Unraveling the Dynamics of Stable and Curious Audiences in Web Systems

Anonymous Author(s)

Abstract

In this paper, we propose BPoP (Burst-induced Poisson Process), a parsimonious model to analyze time series, such as Twitter feeds or Youtube search queries. BPoP is able to disentangle the slowlyvarying regular activity of the stable audience from the curious audience activity occurring in bursts such as viral threads. Our model is a mixture two hidden and interacting processes. The first component is a self-feeding-process (SFP), and the second is a stochastically driven Poisson process with a random step function as intensity function, whose transitions are caused by the bursty behavior of the first component. The SFP generates a bursty behavior, corresponding to viral threads caused by sudden external events, whereas the nonhomogeneous Poisson process models normal background behavior that is influenced only by the overall popularity of the topic (the stable audience). We performed extensive empirical work that shows that our model fits and characterizes a large number of real datasets with better results than state-of-art models. More importantly, we show that $\mathbf{B P o P}$ is able to quantify the stable audience of media channels over time, which may serve as a good indicator for their popularity.

ACM Reference Format:

Anonymous Author(s). 2023. Unraveling the Dynamics of Stable and Curious Audiences in Web Systems. In Proceedings of ACM Conference (Conference'17). ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/ nnnnnnn.nnnnnnn

1 INTRODUCTION

Why do content creators on YouTube frequently request their subscribers to enable all notifications? This practice stems from their awareness that not all subscribers are regular viewers of their channels [1], despite the argument that the primary determinant of sustained interest lies in the number of subscriptions a channel garners [2,3]. In fact, the popularity dynamics of online items can be explained by several endogenous and exogenous factors, which include the quality of the content [4, 5], their metadata [6], their age [7], the recommendation algorithm and its rank on keywordbased queries [8], promotions [9], and social network effects [4, 10].

Accurately predicting the enduring appeal of online content remains an exceptionally challenging task due to the distinct patterns exhibited in the popularity dynamics of online items [11-13]. These dynamics often involve one or more peaks of popularity bursts that

[^0]

Figure 1: Two example time series that motivate the proposed time-series model. Left: Michael Jackson (Jan/01/2008 to Dec/31/2010). Right: Barack Obama (Jul 202015 Jul 19 2018). The data is taken from Google Trend (country: USA; search engine: Youtube). A description of the results is given in the main text below.
intermingle with the regular and stable audience of the content. Existing literature predominantly focuses on supervised and featurebased approaches for predicting long-term popularity [5, 9, 13-15], while some models overlook the bursty nature of popularity dynamics [16-18]. Moreover, these approaches aim to forecast an item's overall popularity, taking into account the influence of exogenous factors such as media exposure and virality on social media.

Unlike previous studies, this paper introduces a novel approach that (1) distinguishes between popularity bursts and the consistent and stable audience of content, and (2) investigates the underlying dynamics of these audiences. We specifically focus on differentiating two audience types: the curious audience, attracted by external and viral events such as gossip $[9,19,20]$, and the stable audience, representing stable viewership. Empirical evidence reveals that content such as keyword-discovered videos [7], popular TV episodes, and music videos [4] maintains steady popularity over time, dominated by the stable audience. On the other hand, news, sports, and movie content often undergo rapid popularity surges followed by quick declines, mostly due to temporally limited events (e.g. breaking news). In these cases, the curious audience tends to prevail over the stable audience.

The primary challenge in distinguishing between these audience types arises from the lack of individual labels that distinguish stable and curious viewers. Instead, we typically only have the total number of viewers for an observed random series of events (RSE), which is a combination of both hidden processes associated with the two types of audiences. Disentangling these two audience types poses difficulties, particularly because during viral events, curious users tend to dominate the channel's activity, leading to a burst in the overall RSE [21-23]. Such bursts can become so prominent that they completely obscure the presence of the stable audience during these events. To accurately identify and quantify the stable audience, it
becomes essential to pinpoint the timestamps associated with these bursts. However, this task is especially challenging as the activity from the stable audience remains unlabelled and gets mixed with the bursts.

Another significant challenge arises from the potential for the stable audience to modify its typical behavior in response to bursts or external events [24-30]. For instance, the unexpected death of Michael Jackson in June 2009 triggered a surge in media and web activity, leading to increased music sales, video views, and reactions in posts and comments. During this period, both existing and new fans engaged with Jackson's work, transforming him into an enduring musical icon. This behavior is illustrated in the left-hand side of Figure 1, where the blue line represents the cumulative web activity associated with Michael Jackson's RSE. Initially, it displayed a relatively constant growth rate until his death (vertical black line), followed by a sudden spike in interest. Over time, the blue line returned to a consistent growth rate. We will illustrate how to distinguish between two types of web activities during such events: (1) regular stable audience activity (yellow line) and (2) activity driven by unexpected events generated by the curious audience (green line). Notably, the yellow curve changed its slope after Jackson's unexpected death, marking a significant transition event that not only led to a short-term burst of activity but also permanently altered the stable audience [27, 30]. The revival of his songs, tribute notes, and the younger generation's discovery of Jackson's work contributed to a sustained increase in web interaction. Conversely, the end of Barack Obama's presidential term (right-hand side of Figure 1) resulted in reduced political activity and a decline in mentions.

Point processes form a statistical framework to learn and infer about RSEs [31, 32]. There are two contrasting approaches in this domain. One focuses on self-exciting point processes, which model correlations between past and future events [19, 33, 34]. On the other hand, the homogeneous Poisson process and its variants have also been deemed suitable [19, 35-37]. This divergence has led to extensive research examining the diversity of human actions. For example, studies have found that Twitter hashtag activity can be continuous, periodic, or concentrated around a single peak [38]. Similarly, research on YouTube videos has shown that the current tweeting rate and tweet volume since a video's upload are crucial parameters for identifying its virality or popularity [39]. Additionally, the popularity of YouTube videos can undergo multiple phases of growth and decline, likely influenced by various background random processes superimposed on bursty behavior [24].

Therefore, in theory, point processes could be used to solve the problem of estimating the stable audience of online items, but existing models are not appropriate for this particular setting: they focus on different aspects of RSE characterization, and do not provide methods to identify and measure burst-induced changes in background popularity. While Poisson processes (PPs) [36, 37] can easily estimate the stable audience when all incoming events arrive at a fixed and predictable rate, they fail to mimic the bursts of events seen in real data. On the other hand, self-exciting processes, such as Hawkes and Wold processes, are able to capture the correlations between consecutive events that generate bursts of activity, but existing approaches do not model the time-varying nature of the stable audience [18, 20, 30, 40-43].

To address these concerns, we propose the Burst-induced Poisson Process (BPoP) model, which is able to flexibly incorporate dependencies between the two hidden and underlying point processes involving the stable audience and the curious. We show that BPoP mimics the bursts of events seen in real data and is also able to efficiently capture the time-varying background rates that realistically represent the stable audience. Our main contributions are: (a) A New Model, namely BPoP, which is able to disentangle the slowly-varying regular activity of the stable audience from the curious activity occurring in bursts. This model does not depend on hard-to-get external information but uses only random series of events (RSEs) (Section 2); (b) An EM algorithm to cope with our intensity function's complex dependence on the history of the process (Section 3); (c) Novel findings describing and quantifying the stable audience for eleven real world data containing more than a hundred thousand RSEs (Section 4). (d) Extensive empirical investigations have demonstrated that $\mathbf{B P o P}$ consistently outperforms alternative models in fitting both real and synthetic data (Section 5).

2 THE BPOP MODEL

Formal construction: filtrations are formal constructions in probability theory required for the formal description of time-dependent processes. Consider a general continuous-time Markov process adapted to the filtration $\left(\mathcal{H}_{t}\right)_{t \in \mathbb{R}^{+}}: \mathcal{H}_{t}$ represents the information that is realised at time t. Let $N(a, b)$ be the random number of events in $(a, b]$. The conditional intensity rate function characterizes the distribution and is given by $\lambda\left(t \mid \mathcal{H}_{t}\right)=\lim _{h \rightarrow 0} \mathbb{E}\left(N(t, t+h) \mid \mathcal{H}_{t}\right) / h$.

Figure 2: The Burst-induced Poisson Process (BPoP) model. The curious (SFP) and stable audience (NHPP) labels, as well as the transitions (events of MPP), are not observed.

Figure 2 shows the main idea of BPoP. We observe the point process timestamps $0<t_{1}<t_{2}<\ldots$ of events up to a time t (depicted as blue dots in the fourth row). We assume that these events are a mixture of events coming from the stable audience and the curious audience, which are two dependent point processes, represented as yellow and green dots in the first and third rows, respectively. On one hand, we model the curious audience generating the occasional bursts as a Self-Feeding process (SFP) [18, 33, 43]. SFPs are simple self-exciting processes, and their intensity function is given by $\lambda_{s}\left(t \mid \mathcal{H}_{t}\right)=1 /\left(\mu / e+\Delta t_{i}\right)$ (where $\Delta t_{i}=t_{i}-t_{i-1}, t_{i}=$ $\max _{k}\left\{t_{k}: t_{k} \leq t\right\}$ and $\mu>0$), exhibiting strong bursty behavior. On the other hand, the events associated with the stable audience are modelled by a second process, the classical non-homogeneous Poisson process (NHPP), shown in the third row. A third underlying meta Poisson process (MPP) controls the times when the stable audience (or NHPP) transitions occur. These transitions are shown as white dots in the second row in Figure 2. The intensity of the meta Poisson process generating the transitions is proportional to the
intensity of the SFP process, which acts as a soft proxy for "whether a burst is currently occurring".
Remark: The main difficulty with this model is that we only observe the blue dots in the fourth row. The labels associated with each event (the green and yellow colors) and the transitions (the white dots) are not directly observed.

Therefore, our BPoP model involves the combination of an SFP, representing the curious audience, and a NHPP, representing the stable audience, which interact with each other. At time t, the history of the process is composed of the observed event timestamps $\left\{t_{1}, t_{2}, \ldots\right\}<t$, unobserved labels $\left\{z_{1}, z_{2}, \ldots\right\}$ as well as unobserved MPP events $\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$, which represent the transitions. We use the convention that $z_{i}=0$ if $t_{i} \in$ NHPP and $z_{i}=1$ if $t_{i} \in$ SFP. Thus, BPoP is governed by the following three intensity functions: (1) the SFP intensity $\lambda_{s}(t)=1 /[(g(t)-g(g(t)))+\mu / e]$ where $g(u)=\left[\max \left(t_{i}: z_{i}=1 \quad \wedge \quad t_{i}<u\right)\right]_{+}$denotes the last SFP event before t, with the convention that $g(t)=0$ if $\nexists i: t_{i} \leq t \wedge z_{i}=1$ and $\mu>0$ is the SFP parameter; (2) $\lambda_{\Phi}(t)=c \lambda_{S}(t)$, where $c \in[0,1]$ is a parameter that controls the NHPP transition sensitivity; and (3) $\lambda_{p}(t)=\lambda_{m_{t}}$, where $\Lambda=\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \cdots\right\}$ is an infinite set of positive numbers (parameters) and, $m_{t}=\sum_{j=1}^{n_{\phi}} 1_{\varphi_{j}<t}$. Similarly we can define $\lambda_{s}^{+}(t)=\lim _{\delta \rightarrow 0} \lambda_{s}(t+\delta)\left(\right.$ resp. $\lambda_{\phi}^{+}(t)$ and $\left.\lambda_{p}^{+}(t)\right)$ as the intensity of the SFP (resp. MPP and NHPP) immediately after t. Thus, to generate the next time stamp, we first generate three exponential variables E_{s}, E_{ϕ} and E_{p} with intensities $\lambda_{s}^{+}(t), \lambda_{\phi}^{+}(t)$ and $\lambda_{p}^{+}(t)$ respectively. Then, the next event will take place at $t+E$, where $\mathrm{E}=\min \left(E_{s}, E_{\phi}, E_{p}\right)$, and it will belong to the SFP (resp. NPHH, MPP) component if $E=E_{s}$ (resp. E_{ϕ}, E_{p}). Likewise, we continue generating the rest of the process from time $t+E$.

Considering the described generative model we aim to infer the parameters of BPoP. When performing inference, c is set as a hyperparameter ${ }^{1}$ and the parameters Λ, μ are determined via maximum likelihood. To optimize the likelihood, we will use the EM algorithm, relying on Gibbs sampling in the E-step. However, the EM algorithm in the case of point processes requires great care, since the events are not independent data and the usual derivations are not appropriate.

