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Abstract
3D Gaussian Splatting (3DGS) has emerged as
a powerful technique for novel view synthesis.
However, existing methods struggle to adaptively
optimize the distribution of Gaussian primitives
based on scene characteristics, making it chal-
lenging to balance reconstruction quality and effi-
ciency. Inspired by human perception, we propose
scene-adaptive perceptual densification for Gaus-
sian Splatting (Perceptual-GS), a novel frame-
work that integrates perceptual sensitivity into
the 3DGS training process to address this chal-
lenge. We first introduce a perception-aware rep-
resentation that models human visual sensitiv-
ity while constraining the number of Gaussian
primitives. Building on this foundation, we de-
velop a perceptual sensitivity-adaptive distribu-
tion to allocate finer Gaussian granularity to vi-
sually critical regions, enhancing reconstruction
quality and robustness. Extensive evaluations
on multiple datasets, including BungeeNeRF for
large-scale scenes, demonstrate that Perceptual-
GS achieves state-of-the-art performance in re-
construction quality, efficiency, and robustness.
The code is publicly available at: https://
github.com/eezkni/Perceptual-GS

1. Introduction
Novel view synthesis, which generates images from new
viewpoints based on known multi-view images, has been
a long-standing focus in computer vision and is further
driven by increasing demand from applications such as
VR/AR and digital twins. Recently, 3D Gaussian Splatting
(3DGS) (Kerbl et al., 2023) has gained significant attention
for its exceptional performance, explicitly representing 3D
scenes as collections of ellipsoidal Gaussian primitives. Un-
like traditional deep learning models, the number of Gaus-

1School of Computer Science and Technology, Tongji Uni-
versity, Shanghai, China. Correspondence to: Zhangkai Ni
<zkni@tongji.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1. The quality-efficiency trade-off and robustness in large-
scale scenes of Perceptual-GS are quantified by LPIPS and the
number of Gaussians (millions).

sian primitives in 3DGS dynamically evolves during training
through adaptive density control, using the average position
gradient of Gaussians to determine the need for additional
primitives, enhancing the model’s capacity to capture fine
details in local regions. While this strategy improves overall
performance, it struggles with efficiently distributing Gaus-
sians, leading to blurred regions from too few primitives or
redundancy from too many.

To enhance the densification capabilities of 3DGS in local
regions, numerous studies (Mallick et al., 2024; Xu et al.,
2024; Deng et al., 2024; Lyu et al., 2024; Zhang et al.,
2025; Liu et al., 2025) have proposed various strategies
for improving its performance. Many approaches refine
calculating average gradients to more effectively identify
Gaussians requiring densification, while others introduce
additional metrics for the same purpose. However, these
methods often struggle to balance reconstruction quality
and computational efficiency, since the number of Gaus-
sian primitives is closely tied to perceptual metrics such as
LPIPS (Fang & Wang, 2024). To address this challenge,
our research explores whether 3D scenes can be represented
with higher perceptual quality using a constrained number of
Gaussians. Specifically, we integrate insights from human
perception into the training process of 3DGS, adaptively
distributing Gaussian primitives according to perceptual
sensitivity across different local regions of the scene.

The human visual system (HVS) exhibits characteristics
such as contrast sensitivity (Campbell & Robson, 1968),
masking effects (Ross & Speed, 1991), and just noticeable
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differences (JND) (Shen et al., 2020), which have been ex-
tensively utilized in various computer vision tasks. Several
studies have integrated certain human perceptual properties
with 3DGS (Franke et al., 2025; Lin et al., 2025a), primarily
focusing on foveated rendering by leveraging the reduced
acuity of HVS in peripheral vision to adjust the precision of
different regions dynamically. These methods improve ren-
dering efficiency, but they achieve this by selecting appropri-
ate Gaussian primitives during rendering rather than refining
their distribution, inheriting the limitations of vanilla 3DGS.
Inspired by the Structural Similarity (SSIM) index (Wang
et al., 2004), which suggests that human perception evalu-
ates image quality primarily through local structures (Xue
et al., 2014; Ni et al., 2016), we compute gradient magnitude
images from various viewpoints of a 3D scene to capture
perceptually sensitive local structures. This guides the train-
ing process by adaptively distributing Gaussian primitives
to represent perceptually sensitive scene details better.

In this paper, we present Perceptual-GS, a novel framework
that integrates multi-view perceptual sensitivity into the
training process to optimize the distribution of Gaussian
primitives. We first enable a perception-aware represen-
tation of the scene by precomputing multi-view sensitiv-
ity maps using perceptual sensitivity extraction and mak-
ing each Gaussian perception-aware through dual-branch
rendering, constrained by RGB and sensitivity loss dur-
ing training. Building upon this, we propose a percep-
tual sensitivity-adaptive distribution, including perceptual
sensitivity-guided densification, which enables a sufficient
number of Gaussians to represent perceptually critical and
poorly learned regions and scene-adaptive depth reinitializa-
tion, which further improves performance on scenes with
sparse initial point cloud. As shown in Figure 1, Perceptual-
GS achieves superior perceptual quality with fewer Gaus-
sians, effectively balancing quality and efficiency. We con-
duct experiments across multiple datasets, and the results
consistently demonstrate a state-of-the-art trade-off between
visual fidelity and model complexity, with notable improve-
ments in perceptual metrics and a significant reduction in
parameter count even in large-scale scenes. Additionally,
Perceptual-GS can be integrated with other 3DGS-based
works to enhance performance further, showcasing its gen-
eralizability. In summary, our contributions are as follows:

• We design a perception-aware representation that al-
lows each Gaussian primitive to adapt to perceptual
sensitivity across different spatial regions efficiently,
capturing human perception of the scene in addition to
conventional geometry and color.

• We introduce a perceptual sensitivity-adaptive dis-
tribution that dynamically allocates Gaussian primi-
tives based on perceptual sensitivity in different areas,
achieving a balance between quality and efficiency

while enhancing robustness across diverse scenes.

• Extensive experiments demonstrate that our proposed
Perceptual-GS achieves state-of-the-art performance
with fewer Gaussian primitives and can be effectively
integrated with other 3DGS-based methods, maintain-
ing excellent performance even in large-scale scenes.

2. Related Work
2.1. 3DGS-based Novel View Synthesis

Novel view synthesis generates images from unseen view-
points using known views of a 3D scene. Early meth-
ods, such as NeRF (Mildenhall et al., 2020) and its vari-
ants (Turki et al., 2022; Poole et al., 2023; Ni et al., 2024;
Xie et al., 2024), employ neural networks for implicit 3D
representation but are constrained by the slow volume ren-
dering. Recently, 3DGS (Kerbl et al., 2023) introduces an
efficient method that explicitly represents scenes using ellip-
soidal Gaussian primitives for real-time rendering, gaining
attention in various applications (Liu et al., 2024; Zhou
et al., 2024; Yu et al., 2024b; Lee et al., 2025; Ren et al.,
2025). However, 3DGS struggles to distribute the Gaus-
sian primitives efficiently, resulting in redundancy in sim-
ple areas and blurriness in texture-rich regions with sparse
initial point clouds. Although subsequent quality-focused
methods (Fang & Wang, 2024; Zhang et al., 2025) improve
the reconstruction quality, they often increase storage re-
quirements and reduce efficiency, while efficiency-focused
methods (Lu et al., 2024; Lin et al., 2025a) lower model
complexity at the cost of visual fidelity. As a result, bal-
ancing quality and efficiency remains a key challenge in
3DGS.

2.2. 3DGS Densification

Unlike conventional neural networks with fixed parameter
counts, 3DGS initializes Gaussian primitives from point
clouds generated through Structure-from-Motion (SfM) and
employs adaptive density control to refine local regions.
Standard 3DGS uses the average position gradient of Gaus-
sians across all viewpoints to decide primitives to densify,
which often leads to blurred details due to insufficient prim-
itives or redundancy from excessive ones. To address this,
many methods optimize densification (Du et al., 2024; Li
et al., 2024; Yu et al., 2024a; Mallick et al., 2024; Fang
& Wang, 2024; Kheradmand et al., 2024; Liu et al., 2025)
and most of them refine the metrics used to select Gaussian
primitives to be densified. Some enhance the calculation
of position gradient with the scaling of Gaussians and fre-
quency domain information (Zhang et al., 2024b; 2025),
while others propose additional metrics considering average
color gradients and coverage of Gaussian primitives (Kim
et al., 2024; Fang & Wang, 2024). However, these methods
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Figure 2. Overview of the proposed Perceptual-GS. We first construct a perception-aware representation of the scene, enabling each
Gaussian primitive to adapt to the perceptual sensitivity of its represented region while constraining the number of Gaussians through
perceptual sensitivity extraction and dual-branch rendering. Subsequently, we propose a perceptual sensitivity-adaptive distribution,
allocating more Gaussians to perceptually critical areas to enhance reconstruction quality and robustness through perceptual sensitivity-
guided densification and scene-adaptive depth reinitialization.

often fail to simultaneously consider both visual fidelity
and model complexity when selecting Gaussian primitives
for densification, making it challenging to achieve a proper
balance.

