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Unraveling the Dynamics of Stable and Curious Audiences in
Web Systems
Anonymous Author(s)

ABSTRACT
In this paper, we propose BPoP (Burst-induced Poisson Process),
a parsimonious model to analyze time series, such as Twitter feeds
or Youtube search queries. BPoP is able to disentangle the slowly-
varying regular activity of the stable audience from the curious audi-
ence activity occurring in bursts such as viral threads. Our model is
a mixture two hidden and interacting processes. The first component
is a self-feeding-process (SFP), and the second is a stochastically
driven Poisson process with a random step function as intensity
function, whose transitions are caused by the bursty behavior of the
first component. The SFP generates a bursty behavior, corresponding
to viral threads caused by sudden external events, whereas the non-
homogeneous Poisson process models normal background behavior
that is influenced only by the overall popularity of the topic (the
stable audience). We performed extensive empirical work that shows
that our model fits and characterizes a large number of real datasets
with better results than state-of-art models. More importantly, we
show that BPoP is able to quantify the stable audience of media
channels over time, which may serve as a good indicator for their
popularity.

ACM Reference Format:
Anonymous Author(s). 2023. Unraveling the Dynamics of Stable and Curious
Audiences in Web Systems . In Proceedings of ACM Conference (Confer-
ence’17). ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Why do content creators on YouTube frequently request their sub-
scribers to enable all notifications? This practice stems from their
awareness that not all subscribers are regular viewers of their chan-
nels [1], despite the argument that the primary determinant of sus-
tained interest lies in the number of subscriptions a channel gar-
ners [2, 3]. In fact, the popularity dynamics of online items can
be explained by several endogenous and exogenous factors, which
include the quality of the content [4, 5], their metadata [6], their
age [7], the recommendation algorithm and its rank on keyword-
based queries [8], promotions [9], and social network effects [4, 10].

Accurately predicting the enduring appeal of online content re-
mains an exceptionally challenging task due to the distinct patterns
exhibited in the popularity dynamics of online items [11–13]. These
dynamics often involve one or more peaks of popularity bursts that
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Figure 1: Two example time series that motivate the pro-
posed time-series model. Left: Michael Jackson (Jan/01/2008
to Dec/31/2010). Right: Barack Obama (Jul 20 2015 Jul 19 2018).
The data is taken from Google Trend (country: USA; search
engine: Youtube). A description of the results is given in the
main text below.

intermingle with the regular and stable audience of the content.
Existing literature predominantly focuses on supervised and feature-
based approaches for predicting long-term popularity [5, 9, 13–15],
while some models overlook the bursty nature of popularity dynam-
ics [16–18]. Moreover, these approaches aim to forecast an item’s
overall popularity, taking into account the influence of exogenous
factors such as media exposure and virality on social media.

Unlike previous studies, this paper introduces a novel approach
that (1) distinguishes between popularity bursts and the consistent
and stable audience of content, and (2) investigates the underlying
dynamics of these audiences. We specifically focus on differentiating
two audience types: the curious audience, attracted by external and
viral events such as gossip [9, 19, 20], and the stable audience, rep-
resenting stable viewership. Empirical evidence reveals that content
such as keyword-discovered videos [7], popular TV episodes, and
music videos [4] maintains steady popularity over time, dominated
by the stable audience. On the other hand, news, sports, and movie
content often undergo rapid popularity surges followed by quick de-
clines, mostly due to temporally limited events (e.g. breaking news).
In these cases, the curious audience tends to prevail over the stable
audience.

The primary challenge in distinguishing between these audience
types arises from the lack of individual labels that distinguish stable
and curious viewers. Instead, we typically only have the total number
of viewers for an observed random series of events (RSE), which
is a combination of both hidden processes associated with the two
types of audiences. Disentangling these two audience types poses
difficulties, particularly because during viral events, curious users
tend to dominate the channel’s activity, leading to a burst in the
overall RSE [21–23]. Such bursts can become so prominent that they
completely obscure the presence of the stable audience during these
events. To accurately identify and quantify the stable audience, it

1
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becomes essential to pinpoint the timestamps associated with these
bursts. However, this task is especially challenging as the activity
from the stable audience remains unlabelled and gets mixed with
the bursts.

Another significant challenge arises from the potential for the
stable audience to modify its typical behavior in response to bursts
or external events [24–30]. For instance, the unexpected death of
Michael Jackson in June 2009 triggered a surge in media and web
activity, leading to increased music sales, video views, and reactions
in posts and comments. During this period, both existing and new
fans engaged with Jackson’s work, transforming him into an endur-
ing musical icon. This behavior is illustrated in the left-hand side of
Figure 1, where the blue line represents the cumulative web activ-
ity associated with Michael Jackson’s RSE. Initially, it displayed a
relatively constant growth rate until his death (vertical black line),
followed by a sudden spike in interest. Over time, the blue line
returned to a consistent growth rate. We will illustrate how to distin-
guish between two types of web activities during such events: (1)
regular stable audience activity (yellow line) and (2) activity driven
by unexpected events generated by the curious audience (green line).
Notably, the yellow curve changed its slope after Jackson’s unex-
pected death, marking a significant transition event that not only led
to a short-term burst of activity but also permanently altered the sta-
ble audience [27, 30]. The revival of his songs, tribute notes, and the
younger generation’s discovery of Jackson’s work contributed to a
sustained increase in web interaction. Conversely, the end of Barack
Obama’s presidential term (right-hand side of Figure 1) resulted in
reduced political activity and a decline in mentions.

Point processes form a statistical framework to learn and infer
about RSEs [31, 32]. There are two contrasting approaches in this
domain. One focuses on self-exciting point processes, which model
correlations between past and future events [19, 33, 34]. On the
other hand, the homogeneous Poisson process and its variants have
also been deemed suitable [19, 35–37]. This divergence has led to
extensive research examining the diversity of human actions. For
example, studies have found that Twitter hashtag activity can be
continuous, periodic, or concentrated around a single peak [38].
Similarly, research on YouTube videos has shown that the current
tweeting rate and tweet volume since a video’s upload are crucial
parameters for identifying its virality or popularity [39]. Additionally,
the popularity of YouTube videos can undergo multiple phases of
growth and decline, likely influenced by various background random
processes superimposed on bursty behavior [24].

Therefore, in theory, point processes could be used to solve the
problem of estimating the stable audience of online items, but exist-
ing models are not appropriate for this particular setting: they focus
on different aspects of RSE characterization, and do not provide
methods to identify and measure burst-induced changes in back-
ground popularity. While Poisson processes (PPs) [36, 37] can easily
estimate the stable audience when all incoming events arrive at a
fixed and predictable rate, they fail to mimic the bursts of events
seen in real data. On the other hand, self-exciting processes, such
as Hawkes and Wold processes, are able to capture the correlations
between consecutive events that generate bursts of activity, but exist-
ing approaches do not model the time-varying nature of the stable
audience [18, 20, 30, 40–43].

To address these concerns, we propose the Burst-induced Pois-
son Process (BPoP) model, which is able to flexibly incorporate
dependencies between the two hidden and underlying point pro-
cesses involving the stable audience and the curious. We show that
BPoP mimics the bursts of events seen in real data and is also
able to efficiently capture the time-varying background rates that
realistically represent the stable audience. Our main contributions
are: (a) A New Model, namely BPoP, which is able to disentangle
the slowly-varying regular activity of the stable audience from the
curious activity occurring in bursts. This model does not depend
on hard-to-get external information but uses only random series
of events (RSEs) (Section 2); (b) An EM algorithm to cope with
our intensity function’s complex dependence on the history of the
process (Section 3); (c) Novel findings describing and quantifying
the stable audience for eleven real world data containing more than
a hundred thousand RSEs (Section 4). (d) Extensive empirical in-
vestigations have demonstrated that BPoP consistently outperforms
alternative models in fitting both real and synthetic data (Section 5).

2 THE BPOP MODEL
Formal construction: filtrations are formal constructions in proba-
bility theory required for the formal description of time-dependent
processes. Consider a general continuous-time Markov process
adapted to the filtration (H𝑡 )𝑡 ∈R+ : H𝑡 represents the information
that is realised at time 𝑡 . Let 𝑁 (𝑎, 𝑏) be the random number of events
in (𝑎, 𝑏]. The conditional intensity rate function characterizes the dis-
tribution and is given by _(𝑡 |H𝑡 ) = limℎ→0 E (𝑁 (𝑡, 𝑡 + ℎ) |H𝑡 ) /ℎ.

Figure 2: The Burst-induced Poisson Process (BPoP) model. The
curious (SFP) and stable audience (NHPP) labels, as well as the
transitions (events of MPP), are not observed.

Figure 2 shows the main idea of BPoP. We observe the point
process timestamps 0 < 𝑡1 < 𝑡2 < . . . of events up to a time 𝑡
(depicted as blue dots in the fourth row). We assume that these
events are a mixture of events coming from the stable audience
and the curious audience, which are two dependent point processes,
represented as yellow and green dots in the first and third rows,
respectively. On one hand, we model the curious audience generating
the occasional bursts as a Self-Feeding process (SFP) [18, 33, 43].
SFPs are simple self-exciting processes, and their intensity function
is given by _𝑠 (𝑡 |H𝑡 ) = 1/(`/𝑒 + Δ𝑡𝑖 ) (where Δ𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1, 𝑡𝑖 =

max𝑘 {𝑡𝑘 : 𝑡𝑘 ≤ 𝑡} and ` > 0), exhibiting strong bursty behavior.
On the other hand, the events associated with the stable audience
are modelled by a second process, the classical non-homogeneous
Poisson process (NHPP), shown in the third row. A third underlying
meta Poisson process (MPP) controls the times when the stable
audience (or NHPP) transitions occur. These transitions are shown
as white dots in the second row in Figure 2. The intensity of the
meta Poisson process generating the transitions is proportional to the
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intensity of the SFP process, which acts as a soft proxy for “whether
a burst is currently occurring”.
Remark: The main difficulty with this model is that we only observe
the blue dots in the fourth row. The labels associated with each event
(the green and yellow colors) and the transitions (the white dots) are
not directly observed.

Therefore, our BPoP model involves the combination of an SFP,
representing the curious audience, and a NHPP, representing the
stable audience, which interact with each other. At time 𝑡 , the his-
tory of the process is composed of the observed event timestamps
{𝑡1, 𝑡2, . . .} < 𝑡 , unobserved labels {𝑧1, 𝑧2, . . .} as well as unobserved
MPP events {𝜑1, 𝜑2, . . .}, which represent the transitions. We use
the convention that 𝑧𝑖 = 0 if 𝑡𝑖 ∈ NHPP and 𝑧𝑖 = 1 if 𝑡𝑖 ∈ SFP.
Thus, BPoP is governed by the following three intensity functions:
(1) the SFP intensity _𝑠 (𝑡) = 1/[(𝑔(𝑡) − 𝑔(𝑔(𝑡))) + `/𝑒] where
𝑔(𝑢) = [max(𝑡𝑖 : 𝑧𝑖 = 1 ∧ 𝑡𝑖 < 𝑢)]+ denotes the last SFP event
before 𝑡 , with the convention that 𝑔(𝑡) = 0 if �𝑖 : 𝑡𝑖 ≤ 𝑡 ∧ 𝑧𝑖 = 1
and ` > 0 is the SFP parameter; (2) _Φ (𝑡) = 𝑐_𝑠 (𝑡), where 𝑐 ∈ [0, 1]
is a parameter that controls the NHPP transition sensitivity; and
(3) _𝑝 (𝑡) = _𝑚𝑡

, where Λ = {_0, _1, _2, · · · } is an infinite set
of positive numbers (parameters) and,𝑚𝑡 =

∑𝑛𝜙
𝑗=1 1𝜑 𝑗<𝑡 . Similarly

we can define _+𝑠 (𝑡) = lim𝛿→0 _𝑠 (𝑡 + 𝛿) (resp. _+
𝜙
(𝑡) and _+𝑝 (𝑡)) as

the intensity of the SFP (resp. MPP and NHPP) immediately after
𝑡 . Thus, to generate the next time stamp, we first generate three
exponential variables 𝐸𝑠 , 𝐸𝜙 and 𝐸𝑝 with intensities _+𝑠 (𝑡), _+𝜙 (𝑡)
and _+𝑝 (𝑡) respectively. Then, the next event will take place at 𝑡 + 𝐸,
where E=min(𝐸𝑠 , 𝐸𝜙 , 𝐸𝑝 ), and it will belong to the SFP (resp. NPHH,
MPP) component if 𝐸 = 𝐸𝑠 (resp. 𝐸𝜙 , 𝐸𝑝 ). Likewise, we continue
generating the rest of the process from time 𝑡 + 𝐸.

