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Abstract
Large language models (LLMs) have shown im-
pressive achievements in solving a broad range
of tasks. Augmented by instruction fine-tuning,
LLMs have also been shown to generalize in
zero-shot settings as well. However, whether
LLMs closely align with the human disagree-
ment distribution has not been well-studied, es-
pecially within the scope of natural language
inference (NLI). In this paper, we evaluate
the performance and alignment of LLM dis-
tribution with humans using two different tech-
niques to estimate the multinomial distribution:
Monte Carlo Estimation (MCE) and Log Prob-
ability Estimation (LPE). As a result, we show
LLMs exhibit limited ability in solving NLI
tasks and simultaneously fail to capture human
disagreement distribution. The inference and
human alignment performances plunge even
further on data samples with high human dis-
agreement levels, raising concerns about their
natural language understanding (NLU) ability
and their representativeness to a larger human
population.1

1 Introduction

Natural language inference (NLI) has long served
as a fundamental testbed to evaluate the ability of a
model to recognize entailment and capture plausi-
ble inference relations between pairs of sentences
(Dagan et al., 2006; Bowman et al., 2015; Williams
et al., 2018). When constructing datasets, conven-
tional processes result in a single label per instance
even if multiple annotators contribute, which lim-
its the full representation of diverse opinions that
might arise in a larger human population. Thus,
recent datasets have become more attentive to in-
corporating multiple interpretations (Pavlick and
Kwiatkowski, 2019; Nie et al., 2020b; Glockner
et al., 2023) to capture dissenting human opinions.

∗Equal contribution
1The source code for the experiments is available at

https://github.com/xfactlab/emnlp2023-LLM-Disagreement.
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Read the following and determine if the hypothesis can 
be inferred from the premise.

Premise: She smiled back.
Hypothesis: She was so happy she couldn’t stop smiling.
OPTIONS: entailment, contradiction, neutral    
Answer:
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Figure 1: The Proposed LLM Distribution Estimation
Techniques, MCE and LPE. We estimate LLM disagree-
ment with either MCE or LPE utilizing generated LLM
outputs and compare the estimated LLM distribution
with human disagreement distribution.

Meanwhile, instruction fine-tuning large lan-
guage models (LLMs) has elicited remarkable gen-
eralizability to diverse unseen tasks (Zhao et al.,
2023). Not only can they generate free-form texts,
but they can also select one answer from multiple
options given in the input prompt. However, while
many works study user interaction and conversa-
tional usage (Liang et al., 2022), limited works
evaluate these instruction-following LLMs on a
foundational NLI task. Therefore, we aim to an-
swer the following questions: Can LLMs capture
dissenting voices that naturally arise in the dataset?
Are LLMs representative of the voices of the anno-
tators in inference tasks?

https://github.com/xfactlab/emnlp2023-LLM-Disagreement


With this in mind, we jointly assess on a number
of instruction-following LLMs, Flan-T5 (Chung
et al., 2022), Flan-UL2 (Tay et al., 2022), OPT-
IML-Max (Iyer et al., 2022), and GPT-3 (Ouyang
et al., 2022), on their performance on human opin-
ion distribution datasets - ChaosNLI (Nie et al.,
2020b) and PK2019 (Pavlick and Kwiatkowski,
2019). For the process of using the model output
distribution as an estimate of human disagreement
distribution, we offer novel estimation methods:
Monte Carlo Estimation (MCE) and Log Probabil-
ity Estimation (LPE) (Figure 1).

We find that the state-of-the-art GPT-3 model
does not outperform smaller models such as fine-
tuned BERT (Devlin et al., 2019) and partially fine-
tuned Flan-T5-XXL in solving inference problems.
Furthermore, it yields higher Jensen-Shannon Dis-
tance (JSD) (Endres and Schindelin, 2003) and
Distribution Calibration Error (DCE) (Baan et al.,
2022) than BERT for the ChaosNLI datasets. Each
model is optimized using different estimation meth-
ods and prompt types, where GPT/Flan-T5-XXL
attains the best performances in NLI capability and
human alignment when using LPE/MCE. Our pa-
per’s contributions are as follows:

• To the best of our knowledge, we are the first
to test generative LLMs jointly on the perfor-
mance and human disagreement on NLI.

• We suggest two probability distribution esti-
mation techniques for LLMs to represent dis-
agreement and perform empirical evaluations
to with respect to the human disagreement
distribution.

• We study the model sensitivity to estimation
methods and prompt types to demonstrate how
these contribute to the ability of models to
represent human-level disagreement for NLI.

2 Related Works

2.1 Disagreement in NLI
Considering only a single label in NLI datasets
is bound to fail in capturing the diverse range of
user opinions and could lead to misrepresentations
of language models. To measure inherent human
disagreements in NLI, Nie et al., 2020b and Pavlick
and Kwiatkowski, 2019 collected large number of
human annotations (e.g., 100 and 50 annotations for
ChaosNLI and PK2019) per instance for common
NLI datasets such as SNLI (Bowman et al., 2015)
and MultiNLI (Williams et al., 2018). When taking

the majority vote from these additional annotations,
22% of the instances exhibited a change in label
compared to the original dataset (Nie et al., 2020b).

To characterize and reproduce the extent of hu-
man disagreement in NLI tasks, previous works
directly fine-tuned language models (Nie et al.,
2020b) and implemented distribution estimation
methods (Zhou et al., 2022) using the labeled data.
Other studies have constructed losses to better cal-
ibrate the ambiguity (Meissner et al., 2021) and
proposed an ensemble of models to detect disagree-
ing samples (Zhang and de Marneffe, 2021).