3. Methodology
3.1. Preliminaries

3DGS renders 2D images from specific viewpoints by pro-
jecting 3D Gaussian primitives into 2D space, sorting them
according to their distance to the camera, and applying α-
blending to produce the final image. The set of Gaussian
primitives G is expressed as:

G = {Gi(µi,Σi,SHi, αi) | i = 1, . . . , N}, (1)

where Gi is the i-th Gaussian primitive, parameterized by
its center coordinates µi, covariance matrix Σi, opacity αi,
and spherical harmonic coefficients SHi to determine its
geometry and color.

Given µi and Σi of a Gussian primitive Gi, its geometric
shape Gi(x) can be defined as:

Gi(x) = e−
1
2 (x−µi)

⊤Σ−1
i (x−µi), (2)

where x is a coordinate in 3D space. The color of a Gaus-
sian primitive Gi for viewpoint v, denoted as Cv

i , can be
computed using its spherical harmonic coefficients SHi.

After depth-sorting all Gaussian primitives, the rendered
RGB color RC

v (u) at pixel u for viewpoint v is determined
by the rendering function:

RC
v (u) =

N∑
i=1

ωv
i (u)C

v
i , (3)

ωv
i (u) = αiG

v
i (u)

i−1∏
j=1

(
1− αjG

v
j (u)

)
, (4)

where ωv
i (·) and Gv

i (·) respectively calculate the weight
and geometric shape of the elliptical projection of the 3D
Gaussian primitive Gi under viewpoint v.

3.2. Overview

Motivation. In this paper, we aim to enhance the perfor-
mance of 3DGS while addressing the following challenges:

(a) Balancing quality and efficiency: The balance be-
tween model quality and efficiency is often neglected
when distributing Gaussians, making it challenging
to achieve high-fidelity reconstruction without largely
increasing rendering overhead, as the number of Gaus-
sians is closely tied to perceptual quality.

(b) Limited utilization of human perception: Relying di-
rectly on edge maps to assess the perceptually sensitive
regions is influenced by response magnitudes, often
overlooking subtle structures and reducing accuracy.

(c) Robustness across different scenes: Current ap-
proaches lack robustness across diverse scenes, par-
ticularly in large-scale ones, as they fail to effectively
adapt densification to scene-specific properties.

We aim to improve quality and efficiency by prioritizing the
densification of Gaussian primitives in high-sensitivity re-
gions to human perception and constraining their generation
in low-sensitivity areas, thereby enhancing the perceptual
quality of the scene while using fewer Gaussians. Next, we
present the framework and detail our four key modules.

Framework. Our Perceptual-GS utilizes the high percep-
tual sensitivity of the human eye to local structures (Xue
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et al., 2014) to adaptively identify regions requiring more
Gaussian primitives for improved perceptual quality. The
pipeline of our proposed method is illustrated in Figure 2,
and it can be divided into four individual modules:

(a) Perceptual Sensitivity Extraction: Local structures
are extracted using traditional edge detection, followed
by perception-oriented enhancement and smoothing to
generate binary sensitivity maps.

(b) Dual-branch Rendering: A novel perceptual sensi-
tivity parameter ϵi is added to each Gaussian primitive
in 3D space. Subsequently, the dual-branch rendering
strategy is employed to map 2D perceptual sensitivity
to 3D primitives while limiting the number of Gaus-
sians in structurally simple regions.

(c) Perceptual Sensitivity-guided Densification: Gaus-
sian primitives with high or medium perceptual sensi-
tivity are selectively densified. High-sensitivity regions
correspond to areas visually critical to the human eye,
while medium-sensitivity regions require more Gaus-
sians for better accuracy.

(d) Scene-adaptive Depth Reinitialization: Scenes with
sparse initial point cloud derived from Structure-from-
Motion (SfM) are identified based on the learning of
Gaussian perceptual sensitivity, and depth reinitializa-
tion is applied to refine the distribution of Gaussian
primitives and enhance reconstruction.

3.3. Perceptual Sensitivity Extraction

Image distortion is often assessed by analyzing local struc-
tures, as human perception is particularly sensitive to dis-
tortions in these areas (Wang et al., 2004). In 3DGS, using
local image structures to guide density control is also ex-
plored (Mallick et al., 2024; Jiang et al., 2024; Xiang et al.,
2024; Lin et al., 2025b). While directly using the derived
edge response values can improve reconstruction quality, it
has limitations due to large differences in response intensi-
ties across various perceptually sensitive regions and may
overlook areas that also require densification. For example,
in the middle row of Figure 3, the texture of leaves has lower
response values compared to the more prominent edges in
the first row. These subtle structures, though distinguishable
to the human eye, do not promote densification as effec-
tively as the more pronounced edges. To address this, we
first capture the human perception of different regions by
extracting gradient magnitude maps (Xue et al., 2014) and
then apply perception-oriented enhancement to model the
thresholding nature of human perception (Lubin, 1997) and
perception-oriented smoothing according to the result of
eye-tracking studies (Gu et al., 2016). This process retains
binary information about pixel perceptibility to the human

eye while discarding absolute response values, as shown in
Figure 3.

Specifically, we use the Sobel operator to extract the local
structure of the original RGB image I, and the horizontal
and vertical gradient convolution kernels Gx and Gy are
defined as:

Gx =

−1 0 1
−2 0 2
−1 0 1

 , Gy =

−1 −2 −1
0 0 0
1 2 1

 . (5)

Local Structure Extraction Perception-oriented Smoothing

Perception-oriented Enhancement

Figure 3. Pipeline of Perceptual Sensitivity Extraction. An accu-
rate and more prone-to-learn binary sensitivity map that reflects
human visual perception can be extracted through this module.

The final edge response map G is computed as:

G =
√
(I ⊗Gx)2 + (I ⊗Gy)2, (6)

where ⊗ denotes the convolution operation. After obtaining
the gradient magnitude map, we enhance it to better align
with human perception. By setting an enhancement thresh-
old τe, every pixel value G(u) at pixel u in the response
map G is binarized to retain only binary information:

GE(u) = I(G(u) > τe), (7)

where I(·) is the indicator function and GE(u) is the pixel
value of the enhanced map at pixel u. We further smooth
the binary map using average pooling with threshold τs,
resulting in the final perceptual sensitivity map for the scene.

3.4. Dual-branch Rendering

With the 2D perceptual sensitivity maps extracted, mapping
them onto 3D Gaussian primitives is essential to make the
model perception-aware. A straightforward approach is to
accumulate pixel values within the areas covered by the 2D
projections of Gaussians from multiple viewpoints (Mallick
et al., 2024; Rota Bulò et al., 2025). However, this strategy
fails to constrain the sensitivity of different pixels covered
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by a single primitive to remain consistent, which undermines
the effectiveness of subsequent perceptual sensitivity-guided
densification. To efficiently capture human perception from
2D sensitivity maps, we propose a dual-branch rendering
framework. In this approach, besides the original RGB
branch which renders RGB images of the scene, we in-
troduce a sensitivity branch to render sensitivity maps by
associating each Gaussian primitive Gi with an additional
learnable parameter ϵi, representing the perceptual sensi-
tivity of Gassians in spatial regions. To ensure consistency
and scalability, the sensitivity values are constrained to the
range [0, 1] using a sigmoid activation function. This allows
sensitivity maps to be rendered similarly to RGB images:

RS
v (u) =

N∑
i=1

ωv
i (u)σ(ϵi), (8)

where RS
v (u) is the value of rendered sensitivity map at

pixel u in view v, and σ(·) represents the sigmoid function.

To optimize the framework, we integrate losses from both
branches. For the RGB branch, we follow the loss function
LC
v as the vanilla 3DGS, which is the weighted sum of L1

and D-SSIM (Wang et al., 2004) loss of view v. For the
sensitivity branch, the Binary Cross-Entropy (BCE) loss
LBCE is employed to align the rendered sensitivity map
RS

v with the ground truth IS
v , and the sensitivity loss LS

v of
view v is defined as:

LS
v = LBCE(IS

v ,RS
v ). (9)

The overall loss function Lv for viewpoint v is defined as a
weighted sum of the RGB and sensitivity loss:

Lv = (1− λS)LC
v + λSLS

v , (10)

where λS is the weight for the sensitivity loss.