Considering the described generative model we aim to infer the
parameters of BPoP. When performing inference, 𝑐 is set as a hy-
perparameter1 and the parameters Λ, ` are determined via maximum
likelihood. To optimize the likelihood, we will use the EM algorithm,
relying on Gibbs sampling in the E-step. However, the EM algorithm
in the case of point processes requires great care, since the events are
not independent data and the usual derivations are not appropriate.

3 FITTING USING EM
Our optimization approach to fitting the model relies on the EM
algorithm [44, 45]. The EM algorithm represents a broad class of
alternating optimization methods used to estimate the maximum
likelihood estimate of parameters \ in statistical models involving
unobserved latent variables 𝑍 . The strategy consists of two steps:
(1) the E-step estimates the conditional distribution of the latent
variables (given the observations) based on the current estimate of
the parameters; (2) the M-step computes the maximum likelihood
estimate of the parameters based on the current estimate of the
latent distribution. These two steps are performed alternately until
convergence. In our specific case, the latent variables are the labels
𝑧𝑖 (SFP/curious versus Poisson/stable) of the observed timestamps
and the transitions𝑚𝑖 , while the parameters are the _’s and the `. In
this context, since the conditional distribution of the labels (given

1Indeed, one cannot simply optimize over it since larger 𝑐 allows for far more transitions
and makes the model prone to overfitting

the observations and the parameters) is not analytically tractable, we
estimate it using Gibbs sampling [46].

In this section, we compute the likelihood for our model, the
marginal conditional probabilities required for Gibbs simulation,
and present the overall details of our approach. To do that, we
must first introduce some notation. Let 𝑇 = {𝑡1, 𝑡2, · · · , 𝑡𝑛} be
the observed event timestamps from the mixture of the SFP (cu-
rious) and the NHPP (stable audience). Also, let 𝑁 (𝑡) = ∑𝑛

𝑖=1 1𝑡𝑖 ≤𝑡
be a function that computes the cumulative number of events up
to time 𝑡 . The number of transitions that occurred before 𝑡𝑖 is
given by 𝑀 := {𝑚1,𝑚2, · · · ,𝑚𝑛} , where 𝑚𝑖 =

∑𝑛𝜙
𝑗=1 1𝜑 𝑗<𝑡𝑖 ,

and the set of NHPP transitions between 𝑡𝑖−1 and 𝑡𝑖+1 is given by
Φ𝑖 := {𝜑 𝑗 |𝑡𝑖−1 < 𝜑 𝑗 < 𝑡𝑖+1}. Finally, we set \ = 𝑍 ∪ Φ ∪ 𝑀 (the
latent variables), \−𝑖 = \ \ \𝑖 where \𝑖 := ({𝑧𝑖 ,𝑚𝑖 } ∪ Φ𝑖 ). Please
consult the Appendix for a table of notation.
E-Step: Here we will explain how to use Gibbs sampling to draw a
set of latent variables 𝑍 , 𝑀 and Φ (collectively referred to as \ ) from
the conditional distribution given a fixed set of parameters ` and Λ.
Gibbs sampling is a general statistical method which allows one to
draw samples from complicated high-dimensional distributions. To
draw a sample from a distribution 𝑝 on R𝑑 , we start with an arbitrary
vector 𝑥 ∈ R𝑑 , and proceed to iteratively replace each coordinate 𝑥𝑖
(𝑖 ≤ 𝑑) by a sample from the conditional distribution of 𝑥𝑖 given the
current values of the other coordinates 𝑥 𝑗 ( 𝑗 ≠ 𝑖). In many situations,
the conditional distribution is easier to compute than the multivariate
probability density function (PDF) due to the intractability of the
calculation of the multivariate normalization constant. It is known
that under mild conditions, after convergence, Gibbs sampling leads
to a sample from the original multivariate distribution 𝑝 [46]. In
our model, the distribution to estimate is the latent joint distribution
of the labels 𝑧𝑖 and transitions𝑚𝑖 . The distribution is proportional
to the corresponding likelihood, but the normalization constant is
intractable. On the other hand, the conditional marginal distributions
are easy to compute, making Gibbs sampling a practical solution.

We start with an initialized value for \ , and we perform a large
number 𝑁Gibbs of updates on its components. At each update step,
we pick 𝑖 ≤ 𝑛 and update the value of the component \𝑖 according to
the conditional distribution of \𝑖 given the current value of \−𝑖 (and,
as always, the value of 𝑇 ). After a large number of iterations, this
procedure yields a sample whose distribution is approximately that
of a sample of \ given 𝑇 only. Indeed, the distribution in question is
the only stationary distribution of the Markov chain corresponding
to the updates, as long as the chain is aperiodic and irreducible2.
To perform this procedure, we need to compute the conditional
probability P(\𝑖 |𝑇, \−𝑖 ) for any 𝑖, \𝑖 , \−𝑖 .

We will do that in two steps: first, we compute the conditional
probability P(𝑧𝑖 ,𝑚𝑖 |𝑇, \−𝑖 ), and second, we compute the conditional
probability density function of Φ𝑖 given \−𝑖 ,𝑇 and 𝑚𝑖 , 𝑧𝑖 . Those
conditional probabilities and densities are proportional to the corre-
sponding likelihoods. Note that we have the following expression
for the likelihood of our model L(\ ) =∏𝑛

𝑖=1 _𝑠 (𝑡𝑖 )𝑧𝑖_𝑝 (𝑡𝑖 )1−𝑧𝑖
∏𝑛𝜙

𝑗=1 _𝜙 (𝜑 𝑗 ) × 𝑒
−

∫ 𝑡𝑛

0 _𝑠 (𝑡 )+_𝜙 (𝑡 )+_𝑝 (𝑡 )𝑑𝑡 .
(1)

2Those properties follow from the fact that the conditional distributions considered all
have full support, as can be the seen below.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 3: A: Start: behaviour of SFP intensity function given
that label of 𝑡𝑖 is unknown (red dot). Green dots refer to SFP
events while yellow ones are NHPP events; B: Behaviour of SFP
intensity function given that 𝑡𝑖 ∈ NHPP; C: Behaviour of SFP
intensity function given that 𝑡𝑖 ∈ NHPP.

This naturally factorizes asL(\ ) = L𝑠 (\ )L𝜙 (\ )L𝑝 (\ ) whereL𝑠 (\ )
L𝜙 (\ ) and L𝑝 (\ ) are, respectively, the components of the likeli-
hood function (evaluated at \ ) corresponding to the SFP, MPP and

NHP components: L𝑠 (\ ) =
∏𝑛

𝑖=1 _𝑠 (𝑡𝑖 )𝑧𝑖 𝑒
−

∫ 𝑡𝑛

0 _𝑠 (𝑡 )𝑑𝑡 . L𝜙 (\ ) and
L𝑝 (\ ) are defined similarly.

A key observation now is that the factors in (1) corresponding to
the intervals (0, 𝑡𝑖−1] and (𝑡𝑓 (𝑓 (𝑖)) , 𝑡𝑛] do not depend on the values
{𝑧,𝑚}, where 𝑓 (𝑢) = argmin𝑗 {𝑡 𝑗 |𝑡𝑢 < 𝑡 𝑗 ∧ 𝑧 𝑗 = 1} denotes the
index of the next SFP event after 𝑡𝑢 . Indeed, whether 𝑡𝑖 is an SFP or
Poisson event only influences the SFP intensity of the next two SFP
events. Therefore, we can write equivalently:

P(𝑧𝑖 = 𝑧,𝑚𝑖 =𝑚 |𝑇, \−𝑖 ) ∝ L𝑖
𝑠 (Ω𝑧,𝑚)L𝑖

𝜙
(Ω𝑧,𝑚)L𝑖

𝑝 (Ω𝑧,𝑚), (2)

where L𝑖
𝑠 (Ω𝑧,𝑚) (resp. L𝑖

𝜙
(Ω𝑧,𝑚) and L𝑖

𝑝 (Ω𝑧,𝑚)) corresponds to
the component of the likelihood corresponding the SFP (resp. MPP,
NHPP) and to the interval [𝑡𝑖−1, 𝑡𝑓 (𝑓 (𝑖)) ) and Ω𝑧,𝑚 := \−𝑖 ∪ {𝑧,𝑚}.
Thus \ = Ω𝑧,𝑚 ∪ Φ𝑖 and we have

P(𝑧𝑖 = 𝑧,𝑚𝑖 =𝑚 |𝑇, \−𝑖 ) ∝
∫
Φ𝑖 ∈𝐹Ω𝑧,𝑚

L(Ω𝑧,𝑚 ∪ Φ𝑖 )𝑑Φ𝑖
∝ L𝑖

𝑠 (Ω𝑧,𝑚)L𝑖
𝜙
(Ω𝑧,𝑚)

∫
Φ𝑖 ∈𝐹Ω𝑧,𝑚

L𝑖
𝑝 (Ω𝑧,𝑚 ∪ Φ𝑖 )𝑑Φ𝑖 ,

(3)

where we can write L𝑖
𝑠 (Ω𝑧,𝑚) for L𝑖

𝑠 (Ω𝑧,𝑚 ∪ Φ𝑖 ) for any Φ𝑖 since
L𝑖
𝑠 doesn’t depend on Φ𝑖 and 𝐹Ω𝑧,𝑚

is the set of Φ𝑖s compatible with
the values of 𝑇,𝑀 when 𝑚𝑖 is set to the index 𝑚: for instance, if
𝑚𝑖−1 =𝑚𝑖+1, then there are no transitions in the interval [𝑡𝑖−1, 𝑡𝑖+1),
so 𝐹Ω𝑧,𝑚

= {∅}. On the other hand, if𝑚𝑖+1−𝑚𝑖−1 = 1 and𝑚 =𝑚𝑖+1,
𝐹Ω𝑧,𝑚

is the interval [𝑡𝑖−1, 𝑡𝑖 ).
To develop an intuition of how the label of 𝑡𝑖 affects L𝑖

𝑠 (Ω𝑧,𝑚),
we will demonstrate how to compute the intensities in the interval of
interest. A similar explanation can be reproduced for L𝑖

𝜙
(Ω𝑧,𝑚) and

L𝑖
𝑝 (Ω𝑧,𝑚). Consider Figure 3. By definition, given the parameter

`, the SFP intensity depends solely on the two last SFP events.
Therefore the computation of _𝑠 (𝑡) before 𝑡𝑖 only depends on the
labels of the events before 𝑡𝑖 and, therefore, as they are known, such
labels are not influenced by whether 𝑡𝑖 is a Poisson or a SFP event
(note the green lines before 𝑡𝑖 , Figure 3-A). Similarly, after 𝑡𝑓 (𝑓 (𝑖))
all the labels of the events are known and _𝑠 (𝑡) can be directly

computed (note the green lines after 𝑡𝑓 (𝑓 (𝑖)) , Figure 3-A). However,
the label of event 𝑡𝑖 impacts the value of _𝑠 (𝑡) between 𝑡𝑖 and 𝑡𝑓 (𝑓 (𝑖)) .
In Figure 3-B, we consider the case where 𝑡𝑖 ∈ Poisson. In this case,
the only SFP shift will happen at 𝑡𝑓 (𝑖) , which is (by definition) the
first SFP event after 𝑡𝑖 . Observe that the intensity between 𝑡𝑖 and
𝑡𝑓 (𝑖) remains the same as before 𝑡𝑖 , with the next change occurring
at 𝑡𝑓 (𝑖) . On the other hand, if 𝑡𝑖 ∈ SFP (see Figure 3-C), two shifts
happen in the interval. The first one immediately after 𝑡𝑖 and the
second one after 𝑡𝑓 (𝑖) .