For measuring the distance between two distri-
butions, Kullback–Leibler (KL) Divergence (Kull-
back and Leibler, 1951) or its symmetric version,
Jensen-Shannon Distance (JSD) (Endres and Schin-
delin, 2003) are widely used. Baan et al., 2022
argued that Expected Calibration Error (ECE), the
difference between the average accuracy and confi-
dence (Naeini et al., 2015; Guo et al., 2017), cannot
capture inherent human disagreement. Therefore,
for models to better calibrate to human disagree-
ment, accuracy-agnostic metrics such as DCE have
been introduced (Baan et al., 2022).

2.2 Alignment of Instruction-tuned LLMs

LLMs have demonstrated the ability to follow ex-
amples provided in-context (Brown et al., 2020)
and have further been developed to follow natural
language instructions (Mishra et al., 2022; Ouyang
et al., 2022; Chung et al., 2022). Instruction-
following LLMs are fine-tuned with various tasks
and are expected to generalize well to tasks the
model was not trained on (Zhao et al., 2023).
For example, GPT-3 is fine-tuned using reinforce-
ment learning with human feedback to produce
responses that align with human values (Ouyang
et al., 2022). Despite such efforts, Santurkar et al.,
2023 identified that LLMs capture only a single
perspective, exhibiting left-leaning tendencies and
excluded demographic groups. Here, we study
whether LLMs appropriately reflect a diversity of
viewpoints in the NLI task setting.

3 Methods

We estimate and quantify dissenting human voices
using the multinomial soft-label distribution of
LLMs with two proposed methods:



3.1 Log Probability Estimation (LPE)

We use a single instance returning log probabilities
of top-k2 token candidates to estimate the categor-
ical distribution of the labels. This method sums
over all valid options3 (vj) to estimate the model
probability for class j, a method often adopted in a
multiple-choice style evaluation of generative lan-
guage models (Hendrycks et al., 2021; Santurkar
et al., 2023). Although the LPE method requires
a single generation for each instance, it cannot be
applied to all types of models4. Additionally, the
method is limited in cases where more than one to-
ken is generated as it requires exhaustive mapping
of the determining token probability. Furthermore,
as models only return probabilities for top-k tokens,
there is an unknown non-constant probability mass.
We estimate this as follows, where C is the total
number of classes of the task:

p(ŷj|x) ≈
∑k

i=1 exp lpi · 1i∈vj∑C
j=1

∑k
i=1 exp lpi · 1i∈vj

(1)

3.2 Monte Carlo Estimation (MCE)

Decoding strategies such as beam search or greedy
search do not exploit the full distribution of the pos-
sible generation options. Furthermore, API-based
language model services limit the number of re-
turned token-level probabilities. Alternatively, to
reconstruct the distribution of outputs from genera-
tive LLMs, we introduce an intuitive way that sam-
ples a large number5 of generated outputs consider-
ing the valid options6 (vj) for class j. This method
is based on a Monte Carlo method (Metropolis and
Ulam, 1949) to estimate the probability distribution.
Even though the MCE method can be computation-
ally expensive, it can be applied to any model and
prompt type to capture the multinomial distribu-
tion of a classification setting. MCE is defined as
follows:

p(ŷj|x) ≈
1

n

n∑
i=1

1i∈vj
(2)

2k is set to 5 for all the models to match the maximum
logprobs size of OpenAI Completion API.

3See Appendix C for examples.
4GPT-3.5-Turbo does not support logprobs.
5Sample size of 100 is heuristically chosen to match the

size of human annotation for ChaosNLI.
6See Appendix C for examples.

4 Experimental Design

4.1 Data
First, we test the inference ability of LLMs in chal-
lenging datasets, ANLI (Adversarial NLI) (Nie
et al., 2020a) and QNLI (Wang et al., 2018). We
opt for the round 3 version of ANLI (n = 1,200),
which contains more contexts from diverse do-
mains such as Wikipedia, Common Crawl, Sto-
ryCloze (Mostafazadeh et al., 2016), and CBT (Hill
et al., 2016). QNLI (Wang et al., 2018) (n = 5,463)
is converted from the Stanford Question Answer-
ing Dataset (SQuAD) (Rajpurkar et al., 2016) to an
NLI dataset, and the task is to decide whether the
sentence contains the answer to the question.

Second, we jointly evaluate LLMs on ChaosNLI
(Nie et al., 2020b), and PK2019 (Pavlick and
Kwiatkowski, 2019) to examine both the accuracy
and how the model distribution aligns with the hu-
man disagreement distribution. These datasets con-
sist of two task settings: ChaosNLI-α (n = 1,532),
where models must select one of the two hypothe-
ses, and ChaosNLI-S (n = 1,514), M (n = 1,599),
and a subset7 of PK2019 (n = 299) where mod-
els must assign the relationship (e.g., entailment,
contradiction, or neutral) for a pair of premise and
hypothesis. We also pick out a challenging sub-
set of the ChaosNLI datasets, which we denote as
HighChaosNLI, consisting of the top 100 samples
having the greatest human disagreement level.

Lastly, to trace possible causes of the disagree-
ment occurring in LLMs, we use the round 1 ver-
sion of the DisagreementNLI dataset (n = 318),
where the samples from ChaosNLI are annotated
with one of the 10 categories (e.g., probabilistic) of
potential sources of disagreement (Jiang and Marn-
effe, 2022). While the primary focus is slanted
towards identifying why humans disagree, we uti-
lize and link the disagreement taxonomy to un-
cover whether the disagreement in LLMs aligns
with those of humans.

4.2 Models
We categorize numerous LLMs with varying levels
of supervision on the NLI task8: Full Exposure
(FE), Partial Exposure (PE), Minimum/Unknown
Exposure (MUE), and No Exposure (NE). For FE
models, we follow the baseline setup of Nie et al.,
2020b by fine-tuning BERT (340M) (Devlin et al.,

7JOCI & DNC datasets of PK2019 are discarded as the
annotation setting greatly varies from ChaosNLI.