3.5. Perceptual Sensitivity-guided Densification

Following the vanilla 3DGS, we initiate the perceptual
sensitivity-guided densification after 500 iterations of warm-
up, which allows each Gaussian primitive to learn a coarse
approximation of geometry, color, and sensitivity, form-
ing a foundation for subsequent densification. To better fit
the binarized perceptual sensitivity maps, the well-learned
sensitivity of each Gaussian primitive should be close to 0
or 1. Primitives with sensitivity close to 1 are assumed to
represent regions with rich local structures, necessitating
additional Gaussians for finer detail representation. These
Gaussians Gh are selected using a threshold τh:

Gh = {Gi | ϵi > τh ∧ i ∈ [1, N ]}. (11)

For Gaussian primitives with significant sensitivity varia-
tions across viewpoints, the training process often converges

their sensitivity to incorrect intermediate values to balance
discrepancies. These Gaussians need to be split into smaller
primitives, as a single primitive cannot adequately capture
the complex information within the region. We identify
such primitives Gm using thresholds τh and τl:

Gm = {Gi | ϵi ∈ [τl, τh] ∧ i ∈ [1, N ]}. (12)

To prevent excessive densification of Gaussian primitives
within objects, we impose weight constraints by a threshold
τω on selected primitives based on their sensitivity eval-
uation, and the Gaussian primitives requiring perceptual
sensitivity-guided densification GD are defined as:

GD = {Gi | ωmax
i > τω ∧ i ∈ [1, N ]}∩ (Gh∪Gm), (13)

ωmax
i = MAX({

∑
u∈pixv

ωv
i (u) | v ∈ V }), (14)

where MAX(·) selects the maximum element in the set,
pixv denotes all pixels in view v and ωmax

i is the maximum
weight of Gaussian Gi across all views V of the scene. This
ensures that only the most essential Gaussians are densified.

The vanilla 3DGS employs split and clone operations during
densification based on the scaling of Gaussian primitives.
Our experiment finds that the split can better capture scene
details. Therefore, we only apply the clone operation in
perceptual sensitivity-guided densification to Gh when the
scene sensitivity β falls below a threshold τβ , indicating
scenes with fewer perceptually sensitive regions. Otherwise,
we split the selected Gaussians regardless of their scaling.
Specifically, the scene sensitivity β can be defined as the
average pixel sensitivity across all views V :

β =

∑
v∈V avgv

|V |
, (15)

avgv =

∑
u∈pixv

v(u)

|pixv|
, (16)

where v(u) is the sensitivity value at pixel u and avgv
denotes the average sensitivity of view v.

3.6. Scene-adaptive Depth Reinitialization

While perceptual sensitivity-guided densification effectively
enhances the perceptual quality of reconstruction, in scenes
with sparse initial point clouds, excessive densification of
large Gaussians may result in inaccurate distributions. To ad-
dress this, inspired by (Fang & Wang, 2024), we adaptively
apply depth reinitialization on scenes with sparse initial
point clouds. The proportion of large Gaussian primitives
with medium sensitivity after warm-up γ is defined as an
indicator of whether the initial point cloud is sparse:

γ =
|Gl ∩ Gm|

|Gl|
, (17)
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Gl = {Gi | smax
i > Q3(Smax) ∧ i ∈ [1, N ]}, (18)

where smax
i represents the scaling of the longest axis of

Gi, Smax denotes the set of the longest axis scaling of all
Gaussians, and Q3 represents the third quartile, identifying
the top 25% largest Gaussian primitives Gl. Finally, for
scenes where γ exceeds a predefined threshold τγ , depth
reinitialization is applied to enhance performance.

3.7. Opacity Decline for Clone Operation

In the clone operation of vanilla 3DGS, newly added Gaus-
sian primitives inherit all parameters from the densified
primitives, leading to an increase in the opacity of the spa-
tial regions they represent. However, these cloned Gaussian
primitives are typically small and insufficiently trained, mak-
ing them prone to redundancy. As their opacities increase,
it becomes more challenging to prune these potentially re-
dundant Gaussians, thereby reducing overall efficiency.

To mitigate the impact of cloning redundant Gaussians on
model efficiency, we propose the opacity decline for the
clone operation, which reduces the opacity of the spatial
regions represented by the cloned Gaussians, thereby facil-
itating the pruning of redundant Gaussian primitives. Ac-
cording to the alpha-compositing logic, when two Gaussian
primitives with an opacity of α̂ overlap, the opacity of the
corresponding spatial region A can be expressed as:

A = α̂+ (1− α̂)× α̂. (19)

Assuming the opacity of the spatial region, i.e., the opacity
of the cloned Gaussian primitive, is α before the clone
operation, we aim to reduce the opacity A of this region
after cloning. Specifically, we apply a transform OD(·) to
α to decline the spatial opacity. The opacity α̂ of the two
Gaussian primitives after cloning is determined by solving
the equation:

α̂+ (1− α̂)× α̂ = OD(α), (20)

which yields α̂ = 1−
√
1− OD(α).

When selecting the OD(·), we aim to apply greater reduc-
tions to smaller opacities, encouraging them to be pruned,
while applying less reduction to higher opacities to avoid
removing important Gaussians. Specifically, we require
OD(x) to be monotonically increasing for x ∈ [0, 1] and
satisfy the following properties:

(a) OD(x) ≤ x, indicating that the transformed value is
no larger than the original one,

(b) OD(0) = 0, OD(1) = 1, indicating that the trans-
formed value is still in range [0,1],

(c) a ≤ 0.5, where a represents the unique stationary point
of f(x) = x − OD(x) satisfying its first derivative

f ′(a) = 0, indicating that smaller opacities are reduced
more than larger ones.

In our experiments, we adopt the power function xk as
OD(·). To determine the optimal value for k, we test var-
ious exponents and find that larger values of k effectively
reduce the number of Gaussian primitives, but may also lead
to performance degradation, as shown in Table 1. Although
property (c) is not satisfied when k = 1.0, we still include
this value in the table, indicating that the opacity of the spa-
tial region represented by any primitive remains unchanged
after cloning. Ultimately, we select k = 1.2 to strike a
balance between reconstruction quality and efficiency.

Table 1. The effect of various k values. All metrics are evaluated
on the Mip-NeRF 360 dataset and averaged across scenes.

k PSNR↑ SSIM↑ LPIPS↓ #G↓
1.0 28.02 0.839 0.172 2.74M
1.2 28.01 0.839 0.172 2.69M
1.5 27.96 0.838 0.173 2.66M
2.0 27.99 0.838 0.174 2.60M

4. Experiment
4.1. Experiment Setup

Datasets. We evaluated the effectiveness of our method
across 21 scenes, including 9 scenes from Mip-NeRF
360 (Barron et al., 2022), 2 scenes from Deep Blend-
ing (Hedman et al., 2018), 2 scenes from Tanks & Tem-
ples (Knapitsch et al., 2017), and 8 scenes from BungeeN-
eRF (Xiangli et al., 2022).

Baselines. We select quality-focused related works that
enhance 3DGS performance through optimizing densifica-
tion strategies, similar to Perceptual-GS, for comparison to
validate the effectiveness of our proposed method. Specif-
ically, we chose state-of-the-art methods, including Pixel-
GS (Zhang et al., 2025), Mini-Splatting-D (Fang & Wang,
2024), Taming-3DGS (Mallick et al., 2024), and the vanilla
3DGS (Kerbl et al., 2023) as baselines.

Since 3DGS and Pixel-GS did not provide metrics for the
number of Gaussian primitives in their original papers,
we retrain both models to obtain these values, denoted as
3DGS* and Pixel-GS*. Additionally, to ensure a fair com-
parison of FPS and avoid discrepancies caused by testing
on different devices, we re-evaluated the rendering speed
of various methods. As none of the baselines report results
on BungeeNeRF, although it is commonly used to evaluate
other 3DGS-based methods (Lu et al., 2024; Ren et al., 2025;
Chen et al., 2025), we retrain all models on this dataset and
use the data from the original papers for all other metrics.

Implementation Details. We align the experimental setup
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Table 2. Quantitative results on reconstruction quality, comparing our method with state-of-the-art methods in terms of PSNR↑, SSIM↑
and LPIPS↓. The best , second-best , and third-best results are highlighted.

Method Mip-NeRF 360 Tanks & Temples Deep Blending BungeeNeRF

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
3DGS* 27.71 0.826 0.202 23.61 0.845 0.178 29.54 0.900 0.247 27.64 0.912 0.100
Pixel-GS* 27.85 0.834 0.176 23.71 0.853 0.152 28.92 0.893 0.250 OOM in 1 scene
Mini-Splatting-D 27.51 0.831 0.176 23.23 0.853 0.140 29.88 0.906 0.211 25.58 0.861 0.149
Taming-3DGS 27.79 0.822 0.205 24.04 0.851 0.170 30.14 0.907 0.235 OOM in 2 scenes
Ours 28.01 0.839 0.172 23.90 0.857 0.151 29.94 0.907 0.231 27.86 0.918 0.095

Ours Taming-3DGS

Pixel-GS 3DGSMini-Splatting-D

Ground Truth

Figure 4. A qualitative comparison of Bilbao in BungeeNeRF.

with the baselines, and the settings for the newly introduced
hyperparameters in Perceptual-GS are provided in the Ap-
pendix. To achieve a better balance between quality and
efficiency, we use different weight thresholds τω for high-
and medium-sensitivity Gaussians, denoted as τωh and τωm,
respectively. All training and testing are conducted on a
single NVIDIA RTX4090 GPU with 24GB of memory.

