
On the Computational Efficiency of Adapting
Transformer Models via Adversarial Training

Anonymous Author(s)
Affiliation
Address
email

Abstract

Pretraining Transformer-based language models followed by adapting the pre-1

trained models to a downstream task is an effective transfer mechanism in NLP.2

While it is well-known that the pretraining stage is computationally expensive, even3

the adaptation starts to become time-consuming for many downstream tasks as4

Transformers grow in size rapidly. Prior work focuses on reducing the pretraining5

wall-clock time via increasing the batch size to obtain higher training throughput6

on multiple processors. However, few studies have explored how such a scheme7

may benefit the adaptation phase. On the other hand, adversarial training has8

shown improved generalization for adapting Transformer models on many NLP9

tasks, but it is often treated as a separate line of research, where its effectiveness10

under the large-batch regime is not well understood. In this paper, we show that11

adversarial training obtains promising model accuracy even with a considerably12

larger batch size. However, the computational complexity associated with this13

approach, due to the high cost of generating adversaries, prevents it from reducing14

adaptation costs with an increasing number of processors. As such, we systemat-15

ically study adversarial large-batch optimization for adapting transformers from16

a computational complexity perspective. Our investigation yields efficient and17

practical algorithms for adapting transformer models. We show in experiments that18

our proposed method attains up to 9.8× adaptation speedups over the baseline on19

BERTbase and RoBERTalarge, while achieving comparable and sometimes higher20

accuracy than the state-of-the-art large-batch optimization methods.21

1 Introduction22

In the past few years, we have witnessed the success of transformer models [2], such as BERT [9],23

RoBERTa [30], T5 [35], and GPT-3 [3]. These models are trained on massive open-domain data24

and subsequently adapted to various downstream tasks, which have led to accuracy breakthroughs in25

many NLP applications[44]. Despite their remarkable performance in accuracy, training these models26

is extremely time-consuming given their huge model sizes, ranging from a few hundred million27

parameters to over billions of parameters. As a result, optimizations for faster training speed with28

high accuracy are the focus of a highly active research area and have a clear, practical impact.29

To accelerate the training speed of large models, one of the most popular approaches is to leverage30

distributed training, where a mini-batch is partitioned across multiple processors (e.g., GPUs) to31

compute gradients locally in parallel and then aggregate the local updates [27, 30, 20, 39, 40, 37].32

Under such a paradigm, increasing the batch size clearly has the benefit of improved training33

throughput per iteration. However, increasing the batch size has a non-trivial impact on model34

convergence and generation in practice. Early studies observed that increasing the batch sizes often35

leads to slow convergence and/or poor generation under the same training iteration budget [25]. To36

close the accuracy gap from large batch optimizations, prior works proposed to either increase the37

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



number of training iterations, which limits the performance benefits of large-batch optimizations [17]38

or variants of adaptive optimizers such as LARS [51] and LAMB [52]. It has been empirically39

observed that LAMB [52] is able to speed up BERT pre-training by using considerably larger40

batch sizes on massive GPUs. Despite showing promising results, prior work primarily focuses41

on large-batch optimizations for accelerating pre-training Transformers. However, as the size of42

Transformers increases rapidly, reducing the training overhead at the adaption stage starts to become43

more prominent, e.g., with the active research that has been pushing the training time of BERT models44

to only a few hours or less than one hour [52, 57, 1], it takes tens of hours to fine-tune these models45

on MNLI [30]. Furthermore, since the adaptation of these large transformer models has been used by46

major players in the industry, many model scientists have to perform adaptation more frequently than47

pre-training the Transformers. As a result, the excessive long adaptation time hinders the turnaround48

time, and the aggregated training cost for adaptation is also quite high.49

We aim to accelerate the adaption of pre-trained Transformer models. For this purpose, we introduce50

ScaLA, a method that achieves similar model adaptation quality but with significantly shorter51

optimization time. Especially, the contributions of our paper consist of (1) We look into projected52

gradient descent based adversarial training, which has shown promising accuracy results in fine-tuning53

Transformer models. We find that adversarial training still leads to improved generalization under54

the large-batch regime, which we denote as adversarial large-batch optimization. (2) Adversarial55

large-batch optimization helps improve generalization but makes each individual processor slower,56

making it difficult to actually reduce training time even with a large number of processors. As57

such, we perform a systematic study of how different training strategies of adversarial large batch58

optimization affect the computational efficiency and generalization for adapting Transformers. We59

find that many computations in adversarial training are redundant and only have a small impact60

on the final model accuracy. (3) Based on our studies, we present a novel algorithm ScaLA that61

injects lightweight adversaries into large batch optimization to speed up the adaptation of pre-trained62

transformer networks. (4) We theoretically quantify the convergence rate of adversarial large-batch63

optimization using techniques for analyzing non-convex saddle-point problems. (5) We conduct64

extensive evaluation, and our results show that ScaLA accelerates the adaptation of pre-trained65

Transformer-networks by up to 9.8 times over the baseline on BERT [9] and RoBERTa [30] over a66

wide range of natural language understanding (NLU) tasks. We conduct ablation studies to assess the67

impact of our approach on both generalization and computational efficiency under various conditions.68

2 Background and Related Work69

Despite the great success of pre-trained transformer networks such as BERT [9], a big challenge,70

in general, comes from the training efficiency – even with self-attention and parallelizable recur-71

rence [43], and high-performance hardware [24], training transformer networks can still take a72

significant amount of time. One effective approach to reducing training time is through data par-73

allelism [9, 30, 40], which motivates studies on large-batch stochastic non-convex optimizations74

for transformer networks [52]. These studies have raised concerns with respect to its convergence,75

generalizability, and training stability by observing that training with a large batch could be dif-76

ficult [25, 17, 33]. Different from prior works, which mostly focus on reducing the pre-training77

time [52, 56, 12, 6], this work shows an effective approach to accelerate the adaptation of pre-trained78

models while preserving the accuracy of downstream tasks.79

There has also been an increasing interests in developing efficient adaptation methods of pre-trained80

Transformer models [18, 46, 19, 16]. For example, [18] inserts small modules called adapters to81

each layer of the pre-trained model, and only the adapters are trained during adaptation. [19] adds82

low-rank matrices to approximate parameter updates. [34] shows that it is possible to quickly adapt83

to new tasks by collectively learning knowledge from multiple tasks. These methods have achieved84

comparable performance to standard fine-tuning on different sets of tasks. However, their focus is on85

reducing memory consumption of adaptation by reducing the trainable parameters needed per task.86

Unlike these methods, which still incur full forward/backward computation cost during adaptation,87

we investigate how to accelerate the adaptation speed through adversarial large-batch optimization.88

2



Lexicon encoder

+

sentence inputs

Input embeddings Adv. noise

Transformer encoder

Context embeddings

Output layer

Minimize loss

Maximize 
prediction 
deviation
(Delayed 
PGA-1)

Noise generator

Figure 1: The architecture of the pro-
posed method.