8See Appendix B for more details.



Model LPE (NS) MCE (NS) MCE (OS)
Acc↑ JSD↓ DCE↓ Acc↑ JSD↓ DCE↓ Acc↑ JSD↓ DCE↓

Flan-T5-L (780M) 59.3 0.293 0.326 62.3 0.289 0.321 59.7 0.290 0.322
Flan-T5-XL (3B) 65.7 0.253 0.282 72.0 0.236 0.254 70.3 0.238 0.256
Flan-T5-XXL (11B) 68.7 0.258 0.277 71.0 0.263 0.277 74.3 0.232 0.244
Flan-UL2 (20B) 67.7 0.260 0.281 72.3 0.247 0.259 76.0 0.241 0.246
OPT-IML-M-S (1.3B) 57.0 0.294 0.337 54.7 0.312 0.354 59.3 0.298 0.337
OPT-IML-M-L (30B) 72.0 0.273 0.286 62.0 0.280 0.303 72.7 0.233 0.252
GPT-3-D3 (175B) 66.7 0.330 0.345 67.0 0.334 0.349 58.0 0.344 0.376
GPT-3-D2 (175B) 64.0 0.282 0.317 62.7 0.279 0.313 49.3 0.315 0.364
Stable Vicuna (13B) 45.7 0.328 0.379 43.7 0.504 0.568 41.7 0.502 0.567

Table 1: Human Alignment Performances of LLMs on Subsets of ChaosNLI Datasets with Different Estimation
Methods - LPE/MCE (Prompt Types - Shuffled NS/OS). We present the average results of ChaosNLI-α, S, and M;
for each dataset, we randomly sample 100 instances. The model categorizations are the same as Table 2. Bold texts
indicate the best value for each model and metric.
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OPTIONS: 1: hypothesis 1, 2: hypothesis 2
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Figure 2: Two Prompt Types - OS and NS for Two
Types of Tasks. The former does not have a number in
front of each option choice.

2019) and RoBERTa (355M) (Liu et al., 2019).
Since instruction-following LLMs do not have full
supervision of NLI, we assign these LLMs to one
of the PE, MUE, and NE models.

First, the PE models include Flan-T5 (780M,
3B, 11B) (Chung et al., 2022), Flan-UL2 (20B)
(Tay et al., 2022), and OPT-IML-Max (1.3B
and 30B)9 (Iyer et al., 2022). We label
GPT-3-D2 (text-davinci-002) and GPT-3-D3
(text-davinci-003) (175B) (Ouyang et al., 2022)
as MUE models because, although the models are
variants from Ouyang et al., 2022, it is unknown
to which extent the model is exposed to NLI tasks.
Finally, the sole NE model that we test is Stable
Vicuna (13B) (Chiang et al., 2023)10 because it has
no exposure to NLI tasks. All the hyperparameters
we use to generate the outputs of these models are
listed in Appendix A.

9These models will be referred as OPT-IML-M-S and OPT-
IML-M-L for convenience.

10Results of poor-performing models such as Stanford Al-
paca (7B) and Dolly-v2 (12B) are not reported.

4.3 Prompt Types

We adopt mostly the same prompt template11

across different types of models within each sub-
dataset. Within a dataset and a model, we test two
types of prompts: (1) Option Selection (OS), in
which the model has to predict the name of the
class label for the entailment relation, and (2) Num-
ber Selection12 (NS), in which the model has to
select the number assigned to the relationship class
(Figure 2). Additionally, as LLMs are known to be
sensitive to minor input modifications (Liang et al.,
2022; Sun et al., 2023), we test the effect of prompt
variations over a single prompt.

NS requires the model to predict a single token
of a target number and can be used with both MCE
and LPE. OS, on the other hand, is not considered
in the LPE formulation to encourage a scalable,
comprehensive generation strategy to estimate hu-
man disagreement distribution since if we allow
LPE-OS, the token-specific probability of a model
output which may vary by instance/dataset/task has
to be mapped per class. We implement random
ordering of the options in the prompt, as also men-
tioned in Santurkar et al., 2023, to mitigate the
sensitivity due to the order of the options, which
we call shuffled OS and NS throughout the paper.

4.4 Metrics

We investigate the distribution differences between
humans and LLMs at the sample level with JSD,
which is a symmetric version of KL divergence

11Refer to Appendix F for specific prompt examples.
12A multiple-choice format similar to the prompt suggested

in the MMLU Benchmark (Hendrycks et al., 2021)



Model ANLI-R3 QNLI ChaosNLI-α ChaosNLI-S ChaosNLI-M PK2019
Chance 33.3 50.0 50.0 33.3 33.3 33.3
Full Exposure (FE)
BERT-L∗ (340M) 43.5 92.7 68.2 (+0.2) 73.8 (+1.2) 56.9 (-4.3) -
RoBERTa-L∗ (355M) 44.4 98.9 83.7 (+1.6) 78.7 (+3.8) 63.5 (-3.9) -
Partial Exposure (PE)
Flan-T5-L (780M) 46.3 90.2 73.1 (+1.9) 54.8 (-4.6) 59.7 (+7.8) 76.6 (+6.5)
Flan-T5-XL (3B) 54.3 93.1 83.3(+1.2) 71.2 (+1.1) 60.2 (+1.0) 76.9 (-7.4)
Flan-T5-XXL (11B) 58.2 93.7 84.9 (+1.6) 67.9 (+0.8) 72.6 (+8.5) 82.1 (-0.6)
Flan-UL2 (20B) 56.6 94.9 86.5 (+1.8) 79.9 (+6.4) 71.7 (+4.8) 74.6 (-14.3)
OPT-IML-M-S (1.3B) 34.6 80.6 53.6 (-0.7) 66.1(+7.2) 50.3 (+1.2) 57.5 (-3.1)
OPT-IML-M-L (30B) 38.5 70.4 72.7 (-1.8) 77.1 (+7.3) 65.4 (-3.5) 68.3 (-14.5)
Minimal/Unknown Exposure (MUE)
GPT-3-D3 (175B) 47.8 79.0 76.5 (+2.3) 62.7 (+5.6) 63.3 (+9.1) 69.5 (-0.2)
GPT-3-D2 (175B) 44.8 77.1 72.6 (+1.5) 56.3 (+6.0) 49.9 (-0.7) 45.5 (-10.6)
No Exposure (NE)
Stable Vicuna (13B) 33.5 49.5 55.6 (+2.1) 34.2 (-5.6) 45.4 (+8.5) 61.2 (+14.5)