3 FITTING USING EM

Our optimization approach to fitting the model relies on the EM algorithm [44, 45]. The EM algorithm represents a broad class of alternating optimization methods used to estimate the maximum likelihood estimate of parameters θ in statistical models involving unobserved latent variables Z. The strategy consists of two steps: (1) the E-step estimates the conditional distribution of the latent variables (given the observations) based on the current estimate of the parameters; (2) the M-step computes the maximum likelihood estimate of the parameters based on the current estimate of the latent distribution. These two steps are performed alternately until convergence. In our specific case, the latent variables are the labels z_{i} (SFP/curious versus Poisson/stable) of the observed timestamps and the transitions m_{i}, while the parameters are the λ 's and the μ. In this context, since the conditional distribution of the labels (given

[^1]the observations and the parameters) is not analytically tractable, we estimate it using Gibbs sampling [46].
In this section, we compute the likelihood for our model, the marginal conditional probabilities required for Gibbs simulation, and present the overall details of our approach. To do that, we must first introduce some notation. Let $T=\left\{t_{1}, t_{2}, \cdots, t_{n}\right\}$ be the observed event timestamps from the mixture of the SFP (curious) and the NHPP (stable audience). Also, let $N(t)=\sum_{i=1}^{n} 1_{t_{i} \leq t}$ be a function that computes the cumulative number of events up to time t. The number of transitions that occurred before t_{i} is given by $M:=\left\{m_{1}, m_{2}, \cdots, m_{n}\right\}$, where $m_{i}=\sum_{j=1}^{n_{\phi}} 1_{\varphi_{j}<t_{i}}$, and the set of NHPP transitions between t_{i-1} and t_{i+1} is given by $\Phi_{i}:=\left\{\varphi_{j} \mid t_{i-1}<\varphi_{j}<t_{i+1}\right\}$. Finally, we set $\theta=Z \cup \Phi \cup M$ (the latent variables), $\theta_{-i}=\theta \backslash \theta_{i}$ where $\theta_{i}:=\left(\left\{z_{i}, m_{i}\right\} \cup \Phi_{i}\right)$. Please consult the Appendix for a table of notation.
E-Step: Here we will explain how to use Gibbs sampling to draw a set of latent variables Z, M and Φ (collectively referred to as θ) from the conditional distribution given a fixed set of parameters μ and Λ. Gibbs sampling is a general statistical method which allows one to draw samples from complicated high-dimensional distributions. To draw a sample from a distribution p on \mathbb{R}^{d}, we start with an arbitrary vector $x \in \mathbb{R}^{d}$, and proceed to iteratively replace each coordinate x_{i} $(i \leq d)$ by a sample from the conditional distribution of x_{i} given the current values of the other coordinates $x_{j}(j \neq i)$. In many situations, the conditional distribution is easier to compute than the multivariate probability density function (PDF) due to the intractability of the calculation of the multivariate normalization constant. It is known that under mild conditions, after convergence, Gibbs sampling leads to a sample from the original multivariate distribution p [46]. In our model, the distribution to estimate is the latent joint distribution of the labels z_{i} and transitions m_{i}. The distribution is proportional to the corresponding likelihood, but the normalization constant is intractable. On the other hand, the conditional marginal distributions are easy to compute, making Gibbs sampling a practical solution.

We start with an initialized value for θ, and we perform a large number $N_{\text {Gibbs }}$ of updates on its components. At each update step, we pick $i \leq n$ and update the value of the component θ_{i} according to the conditional distribution of θ_{i} given the current value of θ_{-i} (and, as always, the value of T). After a large number of iterations, this procedure yields a sample whose distribution is approximately that of a sample of θ given T only. Indeed, the distribution in question is the only stationary distribution of the Markov chain corresponding to the updates, as long as the chain is aperiodic and irreducible ${ }^{2}$. To perform this procedure, we need to compute the conditional probability $\mathbb{P}\left(\theta_{i} \mid T, \theta_{-i}\right)$ for any $i, \theta_{i}, \theta_{-i}$.
We will do that in two steps: first, we compute the conditional probability $\mathbb{P}\left(z_{i}, m_{i} \mid T, \theta_{-i}\right)$, and second, we compute the conditional probability density function of Φ_{i} given θ_{-i}, T and m_{i}, z_{i}. Those conditional probabilities and densities are proportional to the corresponding likelihoods. Note that we have the following expression for the likelihood of our model $\mathcal{L}(\theta)=$

$$
\begin{equation*}
\prod_{i=1}^{n} \lambda_{s}\left(t_{i}\right)^{z_{i}} \lambda_{p}\left(t_{i}\right)^{1-z_{i}} \prod_{j=1}^{n_{\phi}} \lambda_{\phi}\left(\varphi_{j}\right) \times e^{-\int_{0}^{t_{n}} \lambda_{s}(t)+\lambda_{\phi}(t)+\lambda_{p}(t) d t .} \tag{1}
\end{equation*}
$$

[^2]

Figure 3: A: Start: behaviour of SFP intensity function given that label of t_{i} is unknown (red dot). Green dots refer to SFP events while yellow ones are NHPP events; B: Behaviour of SFP intensity function given that $t_{i} \in$ NHPP; C: Behaviour of SFP intensity function given that $t_{i} \in$ NHPP .

This naturally factorizes as $\mathcal{L}(\theta)=\mathcal{L}_{s}(\theta) \mathcal{L}_{\phi}(\theta) \mathcal{L}_{p}(\theta)$ where $\mathcal{L}_{s}(\theta)$ $\mathcal{L}_{\phi}(\theta)$ and $\mathcal{L}_{p}(\theta)$ are, respectively, the components of the likelihood function (evaluated at θ) corresponding to the SFP, MPP and
 $\mathcal{L}_{p}(\theta)$ are defined similarly.

A key observation now is that the factors in (1) corresponding to the intervals $\left(0, t_{i-1}\right]$ and $\left(t_{f(f(i))}, t_{n}\right]$ do not depend on the values $\{z, m\}$, where $f(u)=\operatorname{argmin}_{j}\left\{t_{j} \mid t_{u}<t_{j} \wedge z_{j}=1\right\}$ denotes the index of the next SFP event after t_{u}. Indeed, whether t_{i} is an SFP or Poisson event only influences the SFP intensity of the next two SFP events. Therefore, we can write equivalently:

$$
\begin{equation*}
\mathbb{P}\left(z_{i}=z, m_{i}=m \mid T, \theta_{-i}\right) \propto \mathcal{L}_{s}^{i}\left(\Omega_{z, m}\right) \mathcal{L}_{\phi}^{i}\left(\Omega_{z, m}\right) \mathcal{L}_{p}^{i}\left(\Omega_{z, m}\right), \tag{2}
\end{equation*}
$$

where $\mathcal{L}_{s}^{i}\left(\Omega_{z, m}\right)$ (resp. $\mathcal{L}_{\phi}^{i}\left(\Omega_{z, m}\right)$ and $\left.\mathcal{L}_{p}^{i}\left(\Omega_{z, m}\right)\right)$ corresponds to the component of the likelihood corresponding the SFP (resp. MPP, NHPP) and to the interval $\left[t_{i-1}, t_{f(f(i))}\right)$ and $\Omega_{z, m}:=\theta_{-i} \cup\{z, m\}$. Thus $\theta=\Omega_{z, m} \cup \Phi_{i}$ and we have

$$
\begin{align*}
& \mathbb{P}\left(z_{i}=z, m_{i}=m \mid T, \theta_{-i}\right) \propto \int_{\Phi_{i} \in F_{\Omega_{z, m}}} \mathcal{L}\left(\Omega_{z, m} \cup \Phi_{i}\right) d \Phi_{i} \\
& \quad \propto \mathcal{L}_{s}^{i}\left(\Omega_{z, m}\right) \mathcal{L}_{\phi}^{i}\left(\Omega_{z, m}\right) \int_{\Phi_{i} \in F_{\Omega_{z, m}}} \mathcal{L}_{p}^{i}\left(\Omega_{z, m} \cup \Phi_{i}\right) d \Phi_{i}, \tag{3}
\end{align*}
$$

where we can write $\mathcal{L}_{s}^{i}\left(\Omega_{z, m}\right)$ for $\mathcal{L}_{s}^{i}\left(\Omega_{z, m} \cup \Phi_{i}\right)$ for any Φ_{i} since \mathcal{L}_{s}^{i} doesn't depend on Φ_{i} and $F_{\Omega_{z, m}}$ is the set of Φ_{i} s compatible with the values of T, M when m_{i} is set to the index m : for instance, if $m_{i-1}=m_{i+1}$, then there are no transitions in the interval $\left[t_{i-1}, t_{i+1}\right)$, so $F_{\Omega_{z, m}}=\{\emptyset\}$. On the other hand, if $m_{i+1}-m_{i-1}=1$ and $m=m_{i+1}$, $F_{\Omega_{z, m}}$ is the interval $\left[t_{i-1}, t_{i}\right)$.

To develop an intuition of how the label of t_{i} affects $\mathcal{L}_{s}^{i}\left(\Omega_{z, m}\right)$, we will demonstrate how to compute the intensities in the interval of interest. A similar explanation can be reproduced for $\mathcal{L}_{\phi}^{i}\left(\Omega_{z, m}\right)$ and $\mathcal{L}_{p}^{i}\left(\Omega_{z, m}\right)$. Consider Figure 3. By definition, given the parameter μ, the SFP intensity depends solely on the two last SFP events. Therefore the computation of $\lambda_{s}(t)$ before t_{i} only depends on the labels of the events before t_{i} and, therefore, as they are known, such labels are not influenced by whether t_{i} is a Poisson or a SFP event (note the green lines before t_{i}, Figure 3-A). Similarly, after $t_{f(f(i))}$ all the labels of the events are known and $\lambda_{s}(t)$ can be directly
computed (note the green lines after $t_{f(f(i))}$, Figure 3-A). However, the label of event t_{i} impacts the value of $\lambda_{s}(t)$ between t_{i} and $t_{f(f(i))}$. In Figure 3-B, we consider the case where $t_{i} \in$ Poisson. In this case, the only SFP shift will happen at $t_{f(i)}$, which is (by definition) the first SFP event after t_{i}. Observe that the intensity between t_{i} and $t_{f(i)}$ remains the same as before t_{i}, with the next change occurring at $t_{f(i)}$. On the other hand, if $t_{i} \in \mathrm{SFP}$ (see Figure 3-C), two shifts happen in the interval. The first one immediately after t_{i} and the second one after $t_{f(i)}$.

Therefore, $\mathcal{L}_{s}^{i}\left(\Omega_{z, m}\right)$ and $\mathcal{L}_{\phi}^{i}\left(\Omega_{z, m}\right)$ can be computed directly. The integral $\mathcal{L}_{p}^{i}\left(\Omega_{z, m}\right):=\int_{\Phi_{i} \in F_{\Omega_{z, m}}} \mathcal{L}_{p}^{i}\left(\Omega_{z, m} \cup \Phi_{i}\right) d \Phi_{i}$ can be expressed as

$$
\begin{align*}
& C \prod_{j: t_{j} \in\left[t_{i-1}, t_{f(f(i))}\right)}\left(\lambda_{p}\left(t_{j} \mid \Omega_{z, m}\right)\right)^{1-z_{j}} \\
& \quad \times I\left(\Omega_{z, m}, t_{i-1}, t_{i}, m_{i-1}, m\right) \times I\left(\Omega_{z, m}, t_{i}, t_{i+1}, m, m_{i+1}\right) . \tag{4}
\end{align*}
$$

The constant C is independent of m, z, defined as

$$
C=e^{t_{i-1} \lambda_{p}\left(t_{t-i}\right)} e^{-t_{i+1} \lambda_{p}\left(t_{t+i}\right)} e^{-\int_{t_{i+1}}^{t_{f}(f(i))}} \lambda_{p}(t) d t,
$$

and

$$
\mathcal{I}\left(\Omega, t_{b}, t_{e}, m_{b}, m_{e}\right)=\int_{\mathcal{T}} e^{\sum_{j=m_{b}}^{m_{e}}\left(\lambda_{(j+1)}-\lambda_{(j)}\right) x_{\left(j-m_{b}+1\right)}} d x
$$

where $\mathcal{T}=\left\{x=\left(x_{1}, \ldots, x_{m_{e}-m_{b}}\right) \mid t_{b} \leq x_{1} \leq x_{2} \leq \cdots \leq x_{m_{e}-m_{b}} \leq\right.$ $\left.t_{e}\right\}$. The integrand in the definition of I is proportional to the likelihood of observing no Poisson event between t_{e} and t_{b} assuming x_{i} is the $m_{b}+i$ th transition for all $1 \leq i \leq m_{e}-m_{b}$. The integrals in the above equations can be computed using the strategy described in the Appendix of this paper. This concludes the explanation of the computation of $\mathbb{P}\left(z_{i}=z, m_{i}=m \mid T, \theta_{-i}\right)$. Since z_{i}, m_{i} are discrete random variables, it is then straightforward to sample from the corresponding distribution.