Metrics. To evaluate the performance of different methods,
we use common metrics including PSNR, SSIM (Wang
et al., 2004), and LPIPS (Zhang et al., 2018). Besides, we
consider the number of Gaussian primitives (#G) in millions
(M) and rendering speed (FPS). These metrics highlight the
superior trade-off between quality and efficiency achieved
by our approach.

4.2. Comparisons with State-of-the-art

Quantitative Comparison. Table 2 shows the quanti-
tative comparison of Perceptual-GS with state-of-the-art
methods in novel view synthesis on reconstruction qual-
ity. Across four datasets, our proposed Perceptual-GS
achieves superior reconstruction quality, particularly ex-
celling in SSIM and the perceptually relevant LPIPS met-
ric. Unlike Pixel-GS and Taming-3DGS which face CUDA
out-of-memory (OOM) issues due to excessive Gaussians
in large-scale scenes, Perceptual-GS adaptively distributes
primitives based on the perceptual sensitivity of different
regions, achieving a superior quality-efficiency trade-off.

Qualitative Comparison. The proposed Perceptual-GS
allocates more Gaussians to object details and edges, ef-

Table 3. Quantitative results on reconstruction efficiency, compar-
ing our method with state-of-the-art methods in terms of the num-
ber of Gaussian primitives (#G)↓ and rendering speed (FPS)↑.

Method Mip-NeRF 360 Tanks & Temples Deep Blending BungeeNeRF

#G↓ FPS↑ #G↓ FPS↑ #G↓ FPS↑ #G↓ FPS↑

3DGS* 3.14M 193 1.83M 247 2.81M 194 6.92M 69
Pixel-GS* 5.23M 105 4.49M 101 4.63M 114 OOM in 1 scene
Mini-Splatting-D 4.69M 120 4.28M 115 4.63M 159 6.08M 86
Taming-3DGS 3.31M 122 1.84M 149 2.81M 130 OOM in 2 scenes
Ours 2.69M 166 1.72M 218 2.86M 178 4.97M 89

fectively reducing scene blurriness. As shown in Figure 4,
our proposed Perceptual-GS accurately reconstructs roads,
buildings, and grassland at scene boundaries, avoiding ar-
tifacts seen in other methods. Similarly, in Figure 5, our
method captures ground textures more faithfully, while other
methods tend to produce more artifacts in these regions.

Efficiency Comparison. Table 3 provides a quantitative
analysis of model complexity and rendering efficiency.
Comparing with other quality-focused methods, Perceptual-
GS demonstrates a significant improvement in efficiency
and the quality-efficiency balance, rendering high-fidelity
novel views with faster speed and fewer Gaussian primi-
tives.

4.3. Ablation Study

Effectiveness of Perceptual Sensitivity Extraction. We
evaluate the impact of enhanced sensitivity maps for guid-
ing densification by comparing them to edge response maps
derived from the Sobel operator. Since scene-adaptive
depth reinitialization does not function properly without
perception-oriented enhancement, we exclude depth reini-
tialization for all scenes during the experiments and apply
only split in perceptual sensitivity-guided densification. As
shown in the “w/o PE” results in Table 4, the synthesized
novel views exhibit similar reconstruction quality to vanilla
3DGS without perception-oriented enhancement (PE) since
the inaccurate learning of sensitivity.

Effectiveness of Perceptual Sensitivity-guided Densifica-
tion. Perceptual sensitivity-guided densification is a key
component of our method. To assess the individual contribu-
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Figure 5. A qualitative comparison of Perceptual-GS with other methods on Stump and Treehill in Mip-NeRF 360.

Table 4. Ablation studies on various modules of Perceptual-GS. All
metrics are evaluated on the Mip-NeRF 360 dataset and averaged
across all scenes.

PSNR↑ SSIM↑ LPIPS↓ #G↓
FULL 28.01 0.839 0.172 2.69M
3DGS* 27.71 0.826 0.202 3.14M
w/o PE 27.74 0.825 0.204 2.09M
w/o HD 27.74 0.826 0.204 2.02M
w/o MD 27.86 0.831 0.179 2.56M
w/o SDR 27.93 0.832 0.176 2.68M
w/o OD 27.99 0.839 0.172 3.25M

tions of densifying high- and medium-sensitivity Gaussians,
we conduct ablation studies by separately removing their
densification processes. The results, presented as “w/o HD”
in Table 4, show that excluding high-sensitivity Gaussian
densification (HD) reduces Gaussian primitives significantly,
causing the performance to degrade to levels comparable
to vanilla 3DGS. Similarly, removing medium-sensitivity
Gaussian densification (MD) impairs the accurate recon-
struction of detailed regions. However, as shown in “w/o
MD” in Table 4, it still achieves notable improvements over
vanilla 3DGS thanks to the dual-branch rendering which
reduces the proportion of medium-sensitivity Gaussians.

Effectiveness of Scene-adaptive Depth Reinitialization.
To verify that the improvement of the Perceptual-GS is not
solely attributed to depth reinitialization, we perform an
ablation study on the scene-adaptive depth reinitialization
(SDR). The results in “w/o SDR” in Table 4 show that our
method achieves improved outcomes even without depth
reinitialization, maintaining a balance between quality and
efficiency to achieve state-of-the-art performance.

Effectiveness of Opacity Decline. Our proposed Opacity
Decline (OD) mechanism for clone operation in densifica-
tion encourages the removal of redundant Gaussian prim-
itives while preserving similar visual quality. As shown
in Table 4, with Opacity Decline applied, Perceptual-GS
achieves comparable performance in quality metrics using
significantly fewer Gaussians, demonstrating its effective-

ness in removing redundant primitives.

4.4. Analysis

Integrating with existing works. In Table 5 and Table 6,
we integrate our proposed framework with vanilla 3DGS
and Pixel-GS, denoted as w/ Ours, further demonstrating
its effectiveness. The proposed method achieves significant
improvements across all quality metrics on both baselines,
while also reducing the number of Gaussian primitives in
most datasets, thereby enhancing efficiency.

It is worth noting that our method remains effective even
under sparse-view settings. In Table 7, we integrate the
proposed method with CoR-GS (Zhang et al., 2024a) and
conduct quantitative comparison on the 24-view Mip-NeRF
360 dataset, which also demonstrates a significant perfor-
mance improvement. Since the original paper did not pro-
vide the 24-view dataset, we retrain the model, denoted as
CoR-GS*, using a dataset reconstructed according to the
instructions in the official released code. The versatility of
our method enables its integration with other approaches to
achieve even better performance.

Effectiveness of dual-branch rendering. In addition to
mapping perceptual sensitivity, our experiments reveal that
dual-branch rendering (DBR) also reduces the number of
Gaussian primitives. As shown in Table 8, we compare the
performance and efficiency of the vanilla 3DGS, 3DGS with
OD, and with both DBR and OD to demonstrate its effect.
The results indicate that DBR can slightly constrain the
number of Gaussians while maintaining comparable quality
since low-sensitivity Gaussians with well-learned sensitivity
exhibit lower sensitivity loss. After weighting, their total
loss is reduced, preventing them from reaching the position
gradient threshold and thereby suppressing densification.

Rendering quality in low-sensitive regions. Although the
dual-branch rendering strategy suppresses the densification
of Gaussian primitives in low-sensitivity regions, it does not
compromise the reconstruction quality in these areas. In
Table 9, we use the perceptual sensitivity map as a mask
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Table 5. The quantitative result of the proposed method is based on different models on Mip-NeRF 360, Tanks & Temples, and Deep
Blending. Metrics are averaged across the scenes. The improvements and reductions in the metrics are highlighted.

Method Mip-NeRF 360 Tanks & Temples Deep Blending

PSNR↑ SSIM↑ LPIPS↓ #G↓ PSNR↑ SSIM↑ LPIPS↓ #G↓ PSNR↑ SSIM↑ LPIPS↓ #G↓
3DGS* 27.71 0.826 0.202 3.14M 23.61 0.845 0.178 1.83M 29.54 0.900 0.247 2.81M
w/ Ours 28.01 0.839 0.172 2.69M 23.90 0.857 0.151 1.72M 29.94 0.907 0.231 2.86M
∆ +0.30 +0.013 -0.030 -0.45M +0.29 +0.012 -0.027 -0.11M +0.40 +0.007 -0.016 +0.05M

Pixel-GS* 27.85 0.834 0.176 5.23M 23.71 0.853 0.152 4.49M 28.92 0.893 0.250 4.63M
w/ Ours 28.01 0.841 0.167 3.37M 23.95 0.859 0.142 2.96M 29.71 0.901 0.233 3.59M
∆ +0.16 +0.007 -0.009 -1.86M +0.24 +0.006 -0.010 -1.53M +0.79 +0.008 -0.017 -1.04M

Table 6. The quantitative result of the proposed method is based on different models on BungeeNeRF. We present metrics averaged on the
dataset and from three single scenes.