Table 2: Inference Performances of LLMs on Various Datasets. We use MCE (n = 5 for ANLI-R3/QNLI and n =
500 for ChaosNLI/PK2019) with shuffled OS. For GPTs and Stable Vicuna, we use LPE with shuffled NS. The
values inside the parentheses indicate the accuracy change from the old to new labels. We report the accuracy results
of the FE models (∗) from Nie et al., 2020a for ANLI-R3, Devlin et al., 2019 and Liu et al., 2019 for BERT-L and
RoBERTa in QNLI, and Nie et al., 2020b for ChaosNLI datasets. All the outputs are averaged over three runs, and
bold and underlined texts indicate the first and the second best value for each column.

(Endres and Schindelin, 2003). In addition, we
evaluate human uncertainty with DCE (Baan et al.,
2022) to examine how the tendencies of these two
measures compare.

JSD(p||q) =
√

KL(p||m) +KL(q||m)

2

DCE(p,q) =
1

2
||p− q||1

where KL(p||q) =
∑

i pilog(
pi
qi
), m = p+q

2

5 Results

LLMs are sensitive to different estimation meth-
ods and prompt types. To select the optimal es-
timation methods and prompt types for each model,
we examine three cases13 - (1) LPE (NS), (2) MCE
(NS), and (3) MCE (OS) for 100 randomly selected
examples in ChaosNLI subsets (Table 1). All the
PE models perform the best using MCE (OS) or
MCE (NS). Meanwhile, GPT-3-D3 performs better
using LPE (NS) than either MCE method, hinting
that larger models (>100B) may not need costly
methods to estimate the model distribution. Sim-
ilarly, for GPT-3-D2 and Stable Vicuna, a drastic

13We exclude LPE (OS) due to the reason outlined in Sec-
tion 4.3.

negative effect of using MCE methods is exhibited,
especially when using OS. Hence, we choose MCE
(OS) for the PE models and LPE (NS) for the MUE
and NE models.

The NLI capability of LLMs does not only
increase due to model size. In Table 2, even
though GPT-3-D3 has the largest parameters (175
billion) and surpasses GPT-3-D2 and Stable Vi-
cuna, its accuracy is significantly outperformed by
the PE models across ANLI-R3, QNLI, ChaosNLI,
and PK2019 datasets. For ChaosNLI-S espe-
cially, GPT-3-D3 shows comparably lower perfor-
mances than any FE and PE models. The lead-
ing PE models are Flan-UL2 and Flan-T5-XXL
across most of the tested datasets (Table 2). The
best PE model achieves 9 to 15% higher accu-
racy in ANLI-R3/ChaosNLI-M than the best FE
model (i.e., RoBERTa-L). However, Flan-T5-UL2
is marginally higher than RoBERTa-L by 1 to 3 %
in ChaosNLI-α/S, and Flan-T5-XXL even achieves
9.1% higher than RoBERTa-L for ChaosNLI-M.
Within the Flan-T5 family, scaling the model leads
to enhanced inference performances. However, the
largest model across all the tested models - GPT-3-
D3 does not always attain the best accuracy, sug-
gesting that model size alone is not a critical factor
for performance on NLI.
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Figure 3: Human Alignment Performances of LLMs on ChaosNLI and PK2019 Datasets. The model categorizations
and estimation methods are the same as Table 2. All the outputs are averaged over three runs. We additionally
visualize pairwise model similarity using JSD in Appendix D.

Does multiple annotation help? For most of
the models making inferences on the re-annotated
datasets of ChaosNLI, improvements in NLI ac-
curacy are observed, with the exception of OPT-
IML-M-S. (Refer to the values inside parentheses
in Table 2). This supports the necessity of hav-
ing increased multiple annotations for tasks that
humans are expected to disagree with. Also, it is
noticeable how all these models, even if they were
exposed to a sample of the train set with the orig-
inal label, show better performances in the newly
annotated ChaosNLI. However, we detect an accu-
racy decrease between the old and new labels in
the PK2019 dataset for most of the models except
for Flan-T5-L and Stable Vicuna. We hypothesize
this is due to the way in which the final label was
selected in Pavlick and Kwiatkowski, 2019: anno-
tators were asked to select an interval score which
was later manually discretized.

Alignment with human disagreement is not al-
ways better for larger models. To examine how
closely the estimated distribution of LLMs aligns
with the human disagreement distribution, we com-
pare sample-level measures of JSD and DCE be-
tween humans and LLMs (Figure 3). Similar to
the accuracy results (Table 2), GPT-3-D3 fails to
align with the human label distribution compared to
some well-performing PE models, such as Flan-T5-
XXL and Flan-T5-UL2. Also, each model displays
a similar tendency between JSD and DCE, suggest-
ing that either one of the metrics might be enough
to measure human alignment.