To complete our description of the Gibbs update which yields θ_{i}, we must describe how to draw Φ_{i} from its conditional distribution assuming $\Omega_{z, m}$ is given. Note that given $\Omega_{z, m}, \Phi_{i}^{-}$and Φ_{i}^{+}are independent, where $\Phi_{i}^{-}:=\left\{\varphi_{j} \mid t_{i-1}<\varphi_{j}<t_{i}\right\}$ and $\Phi_{i}^{+}:=\left\{\varphi_{j} \mid t_{i}<\varphi_{j}<\right.$ $\left.t_{i+1}\right\}$. The probability density function of Φ_{i}^{-}(resp. Φ_{i}^{+}) is proportional to $\mathcal{I}\left(\Omega_{z, m}, t_{i-1}, t_{i}, m_{i-1}, m\right)\left(\operatorname{resp} . \mathcal{I}\left(\Omega_{z, m}, t_{i}, t_{i+1}, m_{i}, m_{i+1}\right)\right)$. To generate a sample from the distribution of Φ_{i}^{-}in practice (Φ_{i}^{+} is completely analogous), we make the following observations. For any interval $[a, b]$, let $N_{a, b}=\#\left(j: \phi_{j} \in[a, b]\right)$ and $f_{1}=$ $\left(t_{i-1}+t_{i}\right) / 2$. We have that the joint distribution of $\left(N_{t_{i-1}, f_{1}}, N_{f_{1}, t_{i}}\right)$ evaluated at (n_{1}, n_{2}) (with $n_{1}+n_{2}=m_{i+1}-m_{i-1}$) is proportional to $\mathcal{I}\left(\Omega_{z, m}, t_{i-1}, f_{1}, m_{i-1}, m_{i-1}+n_{1}\right) \mathcal{I}\left(\Omega_{z, m}, f_{1}, t_{i}, m_{i-1}+n_{1}, m_{i}\right)$. Thus, a sample can be drawn from it. We can continue to split the interval [t_{i-1}, t_{i}) iteratively, choosing at each step how many φ_{j} s are on each side of each subinterval by drawing from the relevant discrete distributions. This can be done until only one φ_{i} is in each interval, and its precise position can then be determined by a draw from its now one-dimensional probability distribution. This concludes the generation procedure for the E step.
M-Step: Now, we will elucidate the process of maximizing the log-likelihood, which corresponds to the current estimate of the conditional distribution of θ, over the parameter set $\{\mu, \Lambda\}$. The procedure described in the E-Step section allows us to draw N_{θ} samples $\left\{\theta_{1}, \theta_{2}, \cdots, \theta_{N_{\theta}}\right\}$ from the conditional distribution of θ
given the current estimate of $\{\mu, \Lambda\}$. We then update μ via the formula $\hat{\mu}=\left(\sum_{j=1}^{N_{\theta}} \operatorname{argmin}_{\mu} \log \left(\mathcal{L}_{s}\left(\theta_{j}\right)\right)\right) / N_{\theta}$, where the likelihood minimization steps are performed via binary search. Note that μ is an easy parameter to estimate as it affects the whole interval, thus $\operatorname{argmin}_{\mu} \mathcal{L}_{S}\left(\theta_{j}\right)$ is already a good estimate even for a single value of j.

Regarding the set of parameters Λ, a key observation is that $\mathcal{L}_{S}(\theta)$ and $\mathcal{L}_{\phi}(\theta)$ are independent of Λ, which allows us to perform the maximization over $\mathcal{L}_{s}(\theta)$ alone. Let $U_{j}(\theta)=\sum_{j} 1_{t_{j} \in\left[\bar{\varphi}_{j}, \bar{\varphi}_{j+1}\right) \wedge z_{j}=0}$. The part of $\log \left(\mathcal{L}_{s}(\theta)\right)$ which depends on λ_{j} is $-\left(\bar{\varphi}_{j+1}-\bar{\varphi}_{j}\right)+$ $U_{j}(\theta) \log \left(\lambda_{j}\right)-\log \left(U_{j}(\theta)\right)$. Averaging over all values of θ and optimizing over λ_{j}, we immediately obtain the following formula for the $\lambda \mathrm{s}$:

$$
\begin{equation*}
\hat{\lambda}_{i}=\frac{\sum_{j=1}^{N_{\theta}} U_{i}\left(\theta_{j}\right)}{\sum_{j=1}^{N_{\theta}}\left(\bar{\varphi}\left(\theta_{j}\right)_{i+1}-\bar{\varphi}\left(\theta_{j}\right)_{i}\right)}, \tag{5}
\end{equation*}
$$

i.e. we are treating the observations of the Poisson events on the intervals corresponding to λ_{j} as if they came from a fixed homogeneous Poisson process. This is valid since the value of Λ only influences the Poisson likelihood component. Algorithmic details and a complexity analysis of our method can be found in the Appendix.

4 EXPERIMENTS

In this section, we present our experiments conducted with realworld RSEs collected from various web systems. Additionally, we conduct synthetic data experiments (please refer to the Appendix) to validate our model under different ground truth scenarios and evaluate the effectiveness of our EM algorithm's derivation in recovering the model's underlying parameters.
Datasets: We showcase BPoP's utility on 11 real-world datasets involving RSEs from diverse web systems across various domains, detailed in Table 1. In AskMe, MetaFilter, and MetaTalk, the time-series represent online discussion forum topics, with events being timestamps of comments ${ }^{3}$. In Digg, each time-series corresponds to a news post, and events are the 'diggs,' similar to Facebook 'likes' ${ }^{4}$. In Enron, events are timestamped emails associated with e-mail accounts ${ }^{5}$. The Github dataset is split into two parts: Github (Users) and Github (Projects). The former records user activities across different projects, while the latter documents user activities on specific projects. Google Trends, time series correspond to the fraction of YouTube views over time (only USA users). Each topic is related to famous people such as singers and politicians, which were defined and collected by the authors. In Twitter, event timestamps correspond to tweets with specific hashtags. For Youtube, each time series represents a YouTube video, with events as timestamps for user comments. Finally, the Yelp dataset contains timestamps of user ratings for various restaurants.

Table 1 shows the total number of RSEs, the average number of events, as well as the average of the indices absolute stability κ and relative stability $\tilde{\kappa}$ (defined further in this section) for each dataset considering the entire observed time interval of each time series. Out of the total population, 91% of individuals exhibited a value of $0.05<P_{N H P P}<0.95$: this suggests a combination of stable behavior and a curious audience. Among those, 21% have

[^3]at least one transition, i.e., their stable audience changed during the analyzed period, an assumption that motivated the conception of BPOP. The fifth column $(|\Phi|)$ in Table 1 shows the the average number of transitions for each dataset among the individuals that had transitions. In total, we analyzed more than 78 million events.
Disentangling Stable and Ephemeral Audiences: We demonstrate the effectiveness of our disentangling method using data from the \#ACL Twitter hashtag during the Austin City Limits (ACL) festival in 2009. ACL is an annual three-day music and art festival held in Austin, Texas, USA, attracting over 130 bands, with around 65,000 daily attendees. In 2009, ACL promoted the "The Sound and the Jury competition (SJC)," a virtual band contest offering a festival slot to the winner. Our model, relying solely on event timestamps related to the Twitter hashtag \#ACL (Figure 5, top left), effectively separates the series of events into stable audience (NHPP) and curious (SFP) components. Notably, in this context, the audience is not tied to the festival itself but rather to the related hashtag in the period before, during, and after the festival. The stable audience (of the hashtag) comprises dedicated music fans who regularly engage with the Twitter feed, while the curious audience consists of individuals intrigued by the festival. The first component (Figure 5, bottom left) maintains a constant event arrival rate between transitions $\varphi_{1}, \varphi_{2}, \ldots$ (indicated by vertical lines). This rate $\lambda_{p}(t)$ signifies the stable audience rate at a given time t. In our model, bursts (Figure 5, top right) are associated with the intensity of the SFP, $\lambda_{s}(t)$ (Figure 5, bottom right), representing the curious audience. Importantly, we acknowledge that the rate $\lambda_{p}(t)$ is not stationary, as bursts (modeled by the SFP component) are triggered by external or internal events related to the topic. These factors not only generate short bursts of intense activity but also lead to enduring changes in the topic's discussion dynamics. Examples of such incidents could include retweets by prominent celebrities or the passing of influential figures related to the topic, both of which can alter the composition and behavior of the stable audience.

These facts can be observed in the behavior of the hashtag \#ACL and its disentangled representation provided by BPOP. In the preSJC period, the arrival rate of the events was very low: at this time, only hard-core fans were actively posting tweets, namely the stable audience. This period of calm was disrupted by the SJC campaign period. The SJC campaign (highlighted in purple) was a short period of time during which the bands involved in the contest together with their fans (the curious) posted a large number of tweets asking users to vote for them. In addition to the short burst of tweets asking for votes, this effect altered the topic dynamic: now, it was not only the hard-core fans of the festival, but also the bands' supporters which were active in the social network. This effect was to continue until the end of the first round, and the announcement of the TOP20 bands, which would be selected to compete in the next stage. After this announcement, since the number of bands in the contest has decreased, we expect a decrease in the number of supporters, resulting in fewer hashtag users and tweets. From BPoP, we indeed observe a transition at this event and a decreased stable audience (NHPP) rate afterwards. The new rate remained constant until the ACL event itself. Finally, a huge burst of events occurred during the festival, which was correctly modeled by our model as mostly part of the SFP process, which represents the curious. Our model also detects a transition at this event, and the rate goes back to pre-SJC

Table 1: Fitting and characterization of the datasets

	\#RSE	\mathbf{n}	$\boldsymbol{\kappa}$	$\tilde{\boldsymbol{\kappa}}$	$\|\Phi\|$	$\boldsymbol{R}_{\mathbf{B P o P}}^{2}$	$R_{B P}^{2}$	$R_{\text {Hawkes }}^{2}$
AskMe	490	133	0.36	0.45	1.03	$\mathbf{0 . 8 5 1 4} \pm \mathbf{0 . 1 1}$	0.6204 ± 0.10	0.3211 ± 0.15
Digg	974	122	0.31	0.45	1.74	$\mathbf{0 . 8 9 4 4} \pm \mathbf{0 . 1 0}$	0.7231 ± 0.09	0.4824 ± 0.17
Enron	147	1589	0.59	0.49	2.21	$\mathbf{0 . 9 4 4 9} \pm \mathbf{0 . 0 7}$	0.9178 ± 0.06	0.5954 ± 0.25
GitHub(U)	40385	675	0.76	0.50	1.40	$\mathbf{0 . 9 5 6 5} \pm \mathbf{0 . 0 3}$	0.9526 ± 0.04	0.8876 ± 0.10
GitHub(P)	35085	696	0.77	0.50	1.39	$\mathbf{0 . 9 5 7 0} \pm \mathbf{0 . 0 3}$	0.9523 ± 0.04	0.8853 ± 0.10
G. Trends	579	2975	0.66	0.48	2.09	$\mathbf{0 . 9 6 3 2} \pm \mathbf{0 . 0 7}$	0.9596 ± 0.01	0.7973 ± 0.29
MetaFilter	8249	172	0.42	0.43	1.23	$\mathbf{0 . 8 9 3 1} \pm \mathbf{0 . 0 9}$	0.7123 ± 0.11	0.3906 ± 0.18
MetaTalk	2465	203	0.43	0.49	1.26	$\mathbf{0 . 9 1 7 6} \pm \mathbf{0 . 0 8}$	0.7921 ± 0.11	0.4535 ± 0.20
Twitter	18888	1142	0.71	0.50	1.60	$\mathbf{0 . 9 4 6 9} \pm \mathbf{0 . 0 5}$	0.8882 ± 0.12	0.8098 ± 0.23
Yelp	1931	128	0.22	0.38	1.34	0.9193 ± 0.13	$\mathbf{0 . 9 4 1 1} \pm \mathbf{0 . 0 8}$	0.8402 ± 0.14
YouTube	250	3241	0.59	0.49	1.90	$\mathbf{0 . 9 7 2 0} \pm \mathbf{0 . 0 2}$	0.9696 ± 0.01	0.7010 ± 0.18

levels afterwards. After the festival ends, the audience is once again composed of the stable audience only.

Our model core hypothesis is that short bursts of activity are likely to simultaneously change the stable audience constitution because they share a common cause: topic related unusual incidents. We model this by making the transition occurrence rate equal to $c \lambda_{s}(t)$ or proportional to the arrival rate of atypical (SFP) events $\left(\lambda_{s}(t)\right)$, where c is small. SFP events appear also during non-bursty periods. BPoP allows for the possibility of transitions occurring also during calm periods, not only during bursts, and our algorithm is able to detect such transitions.
Absolute and Relative Stability: After learning the component intensities $\lambda_{s}(t)$ and $\lambda_{p}(t)$ we can contrast their absolute and relative influence on the observed events. We define two indexes, both in the interval $[0,1]$:

$$
\begin{equation*}
\kappa=\int_{a}^{b} \frac{\lambda_{p}(t)(b-a)^{-1}}{\lambda_{p}(t)+\lambda_{s}(t)} d t \text { and } \widetilde{\kappa}=\frac{\int_{a}^{b} \lambda_{p}(t) d t}{\int_{a}^{b}\left(\lambda_{p}(t)+\lambda_{s}(t)\right) d t} . \tag{6}
\end{equation*}
$$

The absolute stability κ tells us the importance of the stable audience averaged over the time interval $[a, b]$, whilst the relative stability $\widetilde{\kappa}$ describes the proportion of the activity in the interval $[a, b]$ that is assigned to the stable audience. The plot on the left hand side of Figure 4 shows the average $\tilde{\kappa}$ versus the average κ for each of the real datasets. Consider the two pairs associated with GitHub: $\kappa \approx 0.8$ but $\tilde{\kappa} \approx 0.5$. This shows that while the stable audience (NHPP component) dominates most of the time, only half of the activities are carried out by them, i.e., the other half comes from the curious.

The plots in the right hand side of Figure 4 show the parameters λ_{p}, κ and $\widetilde{\kappa}$ calculated in each year separately. The time series are USA Youtube searches for five artists out of the Google Trends dataset, each artist shown in a column of plots. The data was collected between Jan $1^{\text {st }} 2011$ to Dec $31^{\text {st }} 2020$.