Figure 2: Time breakdown
without and with PGA-1.

Figure 3: Impact of perturba-
tion steps.

3 The Proposed Method89

Motivated by the challenges in accelerating the adaptation, in this section, we present a principled90

large-batch optimization method via lightweight adversarial noise for improved adaptation speed91

while maintaining the quality of the solutions as measured by task-appropriate accuracy metrics.92

3.1 Adversarial Training Preliminaries93

Adversarial training has been proposed and studied extensively in the computer vision literature94

mainly for improving the robustness against adversarial attacks [13, 31]. The key idea is to apply95

small perturbation to input images that maximizes the adversarial loss:96

min
θ

E(x,y)∼D[max
∥δ∥≤ϵ

l(f(x+ δ; θ), y)] (1)

While adversarial training has been successfully mitigating adversarial attacks, traditional understand-97

ing is that adversarial training could hurt generalization performance. However, there has been an98

increasing amount of attention paid to leverage adversarial training for improving accuracy of clean99

data performance [48, 58, 10]. In particular, there are some studies show that adversarial training100

helps improve the generalizability of language modeling [5, 45, 22, 29]. However, very few works101

examine how adversarial learning works helps improve the adaptation speed of pre-trained Trans-102

former models. [58] studies adversarial training under the large-batch regime, observing improved103

accuracy by accumulating the gradient of the parameters from each of the ascent steps and updating104

the parameters only once after K inner ascent steps with the accumulated gradients. However,105

(1) [58] still requires multiple iterations to generate adversaries and injects adversaries in the full106

training process, leaving the major performance bottleneck from adversaries not reduced, (2) its107

implementation does not support multi-GPU training. In fact, no end-to-end training time reduction108

or speedup is reported in [58], putting a question on how useful it is in accelerating Transformer109

training time.110

Basic setup. Since language expressions are quite sensitive to individual words or clauses, where111

noises against those would likely generate incorrect or biased training data with wrong labels [55].112

We follow prior success in applying adversarial training to NLP models [32, 58] to have an adversarial113

training setup by applying noises to the continuous word embeddings instead of directly to discrete114

words or tokens.115

min
x∈X

Eξ∼Q[g(x, ξ)] = min
x∈X

max
y∈Y

Eξ∼Q[f(x, ξ) + λr(x, y)] (2)

where g : X×Y→ R denotes the overall training objective, r : X→ R denotes the augmented regu-116

larization and ξ denotes samples drawn from Q (for simplicity, we slightly abuse the notation in using117

ξ to denote the random variable, e.g. Eξ[g(x, ξ)], or its empirical realizations, e.g. 1
K

∑K
k=1 g(x, ξk)118

for any K). The overall (outer) training objective involves a minimization problem in the parameter119

space while being stochastic with respect to the data space. The adversarial regularization (inner) term120

is a deterministic maximization problem operating in the data space conditioned on a fixed parameter121

configuration. We emphasize that this formulation is a two-player sequential [23], not simultaneous,122

game wherein the goal is to optimize a transformer network that is insensitive to adversarial noise.123

3



3.2 Improving Adaptation Throughput via Large-Batch Optimizations124

We are interested in extending the large-batch optimization to the Transformation adaptation phase125

using pre-trained BERTbase model on GLUE as an example. This part presents several studies that126

motivate the design of the lightweight adversarial large-batch optimization approach in Section 3.3.127

The detailed hardware/software setup is described in Section 4.128

Scalability analysis. First, we carry out a scalability test by varying the number of GPUs from 1 to129

32, with and without communication. Different from pre-training, the adaptation stage often employs130

a much smaller batch size (e.g., 16, 32) than pre-training (e.g., 4096) [9, 30].We choose a batch size131

32, as suggested by most literature for BERT fine-tuning [9, 30], and we divide the samples in the132

mini-batch among P={1,2,4,8,16,32} GPUs. If the per-worker batch size (e.g., 16) is larger than133

the maximum admissible per-worker batch size (e.g., 8), we use local gradient accumulation [14] to134

avoid running out of memory. Figure 4(a) shows the scalability results. For batch size 32, the training135

time decreases when P increases from 1 to 4. However, it quickly plateaus and even decreases with136

more GPUs. We find that this is because when the batch size is small, the communication overhead137

dominates the total execution time (e.g.,B=32 vs. B=32 (no comm)). The communication overhead138

is huge, especially when there is cross-machine communication (e.g., from 16 to 32), hindering the139

scalability of multi-GPU training. In contrast, by increasing the batch size (e.g., to 1K), the training140

time keeps decreasing as the number of GPUs increases because an increased batch size reduces the141

number of all-reduce communications to process the same amount of data and also increases the142

compute resource utilization per GPU (i.e., increased computation-vs-communication ratio).143

(a) Scalability (b) Generalizability (c) Sharpness

Figure 4: Scalability, generalizability, and curvature analysis results by adapting BERTbase to the
MNLI task.