Method BungeeNeRF Pompidou Chicago Amsterdam

PSNR↑SSIM↑LPIPS↓ #G↓ PSNR↑SSIM↑LPIPS↓ #G↓ PSNR↑SSIM↑LPIPS↓ #G↓ PSNR↑SSIM↑LPIPS↓ #G↓
3DGS* 27.64 0.912 0.100 6.92M 27.00 0.916 0.095 9.11M 27.97 0.927 0.086 6.32M 27.60 0.913 0.100 6.19M
w/ Ours 27.86 0.918 0.095 4.97M 27.18 0.922 0.089 6.12M 28.39 0.933 0.081 4.48M 27.89 0.922 0.087 4.96M
∆ +0.22 +0.006 -0.005 -1.95M +0.18 +0.006 -0.006 -2.99M +0.42 +0.006 -0.005 -1.84M +0.29 +0.009 -0.013 -1.23M

Pixel-GS* OOM in 1 scene OOM 27.52 0.921 0.090 9.76M 27.76 0.916 0.095 10.26M
w/ Ours 27.64 0.913 0.100 5.92M 27.01 0.918 0.092 7.39M 28.36 0.930 0.081 5.58M 27.98 0.922 0.085 6.60M
∆ — — — — — — — — +0.84 +0.009 -0.009 -4.18M +0.22 +0.006 -0.010 -3.66M

Table 7. The quantitative result of the proposed method is based on
CoR-GS on 24-view Mip-NeRF 360. Metrics are averaged across
the scenes.

PSNR↑ SSIM↑ LPIPS↓
CoR-GS* 22.26 0.664 0.341
w/Ours 22.42 0.681 0.281
∆ +0.16 +0.017 -0.060

Table 8. Effect of dual-branch rendering on constraining the num-
ber of Gaussians.

PSNR↑ SSIM↑ LPIPS↓ #G↓
3DGS* 27.71 0.826 0.202 3.14M
+OD 27.74 0.825 0.207 2.22M
+OD +DBR 27.69 0.822 0.212 1.94M

to retain only the low-sensitive pixels and compare our
method with the vanilla 3DGS. The results validate that
Perceptual-GS achieves comparable rendering performance
in low-sensitivity regions.

Effectiveness on large-scale scenes. As shown in Fig-
ure 1, Table 2 and Table 3, our method demonstrates great
robustness in large-scale scenes, avoiding introducing exces-
sive Gaussians like Pixel-GS and the reconstruction failures
in Mini-Splatting-D. This is largely attributed to our dual-
branch rendering and perceptual sensitivity-guided densifi-
cation, which limit the number of densified Gaussians while
adaptively identifying regions requiring more primitives.

Table 9. Quantitative comparison between Perceptual-GS and the
vanilla 3DGS on rendering results masked by the perceptual sensi-
tivity map.

PSNR↑ SSIM↑ LPIPS↓
3DGS* 40.28 0.990 0.014
Ours 40.72 0.991 0.014

5. Conclusion
In this paper, we introduce Perceptual-GS, leveraging scene-
adaptive perceptual densification to achieve superior per-
ceptual quality with constrained Gaussian primitives. The
proposed method promotes the densification of Gaussians
in high-sensitivity regions according to human perception
while suppressing it in low-sensitivity areas, achieving a bal-
ance between reconstruction quality and efficiency. Specifi-
cally, we first extract local scene structures using gradient
magnitude maps and enhance them based on the character-
istics of human perception. During training, a dual-branch
rendering strategy maps 2D sensitivity onto 3D Gaussians
and constrains the number of primitives. In addition to the
adaptive density control in vanilla 3DGS, we densify high-
and medium-sensitivity Gaussians to improve reconstruc-
tion quality. Finally, scene-adaptive depth reinitialization is
applied for better performance. Extensive experiments on
multiple datasets demonstrate that our method effectively
balances reconstruction quality and efficiency, achieving
state-of-the-art performance in novel view synthesis tasks.

9



Perceptual-GS: Scene-adaptive Perceptual Densification for Gaussian Splatting

Acknowledgement
This work was supported in part by the National Natural
Science Foundation of China under Grant 62201387 and
in part by the Fundamental Research Funds for the Central
Universities.

Impact Statement
This paper focuses on advancing 3DGS-based Novel View
Synthesis, guiding the training process of 3DGS with hu-
man perception for a better trade-off between quality and
efficiency. While our work may have potential societal
implications, none require specific emphasis at this time.

References
Barron, J. T., Mildenhall, B., Verbin, D., Srinivasan, P. P.,

and Hedman, P. Mip-NeRF 360: Unbounded Anti-
Aliased Neural Radiance Fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 5470–5479, 2022.

Campbell, F. W. and Robson, J. G. Application of Fourier
Analysis to The Visibility of Gratings. The Journal of
Physiology, 197(3):551, 1968.

Chen, Y., Wu, Q., Lin, W., Harandi, M., and Cai, J. HAC:
Hash-Grid Assisted Context for 3D Gaussian Splatting
Compression. In Proceedings of the European Confer-
ence on Computer Vision, pp. 422–438, 2025.

Deng, X., Diao, C., Li, M., Yu, R., and Xu, D. Efficient
Density Control for 3D Gaussian Splatting. arXiv preprint
arXiv:2411.10133, 2024.

Du, X., Wang, Y., and Yu, X. MVGS: Multi-view-regulated
Gaussian Splatting for Novel View Synthesis. arXiv
preprint arXiv:2410.02103, 2024.

Fang, G. and Wang, B. Mini-Splatting: Representing Scenes
with a Constrained Number of Gaussians. In Proceedings
of the European Conference on Computer Vision, pp. 165–
181, 2024.

Franke, L., Fink, L., and Stamminger, M. VR-Splatting:
Foveated Radiance Field Rendering via 3D Gaussian
Splatting and Neural Points. In Proceedings of the ACM
on Computer Graphics and Interactive Techniques, pp.
1–21, 2025.

Gu, K., Wang, S., Yang, H., Lin, W., Zhai, G., Yang, X., and
Zhang, W. Saliency-guided Quality Assessment of Screen
Content Images. IEEE Transactions on Multimedia, 18
(6):1098–1110, 2016.

Hedman, P., Philip, J., Price, T., Frahm, J.-M., Drettakis,
G., and Brostow, G. Deep Blending for Free-viewpoint

Image-based Rendering. ACM Transactions on Graphics,
37(6):1–15, 2018.

Jiang, H., Xiang, X., Sun, H., Li, H., Zhou, L., Zhang,
X., and Zhang, G. GeoTexDensifier: Geometry-Texture-
Aware Densification for High-Quality Photorealistic 3D
Gaussian Splatting. arXiv preprint arXiv:2412.16809,
2024.

Kerbl, B., Kopanas, G., Leimkühler, T., and Drettakis, G.
3D Gaussian Splatting for Real-Time Radiance Field Ren-
dering. ACM Transactions on Graphics, (4):1–14, 2023.

Kheradmand, S., Rebain, D., Sharma, G., Sun, W., Tseng,
Y.-C., Isack, H., Kar, A., Tagliasacchi, A., and Yi, K. M.
3D Gaussian Splatting as Markov Chain Monte Carlo. In
Proceedings of the Annual Conference on Neural Infor-
mation Processing Systems, pp. 80965–80986, 2024.

Kim, S., Lee, K., and Lee, Y. Color-cued Efficient Densifi-
cation Method for 3D Gaussian Splatting. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pp. 775–783, 2024.

Knapitsch, A., Park, J., Zhou, Q.-Y., and Koltun, V. Tanks
and Temples: Benchmarking Large-scale Scene Recon-
struction. ACM Transactions on Graphics, 36(4):1–13,
2017.

Lee, B., Lee, H., Sun, X., Ali, U., and Park, E. Deblurring
3D Gaussian Splatting. In Proceedings of the European
Conference on Computer Vision, pp. 127–143, 2025.

Li, Z., Yao, S., Chu, Y., Garcia-Fernandez, A. F., Yue, Y.,
Lim, E. G., and Zhu, X. MVG-Splatting: Multi-View
Guided Gaussian Splatting with Adaptive Quantile-Based
Geometric Consistency Densification. arXiv preprint
arXiv:2407.11840, 2024.

Lin, W., Feng, Y., and Zhu, Y. MetaSapiens: Real-Time
Neural Rendering with Efficiency-Aware Pruning and Ac-
celerated Foveated Rendering. In Proceedings of the 30th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pp.
669–682, 2025a.

Lin, X., Luo, S., Shan, X., Zhou, X., Ren, C., Qi, L., Yang,
M.-H., and Vasconcelos, N. HQGS: High-quality Novel
View Synthesis with Gaussian Splatting in Degraded
Scenes. In Proceedings of the International Conference
on Learning Representations, pp. 1–17, 2025b.