The artists were selected to show widely different composition of the latent processes or, in other words, how much of their audiences are composed by the curious and by the stable audience. Alex Claire is an English singer and his biggest hit was released in 2011. Despite the huge success at this time, it was not enough to keep a stable American audience on Youtube. This fact is confirmed by the observation that the coefficients λ_{p}, κ, and $\widetilde{\kappa}$ have low values for the
entire period, characterizing a small stable audience. It is almost a pure SFP process, or an audience composed mostly by the curious.

The time series related to the artists Redfoo, Bridgit Mendler and Billie Eilish exhibit a mixture between bursty and calm periods. Redfoo is able to maintain a significant stable audience during the whole time period, while Mendler and Ellish see their stable audience decrease and increase over time, respectively. In absolute numbers, Bridgit Mendler has the largest stable audience, while Redfoo has the smallest. Interestingly, despite the evident decrease in Mendler's stable audience, she remains quite popular when compared to her counterparts. The absolute stability κ shows that the presence or absence of bursts modifies the relative importance of the NHPP in the composition of the model, which suggests trends and seasonality.

Lastly, Stacey Q is an American pop singer who was popular in the 80 's. As we can observe from the constant λ_{p}, she still enjoyed a stationary amount of attention from a stable audience between 2011 and 2020. Her time series did not exhibit any burst during the whole period which explains the high κ. Her audience is probably composed of long-time fans who do not have the necessary engagement to produce such changes. It is an almost pure Poisson process.

5 GOODNESS OF FIT

Baselines: BPoP is a model that relies only on the observed event timestamps. We compare our model with two other similar models.

Hawkes processes (HP) [20, 30, 40-42] are a class of self-exciting processes which are widely used for modeling web communications. The Hawkes process model assumes that any event increases the probability of additional events. Its conditional intensity is $\lambda\left(t \mid \mathcal{H}_{t}\right)=$ $\lambda+\sum_{t_{i}<t} K\left(t-t_{i}\right)$, where $K(x)>0$ is the kernel function, which satisfies $\int_{0}^{\infty} K(x) d x<1$, to ensure stationarity.

BuSca [18]: similarly to our model BPoP, BuSca is a mixture process involving a Poisson process and a self-exciting process. The conditional intensity of the BuSca model is given by $\lambda\left(t \mid \mathcal{H}_{t}\right)=$ $\lambda+\frac{1}{\Delta_{t}+\mu / e}$, where $\lambda \geq 0$ and $\mu>0$ are constants and Δ_{t} is the last SFP interval before t. However, BPoP and BuSca have two important differences. Firstly, BuSca does not assume any changes in the λ Poisson rate, which corresponds to the unrealistic assumption that the Poisson component of the behavior is constant and occurs indefinitely. Secondly, there is no interaction between the two components: the behavior of the Poisson component is not influenced

Figure 4: Left: Scatterplot of the average $\tilde{\kappa}$ versus the average κ for each of the real datasets. Right: Each column of the plots corresponds to the Google Trend time series associated with one of 5 artists. The top row shows the raw counts. The bottom plots show the yearly average of $\log \left(\lambda_{p}(t)\right)$ (yellow line), κ (magenta line), and $\tilde{\kappa}$ (red line).

Figure 5: Analysis of the \#ACL Twitter hashtag associated with the 2009 Austin City Limits (ACL) festival. Top left: cumulative events; Top right: curious (burst) component; Bottom left: stable audience (NHPP) component; Bottom right: intensity of the SFP.
by the self-exciting component and vice-versa. In contrast, BPoP allows for significant changes in the Poisson rate. More importantly, these changes are motivated by the SFP events: they influence the presence of transitions between different Poisson regimes. This is a defining characteristic of our model, a more realistic assumption, and a significant source of added mathematical and computational difficulty.
Metrics: To assess the Hawkes Process method's performance we used the random time change theorem to transform a HP into a unit rate Poisson process (see [31]). After the transformation we computed the determination coefficient $R_{\text {Hawkes }}^{2}$ corresponding to the linear regression problem predicting the cumulative number of events $N(t)$ for all $t \mathrm{~s}$ in the transformed process. Similarly, for BuSca, we computed R_{S}^{2} (SFP) and $R_{H P P}^{2}$ (homogeneous Poisson process) for the disentangled processes (see [18]) and computed the final coefficient $R_{B P}^{2}=\left(R_{S}^{2}+R_{H P P}^{2}\right) / 2$.

To check the goodness of fit of $\mathbf{B P o P}$, we first output the $\{\hat{Z}, \hat{\Phi}\} \subset$ θ_{i}, where $i=\operatorname{argmax}_{j}\left\{\mathcal{L}\left(\theta_{j}\right) ; 1 \leq j \leq N_{\theta}\right\}$, which allows us to disentangle the NHPP from the SFP. For the SFP fitting, we took the inter-event times sample and built the empirical cumulative

Figure 6: Top: fitting performance (determination coefficient) as a function of the proportion $|P P| / n$ of Poisson events. Bottom: fitting performance as a function of the number of transitions.
distribution function $\mathbb{F}(t)$ leading to the odds-ratio function $\operatorname{OR}(t)=$ $\mathbb{F}(t) /(1-\mathbb{F}(t))$. Then, we computed the $R_{S F P}^{2}$ coefficient of the linear regression problem predicting the cumulative number of events $N(t)$ versus the $O R(t)$ (see [33]).

The computation of $R_{N H P P}^{2}$ requires some explanation. Let $\bar{\Phi}$ be the list of the elements of $\left\{0 \cup \Phi \cup t_{n}\right\}$ ordered from smallest to largest, so that $\bar{\varphi}_{0}=0, \bar{\varphi}_{m_{t}+1}=t_{n}$. For all $i \in\{0,1, \cdots,|\bar{\Phi}|-1\}$, we construct the set $T_{i}=\left\{t_{j} \mid \bar{\varphi}_{i}<t_{j}<\bar{\varphi}_{i+1}\right\}$ and then estimate $R_{N H P P_{i}^{2}}^{2}$ as the determination coefficient corresponding to the linear regression problem predicting $N(t)$ from t on the interval $\left[\bar{\varphi}_{i}, \bar{\varphi}_{i+1}\right)$ with the datapoints obtained from T_{i}. Finally, we compute $R_{N H P P}^{2}$ as the weighted average of the $R_{N H P P}^{i}{ }_{i}^{2}$ s. The weight is a multiple of the respective interval. More formally, $R_{N H P P}^{2}=\sum_{i}\left(\bar{\varphi}_{i+1}-\right.$ $\left.\bar{\varphi}_{i}\right) R_{N H P P_{i}^{2}}^{2} / t_{n}$. Finally, we compute $R_{\mathbf{B P o P}}^{2}=\left(R_{S F P}^{2}+R_{N H P P}^{2}\right) / 2$.
All R^{2} coefficients vary between 0 (worst case) and 1 (best case). Table 1 shows the goodness-of-fit statistics (average and standard deviation) for BPoP and for the baselines, grouped by dataset. BPoP surpasses the Hawkes process method in all datasets considered. It also consistently outperforms BuSca (better fitting in 10 out of 11 datasets). Indeed, the high concentration of the $R_{\mathbf{B P o P}}^{2}$ (as $R_{S F P}^{2}$ and $R_{N H P P}^{2}$, in Figure 6) statistics close to the maximum
value of 1 shows that our model can accurately fit the time series considered, as well as disentangle the mixed process into its two hidden components (NHPP and SFP).
Results: Figure 6 shows how our disentangled models behave under different regimes. To construct the top graph, we computed $P_{N H P P}$ and rounded the value considering the range $\{0,0.1,0.2, \cdots, 1\}$. The extremes correspond, respectively, to a pure Poisson processes and a pure SFP. We can observe that our model improves significantly when the mixture is dominated by the bursty behavior. With respect to the number of transitions $|\Phi|$, the boxplots on the bottom show that BPoP outperforms the baselines across the whole spectrum, with the performance increasing with the number of transitions.

6 RELATED WORK

Human Communication Dynamics: Characterizing the dynamics of human communication on the web has significant implications for various applications, including trend detection, clustering, anomaly detection, and popularity prediction[34, 40, 41, 47]. This research is inspired by a substantial body of work focused on predicting the popularity of online content, such as YouTube videos, hashtags, and forum posts[$9,20,24-26,29]$. The primary goal is to estimate the total number of events associated with a given item. At first, Crane and Sornette posited two primary mechanisms for the occurrence of viewing activity: random occurrences influenced by external factors such as featuring, or internally driven through sharing[19]. However, recent studies have identified additional factors influencing popularity, such as content quality[4, 5], item metadata[6], item age[7], recommendation algorithms, ranking in keyword-based queries[8], and social network effects[4, 10].

More recently, Yu et al. [24] have introduced a phase representation model for online videos, extending Crane and Sornette's endogenous growth and exogenous shock model. They discovered that online videos undergo multiple stages of popularity fluctuations over several months. This finding received further support from Rizoiu et al. [9], who identified a strong correlation between external promotion and online video popularity. Their research highlighted the substantial impact of external attention and promotion on video popularity. Additionally, Gleeson et al. [25] emphasized the significance of recent popularity over cumulative popularity in the adoption of Facebook apps.
RSEs Modeling: Human activity on the web displays a broad spectrum of unpredictability, ranging from complete randomness [19, 3537] to high correlation and burstiness [$40,41,43,48,49$]. These diverse patterns have prompted the adoption of point process stochastic models, which provide statistical frameworks for comprehending sequences of random events [31, 32]. In principle, these models can be employed to estimate the audience size (fanbase) of online items. However, existing models are not well-suited for this specific task. Poisson processes (PPs) [36, 37] are suitable when events arrive regularly at a fixed rate, allowing for stable audience estimation. While a significant portion of online items can be accurately described by such a simple model [10, 11, 17, 19], PPs have limitations. For example, Malmgren et al. [37] introduced a non-homogeneous Poisson process model that accounts for circadian cycles with varying rate $\lambda(t)$, but it lacks the self-exciting property. This means that the probability of observing an event at a small time interval $[t, t+\Delta t)$ does
not depend on previous events within that interval. This limitation hampers PPs from effectively capturing event bursts observed in real-world data.

On the other hand, while self-exciting processes effectively capture correlations between consecutive events responsible for activity bursts in real data, existing methods often overlook the time-varying nature of the fanbase. Hawkes processes [20, 30, 40-42], one of the most widely used models, maintain a constant baseline rate and incorporate event history via a conditional intensity formula: $\lambda\left(t \mid \mathcal{H}_{t}\right)=\lambda+\sum_{t_{i}<t} K\left(t-t_{i}\right)$, where $K(x)>0$ is typically a decreasing exponential kernel. Hawkes processes promote bursty behavior and fall into the category of pure self-exciting models with a constant background intensity. They offer an alternative to pure Poisson processes, with nuanced mathematical properties and applications. However, they cannot capture changes in background intensity, a feature addressed in our work.

The recent literature reflects a growing interest in exploring alternatives to the widely-used Hawkes-based processes for modeling self-exciting point process data. For instance, Etesami et al. [50] and Trouleau et al. [51] have applied variational inference algorithms to fit Bayesian models for multivariate self-feeding processes, enabling the analysis of real-world communication dynamics. Moreover, Noorbakhsh and Rodriguez [52] have introduced a novel class of Gumbel-max point processes specifically designed to address causal issues in point process modeling.

Our work consistently advocates the adoption of self-feeding processes as a compelling alternative to widely-used Hawkes-based models. Previous research, including [18, 43, 53, 54], strongly supports this approach. Its appeal lies in its simplicity and its ability to accurately capture the short-memory and power-law behavior common in real-world data. Self-feeding processes produce point patterns characterized by bursts of intense activity followed by periods of low activity, aligning well with real-world observations. By applying our model to another real case, we aim to demonstrate its effectiveness as a competitive alternative for modeling self-exciting point processes. Finally, Alves et al. [18] employed a Wold process to model social media events effectively. However, this model, with a constant background rate, presents significant training challenges due to multiple approximations required for EM algorithm expectations. Our novel model addresses these limitations by accurately mimicking event bursts while efficiently capturing time-varying background rates, providing a more realistic representation of our fanbase dynamics.

7 CONCLUSION

In this article, we presented Burst-induced Poisson Process (BPOP), a model that separates stable and curious media audiences. BPoP combines an SFP for viral thread bursts (representing the curious audience) with a non-homogeneous Poisson process for regular user behavior (the stable audience). These components interact, and we develop a tailored EM algorithm to address this complexity. Our model excels in identifying audience dynamics in both synthetic and real data.