Generalizability analysis. Increasing the batch size leads to accelerated per-epoch execution time144

due to the efficient utilization of hardware. However, how would increasing the batch size affect the145

generalizability in adapting transformer networks? Since prior works on batch size scaling often focus146

on computer vision tasks and pre-training [42, 14, 41, 52], we conduct an analysis of large-batch147

adaptation on pre-trained Transformers by performing a hyperparameter sweep on batch sizes {1K,148

2K, 4K, 8K} and learning rates {1e-4, 3e-4,5e-4, 7e-4, 9e-4, 1e-3, 3e-3}, where the learning rate149

range covers both linear scaling [14] and sqrt scaling [52]. We report the validation accuracy in150

Figure 4(b). We make two observations: (1) the learning rate scales roughly with the square root151

of the increase of the mini-batch size, although the best learning rates do not always follow the152

sqrt rule; (2) there is a generalization gap between the small batch and large batch accuracies, and153

the gap becomes larger when the batch size increases. Furthermore, methods, such as LAMB [52],154

works well on pre-training with extremely large batch sizes (log2 B = {15, 16}) but do not close155

the generalization gap in adaptation (as shown in Section 4). These results pose the question: can156

we increase the batch size during adaptation in the interest of making adaptation more efficient but157

preserving generalization?158

Curvature analysis. To further examine the generalization gap, we resort to the curvature analysis.159

Prior work [25, 54] correlate the low generalization with sharp minima (which are characterized by a160

positive curvature of large magnitude in the parameter space). The indication is that a sharp local161

minimum also reflects a higher sensitivity of the loss even within the neighborhood of training data162

points and can attribute to the difficulty in generalization. Their hypothesis was that a larger noise163

due to the higher variance in gradient estimates computed using small mini-batches, in contrast to164

gradient estimates computed using large mini-batches, encourages the parameter weights to exit out165

of the basin of sharp minima and towards flatter minima which have better generalization.166

4



To verify this hypothesis, we quantitatively measure the steepness of loss landscape by loading the167

checkpoint of an adapted model and computing the curvature, i.e., properties of the second derivative168

of the model, with respect to its parameters, for a fixed batch of samples. Following [49], for a169

model Φ(x), we compute the largest eigenvalue of the model’s Hessian, Lmax[∇2
xΦ(x)], using the170

Hessian-vector product primitive and the power method. We use the largest eigenvalue as a measure171

of sharpness since the corresponding (top) eigenvector characterizes the direction of the largest172

change in gradient at a given point in the parameter space. From Figure 4(c), the largest eigenvalue173

of the model trained with a large batch (e.g., 1K) is much larger (e.g., 2.6x) than the small-batch174

baseline and with higher deviations (e.g., 3.9x). This result confirms that large-batch adaptation175

makes the loss landscape of the model more prone to ill-conditioning and less robust to perturbation,176

which helps explain the loss in generalization.177

3.3 Improving the Generalization via Lightweight Adversarial Large-Batch Optimization178

Our analysis indicates that although injecting adversarial noise into large-batch optimization helps im-179

prove the generalizability; it may not reduce the adaptation time because the generation of adversarial180

noises can take a large fraction of time. This section provides an analysis of the computational cost181

and then describes two approaches to reduce the time spent in generating adversarial noise, thereby182

further reducing the overall adaptation time.183

The generation of adversarial noise requires an extra PGA inner loop that standard training does not184

have. Figure 2 provides the time breakdown of optimization using PGA with T = 1 (denoted as185

PGA-1). PGA-1 performs the perturbation and takes approximately the same time as making three186

forward passes (Fwd) through the network. This is because one step of PGA requires to make one187

forward and backward pass (Bwd) over the entire network. The backward pass of the optimization188

takes roughly twice the amount of time as the standard backward step because the back-propagation189

is triggered twice to calculate the noise and the gradients. The time spent on the optimizer step190

function remains the same. In total, the optimization would slow down training by at least 2 times,191

even with T =1. This motivates us to look at the effectiveness of different perturbation steps as well192

as the usefulness of perturbation from the initial epochs.193

One-shot perturbation. Prior works often do multiple gradient computation steps (T > 1)194

and take several times longer training time to produce adversaries [31, 58], likely because their195

focus is on generalization instead of computational efficiency. Subsequently, researchers presented196

Curriculum Adversarial Training (CAT) [4] and Annealing-based Adversarial Training [50], which197

progressively increase the perturbation with various strengths, cutting the adversarial training cost198

while maintaining good accuracy. To investigate how CAT and similar methods affect large-scale199

NLP problems involving transformers, we evaluate the final accuracy and training cost of QNLI,200

varying the number of perturbation steps T and report the results in Figure 3. Interestingly, although201

using a large T helps to produce stronger noises, we find that this does not lead to improved accuracy,202

despite the fact that the training overhead still increases almost linearly. In fact, the best accuracy is203

achieved with T = 1.204

We note that the model has two components, namely, the parameter space and data space. First,205

unlike the minimization in the parameter space, which is stochastic, the maximization in the data206

space is deterministic. Second, with respect to the testing phase, the numerical convergence in the207

model’s parameter space is of primary importance rather than the numerical convergence in the data208

space, i.e., the maximization is an auxiliary procedure that augments the training phase to make209

the parameter space "aware" of effects of the batch size across epochs. Due to these two points, at210

a certain epoch, for a given batch, the marginal utility of an additional PGA step is low, and we211

are able to get away with inexact deterministic maximization. Therefore, we apply PGA-1 in our212

large-batch optimization scheme, given that it produces sufficiently good solutions while being much213

more computationally efficient.214

Delayed perturbation injection. Given that PGA-1 still adds an overhead factor of 2, we are215

motivated to further reduce the overhead of adversarial noise. In particular, we investigate how216

useful adversarial noises are in the whole large-batch optimization process. We conduct additional217

experiments to measure the final accuracy corresponding to starting from a regular fine-tuning and218

then enabling PGA-1 for t ≥ ts where ts ∈ [T ]. Our observation is that enabling PGA-1 from219

the beginning does not offer much improvement in accuracy, whereas adversarial noise becomes220

more potent as the model begins to stabilize towards the end of training (more detailed results in221

5



Appendix A.1). In general, at initialization, the model’s parameters are relatively far from their final222

values and are less likely to get stuck at local minima. Therefore the adversarial noises generated in223

the initial training iterations are quite different from the noises towards the end of training because224

they would not maximize the adversarial loss in Equation 2. This hypothesis suggests that we might225

be able to inject adversarial noise in the later training process while still leveraging it to improve226

generalizability. We remark that this phenomenon has been observed by prior work on computer227

vision tasks [4, 15].228

Putting it together. Combining the formulation with the above investigations, the full procedure of229