Therefore, L𝑖
𝑠 (Ω𝑧,𝑚) and L𝑖

𝜙
(Ω𝑧,𝑚) can be computed directly.

The integral L𝑖
𝑝 (Ω𝑧,𝑚) :=

∫
Φ𝑖 ∈𝐹Ω𝑧,𝑚

L𝑖
𝑝 (Ω𝑧,𝑚 ∪ Φ𝑖 )𝑑Φ𝑖 can be ex-

pressed as

C∏
𝑗 :𝑡 𝑗 ∈[𝑡𝑖−1,𝑡𝑓 (𝑓 (𝑖 ) ) )

(
_𝑝 (𝑡 𝑗 |Ω𝑧,𝑚)

)1−𝑧 𝑗

×I(Ω𝑧,𝑚, 𝑡𝑖−1, 𝑡𝑖 ,𝑚𝑖−1,𝑚) × I(Ω𝑧,𝑚, 𝑡𝑖 , 𝑡𝑖+1,𝑚,𝑚𝑖+1) .
(4)

The constant C is independent of𝑚, 𝑧, defined as

C = 𝑒𝑡𝑖−1_𝑝 (𝑡𝑡−𝑖 )𝑒−𝑡𝑖+1_𝑝 (𝑡𝑡+𝑖 )𝑒−
∫ 𝑡𝑓 (𝑓 (𝑖 ) )
𝑡𝑖+1 _𝑝 (𝑡 )𝑑𝑡 ,

and

I(Ω, 𝑡𝑏 , 𝑡𝑒 ,𝑚𝑏 ,𝑚𝑒 ) =
∫
T
𝑒

∑𝑚𝑒
𝑗=𝑚𝑏

(
_( 𝑗+1)−_( 𝑗 )

)
𝑥 ( 𝑗−𝑚𝑏+1)𝑑𝑥,

where T = {𝑥 = (𝑥1, . . . , 𝑥𝑚𝑒−𝑚𝑏
) |𝑡𝑏 ≤ 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑚𝑒−𝑚𝑏

≤
𝑡𝑒 }. The integrand in the definition of I is proportional to the likeli-
hood of observing no Poisson event between 𝑡𝑒 and 𝑡𝑏 assuming 𝑥𝑖
is the𝑚𝑏 + 𝑖th transition for all 1 ≤ 𝑖 ≤ 𝑚𝑒 −𝑚𝑏 . The integrals in
the above equations can be computed using the strategy described
in the Appendix of this paper. This concludes the explanation of
the computation of P(𝑧𝑖 = 𝑧,𝑚𝑖 = 𝑚 |𝑇, \−𝑖 ). Since 𝑧𝑖 ,𝑚𝑖 are dis-
crete random variables, it is then straightforward to sample from the
corresponding distribution.

To complete our description of the Gibbs update which yields \𝑖 ,
we must describe how to draw Φ𝑖 from its conditional distribution
assuming Ω𝑧,𝑚 is given. Note that given Ω𝑧,𝑚 , Φ−

𝑖
and Φ+

𝑖
are inde-

pendent, where Φ−
𝑖

:= {𝜑 𝑗 |𝑡𝑖−1 < 𝜑 𝑗 < 𝑡𝑖 } and Φ+
𝑖

:= {𝜑 𝑗 |𝑡𝑖 < 𝜑 𝑗 <
𝑡𝑖+1}. The probability density function of Φ−

𝑖
(resp. Φ+

𝑖
) is propor-

tional to I(Ω𝑧,𝑚, 𝑡𝑖−1, 𝑡𝑖 ,𝑚𝑖−1,𝑚) (resp. I(Ω𝑧,𝑚, 𝑡𝑖 , 𝑡𝑖+1,𝑚𝑖 ,𝑚𝑖+1)).
To generate a sample from the distribution of Φ−

𝑖
in practice (Φ+

𝑖
is completely analogous), we make the following observations.
For any interval [𝑎, 𝑏], let 𝑁𝑎,𝑏 = #( 𝑗 : 𝜙 𝑗 ∈ [𝑎, 𝑏]) and 𝑓1 =

(𝑡𝑖−1 + 𝑡𝑖 )/2. We have that the joint distribution of (𝑁𝑡𝑖−1,𝑓1 , 𝑁𝑓1,𝑡𝑖 )
evaluated at (𝑛1, 𝑛2) (with 𝑛1 + 𝑛2 =𝑚𝑖+1 −𝑚𝑖−1) is proportional to
I(Ω𝑧,𝑚, 𝑡𝑖−1, 𝑓1,𝑚𝑖−1,𝑚𝑖−1+𝑛1)I(Ω𝑧,𝑚, 𝑓1, 𝑡𝑖 ,𝑚𝑖−1+𝑛1,𝑚𝑖 ). Thus,
a sample can be drawn from it. We can continue to split the interval
[𝑡𝑖−1, 𝑡𝑖 ) iteratively, choosing at each step how many 𝜑 𝑗 s are on
each side of each subinterval by drawing from the relevant discrete
distributions. This can be done until only one 𝜑𝑖 is in each interval,
and its precise position can then be determined by a draw from its
now one-dimensional probability distribution. This concludes the
generation procedure for the 𝐸 step.
M-Step: Now, we will elucidate the process of maximizing the
log-likelihood, which corresponds to the current estimate of the
conditional distribution of \ , over the parameter set {`,Λ}. The
procedure described in the E-Step section allows us to draw 𝑁\

samples {\1, \2, · · · , \𝑁\
} from the conditional distribution of \
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given the current estimate of {`,Λ}. We then update ` via the for-
mula ˆ̀ =

(∑𝑁\
𝑗=1 argmin` log(L𝑠 (\ 𝑗 ))

)
/𝑁\ , where the likelihood min-

imization steps are performed via binary search. Note that ` is an
easy parameter to estimate as it affects the whole interval, thus
argmin`L𝑠 (\ 𝑗 ) is already a good estimate even for a single value of
𝑗 .

Regarding the set of parameters Λ, a key observation is that L𝑠 (\ )
and L𝜙 (\ ) are independent of Λ, which allows us to perform the
maximization over L𝑠 (\ ) alone. Let𝑈 𝑗 (\ ) =

∑
𝑗 1𝑡 𝑗 ∈[𝜑 𝑗 ,𝜑 𝑗+1)∧𝑧 𝑗=0.

The part of log(L𝑠 (\ )) which depends on _ 𝑗 is −(𝜑 𝑗+1 − 𝜑 𝑗 ) +
𝑈 𝑗 (\ ) log(_ 𝑗 ) − log(𝑈 𝑗 (\ )). Averaging over all values of \ and op-
timizing over _ 𝑗 , we immediately obtain the following formula for
the _s:

_̂𝑖 =

∑𝑁\
𝑗=1 𝑈𝑖 (\ 𝑗 )∑𝑁\

𝑗=1 (𝜑 (\ 𝑗 )𝑖+1−𝜑 (\ 𝑗 )𝑖 )
, (5)

i.e. we are treating the observations of the Poisson events on the inter-
vals corresponding to _ 𝑗 as if they came from a fixed homogeneous
Poisson process. This is valid since the value of Λ only influences the
Poisson likelihood component. Algorithmic details and a complexity
analysis of our method can be found in the Appendix.

4 EXPERIMENTS
In this section, we present our experiments conducted with real-
world RSEs collected from various web systems. Additionally, we
conduct synthetic data experiments (please refer to the Appendix) to
validate our model under different ground truth scenarios and evalu-
ate the effectiveness of our EM algorithm’s derivation in recovering
the model’s underlying parameters.
Datasets: We showcase BPoP’s utility on 11 real-world datasets
involving RSEs from diverse web systems across various domains,
detailed in Table 1. In AskMe, MetaFilter, and MetaTalk, the
time-series represent online discussion forum topics, with events
being timestamps of comments3. In Digg, each time-series corre-
sponds to a news post, and events are the ’diggs,’ similar to Facebook
’likes’4. In Enron, events are timestamped emails associated with
e-mail accounts5. The Github dataset is split into two parts: Github
(Users) and Github (Projects). The former records user activities
across different projects, while the latter documents user activities
on specific projects. Google Trends, time series correspond to the
fraction of YouTube views over time (only USA users). Each topic is
related to famous people such as singers and politicians, which were
defined and collected by the authors. In Twitter, event timestamps
correspond to tweets with specific hashtags. For Youtube, each time
series represents a YouTube video, with events as timestamps for
user comments. Finally, the Yelp dataset contains timestamps of user
ratings for various restaurants.

Table 1 shows the total number of RSEs, the average number
of events, as well as the average of the indices absolute stability
^ and relative stability ˜̂ (defined further in this section) for each
dataset considering the entire observed time interval of each time
series. Out of the total population, 91% of individuals exhibited
a value of 0.05 < 𝑃𝑁𝐻𝑃𝑃 < 0.95: this suggests a combination of
stable behavior and a curious audience. Among those, 21% have

3Available at http://stuff.metafilter.com/infodump
4Available at: http://digg.com
5Available at: https://www.cs.cmu.edu/~./enron/

at least one transition, i.e., their stable audience changed during
the analyzed period, an assumption that motivated the conception
of BPoP. The fifth column (|Φ|) in Table 1 shows the the average
number of transitions for each dataset among the individuals that
had transitions. In total, we analyzed more than 78 million events.
Disentangling Stable and Ephemeral Audiences: We demonstrate
the effectiveness of our disentangling method using data from the
#ACL Twitter hashtag during the Austin City Limits (ACL) festival
in 2009. ACL is an annual three-day music and art festival held in
Austin, Texas, USA, attracting over 130 bands, with around 65,000
daily attendees. In 2009, ACL promoted the "The Sound and the Jury
competition (SJC)," a virtual band contest offering a festival slot to
the winner. Our model, relying solely on event timestamps related to
the Twitter hashtag #ACL (Figure 5, top left), effectively separates
the series of events into stable audience (NHPP) and curious (SFP)
components. Notably, in this context, the audience is not tied to
the festival itself but rather to the related hashtag in the period
before, during, and after the festival. The stable audience (of the
hashtag) comprises dedicated music fans who regularly engage with
the Twitter feed, while the curious audience consists of individuals
intrigued by the festival. The first component (Figure 5, bottom left)
maintains a constant event arrival rate between transitions 𝜑1, 𝜑2, . . .
(indicated by vertical lines). This rate _𝑝 (𝑡) signifies the stable
audience rate at a given time 𝑡 . In our model, bursts (Figure 5, top
right) are associated with the intensity of the SFP, _𝑠 (𝑡) (Figure 5,
bottom right), representing the curious audience. Importantly, we
acknowledge that the rate _𝑝 (𝑡) is not stationary, as bursts (modeled
by the SFP component) are triggered by external or internal events
related to the topic. These factors not only generate short bursts
of intense activity but also lead to enduring changes in the topic’s
discussion dynamics. Examples of such incidents could include
retweets by prominent celebrities or the passing of influential figures
related to the topic, both of which can alter the composition and
behavior of the stable audience.