As can be observed in Figure 3, none of the
LLMs show less JSD/DCE values than RoBERTa-

L in ChaosNLI-α/S. Within LLMs, there is no one
leading model that performs well across all datasets.
For example, while Flan-UL2 scores the lowest
JSD/DCE value in the ChaosNLI-α dataset, OPT-
IML-M-L shows the lowest distance from human
distribution in the ChaosNLI-M dataset. It is impor-
tant to note that GPT-3-D3 shows worse JSD/DCE
than RoBERTa-L for all ChaosNLI datasets, and
it even performs worse than Stable Vicuna in
ChaosNLI-M. Intriguingly, the Flan-T5 family
benefits from scaling model size in ChaosNLI
datasets, but Flan-T5-large does not show the high-
est JSD/DCE in PK2019 datasets.

Effect of Human Entropy on LLM Disagree-
ment We filter out a challenging subset, High-
ChaosNLI, which is the top 100 selected samples
with the highest human disagreement levels based
on the entropy of each instance. We observe a
plunge in accuracy as well as a rise in JSD/DCE
for every model (Table 3) compared to the human
alignment performances for full datasets in Table 2.
Still, the leading model concerning inference abil-
ity (i.e., Flan-T5-XXL) is unchanged, obtaining the
highest accuracy of 52% in HighChaosNLI. On the
other hand, it is notable how Stable Vicuna displays
the lowest JSD/DCE compared to the other models
(Table 3). Nevertheless, with the hint of the worst
accuracy out of all the models for full ChaosNLI
datasets (Figure 3) and high entropy levels (Fig-
ure 4), we conclude that it is a mere coincidence
that Stable Vicuna exhibits the best performance in
terms of human alignment performances in High-
ChaosNLI dataset (Table 3).

We further attempt to investigate the possible



Figure 4: Histogram of Human and LLM Entropy Levels for ChaosNLI Datasets. The distributions of Flan-T5-XXL
and GPT-3-D3/Stable Vicuna are estimated using MCE (OS) and LPE (NS), respectively, same as Table 2.

HighChaosNLIModel Acc↑ JSD↓ DCE↓
Flan-T5-L (780M) 44.0 0.256 0.318
Flan-T5-XL (3B) 48.0 0.268 0.336
Flan-T5-XXL (11B) 52.0 0.300 0.362
Flan-UL2 (20B) 50.3 0.321 0.378
OPT-IML-M-S (1.3B) 51.0 0.254 0.293
OPT-IML-M-L (30B) 50.7 0.266 0.312
GPT-3-D3 (175B) 50.0 0.435 0.494
GPT-3-D2 (175B) 45.7 0.310 0.354
Stable Vicuna (13B) 42.7 0.189 0.240

Table 3: Inference and Human Alignment Performances
of LLMs on HighChaosNLI. The model categorizations
and estimation methods are the same as Table 2. All the
outputs are averaged over three runs.

causes of this phenomenon by spanning out the
entropy distribution. On the consistent finding that
GPT-3-D3 performs worse than Flan-T5-XXL in
solving NLI tasks (Table 2) and capturing human
disagreement levels (Figure 3), even in the High-
ChaosNLI dataset (Table 3), as can be observed
in Figure 4, GPT tends to be more overconfident,
showing a entropy of less than 0.1 in most samples.
In contrast, the human entropy is mostly evenly
distributed in the range of 0.4 to 0.6 for ChaosNLI-
α and 0.8 to 1.0 for ChaosNLI-S/M. On the other
hand, Flan-T5-XXL exhibits lower confidence than
GPT-3-D3 but higher confidence than humans, and
Stable Vicuna is uncertain in most instances.

Effect of Varying Prompts To observe the effect
of prompt sensitivity on varying prompt templates,
we craft variations of the pre-selected prompt. For
SNLI and MNLI, we sample out five prompt vari-

ants from the Flan repository14 and make sensi-
ble variants for ChaosNLI-α as it is not part of
the Flan mixture. From Table 4, it is shown that
the prompt variation generally benefits Flan mod-
els in the ChaosNLI-S/M datasets as they were
exposed to the prompt templates. However, the
pre-selected single prompt is beneficial in perfor-
mance for the ChaosNLI-α dataset for Flan models
and all datasets in GPT-3-D3 and Stable Vicuna.
The performance drop using prompt variation is
even more severe for GPT-3-D3, suggesting the
preferred usage of a carefully crafted single prompt
over using unseen input templates. However, this
does not mean that the single prompt should always
be preferred since variations of prompts may dis-
play fairer performance trends of diverse models
within the ground of robustness.

What causes LLMs to disagree? Sources of hu-
man disagreement have been well studied, but there
is a lack of study of the disagreement sources for
LLMs. We try to find the causes of LLM disagree-
ments by drawing a relationship between LLM en-
tropy level and human disagreement sources (dis-
cussed in Jiang and Marneffe, 2022) for each sam-
ple (Figure 5). However, no visible correlation
of LLM entropy on human entropy is displayed
across identified sources of human disagreement.
This suggests that the cause of LLM disagreements
may be due to factors other than human entropy
and disagreement sources. Thus, Under the naive
assumption that LLMs will attend to similar cues
to humans, we are not fully uncovering the lens of
why LLMs truly disagree.