REFERENCES

[1] Ega Maulana, Usep Suhud, Juhasdi Susono, Agung Dharmawan Buchdadi, and K Amiruddin. Measuring youtube channel subscriber loyalty. The International

Journal of Social Sciences World (TIJOSSW), 2(2):32-39, 2020.
[2] Mirjam Wattenhofer, Roger Wattenhofer, and Zack Zhu. The YouTube social network. In Proceedings of the International AAAI Conference on Web and Social Media, volume 6, pages 354-361, 2012.
[3] Florencia García-Rapp. Popularity markers on YouTube's attention economy: the case of Bubzbeauty. Celebrity Studies, 2017.
[4] Jiqiang Wu, Yipeng Zhou, Dah Ming Chiu, and Zirong Zhu. Modeling dynamics of online video popularity. IEEE Transactions on Multimedia, 18(9):1882-1895, 2016.
[5] Dongliang Liao, Jin Xu, Gongfu Li, Weijie Huang, Weiqing Liu, and Jing Li. Popularity prediction on online articles with deep fusion of temporal process and content features. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages 200-207, 2019.
[6] William Hoiles, Anup Aprem, and Vikram Krishnamurthy. Engagement and popularity dynamics of YouTube videos and sensitivity to meta-data. IEEE Transactions on Knowledge and Data Engineering, 29(7):1426-1437, 2017.
[7] Youmna Borghol, Siddharth Mitra, Sebastien Ardon, Niklas Carlsson, Derek Eager, and Anirban Mahanti. Characterizing and modelling popularity of usergenerated videos. Performance Evaluation, 68(11):1037-1055, 2011.
[8] Renjie Zhou, Samamon Khemmarat, Lixin Gao, Jian Wan, and Jilin Zhang. How YouTube videos are discovered and its impact on video views. Multimedia Tools and Applications, 75:6035-6058, 2016.
[9] Marian-Andrei Rizoiu, Lexing Xie, Scott Sanner, Manuel Cebrian, Honglin Yu, and Pascal Van Hentenryck. Expecting to be hip: Hawkes intensity processes for social media popularity. In Proceedings of the 26th International Conference on World Wide Web, pages 735-744, 2017.
[10] Xu Cheng, Cameron Dale, and Jiangchuan Liu. Statistics and social network of youtube videos. In 2008 16th Interntional Workshop on Quality of Service, pages 229-238. IEEE, 2008.
[11] Flavio Figueiredo, Fabricio Benevenuto, and Jussara M Almeida. The tube over time: characterizing popularity growth of youtube videos. In Proceedings of the fourth ACM international conference on Web search and data mining, pages 745-754, 2011.
[12] Aining Wang, Chen Zhang, and Yuedong Xu. A first view on mobile video popularity as time series. In Proceedings of the 8th ACM International Workshop on Hot Topics in Planet-scale mObile computing and online Social neTworking, pages 7-12, 2016.
[13] Changsha Ma, Zhisheng Yan, and Chang Wen Chen. Larm: A lifetime aware regression model for predicting youtube video popularity. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pages 467-476, 2017.
[14] Masoud Hassanpour, Seyed Amir Hoseinitabatabaei, Payam Barnaghi, and Rahim Tafazolli. Improving the accuracy of the video popularity prediction models through user grouping and video popularity classification. ACM Transactions on the Web (TWEB), 14(1):1-28, 2020.
[15] Qitian Wu, Chaoqi Yang, Hengrui Zhang, Xiaofeng Gao, Paul Weng, and Guihai Chen. Adversarial Training Model Unifying Feature Driven and Point Process Perspectives for Event Popularity Prediction. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pages 517-526, New York, NY, USA, oct 2018. ACM.
[16] Zhiyi Tan, Yanfeng Wang, Ya Zhang, and Jun Zhou. A novel time series approach for predicting the long-term popularity of online videos. IEEE Transactions on Broadcasting, 62(2):436-445, 2016.
[17] Xinyu Ma. Online video popularity modeling research. In International Conference on Applied Statistics, Computational Mathematics, and Software Engineering (ASCMSE 2022), volume 12345, pages 375-381. SPIE, 2022.
[18] Rodrigo Augusto da Silva Alves, Renato Martins Assuncao, and Pedro Olmo Stancioli Vaz de Melo. Burstiness scale: A parsimonious model for characterizing random series of events. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1405-1414, 2016.
[19] R. Crane and D. Sornette. Robust dynamic classes revealed by measuring the response function of a social system. Proceedings of the National Academy of Sciences, 105(41):15649-15653, oct 2008.
[20] Peng Bao. Modeling and predicting popularity dynamics via an influence-based self-excited Hawkes process. In International Conference on Information and Knowledge Management, Proceedings, 2016.
[21] Junjie Yao, Bin Cui, Yuxin Huang, and Xin Jin. Temporal and social context based burst detection from folksonomies. In Proceedings of the National Conference on Artificial Intelligence, 2010.
[22] Cody Buntain and Jimmy Lin. Burst Detection in Social Media Streams for Tracking Interest Profiles in Real Time. In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 777-780, New York, NY, USA, jul 2016. ACM.
[23] Senzhang Wang, Zhao Yan, Xia Hu, Philip S Yu, and Zhoujun Li. Burst Time Prediction in Cascades, 2015.
[24] Honglin Yu, Lexing Xie, and Scott Sanner. The Lifecyle of a Youtube Video: Phases, Content and Popularity, 2015.
[25] J. P. Gleeson, D. Cellai, J.-P. Onnela, M. A. Porter, and F. Reed-Tsochas. A simple generative model of collective online behavior. Proceedings of the National Academy of Sciences, 111(29):10411-10415, jul 2014.
[26] Bo Wu, Wen-Huang Cheng, Yongdong Zhang, and Tao Mei. Time Matters. In Proceedings of the 24th ACM international conference on Multimedia, pages 1336-1344, New York, NY, USA, oct 2016. ACM.
[27] Chengxi Zang, Peng Cui, Christos Faloutsos, and Wenwu Zhu. Long Short Memory Process. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 565-574, New York, NY, USA, aug 2017. ACM.
[28] Haoyang Li, Peng Cui, Chengxi Zang, Tianyang Zhang, Wenwu Zhu, and Yishi Lin. Fates of Microscopic Social Ecosystems. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining, pages 668-676, New York, NY, USA, jul 2019. ACM.
[29] Swapnil Mishra. Bridging models for popularity prediction on social media. In WSDM 2019 - Proceedings of the 12th ACM International Conference on Web Search and Data Mining, 2019.
[30] Tiago Santos, Simon Walk, Roman Kern, Markus Strohmaier, and Denis Helic. Self- and Cross-Excitation in Stack Exchange Question \& Answer Communities. In The World Wide Web Conference, pages 1634-1645, New York, NY, USA, may 2019. ACM.
[31] Daryl J Daley and David Vere-Jones. An introduction to the theory of point processes: volume II: general theory and structure. Springer Science \& Business Media, 2007.
[32] Donald L Snyder and Michael I Miller. Random point processes in time and space. Springer Science \& Business Media, 2012.
[33] Pedro Olmo Stancioli Vaz de Melo, Christos Faloutsos, Renato Assunção, Rodrigo Alves, and Antonio A.F. Loureiro. Universal and Distinct Properties of Communication Dynamics: How to Generate Realistic Inter-event Times. ACM Transactions on Knowledge Discovery in Data, 2015.
[34] Alceu Ferraz Costa, Yuto Yamaguchi, Agma Juci Machado Traina, Caetano Traina, and Christos Faloutsos. RSC: Mining and Modeling Temporal Activity in Social Media. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '15, pages 269-278, New York, New York, USA, 2015. ACM Press.
[35] T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido. A nonstationary poisson view of internet traffic. In IEEE INFOCOM 2004, volume 3, pages 1558-1569. IEEE, 2004
[36] Jon Kleinberg. Bursty and hierarchical structure in streams. In Proceedings of the eighth ACM SIGKDD, KDD '02, pages 91-101, New York, NY, USA, 2002. ACM.
[37] R. Dean Malmgren, Jake M. Hofman, Luis A.N. Amaral, and Duncan J. Watts. Characterizing individual communication patterns. In Proceedings of the 15 th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '09, page 607, New York, New York, USA, 2009. ACM Press.
[38] Janette Lehmann, Bruno Gonçalves, José J Ramasco, and Ciro Cattuto. Dynamical classes of collective attention in twitter. In Proceedings of the 21st international conference on World Wide Web, pages 251-260, 2012.
[39] David Vallet, Shlomo Berkovsky, Sebastien Ardon, Anirban Mahanti, and Mohamed Ali Kafaar. Characterizing and predicting viral-and-popular video content. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pages 1591-1600, 2015.
[40] Yasuko Matsubara, Yasushi Sakurai, B. Aditya Prakash, Lei Li, and Christos Faloutsos. Rise and fall patterns of information diffusion. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '12, page 6, New York, New York, USA, 2012. ACM Press.
[41] Shuang-hong Yang and Hongyuan Zha. Mixture of Mutually Exciting Processes for Viral Diffusion. In Sanjoy Dasgupta and David Mcallester, editors, Proceedings of the 30th International Conference on Machine Learning (ICML-13), volume 28, pages 1-9. JMLR Workshop and Conference Proceedings, 2013.
[42] Sha Li, Xiaofeng Gao, Weiming Bao, and Guihai Chen. FM-Hawkes. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pages 1119-1128, New York, NY, USA, nov 2017. ACM.
[43] Pedro Olmo S Vaz de Melo, Christos Faloutsos, Renato Assunção, and Antonio Loureiro. The self-feeding process: a unifying model for communication dynamics in the web. In Proceedings of the 22nd international conference on World Wide Web, pages 1319-1330, 2013.
[44] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.
[45] Shu Kay Ng, Thriyambakam Krishnan, and Geoffrey J McLachlan. The em algorithm. In Handbook of computational statistics, pages 139-172. Springer, 2012.
[46] Alan E Gelfand. Gibbs sampling. Journal of the American statistical Association, 95(452):1300-1304, 2000.
[47] Qingyuan Zhao, Murat A Erdogdu, Hera Y He, Anand Rajaraman, and Jure Leskovec. Seismic: A self-exciting point process model for predicting tweet popularity. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pages 1513-1522, 2015.
[48] Albert-László Barabási. The origin of bursts and heavy tails in human dynamics. Nature, 435(7039):207-211, may 2005.
[49] Hao Jiang and Constantinos Dovrolis. Why is the Internet Traffic Bursty in Short Time Scales? In Proceedings of the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS'05), pages 241-252, 2005.
[50] Jalal Etesami, William Trouleau, Negar Kiyavash, Matthias Grossglauser, and Patrick Thiran. A variational inference approach to learning multivariate wold processes. In International Conference on Artificial Intelligence and Statistics, pages 2044-2052. PMLR, 2021.
[51] William Trouleau. Learning Self-Exciting Temporal Point Processes Under Noisy Observations. PhD thesis, École Polytechnique Fédérale de Lausanne - EPFL, 2021.
[52] Kimia Noorbakhsh and Manuel Rodriguez. Counterfactual temporal point processes. Advances in Neural Information Processing Systems, 35:24810-24823, 2022.
[53] Pedro OS Vaz De Melo, Christos Faloutsos, Renato Assunção, Rodrigo Alves, and Antonio AF Loureiro. Universal and distinct properties of communication dynamics: how to generate realistic inter-event times. ACM Transactions on Knowledge Discovery from Data (TKDD), 9(3):1-31, 2015.
[54] Guilherme Borges, Flavio Figueiredo, Renato M Assunçao, and Pedro OS Vaz-de Melo. Networked point process models under the lens of scrutiny. In The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2020.

APPENDIX

A SYNTHETIC EXPERIMENTS

$\mathbf{B P o P}$ is a generative model that combines an SFP to represent the curious audience and an NHPP to represent the stable audience, both interacting with each other. While the complete generation procedure is originally detailed in the main paper's model description, we're providing a concise summary in this appendix for ease of reference. Generation procedure: consider that, at time t, the history of the process is composed of the observed event timestamps $\left\{t_{1}, t_{2}, \ldots\right\}<$ t, unobserved labels $\left\{z_{1}, z_{2}, \ldots\right\}$ as well as unobserved MPP events $\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$, which represent the transitions. We use the convention that $z_{i}=0$ if $t_{i} \in$ NHPP and $z_{i}=1$ if $t_{i} \in \mathrm{SFP}$. Define the following three intensity functions: (1) the SFP intensity $\lambda_{s}(t)=1 /\left[\left(t_{g(t)}-\right.\right.$ $\left.\left.t_{g(g(t))}\right)+\mu / e\right]$ where $g(u)=\left[\max \left(t_{i}: z_{i}=1 \quad \wedge \quad t_{i}<u\right)\right]_{+}$denotes the last SFP event before t, with the convention that $g(t)=0$ if $\nexists i: t_{i} \leq t \wedge z_{i}=1$ and $\mu>0$ is the SFP parameter; (2) $\lambda_{\Phi}(t)=$ $c \lambda_{s}(t)$, where $c \in[0,1]$ is a parameter that controls the NHPP transition sensitivity; and (3) $\lambda_{p}(t)=\lambda_{m_{t}}$, where $\Lambda=\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \cdots\right\}$ is an infinite set of positive numbers (parameters) and, $m_{t}=\sum_{j=1}^{n_{\phi}} 1_{\varphi_{j}<t}$. Similarly we can define $\lambda_{s}^{+}(t)=\lim _{\delta \rightarrow 0} \lambda_{s}(t+\delta)\left(\right.$ resp. $\lambda_{\phi}^{+}(t)$ and $\left.\lambda_{p}^{+}(t)\right)$ as the intensity of the SFP (resp. MPP and NHPP) immediately after t. Thus, to generate the next time stamp, we first generate three exponential variables E_{s}, E_{ϕ} and E_{p} with intensities $\lambda_{s}^{+}(t)$, $\lambda_{\phi}^{+}(t)$ and $\lambda_{p}^{+}(t)$ respectively. Then, the next event will take place at $t+E$, where $\mathrm{E}=\min \left(E_{s}, E_{\phi}, E_{p}\right)$, and it will belong to the SFP (resp. NPHH, MPP) component if $E=E_{S}$ (resp. E_{ϕ}, E_{p}). Likewise, we continue generating the rest of the process from time $t+E$.
Experimental setup: Let $P_{N H P P}=\sum_{i=1}^{n}\left(1-z_{i}\right) / n$ be the proportion of observed events that belong to NHPP. We chose sets of μ, Λ and c corresponding to estimated values of $\left.(\mathbb{E}(n), \mathbb{E}(|\Phi|)), \mathbb{E}\left(P_{N H P P}\right)\right)$ in the set $\{500,750,1000\} \times\{0,1,2\} \times\{0,0.25,0.5,0.75,1\}$. In the case where transitions are present, we considered only the cases in which the expected number of events of both processes (SFP and NHPP) is greater than 0 . For example, the tuple ($500,1,0$) was not considered since we would expect only one transition and zero NHPP events. Concerning the parameter Λ we selected values such that $\forall i$ $\min \left(\lambda_{i}, \lambda_{i+1}\right) / \max \left(\lambda_{i}, \lambda_{i+1}\right)=1 / 3$.