Liu, H., Liu, Y., Li, C., Li, W., and Yuan, Y. LGS: A
Light-Weight 4D Gaussian Splatting for Efficient Surgi-
cal Scene Reconstruction. In Proceedings of the Inter-
national Conference on Medical Image Computing and
Computer Assisted Intervention, pp. 660–670, 2024.

10



Perceptual-GS: Scene-adaptive Perceptual Densification for Gaussian Splatting

Liu, W., Guan, T., Zhu, B., Xu, L., Song, Z., Li, D., Wang,
Y., and Yang, W. Efficientgs: Streamlining Gaussian
Splatting for Large-scale High-resolution Scene Repre-
sentation. IEEE MultiMedia, 32(1):61–71, 2025.

Lu, T., Yu, M., Xu, L., Xiangli, Y., Wang, L., Lin, D., and
Dai, B. Scaffold-GS: Structured 3D Gaussians for View-
Adaptive Rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 20654–20664, 2024.

Lubin, J. A Human Vision System Model for Objective
Picture Quality Measurements. In Proceedings of the In-
ternational Broadcasting Conference, pp. 498–503, 1997.

Lyu, Y., Cheng, K., Kang, X., and Chen, X. ResGS: Resid-
ual Densification of 3D Gaussian for Efficient Detail
Recovery. arXiv preprint arXiv:2412.07494, 2024.

Mallick, S. S., Goel, R., Kerbl, B., Steinberger, M., Carrasco,
F. V., and De La Torre, F. Taming 3DGS: High-Quality
Radiance Fields with Limited Resources. In SIGGRAPH
Asia 2024 Conference Papers, pp. 1–11, 2024.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. NeRF: Representing Scenes
as Neural Radiance Fields for View Synthesis. In Proceed-
ings of the European Conference on Computer Vision, pp.
405–421, 2020.

Ni, Z., Ma, L., Zeng, H., Cai, C., and Ma, K.-K. Gra-
dient Direction for Screen Content Image Quality As-
sessment. IEEE Signal Processing Letters, 23(10):1394–
1398, 2016.

Ni, Z., Yang, P., Yang, W., Wang, H., Ma, L., and Kwong, S.
ColNeRF: Collaboration for Generalizable Sparse Input
Neural Radiance Field. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, pp. 4325–4333, 2024.

Poole, B., Jain, A., Barron, J. T., and Mildenhall, B. Dream-
Fusion: Text-to-3D using 2D Diffusion. In Proceedings
of the International Conference on Learning Representa-
tions, pp. 1–18, 2023.

Ren, K., Jiang, L., Lu, T., Yu, M., Xu, L., Ni, Z., and Dai,
B. Octree-GS: Towards Consistent Real-time Rendering
with LOD-Structured 3D Gaussians. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pp. 1–15,
2025.

Ross, J. and Speed, H. D. Contrast Adaptation and Contrast
Masking in Human Vision. Proceedings of the Royal
Society of London. Series B: Biological Sciences, 246
(1315):61–70, 1991.
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Appendix

A. Implementation Details
We adopt the default settings of 3DGS and show the additional hyperparameters introduced in Perceptual-GS in Table 10.

Table 10. Definition and value of hyperparameters introduced in Perceptual-GS.

H.P. Definition value

τe perception-oriented enhancement threshold 0.05
τs perception-oriented smoothing threshold 0.3

λS sensitivity loss weight 0.1

Iterh high-sensitivity Gaussians densification interval 1000
Iterm medium-sensitivity Gaussians densification interval 1500
τh high-sensitivity Gaussians threshold of perceptual sensitivity 0.9
τl low-sensitivity Gaussians threshold of perceptual sensitivity 0.3
τω
h high-sensitivity Gaussians threshold of weight 25
τω
m medium-sensitivity Gaussians threshold of weight 10
τβ high-sensitivity scenes threshold 0.85

τγ scenes with sparse initial point cloud threshold 0.55

B. Additional Qualitative Comparisons with State-of-the-art
We provide additional qualitative comparisons in this section to further showcase the superior visual quality, efficiency,
and balance achieved by Perceptual-GS. As shown in Figure 6, the proposed method excels in reconstructing intricate
details, such as the complete shadow on the crosswalk in Amsterdam. Figure 7 demonstrates that our method generates
novel views with fewer blurred regions while achieving better efficiency in both storage and rendering speed. Besides, our
method achieves better performance in depth rendering, as illustrated in Figure 8. Compared to Pixel-GS, the proposed
method reconstructs scene geometry with higher accuracy. These results underline the robustness and effectiveness of
Perceptual-GS, particularly in large-scale scenes.

We also compare the qualitative results of integrating our proposed method with different existing approaches, as shown in
Figure 9, Figure 10, and Figure 11, where our method is respectively integrated with the vanilla 3DGS, the quality-focused
Pixel-GS, and CoR-GS designed for sparse-view settings, denoted as w/ Ours. Our method significantly reduces blurriness
in the scenes and is able to reconstruct some texture details more clearly.

To better demonstrate the effect of the perceptual sensitivity map, we present the distribution of Gaussian primitives in
regions with different sensitivity in Figure 12 and rendered sensitivity maps during training in Figure 13. Furthermore,
Figure 14 shows the rendered results with the perceptually sensitive regions masked and compares our method with the
vanilla 3DGS. The results indicate that there is no compromise in reconstruction quality in low-sensitive regions, even
though our dual-branch rendering strategy reduces the number of primitives in these areas.

C. Visualization of Ablation Studies
To visually demonstrate the impact of each module on Perceptual-GS, we provide the visualization of our ablation studies.
As shown in “w/o PE”, “w/o HD” and “w/o MD” in Figure 15, compared with the full model, they exhibit more blurriness in
detailed areas, with a noticeable decline in reconstruction quality. In contrast, without scene-adaptive depth reinitialization
and opacity decline, the model still maintains a similar visual effect to the full one, demonstrating the effectiveness of our
proposed perceptual sensitivity-guided densification, as illustrated in “w/o SDR” and “w/o OD” in Figure 15.

D. Ablation on Hyperparameters
We conduct ablation studies on several key hyperparameters to assess their impact on our proposed method.
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Ground Truth Ours Taming-3DGS Pixel-GS Mini-Splatting-D 3DGS

(b) Rome

(a) Amsterdam

Ground Truth

Pixel-GS

Ours

Mini-Splatting-D

Taming-3DGS

3DGS

Figure 6. A qualitative comparison of Perceptual-GS with other methods on Amsterdam and Rome in BungeeNeRF.

OursGround Truth Pixel-GS 3DGS

Ground Truth Ours (3.89, 162)

LPIPS: 0.189

3DGS (5.78, 100)

LPIPS: 0.215

Pixel-GS (8.46, 59)

LPIPS: 0.191

Figure 7. Qualitative efficiency results on Bicycle in Mip-NeRF 360 show that our approach achieves superior visual quality compared to
the quality-focused method Pixel-GS, using less than half the number of Gaussian primitives and more than doubling the rendering speed.
The number of Gaussians (in millions) and FPS are shown as (Number, FPS).

(a) Weight of Sensitivity Loss λS: The balance between the contributions of the two rendering branches to the final
optimization can be adjusted by modifying λS . As shown in Table 11, increasing the weight of the sensitivity branch
effectively reduces the number of Gaussian primitives while maintaining relatively high perceptual quality comparing
with the vanilla 3DGS. However, for better reconstruction quality, we adopt a lower value for λS .

(b) Threshold of Weight τωh and τωm: We evaluate the performance with different values of the weight thresholds τωh
and τωm in Table 11. Since high-sensitivity Gaussian primitives represent more complex structures, a lower threshold
increases their densification. As the threshold decreases, perceptual quality improves slightly, but more Gaussian
primitives are introduced. Similarly, τωm affects quality and efficiency, though to a lesser extent, because dual-branch
rendering drives the sensitivity of more Gaussian primitives toward 0 or 1, resulting in fewer medium-sensitivity
Gaussians. Therefore, we select a relatively higher value for τωh to achieve a better trade-off and a lower value for τωm

14



Perceptual-GS: Scene-adaptive Perceptual Densification for Gaussian Splatting

Figure 8. A qualitative comparison of the rendering depth between Perceptual-GS and Pixel-GS on Mip-NeRF 360.

Figure 9. The qualitative result of the proposed method is based on the vanilla 3DGS on Mip-NeRF 360.
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Figure 10. The qualitative result of the proposed method is based on Pixel-GS on Mip-NeRF 360.

Figure 11. The qualitative result of the proposed method is based on CoR-GS on 24-view Mip-NeRF 360.

to prioritize quality.

(c) Densification Interval Iterh and Iterm: To determine the optimal densification intervals, we experiment with
different values of Iterh and Iterm, as shown in Table 11. The densification intervals for high- and medium-sensitivity
Gaussians, like τωh and τωm, also influence the model’s quality and efficiency. We find that their effects are similar,
so we use a smaller Iterh to improve reconstruction quality while selecting a slightly larger Iterm to identify
medium-sensitivity Gaussian primitives during optimization better.
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Figure 12. The visualization of the effect of perceptual sensitivity map in different spatial regions. Perceptual-GS distributes more
primitives to perceptually sensitive regions.