ScaLA is provided in Algorithm 1, whose convergence rate is characterized in Theorem 3.1.230

Algorithm 1 ScaLA
1: Input: Epochs T , delay ts, perturbation (inner) step size ρ, clipping radius ω, regularization

strength λ, (outer) learning rate η
2: Output: h-layer transformer model Φ with converged robust parameters x := xT

3: for t ∈ [T ] do
4: for worker p ∈ [P ] do
5: for mini-batch ξp ∼ Q do
6: r(xt)← 0, γ ← Φ(x, ξp), select y0
7: if t ≥ ts then
8: ▷ Check delay condition
9: y1 ← Πω(y0 + ρ∇yr(xt, y)) ▷ Generate adversarial noise with PGA-1

10: r(xt)← KLsym (γ,Φ(xt−1, y1))

11: end if
12: g(xt, ξp)← f(xt−1, ξp) + λr(xt)

13: ∇xg(xt, ξp)← Backward pass on Φ
14: end for
15: end for
16: ∇̂xg(xt)← 1

B

∑P
p=1∇xg(xt, ξp)

17: xi
t ← xi

t−1 − ηt∇̂xg(xt)
18: end for

Theorem 3.1 (Complexity of Algorithm 1; Informal – Details in Appendix D). Consider the problem231

in Equation 2. Let ts = 0. Setting the outer learning rate as η = O
(
1/
√
T
)

and scaling batch232

size as b = O(T ), for Algorithm 1, we have E
[
∥∇g1/2α(x)∥2

]
≤ O

(
ϵ+ κα/

√
T
)

where x is the233

estimator obtained from running T steps of Algorithm 1 and picking xt uniformly at random for234

t ∈ [T ]. Here, ϵ is the error due to the approximate inner maximization oracle, α characterizes the235

smoothness of f(x, .), g1/2α is the Moreau-envelope of g and κα = maxi αi/mini αi.236

4 Evaluation237

We evaluate the effectiveness of ScaLA in adapting pre-trained transformer networks over a set of238

NLP tasks.239

Hardware. We conduct the evaluation using 2 NVIDIA DGX-2 nodes. Each node consists of240

16 NVIDIA V100 GPUs. The nodes are connected with InfiniBand using a 648-port Mellanox241

MLNX-OS CS7500 switch. Model/Dataset. We study adaptation on pre-trained BERTbasemodel242

and RoBERTalarge hosted by HuggingFace [47]. We use the GLUE benchmark [44], which is a243

collection of sentence or sentence-pair natural language understanding tasks including question244

answering, sentiment analysis, and textual entailment. We exclude tasks that have very small datasets245

(e.g.,CoLA, RTE). We report the details about the hyperparameters in Appendix B.246

4.1 Main Results – Adaptation Time Acceleration247

We first compare the following schemes: (1) Single GPU + SB: This is the existing PyTorch imple-248

mentation of Transformer fine-tuning from HuggingFace (HF), using small batch (SB) sizes (e.g., 32).249

(2) Multi-GPU + SB: This is multi-GPU PyTorch implementation using DistributedDataParallel [27],250

6



(3) Multi-GPU + LB + FreeLB:, this is the work described in [58] using large minibatches (LB),251

e.g., 1K, and perturbation step K = 5 for adaptation, and (4) Multi-GPU + LB + ScaLA: This is our252

approach as described in Algorithm 1. Table 1 shows results on MNLI, QNLI, QQP, and SST2, which253

are larger datasets and less sensitive to random seeds. n× g refers to Pn nodes each with Pg GPUs254

for a total of P = PnPg homogeneous workers (e.g., 32 GPUs on 2 NVIDIA DGX-2 nodes). For a255

fair comparison, we reproduce BERT and RoBERTa baseline. Our reproduced baseline achieves the256

same or slightly higher accuracy than the originally reported results in [9] and [30]. We now discuss257

our results and observations.258

Table 1: The adaptation time and accuracy results on GLUE benchmark. ScaLA achieves the same
average accuracy as the baseline while providing up to 18× speedups than single GPU, and up to
9.8× speedups with the same amount of hardware.

BERTbase n×g bsz MNLI-m QNLI QQP SST-2 Avg.Steps Time Acc. Steps Time Acc. Steps Time Acc/F1 Steps Time Acc.
Devlin et al. 2019 84.4 88.4 - 92.7 -
Baseline (B=32) 1x1 32 73632 19635 84.8 19644 5535 90.6 68226 16494 91/88.0 12630 2736 93.1 89.4
Baseline (B=32) 2x16 32 73632 8848 84.8 19644 2408 90.6 68226 11311 91/88.0 12630 1494 93.1 89.4
FreeLb (B=1K) 2x16 1K 2301 5953 85.2 615 1944 90.3 2133 19030 91.2/88.2 396 680 92.8 89.5
ScaLA (B=1K) 2x16 1K 2301 1323 85.1 615 432 90.0 2133 4229 90.9/87.7 396 151 93.5 89.4

RoBERTalarge n×g bsz MNLI-m QNLI QQP SST-2 Avg.Steps Time Acc. Steps Time Acc. Steps Time Acc/F1 Steps Time Acc.
Liu et al. 2020 90.2 94.7 92.2/- 96.4 -

Baseline (B=32) 1x1 32 73632 43090 90.5 19644 14188 94.7 68226 40945 92.0/89.4 12630 4940 96.4 92.5
Baseline (B=32) 2x16 32 73632 18114 90.5 19644 4842 94.7 68226 16614 92.0/89.4 12630 3072 96.4 92.5
FreeLb (B=1K) 2x16 1K 2301 15133 91.2 615 5256 95.2 2133 10818 92.5/90.0 396 1804 96.9 93.3
ScaLA (B=1K) 2x16 1K 2301 3363 90.9 615 1168 95.1 2133 2404 92.3/89.8 396 401 96.7 92.9

Adaptation time analysis. Compared with single-GPU training, the multi-GPU baseline leads to259

only modest training speedup improvements, e.g., with 1.5 − 2.4× faster training speed for both260