For each tuple $\left(\mathbb{E}(n), \mathbb{E}(|\Phi|), \mathbb{E}\left(P_{N H P P}\right)\right)$, we conducted 50 simulations (we use the generation procedure explained above) and assessed our methods via two metrics. To assess our method's ability to recover the ground truth model accurately given the observations, we aggregate the relative difference between the total intensities corresponding to our recovered labels and the ground truth labels:

$$
\begin{equation*}
\delta(\theta, \hat{\theta})=\int_{0}^{t_{n}} \frac{\mid\left(\lambda_{s}(t \mid \theta)+\lambda_{p}(t \mid \theta)\right)-\left(\lambda_{s}(t \mid \hat{\theta})+\lambda_{p}(t \mid \hat{\theta}) \mid\right.}{\lambda_{s}(t \mid \theta)+\lambda_{p}(t \mid \theta)} d t . \tag{7}
\end{equation*}
$$

The reason we do this instead of simply counting the proportion of correct labels is as follows. Correctly classifying the timestamps is both more difficult and less interesting inside a burst compared to calm periods. Furthermore, the parametrization of the model could present some redundancy, in which case very different parameter combinations could correspond to similar point processes. On the other hand, $\delta(\theta, \hat{\theta})$ is far less sensitive to the label assignments in a short bursty period, but a small value of $\delta(\theta, \hat{\theta})$ still indicates excellent performance. Indeed, it shows that the model accurately represents the position of the set of observations in the probability
space and would perform well at predicting the positions of further observations if they had been left unobserved.
The second metric simply aims at verifying convergence. We evaluate the \log-likelihood $\log (\mathcal{L}(\hat{\theta}))$ at our model parameters (and at one high-likelihood draw of the conditional labels), and compare it with the \log-likelihood evaluated with the ground truth parameters and labels $\log (\mathcal{L}(\theta))$.

We report the results of our experiments evaluated with both metrics in Figure 7. The box plot shows that our method has a strong ability to recover the underlying components (SFP and NHPP) based only on the observed timestamps. Larger values of the number of events (n) correspond to smaller values of $\delta(\theta, \hat{\theta})$. Mixtures with higher $P_{N H P P}$ tend to produce fewer bursts and therefore have a more uniform behavior over the whole observed period. Consistently with this, we observe that larger values of $P_{N H P P}$ correspond to smaller values of $\delta(\theta, \hat{\theta})$. The number of transitions $(|\Phi|)$ has a lower impact in comparison to the other parameters', though smaller values of $\delta(\theta, \hat{\theta})$ are associated with fewer transitions. The rightmost graph in Figure 7 shows that $\log (\mathcal{L}(\hat{\theta}))$ is systematically close to $\log (\mathcal{L}(\theta))$, and even surpasses it in more than 80% of the cases. Both metrics' behavior jointly indicate that our method can accurately recover the ground truth based only on the timestamps of the observed mixture process.

B ALGORITHMIC DETAILS AND COMPLEXITY ANALYSIS

```
Algorithm 1 BPoP
INPUT \(T, k^{*}, N_{\theta}\) and \(N_{G i b b s}\)
OUTPUT: \(\mu\) and \(\Lambda\)
    \(n \leftarrow|T|\)
    \(\mu, \Lambda, \theta_{1}, \theta_{2}, \cdots, \theta_{N_{\theta}} \leftarrow \operatorname{warmStarts}\left(T, k^{*}, N_{\theta}\right)\)
    while Not converged do
        for \(i \in\left\{1,2, \cdots, N_{\theta}\right\}\) do
            \(\theta_{i}=\operatorname{GibbsSampler}\left(\theta_{i}, \mu, \Lambda, N_{\text {Gibbs }}\right)\)
        end for
        \(\mu, \Lambda=\operatorname{M-STEP}\left(\theta_{1}, \theta_{2}, \cdots, \theta_{N_{\theta}}\right)\)
    end while
    return \(\mu, \Lambda\)
```

Algorithm 1 describes how to compute μ and Λ for a fixed parameter set k^{*}, N_{θ} and $N_{\text {Gibbs }}$. The last parameter controls how many updates on the latent variables components need to be performed during the E-STEP. In practice, we can decrease $N_{\text {Gibbs }}$ gradually during the EM-Algorithm execution to speed up convergence. Note that we set $N_{\text {Gibbs }}=O(n)$ so that each time stamp is updates a constant number of times.
N_{θ} can be adapted depending on the available computer resources. However a small number proved to be sufficient. We choose a small k^{*} larger than the maximum number of transitions we expect and for each $k \in\left\{0,1, \cdots, k^{*}\right\}$ we draw $N_{\theta} /\left(k^{*}+1\right)$ samples of θ. In the E-STEP, to prevent the model from getting stuck in low-likelihood regions, we performed likelihood-based re-sampling: after a several iterations, we replace the current estimate of the set $\left\{\theta_{1}, \ldots, \theta_{N_{\theta}}\right\}$ by a set of N_{θ} elements drawn with replacement from that set with probabilities proportional to the likelihoods.

Figure 7: Summary of the results of our experiments with synthetic data. Left: $\delta(\theta, \hat{\theta})$ distribution grouped by $\left(\mathbb{E}(|\Phi|), \mathbb{E}\left(P_{N H P P}\right)\right)$. The x-axis shows the expected number of observed events. Right: plot of $\log (\mathcal{L}(\theta)) \times \log (\mathcal{L}(\hat{\theta}))$ with the $y=x$ line in red.

Warm-starts for θ and parameter initialization: we set the initial number of transitions $k=|\Phi|$ as a fixed hyperparameter. Then, we first divide the interval $\left[0, t_{n}\right)$ into n_{k} sub-intervals $I_{1}, \ldots, I_{n_{k}}$ of size t_{n} / n_{k} (here $k<n_{k} \ll n$), i.e. $I_{i}=\left[(i-1) t_{n} / n_{k}, i t_{n} / n_{k}\right)$. For each $i \leq n_{k}$, we define $u_{i}=\sum_{j \leq n} 1_{t_{j} \in I_{i}}$, the number of events belonging to interval I_{i}. Then we sample k sub-intervals $I^{1}, I^{2}, \ldots, I^{k}$ without replacement with $\mathbb{P}\left(I_{i}\right) \propto u_{i}$. We then sample one timestamp from each interval $I^{1}, I^{2}, \ldots, I^{k}$, uniformly, and use the resulting set Φ of k timestapms as the set of our transitions.

To estimate Λ we divide the interval [$0, t_{n}$) in $k+1$ contiguous sub-intervals according to the transitions Φ. Let $\bar{\Phi}=\left\{\bar{\varphi}_{0}, \bar{\varphi}_{1}=\right.$ $\left.\varphi_{1}, \ldots, \bar{\varphi}_{m}=\varphi_{m}, \bar{\varphi}_{m+1}=t_{n}\right\}$ be the list of the elements of $\{0 \cup \Phi \cup$ $\left.t_{n}\right\}$ ordered from smallest to largest starting with $\bar{\varphi}_{0}=0$, and for each $0 \leq j \leq k+1$ we further divide the interval $\left[\bar{\varphi}_{j}, \bar{\varphi}_{j+1}\right)$ into n_{k} contiguous sub-intervals $I_{0}^{j}, I_{1}^{j}, \ldots, I_{n_{k}-1}^{j}$ of equal length. After that we compute, for each j and i, the quantity $u_{i}^{j}=\sum_{o \leq n} 1_{t_{o} \in I_{i}^{j}}$, and sample one sub-interval I_{v}^{j} with $\mathbb{P}(v=i) \propto 1 / u^{j}{ }_{i}$ (except when $u^{j}{ }_{i}=$ 0 in which case $\left.\mathbb{P}(v=i)=0^{6}\right)$ and set $\lambda_{j}=\left(u_{j_{v}} n_{k}\right) /\left(\bar{\varphi}_{j+1}-\bar{\varphi}_{j}\right)$.

To estimate μ and Z, we can now calculate $M:=\left\{m_{1}, m_{2}, \cdots, m_{n}\right\}$, where $m_{i}=\sum_{j=1}^{n_{\phi}} 1_{\varphi_{j}<t_{i}}$. Let $p_{i}=\min \left(\lambda_{m_{i}}\left(\varphi_{m_{i}+1}-\varphi_{m_{i}}\right) /\left|\Delta_{i}\right|, 1\right)$, where $\Delta_{i}=\left\{t_{l} \mid \bar{\varphi}_{m_{i}}<t_{l}<\bar{\varphi}_{m_{i}+1}\right\}$ and draw $z_{i} \sim \operatorname{Bernoulli}\left(1-p_{i}\right)$. Thus, we can now estimate μ based on our estimated sample of the underlying SFP process $\left\{t_{i} \mid z_{i}=1\right\}$, i.e. $\mu=\operatorname{median}\left(\left\{t_{i} \mid z_{i}=1\right\}\right) \mathrm{We}$ now have a value for the parameters Λ, μ and the latent variables $\theta=Z \cup \Phi \cup M$, which concludes the warm start and initialization phase.
Complexity analysis: The execution time of the algorithm is highly dependent on the observed data. Nevertheless, if we restrict the number of iterations of the EM algorithm to $N_{E M} \ll n$, our algorithm has complexity $O\left(N_{E M} N_{G i b b s} n\right)$ (indeed, each component of the likelihood calculations involved in the computation of the conditional probabilities consists of a sum over each event in the interval $\left.\left[t_{i-1}, t_{f(f(i))}\right)\right)$. In the worst case, this interval is the whole of T and the computation complexity for one Gibbs iteration is $O(n)$).

C EXPLICIT COMPUTATION OF THE INTEGRAL I

There exists an explicit formula for the multiple integral

[^4]\[

$$
\begin{equation*}
\mathcal{I}\left(\Omega, t_{b}, t_{e}, m_{b}, m_{e}\right)=\int_{\mathcal{T}} \exp \left(\sum_{j=m_{b}}^{m_{e}}\left(\lambda_{(j+1)}-\lambda_{(j)}\right) x_{\left(j-m_{b}+1\right)}\right) d x \tag{8}
\end{equation*}
$$

\]

where $\mathcal{T}=\left\{x_{1}, \ldots, x_{m_{e}-m_{b}}: t_{b} \leq x_{1} \leq x_{2} \leq \cdots \leq x_{m_{e}-m_{b}} \leq t_{e}\right\}$. For any N and $a=\left(a_{1}, \ldots, a_{N}\right)$ define $G_{a}=G_{a}^{N}=\int_{\mathcal{T}} e^{\sum_{i=1}^{N} a_{i} x_{i}} d x$ where $\mathcal{T}=\left\{x_{1}, \ldots, x_{N}: T_{1} \leq x_{1} \leq x_{2} \leq \cdots \leq x_{m_{e}-m_{b}} \leq T_{2}\right\}$ (where we omit the dependence on T_{1}, T_{2} for notational simplicity). Thus $I\left(\Omega, t_{b}, t_{e}, m_{b}, m_{e}\right)=G_{\left(\lambda_{(j+1)}-\lambda_{(j)}\right.}^{m_{e}-m_{b}}$ and computing G_{a} for any choice of a is enough.

First, we observe that we have the following recurrence relation

$$
\begin{align*}
G_{a_{1}, \ldots, a_{N}}^{N} & =\int_{T_{1}}^{T_{2}} \int_{x_{1}}^{T_{2}} \ldots \int_{x_{N-1}}^{T_{2}} e^{\sum_{i=1}^{N} a_{i} x_{i}} d x_{N} \ldots, d x_{2} d x_{1} \\
& =\int_{T_{1}}^{T_{2}} \int_{x_{1}}^{T_{2}} \ldots \int_{x_{N-2}}^{T_{2}}\left[\frac{e^{T_{2} a_{N}}-e^{a_{N} x_{N-1}}}{a_{N}}\right] d x_{N-1} \ldots d x_{2} d x_{1} \\
& =\frac{e^{T_{2} a_{N}} G_{a_{1}, \ldots, a_{N-1}}^{N-1}}{a_{N}}-\frac{e^{T_{1} a_{N}} G_{a_{1}, \ldots, a_{N-1}+a_{N}}^{N-1}}{a_{N}} \tag{9}
\end{align*}
$$

Based on iteratively applying this recurrence relation, we can get the following formula:

$$
\begin{align*}
& G_{a_{1}, \ldots, a_{N}}^{N}= \\
& e^{T_{1}\left(a_{1}+\ldots+a_{N}\right)}\left(\sum_{\delta \in\{0,1\}^{N}}(-1)^{\sum_{i=1}^{N} \delta_{i}}\right. \\
& \left.\times\left[\frac{\prod_{\left\{i: \delta_{i}=0\right\}} \exp \left(\left(T_{2}-T_{1}\right)\left(a_{i}+\sum_{j=i+1}^{N} a_{j} \prod_{u=i+1}^{j} \delta_{u}\right)\right)}{\prod_{i=1}^{N}\left(a_{i}+\sum_{j=i+1} a_{j} \prod_{u=i+1}^{j} \delta_{u}\right)}\right]\right) \tag{10}
\end{align*}
$$

Whilst the iterative computation in question is reasonably straightforward, we reproduce the details here for the reader's convenience.