14https://github.com/google-research/FLAN/
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Model ChaosNLI-α ChaosNLI-S ChaosNLI-M
Acc↑ JSD↓ DCE↓ Acc↑ JSD↓ DCE↓ Acc↑ JSD↓ DCE↓

Flan-T5-L (780M) 72.9 0.228 0.255 54.6 0.341 0.382 59.7 0.299 0.325
w/ Prompt Variation 64.9 0.279 0.317 63.3 0.303 0.330 64.7 0.303 0.331
Flan-T5-XL (3B) 83.2 0.166 0.171 71.8 0.255 0.264 64.5 0.272 0.304
w/ Prompt Variation 81.6 0.184 0.193 73.8 0.231 0.243 68.3 0.271 0.297
Flan-T5-XXL (11B) 84.9 0.159 0.154 67.9 0.270 0.289 72.6 0.271 0.293
w/ Prompt Variation 83.8 0.162 0.164 68.7 0.259 0.279 71.6 0.260 0.285
GPT-3-D3 (175B) 76.5 0.254 0.249 62.7 0.348 0.374 63.3 0.373 0.402
w/ Prompt Variation 72.3 0.285 0.29 50.1 0.402 0.453 51.5 0.403 0.452
Stable Vicuna (13B) 55.6 0.310 0.368 34.2 0.390 0.451 45.4 0.303 0.342
w/ Prompt Variation 51.4 0.324 0.386 29.9 0.431 0.503 42.4 0.337 0.382

Table 4: Inference and Human Alignment Performances on the ChaosNLI Datasets with and without Prompt
Variations. The estimation methods for each model are the same as Figure 4. All the outputs are averaged over three
runs, and bold texts indicate the best value for each model and column.

6 Discussion

LLMs do not perform well in NLI. Despite min-
imal, unknown, or absence of exposure to the NLI
task, we anticipated that state-of-the-art LLMs such
as GPT-3 and Stable Vicuna could reason with this
relatively basic inference problem. The models are
trained with billions of parameters and are known
to be effective in helping real-world users solve
diverse, complex tasks (Ouyang et al., 2022). How-
ever, the unforeseen poor performance of these
models casts doubt as to whether they possess true
general language understanding abilities.

The problem is exacerbated for distilled models
(e.g. Stable Vicuna) that are fine-tuned using pro-
prietary LLMs, a performance discrepancy issue
similarly raised by Gudibande et al., 2023. Since
smaller LLMs fully or partially trained with NLI
tasks could perform much better than the MUE and
NE models, this hints at a task-specific latent factor
in NLI tasks where supervised training is benefi-
cial and required for a wider definition of natural
language understanding. In fact, as these LLMs
can simply be fine-tuned to perform better for NLI
tasks, a stricter evaluation criterion is needed to as-
sess the genuine understanding capability of LLMs.

Characterizing Disagreement with respect to
Ambiguity and Uncertainty Previous studies re-
late multiple annotations not only to disagreement
(Uma et al., 2021; Gordon et al., 2021), but also to
ambiguity (Min et al., 2020; Tamkin et al., 2022;
Liu and Liu, 2023), and mostly to uncertainty (Fox
and Ülkümen, 2011; Xiao and Wang, 2021; Kuhn
et al., 2022; Zhan et al., 2023; Hu et al., 2023). The

definitions of ambiguity, uncertainty, and disagree-
ment have the potential to be conflated and disam-
biguated. In our paper, we use the multinomial soft
label estimate of a model as a representation of
“disagreement”. When estimating this distribution
with MCE, our modeling assumption treats each
query to the model is analogous to asking an in-
dividual annotator to provide a label. In contrast,
LPE is analogous to asking an individual to assign
the scores to each option. Whereas most works
exploit disagreement or uncertainty to improve var-
ious NLP task performances (Zhang et al., 2021;
Fornaciari et al., 2021b; Yu et al., 2022; Zhou et al.,
2023) our study focuses on evaluating the mod-
els. We find that using both methods for estimating
the multinomial label distribution by querying the
language model are not calibrated well with the
human annotations.

Other domain tasks are transferable to NLI.
Our work can be expanded to test LLMs on other
NLP applications (Plank, 2022) such as Question
Answering (De Marneffe et al., 2019), Fact Verifi-
cation (Thorne et al., 2018), and Toxic Language
Detection (Schmidt and Wiegand, 2017; Sandri
et al., 2023). Further, our method can be applied
for tasks that contain disagreements since they are
easily transferable to NLI tasks (Dagan et al., 2006)
like the QNLI dataset from Table 2, for example,
instead of directly asking controversial questions
(e.g., abortion) to the model (Santurkar et al., 2023),
the question format can be modified into a declara-
tive statement in the premise and place a possible
answer in the hypothesis with a binary True/False



Figure 5: Relationship between Human and LLM Entropy Levels Divided with Different Human Disagreement
Reasons. The estimation methods for each model are the same as Figure 4.

label (Dagan et al., 2006). Thus, if these compli-
cated tasks can be formulated in a way where the
LLM can estimate a multinomial distribution over
a set of classes, our methods are applicable.

However, we should consider the target tasks
when tracing “human disagreement” only when
it is a significant signal that needs to be captured.
For example, since it is important to include diverse
opinions, we can easily apply our methods to detect
disagreements in hate speech (Schmidt and Wie-
gand, 2017). In contrast, spotting disagreement in
the arithmetic reasoning task (Cobbe et al., 2021)
might be less important since it often requires a
logical step-by-step reasoning procedure to obtain
an accurate answer.

How can we better align LLMs to represent dis-
senting voices? We point out the current limi-
tation of utilizing LLMs to represent a larger hu-
man population, especially when disagreements
are present. The causes of this phenomenon are
indiscernible due to the entanglement of miscali-
bration of out-of-distribution (OOD) inference, ad-
ditional noise due to disagreement and ambiguity,
prompt sensitivity, and more aspects that are yet
to be identified. Even though simple remedies of
temperature scaling (Ackley et al., 1985; Wang
et al., 2022), incorporating logit bias, constrained
decoding (Ziems et al., 2023), or direct supervision
to multiple annotations (Zhang et al., 2021; Forna-
ciari et al., 2021a) might mitigate the misalignment,
these methods are unrealistic and not scalable due
to the exhaustive hyperparameter tuning and ad-
ditional data collection required to represent the
population of interest.