BERT and RoBERTa, even with 32× more compute resources. The speedup is limited because of the261

small mini-batches (e.g., 32) used for adaptation, which do not provide a sufficient workload to fully262

utilize the underlying hardware. Thus, communication overhead becomes the dominant part, and the263

adaptation often struggles to obtain speedups even with more workers. In contrast, ScaLA achieves264

up to 18× speedups over the single-GPU baseline with 32 GPUs. When using the same number of265

GPUs (e.g., 32), ScaLA is 2.7–9.8× faster. The speedups come from three aspects: (1) the improved266

hardware efficiency for each worker from increased per-worker micro-batch size; (2) the reduced267

all-reduce communication overhead since it takes fewer communication rounds to process the same268

number of samples in one epoch; (3) the lightweight adversarial noise incurs only a small portion of269

the total training overhead. Finally, ScaLA obtains the speedups while achieving the same accuracy270

(88.4 vs. 88.4) average accuracy for BERT and higher accuracy (92.9 vs. 92.5) for RoBERTa as the271

baselines. ScaLA is 4.5 times faster than FreeLb while achieving similar accuracy on BERT (89.4 vs.272

89.5) and RoBERTa (92.9 vs. 93.5). ScaLA is faster than FreeLb because FreeLb does not consider273

much about the training cost and performs multiple ascent steps to calculate adversaries across the full274

training process. As a matter of fact, FreeLb is even slower to run than vanilla baseline (e.g., QNLI275

on RoBERTa). In contrast, ScaLA analyzes the computational efficiency of adversarial large-batch276

optimization and introduces several simple yet effective approaches to reduce the adversarial noise277

cost, which leads to overall improved computational efficiency.278

Generalizability analysis. Since there are very few works on large-batch adaptation, we create279

several baselines to compare with ScaLA: (1) Multi-GPU + LB + Tuning LR: This configuration uses280

large mini-batches (e.g., 1K), and applies heuristic-based scheduling rule (e.g., square root) combined281

with an extensive grid search for learning rates; (2) Multi-GPU + LB + LAMB: Uses LAMB [52]282

optimizer for large-batch adaptation. We make several observations from the results in Table 2. First,283

compared with the baseline accuracy reported in the paper, the accuracy of Multi-GPU + LB drops284

by close to 1 point (88.4 vs. 89.4, and 92.1 vs. 92.9) in average and close to 2 points for some tasks285

(e.g., QQP on BERT), indicating that it is challenging to obtain on-par accuracy with large-batch286

optimizations for adaptation despite with heavy hyperparameter tuning. Second, since LAMB is287

designed primarily for improving the convergence of pre-training instead of the adaptation, its ability288

to accelerate the adaptation has yet to be proven. In our experiments, LAMB leads to only marginal289

improvements (88.6 vs. 88.4, and 92.1 vs. 92.1) than the baseline and is 0.8 points lower than the290

small-batch baseline. This is because LAMM does not directly minimize the sharpness of the loss291

landscape, so it can still lead to poor generalizability during adaptation. With ScaLA, we are able292

7



to close the generalization gap from large-batch optimization (89.4 vs. 89.4, and 92.5 vs. 92.9) and293

achieve 0.8 points higher accuracy (89.4 vs. 88.6, 92.9 vs. 92.1) than LAMB on both BERT and294

RoBERTa. ScaLA improves generalizability because it introduces adversarial noise in the large-batch295

optimization process, which serves as a regularizer. By training the network to be robust to such296

perturbations, the model loss landscape is smoothed out, leading to improved generalization.297

Table 2: The comparison results between ScaLA and alternative methods for large-batch adaptation
on the GLUE benchmark, which show that ScaLA achieves higher accuracy than baselines after
training the same number of samples and steps.

BERTbase n×g Batch MNLI-m QNLI QQP SST-2 Avg.size Steps Time Acc. Steps Time Acc. Steps Time Acc/F1 Steps Time Acc.
Vanilla (B=1K) 2x16 1K 2301 1148 84.3 615 349 89.3 2133 2892 89.6/86.1 396 134 93 88.4
LAMB (B=1K) 2x16 1K 2301 1180 84.1 615 359 89.6 2133 2978 90.5/87.0 396 139 92.4 88.6
ScaLA (B=1K) 2x16 1K 2301 1323 85.1 615 432 90.0 2133 4229 90.9/87.7 396 151 93.5 89.4

RoBERTalarge n×g Batch MNLI-m QNLI QQP SST-2 Avg.size Steps Time Acc. Steps Time Acc. Steps Time Acc/F1 Steps Time Acc.
Vanilla (B=1K) 2x16 1K 2301 2514 90.1 615 936 94.3 2133 1874 91.7/89.1 396 317 95.9 92.1
LAMB (B=1K) 2x16 1K 2301 2646 90.5 615 973 94.5 2133 1998 91.3/88.5 396 324 96.2 92.1
ScaLA (B=1K) 2x16 1K 2301 3363 90.9 615 1168 95.1 2133 2404 92.3/89.8 396 401 96.7 92.9

4.2 Experiment – Analysis Results298

Ablation analysis: We study the importance of components in ScaLA. We set ts to 0, which denotes299

as w/o Delaying PGA-1. We replace the outer minimization to use ADAM [26], which is noted as300

w/o Groupwise LR. We set λ to 0, which denotes as w/o PGA-1. The results are reported in Table 3.301

Table 3: Ablation study of ScaLA using BERTbase on GLUE tasks.
MNLI-m QNLI QQP SST-2 Avg. SpeedupTime Acc. Time Acc. Time Acc/F1 Time Acc.