Proof of Formula (10). The proof is by induction. Note that for $N=1$, we have indeed $G_{a_{1}}^{N}=\frac{e^{T_{2} a_{1}}}{a_{1}}-\frac{e^{T_{1} a_{1}}}{a_{1}}$ as expected. Suppose the result holds for $N-1$ and let us prove it holds for N.
Note that by the scaling of the formula and the definition of G, it is clear that we can restrict ourselves to the case $T_{1}=0$. Now, by
and
$\frac{e^{T_{2} a_{N}}}{a_{N}} \sum_{\delta \in\{0,1\}^{N-1}}(-1)^{\sum_{i=1}^{N-1} \delta_{i}}\left[\frac{\prod_{\left\{i: \delta_{i}=0\right\}} \exp \left(T_{2}\left(a_{i}+\sum_{j=i+1}^{N-1} a_{j} \prod_{u=i+1}^{j} \delta_{u}\right)\right)}{\prod_{i=1}^{N-1}\left(a_{i}+\sum_{j=i+1}^{N-1} a_{j} \prod_{u=i+1}^{j} \delta_{u}\right)}\right]$

$$
\begin{align*}
& =\frac{1}{a_{N}} \sum_{\delta \in\{0,1\}^{N-1} \times\{0\}}(-1)^{\sum_{i=1}^{N} \delta_{i}}\left[\frac{\prod_{\left\{i: \delta_{i}=0\right\}} \exp \left(T_{2}\left(a_{i}+\sum_{j=i+1}^{N} a_{j} \prod_{u=i+1}^{j} \delta_{u}\right)\right)}{\prod_{i=1}^{N-1}\left(a_{i}+\sum_{j=i+1}^{N-1} a_{j} \prod_{u=i+1}^{j} \delta_{u}\right)}\right] \tag{15}\\
& =\sum_{\delta \in\{0,1\}^{N-1} \times\{0\}}(-1)^{\sum_{i=1}^{N} \delta_{i}}\left[\frac{\prod_{i: \delta_{i}=0}^{\exp \left(T_{2}\left(a_{i}+\sum_{j=i+1}^{N} a_{j} \prod_{u=i+1}^{j} \delta_{u}\right)\right)}}{\prod_{i=1}^{N}\left(a_{i}+\sum_{j=i+1}^{N} a_{j} \prod_{u=i+1}^{j} \delta_{u}\right)}\right] \tag{16}
\end{align*}
$$

$$
\left.\begin{array}{c}
-\frac{1}{a_{n}} \sum_{\delta \in\{0,1\}^{N-1}}(-1)^{\sum_{i=1}^{N-1} \delta_{i}}\left[\frac{\prod_{i: \delta_{i}=0} \exp \left(T_{2}\left(\tilde{a}_{i}+\sum_{j=i+1}^{N-1} \tilde{a}_{j} \prod_{u=i+1}^{j} \delta_{u}\right)\right)}{\prod_{i=1}^{N-1}\left(\tilde{a}_{i}+\sum_{j=i+1}^{N-1} \tilde{a}_{j} \prod_{u=i+1}^{j} \delta_{u}\right)}\right] \\
=\frac{1}{a_{n}} \sum_{\delta \in\{0,1\}^{N-1} \times\{1\}}\left((-1)^{\sum_{i=1}^{N} \delta_{i}}\right. \\
\times \\
\left.\times \sum_{\delta \in\{0,1\}^{N-1} \times\{1\}}\left(\frac{\prod_{i: \delta_{i}=0} \exp \left(T_{2}\left(a_{i}+\sum_{j=i+1}^{N} a_{j} \prod_{u=i+1}^{j} \delta_{u}\right)\right)}{\prod_{i=1}^{N-1}\left(a_{i}+\sum_{j=i+1}^{N} a_{j} \prod_{u=i+1}^{j} \delta_{u}\right)}\right]\right) \\
 \tag{14}\\
\times\left[\frac{(-1)^{\sum_{i=1}^{N} \delta_{i}}}{\prod_{i: \delta_{i}=0} \exp \left(T_{2}\left(a_{i}+\sum_{j=i+1}^{N} a_{j} \prod_{u=i+1}^{j} \delta_{u}\right)\right)}\right. \\
\prod_{i=1}^{N}\left(a_{i}+\sum_{j=i+1}^{N} a_{j} \prod_{u=i+1}^{j} \delta_{u}\right)
\end{array}\right) .
$$

Plugging equations (13) and (15) back into equation (11), we obtain

$$
\begin{equation*}
G_{a_{1}, \ldots, a_{N}}^{N}=\frac{e^{T_{2} a_{N}}}{a_{N}} \sum_{\delta \in\{0,1\}^{N-1}}\left((-1)^{\sum_{i=1}^{N-1} \delta_{i}}\right. \tag{11}
\end{equation*}
$$

$$
=\frac{e^{T_{2} a_{N}}}{a_{N}} \sum_{\delta \in\{0,1\}^{N-1}}\left((-1)^{\sum_{i=1}^{N-1} \delta_{i}}\right.
$$

$$
\left.\times\left[\frac{\prod_{i: \delta_{i}=0} \exp \left(T_{2}\left(a_{i}+\sum_{j=i+1}^{N-1} a_{j} \prod_{u=i+1}^{j} \delta_{u}\right)\right)}{\prod_{i=1}^{N-1}\left(a_{i}+\sum_{j=i+1}^{N-1} a_{j} \prod_{u=i+1}^{j} \delta_{u}\right)}\right]\right)
$$

$$
\left.\times\left[\frac{\prod_{i: \delta_{i}=0} \exp \left(T_{2}\left(a_{i}+\sum_{j=i+1}^{N-1} a_{j} \prod_{u=i+1}^{j} \delta_{u}\right)\right)}{\prod_{i=1}^{N-1}\left(a_{i}+\sum_{j=i+1}^{N-1} a_{j} \prod_{u=i+1}^{j} \delta_{u}\right)}\right]\right)
$$

$$
-\frac{1}{a_{N}} \sum_{\delta \in\{0,1\}^{N-1}}\left((-1)^{\sum_{i=1}^{N-1} \delta_{i}}\right.
$$

$$
-\frac{1}{a_{N}} \sum_{\delta \in\{0,1\}^{N-1}}\left((-1)^{\sum_{i=1}^{N-1} \delta_{i}}\right.
$$

$$
\left.\times\left[\frac{\prod_{i: \delta_{i}=0} \exp \left(T_{2}\left(\tilde{a}_{i}+\sum_{j=i+1}^{N-1} \tilde{a}_{j} \prod_{u=i+1}^{j} \delta_{u}\right)\right)}{\prod_{i=1}^{N-1}\left(\tilde{a}_{i}+\sum_{j=i+1}^{N-1} \tilde{a}_{j} \prod_{u=i+1}^{j} \delta_{u}\right)}\right]\right)
$$

$$
\left.\times\left[\frac{\prod_{i: \delta_{i}=0} \exp \left(T_{2}\left(\tilde{a}_{i}+\sum_{j=i+1}^{N-1} \tilde{a}_{j} \prod_{u=i+1}^{j} \delta_{u}\right)\right)}{\prod_{i=1}^{N-1}\left(\tilde{a}_{i}+\sum_{j=i+1}^{N-1} \tilde{a}_{j} \prod_{u=i+1}^{j} \delta_{u}\right)}\right]\right)
$$

$$
=\sum_{\delta \in\{0,1\}^{N}}\left((-1)^{\sum_{i=1}^{N} \delta_{i}}\right.
$$

$$
\begin{equation*}
\left.\times\left[\frac{\prod_{i: \delta_{i}=0} \exp \left(T_{2}\left(a_{i}+\sum_{j=i+1} a_{j} \prod_{u=i+1}^{j} \delta_{u}\right)\right)}{\prod_{i=1}^{N}\left(a_{i}+\sum_{j=i+1} a_{j} \prod_{u=i+1}^{j} \delta_{u}\right)}\right]\right) \tag{12}
\end{equation*}
$$

1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508

D TABLE OF NOTATIONS

In this section, we provide a table of notations used in this paper. There are a small number of duplicates to aid understanding when the same notation is relevant to different parts of the paper.
\qquad

Notation	Meaning
In the definition of our model process	
t_{1}, t_{2}, \ldots	Event timestamps
$T=\left\{t_{1}, t_{2}, \ldots\right\}$	Set of event timestamps
Δt_{i}	$t_{i}-t_{i-1}$
$\left(\mathcal{H}_{t}\right)_{t \in \mathbb{R}}$	Filtration
\mathcal{H}_{t}	Information realised at time t
SFP	Self-feeding Process
NHPP	Non-homogeneous Poisson Process
MPP	MetaPoisson Process (latent transition process)
z_{i}	Label of i th timestamp
$z_{i}=1$ if	$t_{i} \in \mathrm{SFP}$
$z_{i}=0$ if	$t_{i} \in$ NHPP
$\lambda_{s}\left(T \mid \mathcal{H}_{t}\right)$	Intensity of the Self-feeding Process (SFP)
	$\lambda_{s}\left(T \mid \mathcal{H}_{t}\right)=1 /(\mu / e+g(t)-g(g(t))$)
$g(t)=\left[\max \left(t_{i}: z_{i}=1 \quad \wedge \quad t_{i}<u\right)\right]_{+}$	Timestamp of last SFP process
$\Phi=\left\{\varphi_{1}, \varphi_{2}, \ldots\right\} \subset \mathbb{R}^{+}$	Unobserved 'Metapoisson' (MPP) events
$\lambda_{\phi}(t)=c \lambda_{s}(t)$	Intensity of the latent transition (MPP)
$c \in[0,1]$	Parameter that controls the NHPP transition sensitivity
$\lambda_{p}(t)=\lambda_{m_{t}}$	Intensity of the Non Homogeneous Poisson Process (NHPP)
$m_{t}=\sum_{j=1}^{n_{\phi}} 1_{\varphi_{j}<t}$	Number of Metapoisson transitions occurred so far
$M:=\left\{m_{1}, m_{2}, \cdots, m_{n}\right\}$	set of Metapoisson transitions
	= index of current NHPP intensity
$\lambda_{s}^{+}(t)=\lim _{\delta \rightarrow 0} \lambda_{s}(t+\delta)$	Intensity of SPF immediately after time s
$\lambda_{\phi}^{+}(t)$	Intensity of MetaPoisson immediately after time s
$\lambda_{p}^{+}(t)$	Intensity of NHPP immediately after time s
In the detailed explanation of the generation procedure	
E_{S}	Exponential random variable with parameter $\lambda_{s}^{+}(t)$
E_{ϕ}	Exponential random variable with parameter $\lambda_{\phi}^{+}(t)$
E_{p}	Exponential random variable with parameter $\lambda_{p}^{+}(t)$
$t+E:=t+\min \left(E_{s}, E_{\phi}, E_{p}\right)$	Timestamp of next event or latent transition
In the explanation of our EM-algorithm (E-Step)	
$N(t)=\sum_{i=1}^{n} 1_{t_{i} \leq t}$	Cumulative number of observed events up to time t
$\Phi_{i}:=\left\{\varphi_{j} \mid t_{i-1}<\varphi_{j}<t_{i+1}\right\}$	Set of NHPP transitions between t_{i-1} and t_{i+1}
$M:=\left\{m_{1}, m_{2}, \cdots, m_{n}\right\}$	Set of Metapoisson transitions
$\theta=Z \cup \Phi \cup M$	Set of all latent variables
$\theta_{i}:=\left(\left\{z_{i}, m_{i}\right\} \cup \Phi_{i}\right)$	Latent variables associated to time t_{i}
$\theta_{-i}=\theta \backslash \theta_{i}$	Latent variables except those around t_{i}
$N_{\text {Gibbs }}$	Number of component updates in one iteration of Gibbs algorithm
$\begin{aligned} & \mathcal{L}(\theta)= \\ & \prod_{i=1}^{n} \lambda_{s}\left(t_{i}\right)^{z_{i}} \lambda_{p}\left(t_{i}\right)^{1-z_{i}} \prod_{j=1}^{n_{\phi}} \lambda_{\phi}\left(\varphi_{j}\right) \times e^{-\int_{0}^{t_{n}} \lambda_{s}(t)+\lambda_{\phi}(t)+\lambda_{p}(t) d t} \end{aligned}$	Likelihood of our model
$\mathcal{L}(\theta)=\mathcal{L}_{S}(\theta) \mathcal{L}_{\phi}(\theta) \mathcal{L}_{p}(\theta)$	Factorized form of likelihood
$\mathcal{L}_{s}(\theta)=\prod_{i=1}^{n} \lambda_{s}\left(t_{i}\right)^{z_{i}} e^{-\int_{0}^{t_{n}} \lambda_{s}(t) d t}$	SFP component of likelihood
$\mathcal{L}_{\phi}(\theta)=\prod_{j=1}^{n_{\phi}} \lambda_{\phi}\left(\varphi_{j}\right) \times e^{-\int_{0}^{t_{n}} \lambda_{\phi}(t) d t}$	Metapoisson component of likelihood
$\mathcal{L}_{p}(\theta)=\prod_{i=1}^{n} \lambda_{p}\left(t_{i}\right)^{1-z_{i}} \times e^{-\int_{0}^{t_{n}}} \lambda_{p}(t) d t$	NHPP component of likelihood
$f(u)=\operatorname{argmin}_{j}\left\{t_{j} \mid t_{u}<t_{j} \wedge z_{j}=1\right\}$	index of the next SFP event after t_{u}
$\Omega_{z, m}:=\theta_{-i} \cup\{z, m\}$	All latent variables excluding Φ_{i} $\theta=\Omega_{z, m} \cup \Phi_{i}$