Figure 13. The visualization of perceptual sensitivity maps rendered during the training process.

E. Per Scene Quantitative Comparisons with State-of-the-art
We present per-scene quantitative comparisons with existing methods to further illustrate the improvements in quality,
efficiency, and their balance achieved by Perceptual-GS, as shown in Table 12, Table 13, Table 14, Table 15, Table 16,
Table 17, Table 18, Table 19, Table 20, Table 21, Table 22, Table 23. To evaluate the overall performance of the model in
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Figure 14. Qualitative comparison of the reconstruction quality of low-sensitive regions between 3DGS and the proposed method.

terms of both efficiency and perceptual quality, we introduce a new metric, QEB:

QEB =
100×#G× LPIPS

FPS
, (21)

which jointly considers rendering quality and efficiency, and serves as a reference for balancing the trade-off between
reconstruction fidelity and speed. The proposed method demonstrates notable improvements in perceptual metrics such as
LPIPS, along with a significant reduction in the number of Gaussian primitives. Notably, Perceptual-GS achieves a superior
quality-efficiency trade-off in large-scale scenes from BungeeNeRF, highlighting its exceptional robustness.
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Figure 15. Visual results of the ablation study, highlighting the impact of each module on reconstruction quality.

Table 11. Ablation studies on hyperparameters, with the adopted settings highlighted. All metrics are evaluated on the Mip-NeRF 360
dataset and averaged across scenes.

H.P. Value PSNR↑ SSIM↑ LPIPS↓ #G↓

λS

0.1 28.01 0.839 0.172 2.69M
0.3 27.82 0.835 0.181 2.10M
0.5 27.48 0.823 0.196 1.92M

τω
h

10 28.05 0.841 0.166 3.61M
15 28.00 0.840 0.169 3.09M
25 28.01 0.839 0.172 2.69M

τω
m

10 28.01 0.839 0.172 2.69M
15 27.98 0.838 0.173 2.65M
25 27.97 0.838 0.174 2.63M

Iterh
1000 28.01 0.839 0.172 2.69M
1500 27.95 0.838 0.174 2.57M
2000 27.93 0.837 0.175 2.52M

Iterm
1000 27.92 0.839 0.172 2.70M
1500 28.01 0.839 0.172 2.69M
2000 27.98 0.839 0.173 2.66M

F. Per Scene Quantitative Result Integrating the Proposed Method with Existing Works
In this section, we provide per scene quantitative results on additional metrics to highlight the effectiveness of integrating
our method with existing approaches. As shown in Table 24, Table 25, Table 26, Table 27, Table 28, Table 29, Table 30,
Table 31, Table 32, Table 33, Table 34, Table 35, we integrate our method with 3DGS and Pixel-GS, achieving significant
improvements in both reconstruction quality and efficiency. While the vanilla Pixel-GS demonstrates a poor quality-
efficiency trade-off on BungeeNeRF, our method markedly enhances its performance in large-scale scenes, as detailed
in Table 35. In Table 36, Table 37, Table 38, we integrate our method with CoR-GS. Since CoR-GS fails to distribute a
sufficient number of Gaussian primitives for high-quality reconstruction under sparse-view settings, we only report the
results in terms of quality metrics for comparison. Although the original method achieves slightly higher PSNR and SSIM
in certain scenes due to blurriness, our method consistently outperforms CoR-GS in the perceptual metric LPIPS across all
scenes, indicating superior perceptual quality.
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Table 12. Per scene quantitative results on Mip-NeRF 360, Tanks & Temples and Deep Blending, comparing our method with state-of-the-
art methods in terms of PSNR↑.

Method PSNR↑
Bicycle Bonsai Counter Kitchen Room Stump Garden Flowers Treehill Train Truck Drjohnson Playroom

3DGS* 25.617 32.349 29.144 31.450 31.628 26.913 27.735 21.808 22.736 21.768 25.452 29.139 29.935
Pixel-GS* 25.733 32.649 29.227 31.795 31.783 27.182 27.820 21.885 22.572 21.985 25.438 28.130 29.708
Mini-Splatting-D 25.55 31.72 28.72 31.75 31.41 27.11 27.67 21.50 22.13 21.04 25.43 29.32 30.43
Taming-3DGS 25.47 32.22 29.03 31.74 32.12 26.96 27.64 21.76 23.09 22.23 25.90 29.68 30.44
Ours 25.956 32.730 29.452 32.005 32.220 27.302 27.961 21.798 22.634 22.154 25.637 29.663 30.219

Table 13. Per scene quantitative results on Mip-NeRF 360, Tanks & Temples and Deep Blending, comparing our method with state-of-the-
art methods in terms of SSIM↑.

Method SSIM↑
Bicycle Bonsai Counter Kitchen Room Stump Garden Flowers Treehill Train Truck Drjohnson Playroom

3DGS* 0.778 0.948 0.916 0.933 0.927 0.784 0.874 0.621 0.651 0.810 0.879 0.898 0.902
Pixel-GS* 0.792 0.951 0.920 0.936 0.930 0.797 0.878 0.652 0.652 0.823 0.883 0.886 0.900
Mini-Splatting-D 0.798 0.946 0.913 0.934 0.928 0.804 0.878 0.642 0.640 0.817 0.890 0.905 0.908
Taming-3DGS 0.78 0.94 0.91 0.93 0.92 0.78 0.87 0.61 0.65 0.81 0.89 0.91 0.91
Ours 0.805 0.953 0.922 0.936 0.936 0.807 0.877 0.654 0.657 0.826 0.888 0.905 0.908

Table 14. Per scene quantitative results on Mip-NeRF 360, Tanks & Temples and Deep Blending, comparing our method with state-of-the-
art methods in terms of LPIPS↓.

Method LPIPS↓
Bicycle Bonsai Counter Kitchen Room Stump Garden Flowers Treehill Train Truck Drjohnson Playroom

3DGS* 0.205 0.173 0.178 0.113 0.191 0.208 0.103 0.329 0.319 0.209 0.147 0.247 0.246
Pixel-GS* 0.174 0.161 0.162 0.107 0.184 0.181 0.094 0.253 0.269 0.182 0.121 0.256 0.243
Mini-Splatting-D 0.158 0.175 0.172 0.114 0.190 0.169 0.090 0.255 0.262 0.181 0.100 0.218 0.204
Taming-3DGS 0.20 0.20 0.20 0.12 0.21 0.20 0.10 0.34 0.31 0.21 0.13 0.24 0.24
Ours 0.165 0.151 0.157 0.108 0.168 0.175 0.098 0.257 0.273 0.184 0.117 0.230 0.231

Table 15. Per scene quantitative results on Mip-NeRF 360, Tanks & Temples and Deep Blending, comparing our method with state-of-the-
art methods in terms of the number of Gaussian primitives (#G)↓.

Method #G↓
Bicycle Bonsai Counter Kitchen Room Stump Garden Flowers Treehill Train Truck Drjohnson Playroom

3DGS* 5.78M 1.25M 1.17M 1.75M 1.49M 4.73M 5.07M 3.38M 3.62M 1.08M 2.58M 3.28M 2.33M
Pixel-GS* 8.46M 2.07M 2.50M 3.03M 2.49M 6.46M 7.55M 7.08M 7.47M 3.80M 5.18M 5.51M 3.76M
Mini-Splatting-D 6.03M 3.78M 3.75M 3.78M 4.05M 5.41M 5.81M 4.87M 4.86M 3.95M 4.58M 4.91M 4.35M
Taming-3DGS 5.99M 1.19M 1.19M 1.61M 1.55M 4.87M 5.07M 3.62M 3.77M 1.09M 2.58M 3.27M 2.33M
Ours 3.89M 1.58M 1.49M 1.63M 1.74M 3.81M 3.03M 3.55M 3.48M 1.39M 2.05M 3.43M 2.29M
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Table 16. Per scene quantitative results on Mip-NeRF 360, Tanks & Temples and Deep Blending, comparing our method with state-of-the-
art methods in terms of rendering speed (FPS)↑.

Method FPS↑
Bicycle Bonsai Counter Kitchen Room Stump Garden Flowers Treehill Train Truck Drjohnson Playroom

3DGS* 100 310 244 195 235 151 122 200 176 285 208 160 228
Pixel-GS* 59 184 122 113 141 95 76 71 81 111 91 89 138
Mini-Splatting-D 107 135 109 112 137 121 105 127 125 117 113 147 170
Taming-3DGS 88 140 137 122 129 122 107 129 120 152 146 111 148
Ours 162 206 155 154 173 156 181 151 154 210 225 143 213

Table 17. Per scene quantitative results on Mip-NeRF 360, Tanks & Temples and Deep Blending, comparing our method with state-of-the-
art methods in terms of the balance between quality and efficiency (QEB)↓.