Baseline 19635 84.8 5535 90.6 16494 91/88.0 2736 93.1 89.4 1
ScaLA 1323 85.1 432 90 4229 90.9/87.7 151 93.5 89.4 12.4

w/o Delaying PGA-1 2503 85.2 726 90.2 6407 91.3/88.3 272 93.1 89.5 7.0
w/o Groupwise LR 1290 85.0 422 89.9 4212 90.7/87.6 146 93.0 89.2 12.7

w/o PGA-1 1180 84.1 359 89.6 2978 90.5/87.0 139 92.4 88.6 14.3

The results in Table 3 show that the removal of either design element would result in a performance302

drop. For example, removing PGA-1 leads to 0.8 points accuracy drop (88.6 vs. 89.4), indicating that303

adversarial noise is crucial for improving the generalizability of large-batch adaptation. Moreover, if304

we perform PGA-1 without delayed injection, the average accuracy increases by 0.1 points (89.5 vs.305

89.4), but the execution time is increased by 1.5–1.9x, indicating the importance of having lightweight306

adversarial noise for speeding up the adaptation. Finally, removing group-wise learning rates leads to307

a small 0.2 points accuracy drop (89.2 vs. 89.4), indicating that ScaLA still achieves benefits without308

group-wise learning rates (89.2 vs. 88.6), but they are complementary to each other.309

Table 4: Alternatives to generate perturbations using random noise, ground-truth, and label probability.

Model MNLI-m QNLI QQP SST-2 Avg
Baseline 84.3 89.3 89.6/86.1 93 88.4

Gaussian noise 84.5 89.4 90.3/87.0 92.6 88.7
ScaLA (GT) 84.1 89.6 90.7/87.6 93.2 89.0
ScaLA (LP) 85.1 90 90.9/87.7 93.5 89.4

Curvature analysis. We measure the steepness of the loss landscape again after applying ScaLA.310

As shown in Fig. 4(c), the largest eigenvalue of the model becomes much smaller (6.9×) with lower311

deviations with ScaLA and is slightly better than the small batch baseline, which is a strong indication312

that our approach enforces the smoothness of the model that leads to the accuracy improvement.313

Comparison with random noise. We have performed additional experiments by adding Gaussian314

noise to the embeddings. Table 4 that random noise indeed can improve the accuracy for MNLI-m315

(84.3 vs. 84.5), QNLI (89.3 vs. 89.4), and QQP (90.3/87.0 vs. 89.6/86.1) over the baseline, but it also316

leads to worse results on SST-2 (93. vs. 92.6). Compared with ScaLA, random noise consistently falls317

8



Figure 5: Comparison of
scalability using different
large-batch optimization
methods on SST-2.

Figure 6: Comparison of
test accuracy by training
the baseline longer.

(a) MNLI-m (b) SST-2

Figure 7: Comparison of accuracy under even
larger batch sizes.

behind ScaLA in its ability to reduce the generalization error on all tested tasks and is on average 0.7318

points lower than ScaLA (88.7 vs. 89.4). These results indicate that ScaLA’s approach of explicitly319

enforcing the smoothness of the loss landscape can result in better improvement.320

Perturbations via ground-truth vs. label probability. We also create one-hot labels and use those321

to generate perturbations instead of using label probability generated by the network. Table 4 shows322

that using label probability (LP) consistently leads to higher accuracy than using the ground-truth323

(GT), e.g., 89.4 vs. 89.0 on average. Label probability leads to better generalization, probably because324

it provides a better measurement of the adversarial direction, which is the direction in the input space325

in which the label probability of the model is most sensitive to small perturbations.326

Scalability analysis varying GPUs. Figure 5 shows the scalability comparison on SST-2 after327

optimizations. While the speedup still plateaus at 4 GPUs with a small batch size (e.g., B = 32), the328

four large-batch configurations are able to scale well up to 32 GPUs and take a similar amount of329

time with 32 GPUs. ScaLA scales better than ScaLA without delaying PGA-1, and achieves a much330

faster training speed, especially in the 1-16 GPU range.331

Train longer, generalize better? Despite improved adaptation speed, one may still wonder whether332

simply performing large-batch adaptation longer would also close the generalization gap. Figure 6333

shows the comparison between ScaLA and the baseline on a batch size of 2K. ScaLA obtains an334

accuracy of 85.2 after 6 epochs of training, whereas the baseline has difficulty to reach 84 after335

training twice longer (e.g., 12 epochs). ScaLA achieves better accuracy because it explicitly penalizes336

model weights from getting stuck at sharp minima, leading to better generalizability.337

Generalizability under different batch sizes. We also evaluate how different batch sizes affect the338

generalizability of adapting transformers. Figure 7 shows the results on MNLI-m and SST-2. We339

make two major observations: (1) The accuracy tends to drop as the batch size increases. (2) While340

both the baseline and LAMB suffer from significant accuracy drop by drastically increasing the batch341

size (e.g., from 32 to 8K), ScaLA is able to mitigate the generalization gap and consistently achieves342

higher accuracy than the baseline (e.g., 84.4 vs. 83.5 for MNLI, and 92.6 vs. 91.3 for SST-2 at batch343

size 8K) and LAMB (e.g., 84.4 vs. 83.9 for MNLI, and 92.6 vs. 91.7 for SST-2 at batch size 8K).344

These results indicate the benefit of ScaLA is maintained by further increasing the batch size, which345

could bring even greater speedups when increasing the data parallelism degree.346

5 Conclusions and Future Directions347

In this paper, we study how to accelerate the adaptation speed of pre-trained Transformer models for348

NLU tasks. We introduce ScaLA, an efficient large-batch adaptation method using carefully injected349

lightweight adversarial noises. The experiment results show that ScaLA obtains up to 9.8× speedups350

on adapting transformer networks and outperforms state-of-the-art large-batch optimization methods351

in generalizability. Given the promising results of ScaLA on accelerating the adaptation speed, it352

opens new research opportunities on applying ScaLA to accelerate the more expensive pre-training353

tasks as well as emerging pre-trained transformer networks for computer vision domains tasks.354

9



References355

[1] Microsoft Blog. Microsoft DeepSpeed achieves the fastest BERT training time. https:356

//www.deepspeed.ai/news/2020/05/27/fastest-bert-training.html. Accessed:357

05-27-2020.358

[2] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von359

Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the360

opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.361

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,362

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel363

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.364

Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz365

Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec366

Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR,367

abs/2005.14165, 2020.368

[4] Qi-Zhi Cai, Chang Liu, and Dawn Song. Curriculum adversarial training. In Jérôme Lang, editor,369

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,370

IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 3740–3747. ijcai.org, 2018.371

[5] Yong Cheng, Lu Jiang, and Wolfgang Macherey. Robust neural machine translation with372

doubly adversarial inputs. In Anna Korhonen, David R. Traum, and Lluís Màrquez, editors,373

Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019,374

Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 4324–4333. Association375

for Computational Linguistics, 2019.376

[6] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA:377

pre-training text encoders as discriminators rather than generators. In 8th International Con-378

ference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.379

OpenReview.net, 2020.380

[7] Damek Davis and Dmitriy Drusvyatskiy. Stochastic subgradient method converges at the rate381

o(k{−1/4}) on weakly convex functions. arXiv preprint arXiv:1802.02988, 2018.382

[8] Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly383

convex functions. SIAM Journal on Optimization, 29(1):207–239, 2019.384

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training385

of deep bidirectional transformers for language understanding. In Proceedings of the 2019386

Conference of the North American Chapter of the Association for Computational Linguistics:387

Human Language Technologies, NAACL-HLT 2019), pages 4171–4186, 2019.388

[10] Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, and Jingjing Liu. Large-scale389

adversarial training for vision-and-language representation learning. In Hugo Larochelle,390

Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Ad-391

vances in Neural Information Processing Systems 33: Annual Conference on Neural Information392

Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.393

[11] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex394

stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.395

[12] Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tie-Yan Liu. Efficient training396

of BERT by progressively stacking. In Proceedings of the 36th International Conference397

on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pages398

2337–2346, 2019.399

[13] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-400

sarial examples. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on401

Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track402

Proceedings, 2015.403

10

https://www.deepspeed.ai/news/2020/05/27/fastest-bert-training.html
https://www.deepspeed.ai/news/2020/05/27/fastest-bert-training.html
https://www.deepspeed.ai/news/2020/05/27/fastest-bert-training.html


[14] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo404

Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD:405

training imagenet in 1 hour. CoRR, abs/1706.02677, 2017.406

[15] Sidharth Gupta, Parijat Dube, and Ashish Verma. Improving the affordability of robustness407

training for dnns. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,408

CVPR Workshops 2020, Seattle, WA, USA, June 14-19, 2020, pages 3383–3392. IEEE, 2020.409

[16] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. To-410

wards a unified view of parameter-efficient transfer learning. CoRR, abs/2110.04366, 2021.411

[17] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the412

generalization gap in large batch training of neural networks. In Isabelle Guyon, Ulrike von413

Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman414

Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference415

on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,416

pages 1731–1741, 2017.417

[18] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe,418

Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning419

for NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th420

International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,421

California, USA, volume 97 of Proceedings of Machine Learning Research, pages 2790–2799.422

PMLR, 2019.423

[19] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and424

Weizhu Chen. Lora: Low-rank adaptation of large language models. CoRR, abs/2106.09685,425

2021.426

[20] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu Chen,427

HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. Gpipe: Efficient428

training of giant neural networks using pipeline parallelism. In Advances in Neural Information429

Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,430

pages 103–112, 2019.431

[21] Prateek Jain and Purushottam Kar. Non-convex optimization for machine learning. arXiv432

preprint arXiv:1712.07897, 2017.433

[22] Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao.434

SMART: robust and efficient fine-tuning for pre-trained natural language models through prin-435

cipled regularized optimization. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R.436

Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computa-437

tional Linguistics, ACL 2020, Online, July 5-10, 2020, pages 2177–2190. Association for438

Computational Linguistics, 2020.439

[23] Chi Jin, Praneeth Netrapalli, and Michael Jordan. What is local optimality in nonconvex-440

nonconcave minimax optimization? In International Conference on Machine Learning, pages441

4880–4889. PMLR, 2020.442

[24] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder443

Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin,444

Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,445

Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard446

Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,447

Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy,448

James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin,449

Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi450

Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda,451

Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory452

Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory453

Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,454

Eric Wilcox, and Doe Hyun Yoon. In-Datacenter Performance Analysis of a Tensor Processing455

11



Unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture,456

ISCA ’17, pages 1–12, 2017.457

[25] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping458

Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima.459

In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April460

24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.461

[26] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In 3rd462

International Conference on Learning Representations, ICLR 2015, 2015.463

[27] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke,464

Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed:465

Experiences on accelerating data parallel training. Proc. VLDB Endow., 13(12):3005–3018,466

2020.467

[28] Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave468

minimax problems. In International Conference on Machine Learning, pages 6083–6093.469

PMLR, 2020.470

[29] Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu Chen, Yu Wang, Hoifung Poon, and Jianfeng471

Gao. Adversarial training for large neural language models. CoRR, abs/2004.08994, 2020.472

[30] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,473

Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT474

pretraining approach. CoRR, abs/1907.11692, 2019.475

[31] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.476

Towards deep learning models resistant to adversarial attacks. In 6th International Conference477

on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,478

Conference Track Proceedings. OpenReview.net, 2018.479

[32] Takeru Miyato, Andrew M. Dai, and Ian J. Goodfellow. Adversarial training methods for semi-480

supervised text classification. In 5th International Conference on Learning Representations,481

ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,482

2017.483

[33] Zachary Nado, Justin Gilmer, Christopher J. Shallue, Rohan Anil, and George E. Dahl. A large484

batch optimizer reality check: Traditional, generic optimizers suffice across batch sizes. CoRR,485

abs/2102.06356, 2021.486

[34] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych.487

Adapterfusion: Non-destructive task composition for transfer learning. In Paola Merlo, Jörg488

Tiedemann, and Reut Tsarfaty, editors, Proceedings of the 16th Conference of the European489

Chapter of the Association for Computational Linguistics: Main Volume, EACL 2021, Online,490

April 19 - 23, 2021, pages 487–503. Association for Computational Linguistics, 2021.491

[35] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,492

Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified493

text-to-text transformer. CoRR, abs/1910.10683, 2019.494

[36] Hassan Rafique, Mingrui Liu, Qihang Lin, and Tianbao Yang. Weakly-convex–concave min–495

max optimization: provable algorithms and applications in machine learning. Optimization496

Methods and Software, pages 1–35, 2021.497

[37] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-498

tion towards training A trillion parameter models. CoRR, abs/1910.02054, 2019.499

[38] Ralph Tyrell Rockafellar. Convex analysis. Princeton university press, 2015.500

[39] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanan-501

takool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi, and502

Blake A. Hechtman. Mesh-tensorflow: Deep learning for supercomputers. In Advances in Neu-503

ral Information Processing Systems 31: Annual Conference on Neural Information Processing504