These facts can be observed in the behavior of the hashtag #ACL
and its disentangled representation provided by BPoP. In the pre-
SJC period, the arrival rate of the events was very low: at this time,
only hard-core fans were actively posting tweets, namely the stable
audience. This period of calm was disrupted by the SJC campaign
period. The SJC campaign (highlighted in purple) was a short period
of time during which the bands involved in the contest together with
their fans (the curious) posted a large number of tweets asking users
to vote for them. In addition to the short burst of tweets asking for
votes, this effect altered the topic dynamic: now, it was not only
the hard-core fans of the festival, but also the bands’ supporters
which were active in the social network. This effect was to continue
until the end of the first round, and the announcement of the TOP-
20 bands, which would be selected to compete in the next stage.
After this announcement, since the number of bands in the contest
has decreased, we expect a decrease in the number of supporters,
resulting in fewer hashtag users and tweets. From BPoP, we indeed
observe a transition at this event and a decreased stable audience
(NHPP) rate afterwards. The new rate remained constant until the
ACL event itself. Finally, a huge burst of events occurred during the
festival, which was correctly modeled by our model as mostly part
of the SFP process, which represents the curious. Our model also
detects a transition at this event, and the rate goes back to pre-SJC
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Table 1: Fitting and characterization of the datasets

#RSE n 𝜿 �̃� |𝚽| 𝑹2
BPoP 𝑹2

𝑩𝑷 𝑹2
𝑯𝒂𝒘𝒌𝒆𝒔

AskMe 490 133 0.36 0.45 1.03 0.8514 ± 0.11 0.6204 ± 0.10 0.3211 ± 0.15
Digg 974 122 0.31 0.45 1.74 0.8944 ± 0.10 0.7231 ± 0.09 0.4824 ± 0.17
Enron 147 1589 0.59 0.49 2.21 0.9449 ± 0.07 0.9178 ± 0.06 0.5954 ± 0.25
GitHub(U) 40385 675 0.76 0.50 1.40 0.9565 ± 0.03 0.9526 ± 0.04 0.8876 ± 0.10
GitHub(P) 35085 696 0.77 0.50 1.39 0.9570 ± 0.03 0.9523 ± 0.04 0.8853 ± 0.10
G. Trends 579 2975 0.66 0.48 2.09 0.9632 ± 0.07 0.9596 ± 0.01 0.7973 ± 0.29
MetaFilter 8249 172 0.42 0.43 1.23 0.8931 ± 0.09 0.7123 ± 0.11 0.3906 ± 0.18
MetaTalk 2465 203 0.43 0.49 1.26 0.9176 ± 0.08 0.7921 ± 0.11 0.4535 ± 0.20
Twitter 18888 1142 0.71 0.50 1.60 0.9469 ± 0.05 0.8882 ± 0.12 0.8098 ± 0.23
Yelp 1931 128 0.22 0.38 1.34 0.9193 ± 0.13 0.9411 ± 0.08 0.8402 ± 0.14
YouTube 250 3241 0.59 0.49 1.90 0.9720 ± 0.02 0.9696 ± 0.01 0.7010 ± 0.18

levels afterwards. After the festival ends, the audience is once again
composed of the stable audience only.

Our model core hypothesis is that short bursts of activity are likely
to simultaneously change the stable audience constitution because
they share a common cause: topic related unusual incidents. We
model this by making the transition occurrence rate equal to 𝑐_𝑠 (𝑡)
or proportional to the arrival rate of atypical (SFP) events (_𝑠 (𝑡)),
where 𝑐 is small. SFP events appear also during non-bursty periods.
BPoP allows for the possibility of transitions occurring also during
calm periods, not only during bursts, and our algorithm is able to
detect such transitions.
Absolute and Relative Stability: After learning the component
intensities _𝑠 (𝑡) and _𝑝 (𝑡) we can contrast their absolute and relative
influence on the observed events. We define two indexes, both in the
interval [0, 1]:

^ =

∫ 𝑏

𝑎

_𝑝 (𝑡) (𝑏 − 𝑎)−1

_𝑝 (𝑡) + _𝑠 (𝑡)
𝑑𝑡 and ˜̂ =

∫ 𝑏

𝑎
_𝑝 (𝑡)𝑑𝑡∫ 𝑏

𝑎
(_𝑝 (𝑡) + _𝑠 (𝑡))𝑑𝑡

. (6)

The absolute stability ^ tells us the importance of the stable
audience averaged over the time interval [𝑎, 𝑏], whilst the relative
stability ˜̂ describes the proportion of the activity in the interval
[𝑎, 𝑏] that is assigned to the stable audience. The plot on the left
hand side of Figure 4 shows the average ˜̂ versus the average ^ for
each of the real datasets. Consider the two pairs associated with
GitHub: ^ ≈ 0.8 but ˜̂ ≈ 0.5. This shows that while the stable
audience (NHPP component) dominates most of the time, only half
of the activities are carried out by them, i.e., the other half comes
from the curious.

The plots in the right hand side of Figure 4 show the parameters
_𝑝 , ^ and ˜̂ calculated in each year separately. The time series are
USA Youtube searches for five artists out of the Google Trends
dataset, each artist shown in a column of plots. The data was col-
lected between Jan 1𝑠𝑡 2011 to Dec 31𝑠𝑡 2020.

The artists were selected to show widely different composition
of the latent processes or, in other words, how much of their audi-
ences are composed by the curious and by the stable audience. Alex
Claire is an English singer and his biggest hit was released in 2011.
Despite the huge success at this time, it was not enough to keep a
stable American audience on Youtube. This fact is confirmed by the
observation that the coefficients _𝑝 , ^, and ˜̂ have low values for the

entire period, characterizing a small stable audience. It is almost a
pure SFP process, or an audience composed mostly by the curious.

The time series related to the artists Redfoo, Bridgit Mendler and
Billie Eilish exhibit a mixture between bursty and calm periods. Red-
foo is able to maintain a significant stable audience during the whole
time period, while Mendler and Ellish see their stable audience
decrease and increase over time, respectively. In absolute numbers,
Bridgit Mendler has the largest stable audience, while Redfoo has
the smallest. Interestingly, despite the evident decrease in Mendler’s
stable audience, she remains quite popular when compared to her
counterparts. The absolute stability ^ shows that the presence or
absence of bursts modifies the relative importance of the NHPP in
the composition of the model, which suggests trends and seasonality.

Lastly, Stacey Q is an American pop singer who was popular in
the 80’s. As we can observe from the constant _𝑝 , she still enjoyed a
stationary amount of attention from a stable audience between 2011
and 2020. Her time series did not exhibit any burst during the whole
period which explains the high ^. Her audience is probably com-
posed of long-time fans who do not have the necessary engagement
to produce such changes. It is an almost pure Poisson process.

5 GOODNESS OF FIT
Baselines: BPoP is a model that relies only on the observed event
timestamps. We compare our model with two other similar models.

Hawkes processes (HP) [20, 30, 40–42] are a class of self-exciting
processes which are widely used for modeling web communications.
The Hawkes process model assumes that any event increases the
probability of additional events. Its conditional intensity is _(𝑡 |H𝑡 ) =
_ +∑

𝑡𝑖<𝑡 𝐾 (𝑡 − 𝑡𝑖 ), where 𝐾 (𝑥) > 0 is the kernel function, which
satisfies

∫ ∞
0 𝐾 (𝑥)𝑑𝑥 < 1, to ensure stationarity.

BuSca [18]: similarly to our model BPoP, BuSca is a mixture
process involving a Poisson process and a self-exciting process. The
conditional intensity of the BuSca model is given by _(𝑡 |H𝑡 ) =
_ + 1

Δ𝑡+`/𝑒 , where _ ≥ 0 and ` > 0 are constants and Δ𝑡 is the
last SFP interval before 𝑡 . However, BPoP and BuSca have two im-
portant differences. Firstly, BuSca does not assume any changes in
the _ Poisson rate, which corresponds to the unrealistic assumption
that the Poisson component of the behavior is constant and occurs
indefinitely. Secondly, there is no interaction between the two com-
ponents: the behavior of the Poisson component is not influenced
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Figure 4: Left: Scatterplot of the average ˜̂ versus the average ^ for each of the real datasets. Right: Each column of the plots
corresponds to the Google Trend time series associated with one of 5 artists. The top row shows the raw counts. The bottom plots show
the yearly average of log(_𝑝 (𝑡)) (yellow line), ^ (magenta line), and ˜̂ (red line).

Figure 5: Analysis of the #ACL Twitter hashtag associated with
the 2009 Austin City Limits (ACL) festival. Top left: cumulative
events; Top right: curious (burst) component; Bottom left: stable
audience (NHPP) component; Bottom right: intensity of the SFP.

by the self-exciting component and vice-versa. In contrast, BPoP
allows for significant changes in the Poisson rate. More importantly,
these changes are motivated by the SFP events: they influence the
presence of transitions between different Poisson regimes. This is
a defining characteristic of our model, a more realistic assumption,
and a significant source of added mathematical and computational
difficulty.
Metrics: To assess the Hawkes Process method’s performance we
used the random time change theorem to transform a HP into a
unit rate Poisson process (see [31]). After the transformation we
computed the determination coefficient 𝑅2

𝐻𝑎𝑤𝑘𝑒𝑠
corresponding to

the linear regression problem predicting the cumulative number
of events 𝑁 (𝑡) for all 𝑡s in the transformed process. Similarly, for
BuSca, we computed 𝑅2

𝑆
(SFP) and 𝑅2

𝐻𝑃𝑃
(homogeneous Poisson

process) for the disentangled processes (see [18]) and computed the
final coefficient 𝑅2

𝐵𝑃
= (𝑅2

𝑆
+ 𝑅2

𝐻𝑃𝑃
)/2.

To check the goodness of fit of BPoP, we first output the {𝑍, Φ̂} ⊂
\𝑖 , where 𝑖 = argmax𝑗 {L(\ 𝑗 ) ; 1 ≤ 𝑗 ≤ 𝑁\ }, which allows us to
disentangle the NHPP from the SFP. For the SFP fitting, we took
the inter-event times sample and built the empirical cumulative

Figure 6: Top: fitting performance (determination coefficient) as
a function of the proportion |𝑃𝑃 |/𝑛 of Poisson events. Bottom:
fitting performance as a function of the number of transitions.

distribution function F(𝑡) leading to the odds-ratio function𝑂𝑅(𝑡) =
F(𝑡)/(1−F(𝑡)). Then, we computed the 𝑅2

𝑆𝐹𝑃
coefficient of the linear

regression problem predicting the cumulative number of events 𝑁 (𝑡)
versus the 𝑂𝑅(𝑡) (see [33]).