$\mathbb{P}\left(z_{i}=z, m_{i}=m \mid T, \theta_{-i}\right) \propto \mathcal{L}_{s}^{i}\left(\Omega_{z, m}\right) \mathcal{L}_{\phi}^{i}\left(\Omega_{z, m}\right) \mathcal{L}_{p}^{i}\left(\Omega_{z, m}\right)$	conditional distribution of $\left(z_{i}, m_{i}\right)$ given all variables except θ_{-i}
$\begin{aligned} & \mathcal{L}_{s}^{i}\left(\Omega_{z, m}\right) \\ & \mathcal{L}_{\phi}^{i}\left(\Omega_{z, m}\right) \\ & \mathcal{L}_{p}^{i}\left(\Omega_{z, m}\right):=\int_{\Phi_{i} \in F_{\Omega_{z, m}}} \mathcal{L}_{p}^{i}\left(\Omega_{z, m} \cup \Phi_{i}\right) d \Phi_{i} \end{aligned}$	component of the SFP likelihood in the interval $\left[t_{i-1}, t_{f(f(i))}\right)$ corresponding to $z_{i}=z, m_{i}=m$ component of the MPP likelihood in the interval $\left[t_{i-1}, t_{f(f(i))}\right)$ corresponding to $z_{i}=z, m_{i}=m$ component of the NHPP likelihood in the interval $\left[t_{i-1}, t_{f(f(i))}\right)$ corresponding to $z_{i}=z, m_{i}=m$
$F_{\Omega_{z, m}}$	Set of Φ_{i} s compatible with the values of T, M when m_{i} is set to the index m (cf. explanation below equation (3))
C	$e^{t_{i-1} \lambda_{p}\left(t_{t-i}\right)} e^{-t_{i+1} \lambda_{p}\left(t_{t+i}\right)} e^{-\int_{t_{i+1}}^{t_{f(f(i))}} \lambda_{p}(t) d t}$ (normalization constant in expression of $\mathcal{L}_{p}^{i}\left(\Omega_{z, m}\right)$, cf. equation (4))
$\mathcal{T}=\left\{x=\left(x_{1}, \ldots, x_{m_{e}-m_{b}}\right) \mid t_{b} \leq x_{1} \leq x_{2} \leq \cdots \leq x_{m_{e}-m_{b}} \leq t_{e}\right\}$	Domain of possible MPP incremental positions between t_{b} and t_{e} assuming m_{b} MPP events at t_{b} and m_{e} at t_{e}
$I\left(\Omega, t_{b}, t_{e}, m_{b}, m_{e}\right)$	$\int_{\mathcal{T}} e^{\sum_{j=m_{b}}^{m_{e}}\left(\lambda_{(j+1)}-\lambda_{(j)}\right) x_{\left(j-m_{b}+1\right)}} d x$
$\begin{aligned} & \Phi_{i}^{-}:=\left\{\varphi_{j} \mid t_{i-1}<\varphi_{j}<t_{i}\right\} \\ & \Phi_{i}^{+}:=\left\{\varphi_{j} \mid t_{i}<\varphi_{j}<t_{i+1}\right\} \end{aligned}$	Set of MPP transitions between t_{i-1} and t_{i} Set of MPP transitions between t_{i} and t_{i+1}
$N_{a, b}=\#\left(j: \varphi_{j} \in[a, b]\right)$	Number of MPP between a and b
In the explanation of our EM-algorithm (M-Step)	
$\begin{aligned} & N_{\theta} \\ & \left\{\theta_{1}, \theta_{2}, \cdots, \theta_{N_{\theta}}\right\} \end{aligned}$	Number of samples of θ drawn from conditional distribution of θ given the current estimate of $\{\mu, \Lambda\}$ Samples of θ
$\hat{\mu}=\left(\sum_{j=1}^{N_{\theta}} \operatorname{argmin}_{\mu} \log \left(\mathcal{L}_{s}\left(\theta_{j}\right)\right)\right) / N_{\theta}$,	Update for μ
$\begin{aligned} & \bar{\Phi} \\ & \text { Thus: } \end{aligned}$	Ordered list of the elements of $\left\{0 \cup \Phi \cup t_{n}\right\}$ $\bar{\varphi}_{0}=0$, and $\bar{\varphi}_{m_{t}+1}=t_{n}$
$U_{j}(\theta)=\sum_{j} 1_{t_{j} \in\left[\bar{\varphi}_{j}, \bar{\varphi}_{j+1}\right) \wedge z_{j}=0}$	Number of observed timestamps between j th and $j+1$ th (observed and non observed) events
In the warm start procedure	
$I_{i}=\left[(i-1) t_{n} / n_{k}, i t_{n} / n_{k}\right)$	i th sub interval in the split of [$0, t_{n}$)
$u_{i}=\sum_{j \leq n} 1_{t_{j} \in I_{i}}$	the number of events belonging to interval I_{i}
$\begin{aligned} & I^{1}, I^{2}, \ldots, I^{k} \\ & k \end{aligned}$	intervals subsampled without replacement with $\mathbb{P}\left(I_{i}\right) \propto u_{i}$ hyperparameter
Φ	Set of transitions sampled uniformly from each of $I^{1}, I^{2}, \ldots, I^{k}$
$I_{0}^{j}, I_{1}^{j}, \ldots, I_{n_{k}-1}^{j}$	n_{k} sub-intervals of equal length partitioning [$\bar{\varphi}_{j}, \bar{\varphi}_{j+1}$)
$u_{i}^{j}=\sum_{o \leq n} 1_{t_{o} \in I_{i}^{j}}$	Number of observed events in I_{i}^{j}
I_{v}^{j}	Interval subsampled with $\mathbb{P}(v=i) \propto 1 / u^{j}{ }_{i}$ (except when $u^{j}{ }_{i}=0$ in which case $\mathbb{P}(v=i)=0$)
$\begin{aligned} \lambda_{j} & =\left(u_{j} n_{k}\right) /\left(\bar{\varphi}_{j+1}-\bar{\varphi}_{j}\right) \\ p_{i} & =\min \left(\lambda_{m_{i}}\left(\varphi_{m_{i}+1}-\varphi_{m_{i}}\right) /\left\|\Delta_{i}\right\|, 1\right) \\ \Delta_{i} & =\left\{t_{l} \mid \bar{\varphi}_{m_{i}}<t_{l}<\bar{\varphi}_{m_{i}+1}\right\} \end{aligned}$	Initial value of λ_{j} after warm start Probability parameter of Bernouilli used to generate warm start labels Number of (observed) events between $\bar{\varphi} m_{i}$ and $\bar{\varphi} m_{i}+1$
$\mu=\operatorname{median}\left(\left\{t_{i} \mid z_{i}=1\right\}\right)$	Initial value of μ after warm start
In the calculation of the integral	
$\mathcal{I}\left(\Omega, t_{b}, t_{e}, m_{b}, m_{e}\right)$	$\int_{\mathcal{T}} e^{\sum_{j=m_{b}}^{m_{e}}\left(\lambda_{(j+1)}-\lambda_{(j)}\right) x_{\left(j-m_{b}+1\right)}} d x$
$\begin{aligned} & \mathcal{T} \\ & G_{a}=G_{a}^{N} \end{aligned}$	$\begin{aligned} & \left\{x_{1}, \ldots, x_{N}: T_{1} \leq x_{1} \leq x_{2} \leq \cdots \leq x_{m_{e}-m_{b}} \leq T_{2}\right\} \\ & \int_{\mathcal{T}} e^{\sum_{i=1}^{N} a_{i} x_{i}} d x \end{aligned}$
$\left.I\left(\Omega, t_{b}, t_{e}, m_{b}, m_{e}\right)=G_{\left(\lambda_{(j+1)}-\lambda_{(j)}\right)}^{m_{e}-m_{b}}\right)_{j \leq m_{e}-m_{b}}$	Expression of target I as a function of the more general quantity G_{a}
$\delta \in\{0,1\}^{n}$	Dummy variable for label assignments
In the real data analysis	
$[0,1] \ni \kappa=\int_{a}^{b} \frac{\lambda_{p}(t)(b-a)^{-1}}{\lambda_{p}(t)+\lambda_{s}(t)} d t$	Absolute stability

1741 1742	$[0,1] \ni \tilde{\kappa}=\frac{\int_{a}^{b} \lambda_{p}(t) d t}{\int_{a}^{b}\left(\lambda_{p}(t)+\lambda_{s}(t)\right) d t}$	Relative stability	799 800
1743	$\lambda\left(t \mid \mathcal{H}_{t}\right)=\lambda+\sum_{t_{i}<t} K\left(t-t_{i}\right)$	Hawkes process intensity function	801
1744	K	Kernel function	802
1745	$R_{\text {Hawkes }}^{2}$	Determination coefficient for Hawkes model	803
1746	R_{S}^{2}	Determination coefficient of SFP component of [18]	804
1747 1748	$R_{H P P}^{2}$	Determination coefficient of Homogeneous Poisson Process (HPP) component of BuSca [18]	805 806
1749	$R_{B P}^{2}=\left(R_{S}^{2}+R_{H P P}^{2}\right) / 2$	Final determination coefficient of BuSca [18]	807
1750	$R_{S F P}^{2}$	determination coefficient of SFP component of BPoP	808
1751	$\mathrm{R}_{\text {NHPP }}{ }_{i}^{2}$	Determination coefficient for LR problem predicting $N(t)$ from t on	809
1752		$\left[\bar{\varphi}_{i}, \bar{\varphi}_{i+1}\right)$	10
1753	$R_{N H P P}^{2}=\sum_{i}\left(\bar{\varphi}_{i+1}-\bar{\varphi}_{i}\right) R_{N H P P}{ }_{i}^{2} / t_{n}$	Determination coefficient for NHPP component of BPoP	811
1754	$R_{\mathbf{B P o} \mathbf{P}}^{2}=\left(R_{S F P}^{2}+R_{N H P P}^{2}\right) / 2$	Overall determination coefficient of BPoP	12
755		ata generation	
57	$P_{N H P P}=\sum_{i=1}^{n}\left(1-z_{i}\right) / n$	Proportion of observed events that belong to NHPP	
1758	$\left(\mathbb{E}(n), \mathbb{E}(\|\Phi\|), \mathbb{E}\left(P_{N H P P}\right)\right)$	Quantities of interest to pick interesting configurations of hyperparameters μ, Λ and c	816
1760	$\delta(\theta, \hat{\theta})=\int_{0}^{t_{n}} \frac{\left\|\left(\lambda_{s}(t \mid \theta)+\lambda_{p}(t \mid \theta)\right)-\left(\lambda_{s}(t \mid \hat{\theta})+\lambda_{p}(t \mid \hat{\theta})\right)\right\|}{\lambda_{s}(t \mid \theta)+\lambda_{p}(t \mid \theta)} d t .$	Performance measure (weighted accuracy of recovered labelling)	818
1762			1820
1763			1821
1764			1822
1765			1823
1766			1824
1767			1825
1768			1826
1769			1827
1770			1828
1771			1829
1772			1830
1773			1831
1774			1832
1775			1833
1776			1834
1777			1835
1778			1836
1779			1837
1780			1838
1781			1839
1782			1840
1783			1841
1784			1842
1785			1843
1786			1844
1787			1845
1788			1846
1789			1847
1790			1848
1791			1849
1792			1850
1793			1851
1794			1852
1795			1853
1796			1854
1797			1855
1798			1856

[^0]: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
 Conference'17, July 2017, Washington, DC, USA
 © 2023 Association for Computing Machinery.
 ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $\$ 15.00$
 https://doi.org/10.1145/nnnnnnn.nnnnnnn

[^1]: ${ }^{1}$ Indeed, one cannot simply optimize over it since larger c allows for far more transitions and makes the model prone to overfitting

[^2]: ${ }^{2}$ Those properties follow from the fact that the conditional distributions considered all have full support, as can be the seen below.

[^3]: ${ }^{3}$ Available at http://stuff.metafilter.com/infodump
 ${ }^{4}$ Available at: http://digg.com
 ${ }^{5}$ Available at: https://www.cs.cmu.edu/~./enron/

[^4]: ${ }^{6}$ The idea is to avoid picking an interval with a burst so that we can estimate the background value of λ

