particular, the weights of DyGNN’s encoder are
pre-trained based on link prediction task. Then, a two-layer MLP is added on top of the encoder

8https://github.com/yule-BUAA/DyGLib
9https://github.com/AaltoPML/
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Table 5: The AUC results of transductive/inductive link prediction are reported. The values are
multiplied by 100. The results of the best and second best performing models are highlighted in
bold and underlined, respectively.

Model Reddit Wikipedia UCI LastFM Enron MOOC CanParl
Tr

an
sd

uc
tiv

e

JODIE 98.20±0.05 95.36±0.12 90.15±0.07 71.95±1.82 84.68±2.97 82.80±0.83 78.15±0.21
DyRep 98.02±0.15 93.60±0.09 65.19±4.26 71.06±0.21 81.87±1.76 83.30±0.82 78.19±3.07
TGAT 98.13±0.02 96.46±0.15 78.30±0.48 71.25±0.26 66.13±1.66 85.37±0.48 75.61±3.87
TGN 98.59±0.02 98.02±0.09 89.83±0.11 78.26±2.11 87.53±2.25 89.64±0.51 74.11±0.08

CAWN 99.02±0.01 98.55±0.02 93.55±0.02 87.12±0.01 89.27±0.21 79.95±0.16 77.07±1.74
GraphMixer 96.77±0.00 96.36±0.04 91.25±0.97 73.69±0.11 84.57±0.11 83.35±0.17 83.64±0.14

TCL 96.88±0.02 95.53±0.23 84.18±0.39 70.24±2.21 73.92±0.28 82.54±0.07 73.43±0.93
DyGFormer 99.15±0.01 98.84±0.00 93.98±0.20 91.38±0.03 93.08±0.05 85.71±0.43 97.71±0.29
HopeDGN 99.27±0.00 99.17±0.02 96.51±0.08 92.92±0.01 93.59±0.04 90.93±0.25 98.52±0.59

Improve(%) 0.12 0.33 2.53 1.54 0.51 1.29 0.81

Model Reddit Wikipedia UCI LastFM Enron MOOC CanParl

In
du

ct
iv

e

JODIE 96.40±0.13 92.97±0.21 77.14±0.95 81.31±0.89 81.00±2.55 83.64±1.03 53.64±2.34
DyRep 95.85±0.31 90.76±0.05 56.23±1.18 82.41±0.08 72.54±3.60 82.78±1.72 55.16±1.63
TGAT 96.52±0.13 95.77±0.09 77.16±0.15 76.64±0.22 59.32±0.23 84.91±0.71 55.59±1.17
TGN 97.26±0.10 97.40±0.04 82.36±1.27 85.59±1.13 79.46±4.86 89.15±1.29 55.53±4.16

CAWN 98.45±0.04 98.03±0.01 89.77±0.06 89.87±0.01 85.49±0.08 81.45±0.25 58.52±0.60
GraphMixer 94.91±0.03 95.83±0.05 88.90±0.73 80.55±0.11 76.76±0.08 81.96±0.26 58.91±0.59

TCL 93.86±0.38 95.51±0.12 80.35±0.71 76.27±1.98 70.38±0.55 80.93±0.04 56.10±0.05
DyGFormer 98.68±0.00 98.42±0.02 91.49±0.19 92.95±0.03 90.32±0.28 85.60±0.43 88.99±0.14
HopeDGN 98.88±0.01 98.82±0.00 94.12±0.03 94.33±0.01 90.51±0.15 91.11±0.36 89.16±0.73

Improve(%) 0.20 0.40 2.63 1.38 0.19 1.96 0.17

for classification. Two datasets with node labels (Reddit and Wikipedia) are adopted for evaluation.
Note that the representations obtained by HopeDGN are node-pair level, thus we make some mod-
ifications to incorporate the node classification experiments. Specifically, given a target node pair
(u, v) at time t, we modify Eq. (12) as:

ht(u) = MEAN(H
(L)
1:|N (u,t)|)Wout + bout

ht(v) = MEAN(H
(L)
|N (u,t)|+1:|N (v,t)|)Wout + bout

(33)

to generate the representation of (u, t) and (v, t), respectively. The AUC results are presented in
Table 6. We observe that HopeDGN achieves the highest average rankings compared to other base-
lines. In addition, The HopeDGN achieved the best performance on the Reddit and significantly
outperformed other baselines.

Table 6: AUC results of node classification (multiplied by 100). The values of the best performing
models are marked in bold. The average ranks are included.

Wikipedia Reddit Avg. Rank

JODIE 89.42±1.45 61.81±0.67 4.5
DyRep 85.66±1.55 65.73±1.88 4.5
TGAT 82.39±2.56 68.45±0.45 5.0
TGN 85.44±1.67 60.85±2.25 7.0

CAWN 83.57±0.22 66.22±1.04 5.5
Graphmixer 86.90±0.06 65.25±3.12 4.0

TCL 81.58±4.10 66.98±1.25 6.0
DyGFormer 85.29±2.79 64.51±2.89 6.5
HopeDGN 85.69±0.67 71.20±1.47 2.0
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(b)

(c) (d)

(a)

Figure 4: Parameter sensitivity of HopeDGN.

D.3 PARAMETER SENSITIVITY

In this section, we evaluate the parameters sensitivity of HopeDGN, including non-infinite
timestamps number in MITE K and number of neighborhood, on Enron and MOOC datasets.
K is searched in range {4, 8, 16, 32, 64} and the neighborhood length is searched in range
{8, 16, 32, 64, 128}. The results are presented in Fig. 4. We observe that the performance of Hope-
DGN is quite stable with varying K, on both Enron and MOOC dataset. Additionally, the perfor-
mance of HopeDGN improves until converges when the input length of neighborhood increases,
on both Enron and MOOC datasets. This is reasonable because a larger neighborhood receptive
field can help the model more likely perceive non-isomorphic node pairs, thereby learning more
expressive representations.

D.4 EFFICIENCY EVALUATION

We compare the efficiency of proposed HopeDGN with other baselines. Specifically, we evaluate
the training time per epochs (seconds) of different models on the MOOC dataset, and their inductive
AP values are reported together. Note that the optimal parameter settings are adopted for baseline
methods. The training time of HopeDGN with various input neighbor length ({16, 64, 128, 256})
are reported. The results are presented in Fig. 5. From Fig. 5 (a), we observe that HopeDGN
with 256 neighbors is slightly faster than CAWN, but slower than other baselines. However, it can
achieve the best performance among all baselines. Additionally, shortening the neighbor length of
the HopeDGN can significantly reduce training time while still maintaining good performance. For
example, The training time of the HopeDGN with 16 neighbors is only ∼ 24% of the HopeDGN with
256 neighbors, significantly less than the CAWN and DyGFormer models, while its performance is
significantly better than TGAT, DyGFormer and CAWN. From Fig. 5 (b), we observe that the
training time of the HopeDGN approximately increases linearly with the neighbor length. This
result is consistent with our complexity analysis in Sec. 4.4.
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(a) (b)

Figure 5: Left: Efficiency-performance comparison of different models on MOOC dataset. The X-
axis is the training time per epoch (seconds). The Y-axis is the inductive AP value. ’HopeDGN-n’
denotes HopeDGN with input neighbor length of n. Right: Training time of HopeDGN with various
neighbor length on MOOC dataset.
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