The computation of 𝑅2
𝑁𝐻𝑃𝑃

requires some explanation. Let Φ̄ be
the list of the elements of {0 ∪ Φ ∪ 𝑡𝑛} ordered from smallest to
largest, so that 𝜑0 = 0, 𝜑𝑚𝑡+1 = 𝑡𝑛 . For all 𝑖 ∈ {0, 1, · · · , |Φ̄| − 1},
we construct the set 𝑇𝑖 = {𝑡 𝑗 |𝜑𝑖 < 𝑡 𝑗 < 𝜑𝑖+1} and then estimate
𝑅𝑁𝐻𝑃𝑃

2
𝑖

as the determination coefficient corresponding to the linear
regression problem predicting 𝑁 (𝑡) from 𝑡 on the interval [𝜑𝑖 , 𝜑𝑖+1)
with the datapoints obtained from 𝑇𝑖 . Finally, we compute 𝑅2

𝑁𝐻𝑃𝑃

as the weighted average of the 𝑅𝑁𝐻𝑃𝑃
2
𝑖
s. The weight is a multi-

ple of the respective interval. More formally, 𝑅2
𝑁𝐻𝑃𝑃

=
∑
𝑖 (𝜑𝑖+1 −

𝜑𝑖 )𝑅𝑁𝐻𝑃𝑃
2
𝑖
/𝑡𝑛 . Finally, we compute 𝑅2

BPoP = (𝑅2
𝑆𝐹𝑃
+ 𝑅2

𝑁𝐻𝑃𝑃
)/2.

All 𝑅2 coefficients vary between 0 (worst case) and 1 (best case).
Table 1 shows the goodness-of-fit statistics (average and standard
deviation) for BPoP and for the baselines, grouped by dataset.
BPoP surpasses the Hawkes process method in all datasets con-
sidered. It also consistently outperforms BuSca (better fitting in 10
out of 11 datasets). Indeed, the high concentration of the 𝑅2

BPoP
(as 𝑅2

𝑆𝐹𝑃
and 𝑅2

𝑁𝐻𝑃𝑃
, in Figure 6) statistics close to the maximum
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value of 1 shows that our model can accurately fit the time series
considered, as well as disentangle the mixed process into its two
hidden components (NHPP and SFP).
Results: Figure 6 shows how our disentangled models behave under
different regimes. To construct the top graph, we computed 𝑃𝑁𝐻𝑃𝑃

and rounded the value considering the range {0, 0.1, 0.2, · · · , 1}. The
extremes correspond, respectively, to a pure Poisson processes and
a pure SFP. We can observe that our model improves significantly
when the mixture is dominated by the bursty behavior. With respect
to the number of transitions |Φ|, the boxplots on the bottom show
that BPoP outperforms the baselines across the whole spectrum,
with the performance increasing with the number of transitions.

6 RELATED WORK
Human Communication Dynamics: Characterizing the dynamics
of human communication on the web has significant implications for
various applications, including trend detection, clustering, anomaly
detection, and popularity prediction[34, 40, 41, 47]. This research
is inspired by a substantial body of work focused on predicting the
popularity of online content, such as YouTube videos, hashtags, and
forum posts[9, 20, 24–26, 29]. The primary goal is to estimate the
total number of events associated with a given item. At first, Crane
and Sornette posited two primary mechanisms for the occurrence of
viewing activity: random occurrences influenced by external factors
such as featuring, or internally driven through sharing[19]. However,
recent studies have identified additional factors influencing popu-
larity, such as content quality[4, 5], item metadata[6], item age[7],
recommendation algorithms, ranking in keyword-based queries[8],
and social network effects[4, 10].

More recently, Yu et al. [24] have introduced a phase represen-
tation model for online videos, extending Crane and Sornette’s en-
dogenous growth and exogenous shock model. They discovered that
online videos undergo multiple stages of popularity fluctuations over
several months. This finding received further support from Rizoiu
et al. [9], who identified a strong correlation between external pro-
motion and online video popularity. Their research highlighted the
substantial impact of external attention and promotion on video pop-
ularity. Additionally, Gleeson et al. [25] emphasized the significance
of recent popularity over cumulative popularity in the adoption of
Facebook apps.
RSEs Modeling: Human activity on the web displays a broad spec-
trum of unpredictability, ranging from complete randomness [19, 35–
37] to high correlation and burstiness [40, 41, 43, 48, 49]. These
diverse patterns have prompted the adoption of point process stochas-
tic models, which provide statistical frameworks for comprehending
sequences of random events [31, 32]. In principle, these models can
be employed to estimate the audience size (fanbase) of online items.
However, existing models are not well-suited for this specific task.
Poisson processes (PPs) [36, 37] are suitable when events arrive reg-
ularly at a fixed rate, allowing for stable audience estimation. While
a significant portion of online items can be accurately described by
such a simple model [10, 11, 17, 19], PPs have limitations. For ex-
ample, Malmgren et al. [37] introduced a non-homogeneous Poisson
process model that accounts for circadian cycles with varying rate
_(𝑡), but it lacks the self-exciting property. This means that the prob-
ability of observing an event at a small time interval [𝑡, 𝑡 + Δ𝑡) does

not depend on previous events within that interval. This limitation
hampers PPs from effectively capturing event bursts observed in
real-world data.

On the other hand, while self-exciting processes effectively cap-
ture correlations between consecutive events responsible for activity
bursts in real data, existing methods often overlook the time-varying
nature of the fanbase. Hawkes processes [20, 30, 40–42], one of
the most widely used models, maintain a constant baseline rate
and incorporate event history via a conditional intensity formula:
_(𝑡 |H𝑡 ) = _+

∑
𝑡𝑖<𝑡 𝐾 (𝑡 −𝑡𝑖 ), where 𝐾 (𝑥) > 0 is typically a decreas-

ing exponential kernel. Hawkes processes promote bursty behavior
and fall into the category of pure self-exciting models with a con-
stant background intensity. They offer an alternative to pure Poisson
processes, with nuanced mathematical properties and applications.
However, they cannot capture changes in background intensity, a
feature addressed in our work.

The recent literature reflects a growing interest in exploring al-
ternatives to the widely-used Hawkes-based processes for modeling
self-exciting point process data. For instance, Etesami et al. [50]
and Trouleau et al. [51] have applied variational inference algo-
rithms to fit Bayesian models for multivariate self-feeding processes,
enabling the analysis of real-world communication dynamics. More-
over, Noorbakhsh and Rodriguez [52] have introduced a novel class
of Gumbel-max point processes specifically designed to address
causal issues in point process modeling.

Our work consistently advocates the adoption of self-feeding pro-
cesses as a compelling alternative to widely-used Hawkes-based
models. Previous research, including [18, 43, 53, 54], strongly sup-
ports this approach. Its appeal lies in its simplicity and its ability
to accurately capture the short-memory and power-law behavior
common in real-world data. Self-feeding processes produce point
patterns characterized by bursts of intense activity followed by peri-
ods of low activity, aligning well with real-world observations. By
applying our model to another real case, we aim to demonstrate its
effectiveness as a competitive alternative for modeling self-exciting
point processes. Finally, Alves et al. [18] employed a Wold process
to model social media events effectively. However, this model, with
a constant background rate, presents significant training challenges
due to multiple approximations required for EM algorithm expec-
tations. Our novel model addresses these limitations by accurately
mimicking event bursts while efficiently capturing time-varying
background rates, providing a more realistic representation of our
fanbase dynamics.

7 CONCLUSION
In this article, we presented Burst-induced Poisson Process (BPoP),
a model that separates stable and curious media audiences. BPoP
combines an SFP for viral thread bursts (representing the curious
audience) with a non-homogeneous Poisson process for regular user
behavior (the stable audience). These components interact, and we
develop a tailored EM algorithm to address this complexity. Our
model excels in identifying audience dynamics in both synthetic and
real data.
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APPENDIX
A SYNTHETIC EXPERIMENTS
BPoP is a generative model that combines an SFP to represent the
curious audience and an NHPP to represent the stable audience, both
interacting with each other. While the complete generation procedure
is originally detailed in the main paper’s model description, we’re
providing a concise summary in this appendix for ease of reference.
Generation procedure: consider that, at time 𝑡 , the history of the
process is composed of the observed event timestamps {𝑡1, 𝑡2, . . .} <
𝑡 , unobserved labels {𝑧1, 𝑧2, . . .} as well as unobserved MPP events
{𝜑1, 𝜑2, . . .}, which represent the transitions. We use the convention
that 𝑧𝑖 = 0 if 𝑡𝑖 ∈ NHPP and 𝑧𝑖 = 1 if 𝑡𝑖 ∈ SFP. Define the following
three intensity functions: (1) the SFP intensity _𝑠 (𝑡) = 1/[(𝑡𝑔 (𝑡 ) −
𝑡𝑔 (𝑔 (𝑡 )) ) + `/𝑒] where 𝑔(𝑢) = [max(𝑡𝑖 : 𝑧𝑖 = 1 ∧ 𝑡𝑖 < 𝑢)]+ de-
notes the last SFP event before 𝑡 , with the convention that 𝑔(𝑡) = 0
if �𝑖 : 𝑡𝑖 ≤ 𝑡 ∧ 𝑧𝑖 = 1 and ` > 0 is the SFP parameter; (2) _Φ (𝑡) =
𝑐_𝑠 (𝑡), where 𝑐 ∈ [0, 1] is a parameter that controls the NHPP transi-
tion sensitivity; and (3) _𝑝 (𝑡) = _𝑚𝑡

, where Λ = {_0, _1, _2, · · · } is
an infinite set of positive numbers (parameters) and,𝑚𝑡 =

∑𝑛𝜙
𝑗=1 1𝜑 𝑗<𝑡 .

Similarly we can define _+𝑠 (𝑡) = lim𝛿→0 _𝑠 (𝑡 + 𝛿) (resp. _+
𝜙
(𝑡) and

_+𝑝 (𝑡)) as the intensity of the SFP (resp. MPP and NHPP) immedi-
ately after 𝑡 . Thus, to generate the next time stamp, we first generate
three exponential variables 𝐸𝑠 , 𝐸𝜙 and 𝐸𝑝 with intensities _+𝑠 (𝑡),
_+
𝜙
(𝑡) and _+𝑝 (𝑡) respectively. Then, the next event will take place at

𝑡 + 𝐸, where E=min(𝐸𝑠 , 𝐸𝜙 , 𝐸𝑝 ), and it will belong to the SFP (resp.
NPHH, MPP) component if 𝐸 = 𝐸𝑠 (resp. 𝐸𝜙 , 𝐸𝑝 ). Likewise, we
continue generating the rest of the process from time 𝑡 + 𝐸.
Experimental setup: Let 𝑃𝑁𝐻𝑃𝑃 =

∑𝑛
𝑖=1 (1 − 𝑧𝑖 )/𝑛 be the propor-

tion of observed events that belong to NHPP. We chose sets of `,Λ
and 𝑐 corresponding to estimated values of (E(𝑛),E( |Φ|)),E(𝑃𝑁𝐻𝑃𝑃 ))
in the set {500, 750, 1000}×{0, 1, 2}×{0, 0.25, 0.5, 0.75, 1}. In the case
where transitions are present, we considered only the cases in which
the expected number of events of both processes (SFP and NHPP)
is greater than 0. For example, the tuple (500, 1, 0) was not consid-
ered since we would expect only one transition and zero NHPP
events. Concerning the parameter Λ we selected values such that ∀𝑖
min(_𝑖 , _𝑖+1)/max(_𝑖 , _𝑖+1) = 1/3.