However, as LLM applications are becoming
more ubiquitous, it is important for them to faith-

fully represent a larger population, preferably in-
cluding the voices of minorities. Thus, we suggest
that future LLMs could be improved to reflect hu-
man disagreements in diverse means, for example,
by fine-tuning with ambiguous instances (Liu et al.,
2023). As LLMs are shown to be aware of their
ignorance (Kadavath et al., 2022) and have the abil-
ity to express their level of confidence (Lin et al.,
2022; Zhou et al., 2023), we expect future works to
address similar approaches in the aspect of align-
ment towards the human disagreement distribution.
In this way, the reconstructed model distribution
with MCE and LPE may better capture different
interpretations from human individuals, aiding ac-
countability.

7 Conclusions

In this paper, we compare the performance of
instruction-following generative LLMs with other
fully fine-tuned smaller models on the fundamental
NLI task. First, by experimenting on four differ-
ent NLI datasets, we show LLMs are not perform-
ing well in the NLI task, considering their touted
language comprehension capabilities. Further, in
agreement with the need for multiple annotations
for disagreeable NLP tasks, LLMs also fail to
align with human disagreements in the ChaosNLI
and PK2019 datasets. Additional development is
needed to capture representative human distribu-
tions, as well as to discover key factors to disagree-
ment sources that can influence the LLM’s answer
distribution.

Limitations

This work shows the limited ability of billion-scale
LLMs in inference and disagreement tasks. Al-



though we test with the dataset annotated with nu-
merous human subjects per sample, 100 people
may not be enough to represent the human dis-
agreement distribution well. After more releases
of human label variation datasets, our study can be
extended by covering a wider range of model types
and creating evaluation benchmarks to measure the
degree of disagreement. If we have robust LLMs
in inference and disagreement, we could then try
to find the latent factors that might not be human-
interpretable but lead to disagreement in LLMs and
compare them with those of humans.
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Model Precision Acc JSD

Flan-T5-XXL
FP32 75.4 0.233
BF16 75.1 0.233

Table 5: Effect of Precision on Inference and Human
Alignment Performances for Flan-T5-XXL. The distri-
bution is estimated using MCE (OS), same as Table 2.
The outputs are averaged over three ChaosNLI sub-
datasets.

A Hyperparameters

Generally, we try to set similar hyperparameters to
all the models with some exceptions due to model
performance and/or cost issues.

Temperature To scale the confidence of the gen-
erated output in a post-hoc manner, we unify the
temperature to be 1 (i.e., no scaling). There ex-
ist other precedents that use a smaller temperature
for a more deterministic output (Santurkar et al.,
2023) or compare outputs of models with varying
temperatures (Ouyang et al., 2022). However, as
we jointly assess LLMs on the accuracy of NLI
and human disagreement alignment, we argue that
having a fixed, un-scaled temperature to generate
model outputs better aligns with our research goal
of estimating model outputs to capture human dis-
agreement distribution.

Generation Length Easily adjustable by all
APIs, including OpenAPI and Huggingface, we
have varying generation lengths per prompt design.
As discussed in Section 4.3, NS is a cost-efficient
alternative method for OS, solely needing a single
output token of numbers. Thus in LPE, a method
for single token probability output, we only use the
OS prompt for effective token probability calcula-
tion. We set a maximum token output length of 10
for MCE and 1 for LPE.

Floating Point We load models of size greater
than 10 billion parameters (except for GPT-3) with
half the precision (bfloat16; BF16). We observe
Flan-T5-XXL shows a negligible increase in per-
formance when using the original precision (single-
precision floating-point; FP32) (Table 5).

B Levels of NLI Exposure

We outline the level of exposure to the NLI task
for each model since it is an influential factor that
affects the accuracy and human-alignment perfor-
mances of the models.

https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2022.findings-acl.79
https://doi.org/10.18653/v1/2022.findings-acl.79
https://doi.org/10.18653/v1/2022.findings-acl.79


B.1 Full Exposure (FE) Models

The models below are fine-tuned with the training
set of an NLI task as outlined in Nie et al., 2020b.

• Models: BERT and RoBERTa

B.2 Partial Exposure (PE) Models

These models are partially exposed to the NLI task
in the fine-tuning stage. However, the extent of
exposure is different by the adopted fine-tuning
strategy, thus listed in decreasing order.

Flan Collection

• Models: Flan-T5 models and Flan-UL2

• The Flan Collection (Longpre et al., 2023) is a
collection of datasets in the format of instruc-
tions to enable generalization to diverse un-
seen tasks. It employs a fine-tuning strategy of
a maximum of 1836 NLP tasks with some NLI
tasks taken into account (e.g., ANLI, RTE,
MNLI, QNLI, SNLI, etc.).15

Instruction Meta-Learning (IML) Bench

• Models: OPT-IML-M models

• Instruction Meta Learning (IML) Bench (Iyer
et al., 2022) is a more common benchmark
that uses 1500+ NLP tasks in the fine-tuning
stage. Flan is a major portion of this bench-
mark, with other major portions in other large
datasets. We expect some NLI exposure but
not as strong as the models fine-tuned by the
Flan dataset.

B.3 Minimal/Unknown Exposure (MUE)
Models

The models below are unknown to the extent of
exposure to a specific NLI task.

• Models: GPT-3-D2, GPT-3-D3

The InstructGPT paper (Ouyang et al., 2022)
does elaborate that the models utilizes a reward
model in the process of RLHF (Reinforcement
Learning from Human Feedback), and it is fine-
tuned by a variety of NLP datasets, including
MNLI. However, the serviced models are not di-
rectly mapped to the models of the paper, leaving
the exposure to NLI largely unknown16.

15https://github.com/google-research/FLAN/tree/main
16Refer to the OpenAI Documentation

B.4 No Exposure (NE) Models
The below model does not have any exposure to a
specific NLI task.