Systems 2018, pages 10435–10444, 2018.505

12



[40] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan506

Catanzaro. Megatron-lm: Training multi-billion parameter language models using model507

parallelism. CoRR, abs/1909.08053, 2019.508

[41] Leslie N. Smith. A disciplined approach to neural network hyper-parameters: Part 1 - learning509

rate, batch size, momentum, and weight decay. CoRR, abs/1803.09820, 2018.510

[42] Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. Don’t decay the learning511

rate, increase the batch size. In 6th International Conference on Learning Representations,512

ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.513

OpenReview.net, 2018.514

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,515

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-516

mation Processing Systems 30: Annual Conference on Neural Information Processing Systems517

2017, pages 5998–6008, 2017.518

[44] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.519

GLUE: A multi-task benchmark and analysis platform for natural language understanding. In520

7th International Conference on Learning Representations, 2019.521

[45] Dilin Wang, ChengYue Gong, and Qiang Liu. Improving neural language modeling via522

adversarial training. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of523

the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long524

Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pages525

6555–6565. PMLR, 2019.526

[46] Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuanjing Huang, Jianshu Ji, Guihong527

Cao, Daxin Jiang, and Ming Zhou. K-adapter: Infusing knowledge into pre-trained models528

with adapters. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors, Findings529

of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, August530

1-6, 2021, volume ACL/IJCNLP 2021 of Findings of ACL, pages 1405–1418. Association for531

Computational Linguistics, 2021.532

[47] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony533

Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,534

Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain535

Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-536

art natural language processing. In Qun Liu and David Schlangen, editors, Proceedings of the537

2020 Conference on Empirical Methods in Natural Language Processing: System Demonstra-538

tions, EMNLP 2020 - Demos, Online, November 16-20, 2020, pages 38–45. Association for539

Computational Linguistics, 2020.540

[48] Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L. Yuille, and Quoc V. Le.541

Adversarial examples improve image recognition. In 2020 IEEE/CVF Conference on Computer542

Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages543

816–825. Computer Vision Foundation / IEEE, 2020.544

[49] Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W. Mahoney. Hessian-based545

analysis of large batch training and robustness to adversaries. In Samy Bengio, Hanna M.546

Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, edi-547

tors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural548

Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,549

pages 4954–4964, 2018.550

[50] Nanyang Ye, Qianxiao Li, Xiao-Yun Zhou, and Zhanxing Zhu. Amata: An annealing mechanism551

for adversarial training acceleration. CoRR, abs/2012.08112, 2020.552

[51] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks.553

arXiv preprint arXiv:1708.03888, 2017.554

[52] Yang You, Jing Li, Jonathan Hseu, Xiaodan Song, James Demmel, and Cho-Jui Hsieh. Reducing555

BERT pre-training time from 3 days to 76 minutes. CoRR, abs/1904.00962, 2019.556

13



[53] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,557

Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for558

deep learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.559

[54] Yang You, Yuhui Wang, Huan Zhang, Zhao Zhang, James Demmel, and Cho-Jui Hsieh. The560

limit of the batch size. CoRR, abs/2006.08517, 2020.561

[55] Dongxu Zhang and Zhichao Yang. Word embedding perturbation for sentence classification.562

CoRR, abs/1804.08166, 2018.563

[56] Minjia Zhang and Yuxiong He. Accelerating training of transformer-based language models564

with progressive layer dropping. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,565

Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing566

Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS567

2020, December 6-12, 2020, virtual, 2020.568

[57] Shuai Zheng, Haibin Lin, Sheng Zha, and Mu Li. Accelerated large batch optimization of BERT569

pretraining in 54 minutes. CoRR, abs/2006.13484, 2020.570

[58] Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. Freelb: Enhanced571

adversarial training for natural language understanding. In 8th International Conference on572

Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-573

view.net, 2020.574

Checklist575

1. For all authors...576

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s577

contributions and scope? [Yes]578

(b) Did you describe the limitations of your work? [Yes]579

(c) Did you discuss any potential negative societal impacts of your work? [N/A]580

(d) Have you read the ethics review guidelines and ensured that your paper conforms to581

them? [Yes]582

2. If you are including theoretical results...583

(a) Did you state the full set of assumptions of all theoretical results? [Yes]584

(b) Did you include complete proofs of all theoretical results? [Yes] The complete proof585

in in Appendix D586

3. If you ran experiments...587

(a) Did you include the code, data, and instructions needed to reproduce the main experi-588

mental results (either in the supplemental material or as a URL)? [Yes]589

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they590

were chosen)? [Yes] We have very detailed training details in Appendix B.591

(c) Did you report error bars (e.g., with respect to the random seed after running exper-592

iments multiple times)? [N/A] Our results are reported based on the same set of593

hyperparameters for all configurations, so it does not rely on the randomness.594

(d) Did you include the total amount of compute and the type of resources used (e.g., type595

of GPUs, internal cluster, or cloud provider)? [Yes]596

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...597

(a) If your work uses existing assets, did you cite the creators? [Yes] We cited all dataset598

and github repository used in the paper.599

(b) Did you mention the license of the assets? [N/A]600

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]601

602

(d) Did you discuss whether and how consent was obtained from people whose data you’re603

using/curating? [N/A]604

14



(e) Did you discuss whether the data you are using/curating contains personally identifiable605

information or offensive content? [N/A]606

5. If you used crowdsourcing or conducted research with human subjects...607

(a) Did you include the full text of instructions given to participants and screenshots, if608

applicable? [N/A]609

(b) Did you describe any potential participant risks, with links to Institutional Review610

Board (IRB) approvals, if applicable? [N/A]611

(c) Did you include the estimated hourly wage paid to participants and the total amount612

spent on participant compensation? [N/A]613

15


	Introduction
	Background and Related Work
	The Proposed Method
	Adversarial Training Preliminaries
	Improving Adaptation Throughput via Large-Batch Optimizations
	Improving the Generalization via Lightweight Adversarial Large-Batch Optimization

	Evaluation
	Main Results – Adaptation Time Acceleration
	Experiment – Analysis Results

	Conclusions and Future Directions