For each tuple (E(𝑛),E( |Φ|),E(𝑃𝑁𝐻𝑃𝑃 )), we conducted 50 sim-
ulations (we use the generation procedure explained above) and
assessed our methods via two metrics. To assess our method’s ability
to recover the ground truth model accurately given the observations,
we aggregate the relative difference between the total intensities
corresponding to our recovered labels and the ground truth labels:

𝛿 (\, \̂ ) =
∫ 𝑡𝑛
0
| (_𝑠 (𝑡 |\ )+_𝑝 (𝑡 |\ ))−(_𝑠 (𝑡 |\̂ )+_𝑝 (𝑡 |\̂ )) |

_𝑠 (𝑡 |\ )+_𝑝 (𝑡 |\ ) 𝑑𝑡 . (7)

The reason we do this instead of simply counting the proportion of
correct labels is as follows. Correctly classifying the timestamps is
both more difficult and less interesting inside a burst compared to
calm periods. Furthermore, the parametrization of the model could
present some redundancy, in which case very different parameter
combinations could correspond to similar point processes. On the
other hand, 𝛿 (\, \̂ ) is far less sensitive to the label assignments in
a short bursty period, but a small value of 𝛿 (\, \̂ ) still indicates
excellent performance. Indeed, it shows that the model accurately
represents the position of the set of observations in the probability

space and would perform well at predicting the positions of further
observations if they had been left unobserved.

The second metric simply aims at verifying convergence. We
evaluate the log-likelihood log(L(\̂ )) at our model parameters (and
at one high-likelihood draw of the conditional labels), and compare
it with the log-likelihood evaluated with the ground truth parameters
and labels log(L(\ )).

We report the results of our experiments evaluated with both met-
rics in Figure 7. The box plot shows that our method has a strong
ability to recover the underlying components (SFP and NHPP) based
only on the observed timestamps. Larger values of the number of
events (𝑛) correspond to smaller values of 𝛿 (\, \̂ ). Mixtures with
higher 𝑃𝑁𝐻𝑃𝑃 tend to produce fewer bursts and therefore have a
more uniform behavior over the whole observed period. Consistently
with this, we observe that larger values of 𝑃𝑁𝐻𝑃𝑃 correspond to
smaller values of 𝛿 (\, \̂ ). The number of transitions (|Φ|) has a lower
impact in comparison to the other parameters’, though smaller val-
ues of 𝛿 (\, \̂ ) are associated with fewer transitions. The rightmost
graph in Figure 7 shows that log(L(\̂ )) is systematically close to
log(L(\ )), and even surpasses it in more than 80% of the cases. Both
metrics’ behavior jointly indicate that our method can accurately re-
cover the ground truth based only on the timestamps of the observed
mixture process.

B ALGORITHMIC DETAILS AND
COMPLEXITY ANALYSIS

Algorithm 1 BPoP
INPUT 𝑇 , 𝑘∗, 𝑁\ and 𝑁𝐺𝑖𝑏𝑏𝑠

OUTPUT: ` and Λ

1: 𝑛 ← |𝑇 |
2: `,Λ, \1, \2, · · · , \𝑁\

← warmStarts(𝑇, 𝑘∗, 𝑁\ )
3: while Not converged do
4: for 𝑖 ∈ {1, 2, · · · , 𝑁\ } do
5: \𝑖 = GibbsSampler(\𝑖 , `,Λ, 𝑁𝐺𝑖𝑏𝑏𝑠 )
6: end for
7: `,Λ = M-STEP(\1, \2, · · · , \𝑁\

)
8: end while
9: return `,Λ

Algorithm 1 describes how to compute ` and Λ for a fixed param-
eter set 𝑘∗, 𝑁\ and 𝑁𝐺𝑖𝑏𝑏𝑠 . The last parameter controls how many
updates on the latent variables components need to be performed
during the E-STEP. In practice, we can decrease 𝑁𝐺𝑖𝑏𝑏𝑠 gradually
during the EM-Algorithm execution to speed up convergence. Note
that we set 𝑁𝐺𝑖𝑏𝑏𝑠 = O(𝑛) so that each time stamp is updates a
constant number of times.
𝑁\ can be adapted depending on the available computer resources.

However a small number proved to be sufficient. We choose a small
𝑘∗ larger than the maximum number of transitions we expect and for
each 𝑘 ∈ {0, 1, · · · , 𝑘∗} we draw 𝑁\ /(𝑘∗ + 1) samples of \ . In the
E-STEP, to prevent the model from getting stuck in low-likelihood
regions, we performed likelihood-based re-sampling: after a several
iterations, we replace the current estimate of the set {\1, . . . , \𝑁\

}
by a set of 𝑁\ elements drawn with replacement from that set with
probabilities proportional to the likelihoods.

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Figure 7: Summary of the results of our experiments with synthetic data. Left: 𝛿 (\, \̂ ) distribution grouped by (E( |Φ|),E(𝑃𝑁𝐻𝑃𝑃 )). The
𝑥-axis shows the expected number of observed events. Right: plot of log(L(\ )) × log(L(\̂ )) with the 𝑦 = 𝑥 line in red.

Warm-starts for \ and parameter initialization: we set the initial
number of transitions 𝑘 = |Φ| as a fixed hyperparameter. Then, we
first divide the interval [0, 𝑡𝑛) into 𝑛𝑘 sub-intervals 𝐼1, . . . , 𝐼𝑛𝑘 of size
𝑡𝑛/𝑛𝑘 (here 𝑘 < 𝑛𝑘 ≪ 𝑛), i.e. 𝐼𝑖 = [(𝑖 − 1)𝑡𝑛/𝑛𝑘 , 𝑖𝑡𝑛/𝑛𝑘 ). For each
𝑖 ≤ 𝑛𝑘 , we define 𝑢𝑖 =

∑
𝑗≤𝑛 1𝑡 𝑗 ∈𝐼𝑖 , the number of events belonging

to interval 𝐼𝑖 . Then we sample 𝑘 sub-intervals 𝐼1, 𝐼2, . . . , 𝐼𝑘 without
replacement with P(𝐼𝑖 ) ∝ 𝑢𝑖 . We then sample one timestamp from
each interval 𝐼1, 𝐼2, . . . , 𝐼𝑘 , uniformly, and use the resulting set Φ of
𝑘 timestapms as the set of our transitions.

To estimate Λ we divide the interval [0, 𝑡𝑛) in 𝑘 + 1 contiguous
sub-intervals according to the transitions Φ. Let Φ̄ = {𝜑0, 𝜑1 =

𝜑1, . . . , 𝜑𝑚 = 𝜑𝑚, 𝜑𝑚+1 = 𝑡𝑛} be the list of the elements of {0 ∪ Φ ∪
𝑡𝑛} ordered from smallest to largest starting with 𝜑0 = 0, and for
each 0 ≤ 𝑗 ≤ 𝑘 + 1 we further divide the interval [𝜑 𝑗 , 𝜑 𝑗+1) into 𝑛𝑘
contiguous sub-intervals 𝐼 𝑗0 , 𝐼

𝑗

1 , . . . , 𝐼
𝑗

𝑛𝑘−1 of equal length. After that

we compute, for each 𝑗 and 𝑖, the quantity 𝑢 𝑗
𝑖
=

∑
𝑜≤𝑛 1

𝑡𝑜 ∈𝐼 𝑗𝑖
, and

sample one sub-interval 𝐼 𝑗𝑣 with P(𝑣 = 𝑖) ∝ 1/𝑢 𝑗 𝑖 (except when𝑢 𝑗 𝑖 =
0 in which case P(𝑣 = 𝑖) = 0 6) and set _ 𝑗 = (𝑢 𝑗 𝑣𝑛𝑘 )/(𝜑 𝑗+1 − 𝜑 𝑗 ).

To estimate ` and𝑍 , we can now calculate𝑀 := {𝑚1,𝑚2, · · · ,𝑚𝑛},
where𝑚𝑖 =

∑𝑛𝜙
𝑗=1 1𝜑 𝑗<𝑡𝑖 . Let 𝑝𝑖 = min(_𝑚𝑖

(𝜑𝑚𝑖+1 − 𝜑𝑚𝑖
)/|Δ𝑖 |, 1),

where Δ𝑖 = {𝑡𝑙 |𝜑𝑚𝑖
< 𝑡𝑙 < 𝜑𝑚𝑖+1} and draw 𝑧𝑖 ∼ Bernoulli(1 − 𝑝𝑖 ).

Thus, we can now estimate ` based on our estimated sample of the
underlying SFP process {𝑡𝑖 |𝑧𝑖 = 1}, i.e. ` = median({𝑡𝑖 |𝑧𝑖 = 1})We
now have a value for the parameters Λ, ` and the latent variables
\ = 𝑍 ∪ Φ ∪𝑀 , which concludes the warm start and initialization
phase.
Complexity analysis: The execution time of the algorithm is highly
dependent on the observed data. Nevertheless, if we restrict the num-
ber of iterations of the EM algorithm to 𝑁𝐸𝑀 ≪ 𝑛, our algorithm
has complexity O(𝑁𝐸𝑀𝑁𝐺𝑖𝑏𝑏𝑠𝑛) (indeed, each component of the
likelihood calculations involved in the computation of the condi-
tional probabilities consists of a sum over each event in the interval
[𝑡𝑖−1, 𝑡𝑓 (𝑓 (𝑖)) )). In the worst case, this interval is the whole of𝑇 and
the computation complexity for one Gibbs iteration is 𝑂 (𝑛)).

C EXPLICIT COMPUTATION OF THE
INTEGRAL I

There exists an explicit formula for the multiple integral

6The idea is to avoid picking an interval with a burst so that we can estimate the
background value of _

I(Ω, 𝑡𝑏 , 𝑡𝑒 ,𝑚𝑏 ,𝑚𝑒 ) =
∫
T exp(∑𝑚𝑒

𝑗=𝑚𝑏

(
_( 𝑗+1) − _( 𝑗)

)
𝑥 ( 𝑗−𝑚𝑏+1) )𝑑𝑥

(8)
where T = {𝑥1, . . . , 𝑥𝑚𝑒−𝑚𝑏

: 𝑡𝑏 ≤ 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑚𝑒−𝑚𝑏
≤ 𝑡𝑒 }.

For any 𝑁 and 𝑎 = (𝑎1, . . . , 𝑎𝑁 ) define 𝐺𝑎 = 𝐺𝑁
𝑎 =

∫
T 𝑒

∑𝑁
𝑖=1 𝑎𝑖𝑥𝑖𝑑𝑥

where T = {𝑥1, . . . , 𝑥𝑁 : 𝑇1 ≤ 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑚𝑒−𝑚𝑏
≤ 𝑇2}

(where we omit the dependence on 𝑇1,𝑇2 for notational simplicity).
Thus I(Ω, 𝑡𝑏 , 𝑡𝑒 ,𝑚𝑏 ,𝑚𝑒 ) = 𝐺

𝑚𝑒−𝑚𝑏(
_( 𝑗+1)−_ ( 𝑗 )

)
𝑗≤𝑚𝑒−𝑚𝑏

and computing

𝐺𝑎 for any choice of 𝑎 is enough.
First, we observe that we have the following recurrence relation

𝐺𝑁
𝑎1,...,𝑎𝑁 =

∫ 𝑇2

𝑇1

∫ 𝑇2

𝑥1

. . .

∫ 𝑇2

𝑥𝑁−1

𝑒
∑𝑁

𝑖=1 𝑎𝑖𝑥𝑖𝑑𝑥𝑁 . . . , 𝑑𝑥2𝑑𝑥1

=

∫ 𝑇2

𝑇1

∫ 𝑇2

𝑥1

. . .