• Model: Stable Vicuna

C Postprocessing

Unlike conventional approaches of fine-tuning
models directly on the downstream NLI dataset,
one of the challenges in assessing an NLI task is
the variability of generated outputs. To transform
and choose valid options from the generated out-
puts, we conduct postprocessing through a manu-
ally crafted dictionary for each option (See Valid
option examples on the last page.).

D Distribution Alignment Among LLMs

We illustrate the averaged sample-level JSD en-
tropy for each model pair (Figure 6) to visualize
the trend of alignment among LLMs. Throughout
all four JSD distribution plots, the scale and range
of the JSD values differ for each data. Still, the gen-
eral trend is maintained, where ChaosNLI-α shows
low JSD values overall, likely attributed to lower
task difficulty witnessed by the performance gap
among datasets in Table 2. The best-performing
models, Flan-T5-XXL and Flan-UL2, present the
lowest disagreement in entropy for all plots.

Although the size and type of model are influ-
encing factors, the most consistent factor is the
type of instruction fine-tuning introduced for each
model. Throughout all plots, the alignment is well
shown for the group of models fine-tuned by the
Flan dataset and the IML Bench. As we expect
more research in the scope of human alignment in
NLP, the evaluation of the human alignment among
the models with the same fine-tuning process can
also be studied and reported.

However, a strong distinction needs to be made
in which an overall lower number of JSD values in
this plot does not mean that a model has always had
a good performance in human disagreement align-
ment. This figure merely delineates the alignment
trends among models.

E Effect of Few-Shot Examples

We observe no consistent benefit nor harm in ex-
perimenting with few-shot settings that resemble
the human annotation process more than zero-shot
settings (Table 6). In fact, zero-shot evaluation gen-
erally seems to show better performances across

https://github.com/google-research/FLAN/tree/main
https://platform.openai.com/docs/model-index-for-researchers
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Figure 6: JSD Distribution between All Combinations of Pairs for LLMs. The darker plot indicates a similar
distribution between a pair of models. The estimation methods for each model are the same as Table 2.

datasets and models compared to the few-shot eval-
uations. In the case of Stable Vicuna, the perfor-
mance increases in the 1-shot setting for α-NLI and
the 3-shot setting for SNLI. However, we notice
a plunge in 5-shot performance, especially for the
MNLI dataset.

F Prompt Examples

We present examples of prompts we used during
the generation process in Figure 1 (See two prompt
examples on the last page.). We incorporate a sug-

gested general prompt template pre-specified for a
specific model. For example, we implement a hu-
man and assistant-style prompt template for Stable
Vicuna. Otherwise, we leave the template format
the same for the rest of the models.



Model ChaosNLI-α ChaosNLI-S ChaosNLI-M
Acc↑ JSD↓ DCE↓ Acc↑ JSD↓ DCE↓ Acc↑ JSD↓ DCE↓

Flan-T5-XXL (0 Shot) 85.0 0.160 0.155 67.3 0.271 0.291 72.6 0.269 0.290
+ 1 Shot 84.9 0.159 0.154 68.0 0.278 0.296 74.8 0.261 0.278
+ 3 Shot 83.6 0.163 0.160 67.0 0.285 0.304 74.0 0.271 0.290
+ 5 Shot 84.9 0.158 0.154 65.7 0.288 0.309 73.2 0.275 0.295
GPT-3-D3 (0 Shot) 76.1 0.254 0.249 62.4 0.348 0.374 63.0 0.376 0.405
+ 1 Shot 77.7 0.240 0.235 6.2 0.400 0.433 61.1 0.414 0.445
+ 3 Shot 80.7 0.233 0.216 55.7 0.407 0.442 58.2 0.436 0.471
+ 5 Shot 81.7 0.233 0.213 57.9 0.396 0.426 62.2 0.425 0.454
Stable Vicuna (0 Shot) 55.7 0.310 0.368 33.5 0.391 0.454 46.2 0.304 0.342
+ 1 Shot 64.3 0.290 0.336 38.6 0.377 0.436 41.7 0.311 0.355
+ 3 Shot 56.2 0.296 0.346 43.4 0.351 0.405 32.8 0.352 0.418
+ 5 Shot 56.1 0.298 0.350 35.8 0.379 0.441 28.8 0.370 0.441

Table 6: Inference and Human Alignment Performances on the ChaosNLI Datasets for Zero-shot and Few-shot
Settings. The estimation methods for each model are the same as Table 2. Bold texts indicate the best value for each
model and column.



Valid option examples for ChaosNLI-α/S/M and two prompt types - OS and NS

dict_alphanli_OS = {'1' : ['1','Hypothesis 1',...]
'2' : ['2','Hypothesis 2',...]}

dict_alphanli_NS = {'1' : '1'
'2' : '2'}

dict_s&mnli_OS = {'e' : ['entail','infer','yes', ...]
'c' : ['contradict','oppose','no', ...]
'n' : ['neutral','unanswerable',...]}

dict_s&mnli_NS = {'e' : '1'
'c' : '2'
'n' : '3'}

Prompt example for ChaosNLI-α using OS

INPUT

Read the following and determine if the hypothesis can be inferred from the premise.
Observation Start: My roommates put up their Christmas tree this year.
Observation End: This is what it’s like living with a cat.
Hypothesis 1: The roommates soon had to take the tree down.
Hypothesis 2: The cat enjoyed the ornaments and garland and slept under the tree.
Options: Hypothesis 1, Hypothesis 2

OUTPUT

Answer: <Generated Output>

Prompt example for ChaosNLI-S/M using NS

INPUT

Read the following and determine if the hypothesis can be inferred from the premise.
Premise: This town, which flourished between 6500 and 5500 b.c. ... appear on Anatolian kilims.
Hypothesis: This town is over 8000 years old.
Options: 1: entailment, 2: contradiction, 3: neutral

OUTPUT

Answer: <Generated Output>