∫ 𝑇2

𝑥𝑁−2

[
𝑒𝑇2𝑎𝑁 − 𝑒𝑎𝑁 𝑥𝑁−1

𝑎𝑁

]
𝑑𝑥𝑁−1 . . . 𝑑𝑥2𝑑𝑥1

=
𝑒𝑇2𝑎𝑁𝐺𝑁−1

𝑎1,...,𝑎𝑁−1

𝑎𝑁
−
𝑒𝑇1𝑎𝑁𝐺𝑁−1

𝑎1,...,𝑎𝑁−1+𝑎𝑁
𝑎𝑁

. (9)

Based on iteratively applying this recurrence relation, we can get
the following formula:

𝐺𝑁
𝑎1,...,𝑎𝑁 =

𝑒𝑇1 (𝑎1+...+𝑎𝑁 )
( ∑︁
𝛿 ∈{0,1}𝑁

(−1)
∑𝑁

𝑖=1 𝛿𝑖

×

∏
{𝑖:𝛿𝑖=0} exp

(
(𝑇2 −𝑇1) (𝑎𝑖 +

∑𝑁
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )
)

∏𝑁
𝑖=1 (𝑎𝑖 +

∑
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )


)
.

(10)

Whilst the iterative computation in question is reasonably straight-
forward, we reproduce the details here for the reader’s convenience.

PROOF OF FORMULA (10). The proof is by induction. Note that
for 𝑁 = 1, we have indeed𝐺𝑁

𝑎1 = 𝑒𝑇2𝑎1
𝑎1
− 𝑒𝑇1𝑎1

𝑎1
as expected. Suppose

the result holds for 𝑁 − 1 and let us prove it holds for 𝑁 .
Note that by the scaling of the formula and the definition of 𝐺 ,

it is clear that we can restrict ourselves to the case 𝑇1 = 0. Now, by
12
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equation (9), we have

𝐺𝑁
𝑎1,...,𝑎𝑁 =

𝑒𝑇2𝑎𝑁𝐺𝑁−1
𝑎1,...,𝑎𝑁−1

𝑎𝑁
−
𝐺𝑁−1
𝑎1,...,𝑎𝑁−1+𝑎𝑁

𝑎𝑁
(11)

=
𝑒𝑇2𝑎𝑁

𝑎𝑁

∑︁
𝛿 ∈{0,1}𝑁−1

(
(−1)

∑𝑁−1
𝑖=1 𝛿𝑖

×

∏

𝑖:𝛿𝑖=0 exp
(
𝑇2 (𝑎𝑖 +

∑𝑁−1
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )
)

∏𝑁−1
𝑖=1 (𝑎𝑖 +

∑𝑁−1
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )


)

− 1
𝑎𝑁

∑︁
𝛿 ∈{0,1}𝑁−1

(
(−1)

∑𝑁−1
𝑖=1 𝛿𝑖

×

∏

𝑖:𝛿𝑖=0 exp
(
𝑇2 (𝑎𝑖 +

∑𝑁−1
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )
)

∏𝑁−1
𝑖=1 (𝑎𝑖 +

∑𝑁−1
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )


)
,

(12)

where 𝑎𝑖 = 𝑎𝑖 for 𝑖 ≤ 𝑁 − 2 and 𝑎𝑁−1 = 𝑎𝑁−1 + 𝑎𝑁 . Now, note that

− 1
𝑎𝑛

∑︁
𝛿 ∈{0,1}𝑁−1

(−1)
∑𝑁−1

𝑖=1 𝛿𝑖


∏

𝑖:𝛿𝑖=0 exp
(
𝑇2 (𝑎𝑖 +

∑𝑁−1
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )
)

∏𝑁−1
𝑖=1 (𝑎𝑖 +

∑𝑁−1
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )


(13)

=
1
𝑎𝑛

∑︁
𝛿 ∈{0,1}𝑁−1×{1}

(
(−1)

∑𝑁
𝑖=1 𝛿𝑖

×

∏

𝑖:𝛿𝑖=0 exp
(
𝑇2 (𝑎𝑖 +

∑𝑁
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )
)

∏𝑁−1
𝑖=1 (𝑎𝑖 +

∑𝑁
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )


)

=
∑︁

𝛿 ∈{0,1}𝑁−1×{1}

(
(−1)

∑𝑁
𝑖=1 𝛿𝑖

×

∏

𝑖:𝛿𝑖=0 exp
(
𝑇2 (𝑎𝑖 +

∑𝑁
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )
)

∏𝑁
𝑖=1 (𝑎𝑖 +

∑𝑁
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )


)
.

(14)

and

𝑒𝑇2𝑎𝑁

𝑎𝑁

∑︁
𝛿 ∈{0,1}𝑁−1

(−1)
∑𝑁−1

𝑖=1 𝛿𝑖


∏
{𝑖:𝛿𝑖=0} exp

(
𝑇2 (𝑎𝑖 +

∑𝑁−1
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )
)

∏𝑁−1
𝑖=1 (𝑎𝑖 +

∑𝑁−1
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )


(15)

=
1
𝑎𝑁

∑︁
𝛿 ∈{0,1}𝑁−1×{0}

(−1)
∑𝑁

𝑖=1 𝛿𝑖


∏
{𝑖:𝛿𝑖=0} exp

(
𝑇2 (𝑎𝑖 +

∑𝑁
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )
)

∏𝑁−1
𝑖=1 (𝑎𝑖 +

∑𝑁−1
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )


=

∑︁
𝛿 ∈{0,1}𝑁−1×{0}

(−1)
∑𝑁

𝑖=1 𝛿𝑖


∏

𝑖:𝛿𝑖=0 exp
(
𝑇2 (𝑎𝑖 +

∑𝑁
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )
)

∏𝑁
𝑖=1 (𝑎𝑖 +

∑𝑁
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )

 .
(16)

Plugging equations (13) and (15) back into equation (11), we obtain

𝐺𝑁
𝑎1,...,𝑎𝑁 =

𝑒𝑇2𝑎𝑁

𝑎𝑁

∑︁
𝛿 ∈{0,1}𝑁−1

(
(−1)

∑𝑁−1
𝑖=1 𝛿𝑖

×

∏

𝑖:𝛿𝑖=0 exp
(
𝑇2 (𝑎𝑖 +

∑𝑁−1
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )
)

∏𝑁−1
𝑖=1 (𝑎𝑖 +

∑𝑁−1
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )


)

− 1
𝑎𝑁

∑︁
𝛿 ∈{0,1}𝑁−1

(
(−1)

∑𝑁−1
𝑖=1 𝛿𝑖

×

∏

𝑖:𝛿𝑖=0 exp
(
𝑇2 (𝑎𝑖 +

∑𝑁−1
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )
)

∏𝑁−1
𝑖=1 (𝑎𝑖 +

∑𝑁−1
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )


)

=
∑︁

𝛿 ∈{0,1}𝑁

(
(−1)

∑𝑁
𝑖=1 𝛿𝑖

×

∏

𝑖:𝛿𝑖=0 exp
(
𝑇2 (𝑎𝑖 +

∑
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )
)

∏𝑁
𝑖=1 (𝑎𝑖 +

∑
𝑗=𝑖+1 𝑎 𝑗

∏𝑗

𝑢=𝑖+1 𝛿𝑢 )


)
.

(17)

□
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D TABLE OF NOTATIONS
In this section, we provide a table of notations used in this paper. There are a small number of duplicates to aid understanding when the same
notation is relevant to different parts of the paper.

Notation Meaning
In the definition of our model process

𝑡1, 𝑡2, . . . Event timestamps
𝑇 = {𝑡1, 𝑡2, . . .} Set of event timestamps
Δ𝑡𝑖 𝑡𝑖 − 𝑡𝑖−1
(H𝑡 )𝑡 ∈R Filtration
H𝑡 Information realised at time 𝑡
SFP Self-feeding Process
NHPP Non-homogeneous Poisson Process
MPP MetaPoisson Process (latent transition process)
𝑧𝑖 Label of 𝑖th timestamp
𝑧𝑖 = 1 if 𝑡𝑖 ∈ SFP
𝑧𝑖 = 0 if 𝑡𝑖 ∈ NHPP
_𝑠 (𝑇 |H𝑡 ) Intensity of the Self-feeding Process (SFP)

_𝑠 (𝑇 |H𝑡 ) = 1/(`/𝑒 + 𝑔(𝑡) − 𝑔(𝑔(𝑡)))
𝑔(𝑡) = [max(𝑡𝑖 : 𝑧𝑖 = 1 ∧ 𝑡𝑖 < 𝑢)]+ Timestamp of last SFP process
Φ = {𝜑1, 𝜑2, . . .} ⊂ R+ Unobserved ‘Metapoisson’ (MPP) events
_𝜙 (𝑡) = 𝑐_𝑠 (𝑡) Intensity of the latent transition (MPP)
𝑐 ∈ [0, 1] Parameter that controls the NHPP transition sensitivity
_𝑝 (𝑡) = _𝑚𝑡

Intensity of the Non Homogeneous Poisson Process (NHPP)
𝑚𝑡 =

∑𝑛𝜙
𝑗=1 1𝜑 𝑗<𝑡 Number of Metapoisson transitions occurred so far

𝑀 := {𝑚1,𝑚2, · · · ,𝑚𝑛} set of Metapoisson transitions
= index of current NHPP intensity

_+𝑠 (𝑡) = lim𝛿→0 _𝑠 (𝑡 + 𝛿) Intensity of SPF immediately after time 𝑠
_+
𝜙
(𝑡) Intensity of MetaPoisson immediately after time 𝑠

_+𝑝 (𝑡) Intensity of NHPP immediately after time 𝑠
In the detailed explanation of the generation procedure

𝐸𝑠 Exponential random variable with parameter _+𝑠 (𝑡)
𝐸𝜙 Exponential random variable with parameter _+

𝜙
(𝑡)

𝐸𝑝 Exponential random variable with parameter _+𝑝 (𝑡)
𝑡 + 𝐸 := 𝑡 +min(𝐸𝑠 , 𝐸𝜙 , 𝐸𝑝 ) Timestamp of next event or latent transition

In the explanation of our EM-algorithm (E-Step)
𝑁 (𝑡) = ∑𝑛

𝑖=1 1𝑡𝑖 ≤𝑡 Cumulative number of observed events up to time 𝑡
Φ𝑖 := {𝜑 𝑗 |𝑡𝑖−1 < 𝜑 𝑗 < 𝑡𝑖+1} Set of NHPP transitions between 𝑡𝑖−1 and 𝑡𝑖+1
𝑀 := {𝑚1,𝑚2, · · · ,𝑚𝑛} Set of Metapoisson transitions
\ = 𝑍 ∪ Φ ∪𝑀 Set of all latent variables
\𝑖 := ({𝑧𝑖 ,𝑚𝑖 } ∪ Φ𝑖 ) Latent variables associated to time 𝑡𝑖
\−𝑖 = \ \ \𝑖 Latent variables except those around 𝑡𝑖
𝑁Gibbs Number of component updates

in one iteration of Gibbs algorithm
L(\ ) =∏𝑛

𝑖=1 _𝑠 (𝑡𝑖 )𝑧𝑖_𝑝 (𝑡𝑖 )1−𝑧𝑖
∏𝑛𝜙

𝑗=1 _𝜙 (𝜑 𝑗 ) × 𝑒
−

∫ 𝑡𝑛

0 _𝑠 (𝑡 )+_𝜙 (𝑡 )+_𝑝 (𝑡 )𝑑𝑡 Likelihood of our model
L(\ ) = L𝑠 (\ )L𝜙 (\ )L𝑝 (\ ) Factorized form of likelihood

L𝑠 (\ ) =
∏𝑛

𝑖=1 _𝑠 (𝑡𝑖 )𝑧𝑖 𝑒
−

∫ 𝑡𝑛

0 _𝑠 (𝑡 )𝑑𝑡 SFP component of likelihood

L𝜙 (\ ) =
∏𝑛𝜙

𝑗=1 _𝜙 (𝜑 𝑗 ) × 𝑒
−

∫ 𝑡𝑛

0 _𝜙 (𝑡 )𝑑𝑡 Metapoisson component of likelihood

L𝑝 (\ ) =
∏𝑛

𝑖=1 _𝑝 (𝑡𝑖 )1−𝑧𝑖 × 𝑒
−

∫ 𝑡𝑛

0 _𝑝 (𝑡 )𝑑𝑡 NHPP component of likelihood
𝑓 (𝑢) = argmin𝑗 {𝑡 𝑗 |𝑡𝑢 < 𝑡 𝑗 ∧ 𝑧 𝑗 = 1} index of the next SFP event after 𝑡𝑢
Ω𝑧,𝑚 := \−𝑖 ∪ {𝑧,𝑚} All latent variables excluding Φ𝑖

\ = Ω𝑧,𝑚 ∪ Φ𝑖
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P(𝑧𝑖 = 𝑧,𝑚𝑖 =𝑚 |𝑇, \−𝑖 ) ∝ L𝑖
𝑠 (Ω𝑧,𝑚)L𝑖

𝜙
(Ω𝑧,𝑚)L𝑖

𝑝 (Ω𝑧,𝑚) conditional distribution of (𝑧𝑖 ,𝑚𝑖 ) given all variables except \−𝑖
L𝑖
𝑠 (Ω𝑧,𝑚) component of the SFP likelihood in the interval [𝑡𝑖−1, 𝑡𝑓 (𝑓 (𝑖)) ) corre-

sponding to 𝑧𝑖 = 𝑧,𝑚𝑖 =𝑚

L𝑖
𝜙
(Ω𝑧,𝑚) component of the MPP likelihood in the interval

[𝑡𝑖−1, 𝑡𝑓 (𝑓 (𝑖)) )corresponding to 𝑧𝑖 = 𝑧,𝑚𝑖 =𝑚

L𝑖
𝑝 (Ω𝑧,𝑚) :=

∫
Φ𝑖 ∈𝐹Ω𝑧,𝑚

L𝑖
𝑝 (Ω𝑧,𝑚 ∪ Φ𝑖 )𝑑Φ𝑖 component of the NHPP likelihood in the interval [𝑡𝑖−1, 𝑡𝑓 (𝑓 (𝑖)) ) corre-

sponding to 𝑧𝑖 = 𝑧,𝑚𝑖 =𝑚

𝐹Ω𝑧,𝑚
Set of Φ𝑖s compatible with the values of 𝑇,𝑀 when 𝑚𝑖 is set to the
index𝑚 (cf. explanation below equation (3))

C 𝑒𝑡𝑖−1_𝑝 (𝑡𝑡−𝑖 )𝑒−𝑡𝑖+1_𝑝 (𝑡𝑡+𝑖 )𝑒−
∫ 𝑡𝑓 (𝑓 (𝑖 ) )
𝑡𝑖+1 _𝑝 (𝑡 )𝑑𝑡 (normalization constant in

expression of L𝑖
𝑝 (Ω𝑧,𝑚), cf. equation (4))

T = {𝑥 = (𝑥1, . . . , 𝑥𝑚𝑒−𝑚𝑏
) |𝑡𝑏 ≤ 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑚𝑒−𝑚𝑏

≤ 𝑡𝑒 } Domain of possible MPP incremental positions between 𝑡𝑏 and 𝑡𝑒 as-
suming𝑚𝑏 MPP events at 𝑡𝑏 and𝑚𝑒 at 𝑡𝑒

I(Ω, 𝑡𝑏 , 𝑡𝑒 ,𝑚𝑏 ,𝑚𝑒 )
∫
T 𝑒

∑𝑚𝑒
𝑗=𝑚𝑏

(
_( 𝑗+1)−_( 𝑗 )

)
𝑥 ( 𝑗−𝑚𝑏+1)𝑑𝑥

Φ−
𝑖

:= {𝜑 𝑗 |𝑡𝑖−1 < 𝜑 𝑗 < 𝑡𝑖 } Set of MPP transitions between 𝑡𝑖−1 and 𝑡𝑖
Φ+
𝑖

:= {𝜑 𝑗 |𝑡𝑖 < 𝜑 𝑗 < 𝑡𝑖+1} Set of MPP transitions between 𝑡𝑖 and 𝑡𝑖+1
𝑁𝑎,𝑏 = #( 𝑗 : 𝜑 𝑗 ∈ [𝑎, 𝑏]) Number of MPP between 𝑎 and 𝑏

In the explanation of our EM-algorithm (M-Step)
𝑁\ Number of samples of \ drawn from conditional distribution of \ given

the current estimate of {`,Λ}
{\1, \2, · · · , \𝑁\

} Samples of \

ˆ̀ =
(∑𝑁\

𝑗=1 argmin` log(L𝑠 (\ 𝑗 ))
)
/𝑁\ , Update for `

𝛷 Ordered list of the elements of {0 ∪ Φ ∪ 𝑡𝑛}
Thus: 𝜑0 = 0, and 𝜑𝑚𝑡+1 = 𝑡𝑛

𝑈 𝑗 (\ ) =
∑

𝑗 1𝑡 𝑗 ∈[𝜑 𝑗 ,𝜑 𝑗+1)∧𝑧 𝑗=0 Number of observed timestamps between 𝑗 th and 𝑗 + 1th (observed and
non observed) events

In the warm start procedure
𝐼𝑖 = [(𝑖 − 1)𝑡𝑛/𝑛𝑘 , 𝑖𝑡𝑛/𝑛𝑘 ) 𝑖th sub interval in the split of [0, 𝑡𝑛)
𝑢𝑖 =

∑
𝑗≤𝑛 1𝑡 𝑗 ∈𝐼𝑖 the number of events belonging to interval 𝐼𝑖

𝐼1, 𝐼2, . . . , 𝐼𝑘 intervals subsampled without replacement with P(𝐼𝑖 ) ∝ 𝑢𝑖
𝑘 hyperparameter
Φ Set of transitions sampled uniformly from each of 𝐼1, 𝐼2, . . . , 𝐼𝑘

𝐼
𝑗

0 , 𝐼
𝑗

1 , . . . , 𝐼
𝑗

𝑛𝑘−1 𝑛𝑘 sub-intervals of equal length partitioning [𝜑 𝑗 , 𝜑 𝑗+1)
𝑢
𝑗
𝑖
=

∑
𝑜≤𝑛 1

𝑡𝑜 ∈𝐼 𝑗𝑖
Number of observed events in 𝐼 𝑗

𝑖

𝐼
𝑗
𝑣 Interval subsampled with P(𝑣 = 𝑖) ∝ 1/𝑢 𝑗 𝑖 (except when 𝑢 𝑗 𝑖 = 0 in

which case P(𝑣 = 𝑖) = 0)
_ 𝑗 = (𝑢 𝑗 𝑣𝑛𝑘 )/(𝜑 𝑗+1 − 𝜑 𝑗 ) Initial value of _ 𝑗 after warm start
𝑝𝑖 = min(_𝑚𝑖

(𝜑𝑚𝑖+1 − 𝜑𝑚𝑖
)/|Δ𝑖 |, 1) Probability parameter of Bernouilli used to generate warm start labels

Δ𝑖 = {𝑡𝑙 |𝜑𝑚𝑖
< 𝑡𝑙 < 𝜑𝑚𝑖+1} Number of (observed) events between 𝜑𝑚𝑖

and 𝜑𝑚𝑖+1
` = median({𝑡𝑖 |𝑧𝑖 = 1}) Initial value of ` after warm start

In the calculation of the integral

I(Ω, 𝑡𝑏 , 𝑡𝑒 ,𝑚𝑏 ,𝑚𝑒 )
∫
T 𝑒

∑𝑚𝑒
𝑗=𝑚𝑏

(
_( 𝑗+1)−_( 𝑗 )

)
𝑥 ( 𝑗−𝑚𝑏+1)𝑑𝑥

T {𝑥1, . . . , 𝑥𝑁 : 𝑇1 ≤ 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑚𝑒−𝑚𝑏
≤ 𝑇2}

𝐺𝑎 = 𝐺𝑁
𝑎

∫
T 𝑒

∑𝑁
𝑖=1 𝑎𝑖𝑥𝑖𝑑𝑥

I(Ω, 𝑡𝑏 , 𝑡𝑒 ,𝑚𝑏 ,𝑚𝑒 ) = 𝐺𝑚𝑒−𝑚𝑏(
_ ( 𝑗+1)−_( 𝑗 )

)
𝑗≤𝑚𝑒−𝑚𝑏

Expression of target I as a function of the more general quantity 𝐺𝑎

𝛿 ∈ {0, 1}𝑛 Dummy variable for label assignments
In the real data analysis

[0, 1] ∋ ^ =
∫ 𝑏

𝑎

_𝑝 (𝑡 ) (𝑏−𝑎)−1

_𝑝 (𝑡 )+_𝑠 (𝑡 ) 𝑑𝑡 Absolute stability
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[0, 1] ∋ ˜̂ =

∫ 𝑏

𝑎
_𝑝 (𝑡 )𝑑𝑡∫ 𝑏

𝑎
(_𝑝 (𝑡 )+_𝑠 (𝑡 ))𝑑𝑡

Relative stability

_(𝑡 |H𝑡 ) = _ +
∑
𝑡𝑖<𝑡 𝐾 (𝑡 − 𝑡𝑖 ) Hawkes process intensity function

𝐾 Kernel function
𝑅2
𝐻𝑎𝑤𝑘𝑒𝑠

Determination coefficient for Hawkes model
𝑅2
𝑆

Determination coefficient of SFP component of [18]
𝑅2
𝐻𝑃𝑃

Determination coefficient of Homogeneous Poisson Process (HPP)
component of BuSca [18]

𝑅2
𝐵𝑃

= (𝑅2
𝑆
+ 𝑅2

𝐻𝑃𝑃
)/2 Final determination coefficient of BuSca [18]

𝑅2
𝑆𝐹𝑃

determination coefficient of SFP component of BPoP
𝑅𝑁𝐻𝑃𝑃

2
𝑖

Determination coefficient for LR problem predicting 𝑁 (𝑡) from 𝑡 on
[𝜑𝑖 , 𝜑𝑖+1)

𝑅2
𝑁𝐻𝑃𝑃

=
∑
𝑖 (𝜑𝑖+1 − 𝜑𝑖 )𝑅𝑁𝐻𝑃𝑃

2
𝑖
/𝑡𝑛 Determination coefficient for NHPP component of BPoP

𝑅2
BPoP = (𝑅2

𝑆𝐹𝑃
+ 𝑅2

𝑁𝐻𝑃𝑃
)/2 Overall determination coefficient of BPoP

In the synthetic data generation
𝑃𝑁𝐻𝑃𝑃 =

∑𝑛
𝑖=1 (1 − 𝑧𝑖 )/𝑛 Proportion of observed events that belong to NHPP

(E(𝑛),E( |Φ|),E(𝑃𝑁𝐻𝑃𝑃 )) Quantities of interest to pick interesting configurations of hyperparame-
ters `,Λ and 𝑐

𝛿 (\, \̂ ) =
∫ 𝑡𝑛
0
| (_𝑠 (𝑡 |\ )+_𝑝 (𝑡 |\ ))−(_𝑠 (𝑡 |\̂ )+_𝑝 (𝑡 |\̂ )) |

_𝑠 (𝑡 |\ )+_𝑝 (𝑡 |\ ) 𝑑𝑡 . Performance measure (weighted accuracy of recovered labelling)

16


	Abstract
	1 Introduction
	2 The BPoP  Model
	3 Fitting using EM
	4 Experiments
	5 Goodness of Fit
	6 Related Work
	7 Conclusion
	References
	A Synthetic experiments
	B Algorithmic details and complexity analysis
	C Explicit computation of the integral I
	D Table of Notations