Method QEB↓
Bicycle Bonsai Counter Kitchen Room Stump Garden Flowers Treehill Train Truck Drjohnson Playroom

3DGS* 1.185 0.070 0.085 0.101 0.121 0.652 0.428 0.556 0.656 0.079 0.182 0.506 0.251
Pixel-GS* 2.481 0.182 0.332 0.284 0.323 1.231 0.934 2.503 2.481 0.616 0.694 1.585 0.662
Mini-Splatting-D 0.890 0.490 0.592 0.385 0.562 0.756 0.498 0.978 1.019 0.827 0.644 0.728 0.522
Taming-3DGS 1.361 0.170 0.174 0.158 0.252 0.798 0.474 0.954 0.974 0.151 0.230 0.707 0.378
Ours 0.396 0.116 0.151 0.114 0.169 0.427 0.164 0.604 0.617 0.122 0.107 0.552 0.248

Table 18. Per scene quantitative results on BungeeNeRF, comparing our method with state-of-the-art methods in terms of PSNR↑.

Method PSNR↑
Amsterdam Barcelona Bilbao Chicago Hollywood Pompidou Quebec Rome

3DGS* 27.600 27.379 28.800 27.972 26.150 26.997 28.711 27.535
Pixel-GS* 27.756 26.780 28.582 27.524 26.121 OOM 28.245 26.583
Mini-Splatting-D 27.008 26.227 27.990 27.376 26.042 26.046 27.804 16.141
Taming-3DGS 27.553 OOM 28.849 28.292 26.408 OOM 28.900 27.484
Ours 27.887 27.546 29.081 28.390 26.146 27.180 29.013 27.647

Table 19. Per scene quantitative results on BungeeNeRF, comparing our method with state-of-the-art methods in terms of SSIM↑.

Method SSIM↑
Amsterdam Barcelona Bilbao Chicago Hollywood Pompidou Quebec Rome

3DGS* 0.913 0.915 0.915 0.927 0.868 0.916 0.931 0.914
Pixel-GS* 0.916 0.904 0.912 0.921 0.866 OOM 0.924 0.896
Mini-Splatting-D 0.909 0.894 0.911 0.920 0.865 0.901 0.920 0.568
Taming-3DGS 0.911 OOM 0.918 0.931 0.869 OOM 0.936 0.914
Ours 0.922 0.919 0.922 0.933 0.868 0.922 0.938 0.918

Table 20. Per scene quantitative results on BungeeNeRF, comparing our method with state-of-the-art methods in terms of LPIPS↓.

Method LPIPS↓
Amsterdam Barcelona Bilbao Chicago Hollywood Pompidou Quebec Rome

3DGS* 0.100 0.087 0.099 0.086 0.134 0.095 0.094 0.102
Pixel-GS* 0.095 0.101 0.103 0.090 0.138 OOM 0.106 0.129
Mini-Splatting-D 0.102 0.117 0.104 0.097 0.158 0.115 0.111 0.385
Taming-3DGS 0.113 OOM 0.100 0.088 0.150 OOM 0.096 0.112
Ours 0.087 0.084 0.092 0.081 0.140 0.089 0.087 0.098
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Table 21. Per scene quantitative results on BungeeNeRF, comparing our method with state-of-the-art methods in terms of the number of
Gaussian primitives(#G)↓.

Method #G↓
Amsterdam Barcelona Bilbao Chicago Hollywood Pompidou Quebec Rome

3DGS* 6.19M 8.46M 5.51M 6.32M 7.04M 9.11M 6.01M 6.74M
Pixel-GS* 10.26M 11.04M 7.98M 9.76M 9.88M OOM 8.37M 8.08M
Mini-Splatting-D 6.65M 6.79M 5.40M 5.65M 5.74M 6.73M 5.72M 5.99M
Taming-3DGS 6.20M OOM 5.51M 6.30M 7.06M OOM 6.04M 6.75M
Ours 4.96M 5.97M 3.76M 4.48M 4.88M 6.12M 4.57M 5.03M

Table 22. Per scene quantitative results on BungeeNeRF, comparing our method with state-of-the-art methods in terms of rendering
speed(FPS)↑.

Method FPS↑
Amsterdam Barcelona Bilbao Chicago Hollywood Pompidou Quebec Rome

3DGS* 70 63 72 67 72 57 76 71
Pixel-GS* 42 48 54 43 52 OOM 57 62
Mini-Splatting-D 80 80 97 93 90 80 85 85
Taming-3DGS 63 OOM 66 70 65 OOM 66 66
Ours 85 83 88 92 97 78 98 87

Table 23. Per scene quantitative results on BungeeNeRF, comparing our method with state-of-the-art methods in terms of the balance
between quality and efficiency(QEB)↓.

Method QEB↓
Amsterdam Barcelona Bilbao Chicago Hollywood Pompidou Quebec Rome

3DGS* 0.884 1.168 0.758 0.811 1.310 1.518 0.743 0.968
Pixel-GS* 2.321 2.323 1.522 2.043 2.622 OOM 1.557 1.681
Mini-Splatting-D 0.848 0.993 0.579 0.589 1.008 0.967 0.747 2.713
Taming-3DGS 1.112 OOM 0.835 0.792 1.629 OOM 0.879 1.145
Ours 0.508 0.604 0.393 0.394 0.704 0.698 0.406 0.567

Table 24. Per scene quantitative result of the proposed method is based on different models on Mip-NeRF 360, Tanks & Temples, and
Deep Blending in terms of PSNR↑. Metrics are averaged across the scenes.

Method PSNR↑
Bicycle Bonsai Counter Kitchen Room Stump Garden Flowers Treehill Train Truck Drjohnson Playroom

3DGS* 25.617 32.349 29.144 31.450 31.628 26.913 27.735 21.808 22.736 21.768 25.452 29.139 29.935
w/ Ours 25.956 32.730 29.452 32.005 32.220 27.302 27.961 21.798 22.634 22.154 25.637 29.663 30.219
∆ +0.339 +0.381 +0.308 +0.555 +0.592 +0.389 +0.226 -0.010 -0.102 +0.386 +0.185 +0.524 +0.284

Pixel-GS* 25.733 32.649 29.227 31.795 31.783 27.182 27.820 21.885 22.572 21.985 25.438 28.130 29.708
w/ Ours 25.982 32.746 29.425 32.042 32.204 27.392 27.959 21.867 22.516 22.291 25.604 29.488 29.931
∆ +0.249 +0.097 +0.198 +0.247 +0.421 +0.210 +0.139 -0.018 -0.056 +0.306 +0.166 +1.358 +0.223
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Table 25. Per scene quantitative result of the proposed method is based on different models on Mip-NeRF 360, Tanks & Temples, and
Deep Blending in terms of SSIM↑.

Method SSIM↑
Bicycle Bonsai Counter Kitchen Room Stump Garden Flowers Treehill Train Truck Drjohnson Playroom

3DGS* 0.778 0.948 0.916 0.933 0.927 0.784 0.874 0.621 0.651 0.810 0.879 0.898 0.902
w/ Ours 0.805 0.953 0.922 0.936 0.936 0.807 0.877 0.654 0.657 0.826 0.888 0.905 0.908
∆ +0.027 +0.005 +0.006 +0.003 +0.009 +0.023 +0.003 +0.033 +0.006 +0.016 +0.009 +0.007 +0.006

Pixel-GS* 0.792 0.951 0.920 0.936 0.930 0.797 0.878 0.652 0.652 0.823 0.883 0.886 0.900
w/ Ours 0.809 0.953 0.922 0.936 0.936 0.812 0.880 0.663 0.657 0.832 0.885 0.901 0.900
∆ +0.017 +0.002 +0.002 +0.000 +0.006 +0.015 +0.002 +0.011 +0.005 +0.009 +0.002 +0.015 +0.000

Table 26. Per scene quantitative result of the proposed method is based on different models on Mip-NeRF 360, Tanks & Temples, and
Deep Blending in terms of LPIPS↓.

Method LPIPS↓
Bicycle Bonsai Counter Kitchen Room Stump Garden Flowers Treehill Train Truck Drjohnson Playroom

3DGS* 0.205 0.173 0.178 0.113 0.191 0.208 0.103 0.329 0.319 0.209 0.147 0.247 0.246
w/ Ours 0.165 0.151 0.157 0.108 0.168 0.175 0.098 0.257 0.273 0.184 0.117 0.230 0.231
∆ -0.040 -0.022 -0.021 -0.005 -0.023 -0.033 -0.005 -0.072 -0.046 -0.025 -0.030 -0.017 -0.015

Pixel-GS* 0.174 0.161 0.162 0.107 0.184 0.181 0.094 0.253 0.269 0.182 0.121 0.256 0.243
w/ Ours 0.158 0.149 0.153 0.106 0.167 0.169 0.092 0.240 0.265 0.171 0.113 0.233 0.233
∆ -0.016 -0.012 -0.009 -0.001 -0.017 -0.012 -0.002 -0.013 -0.004 -0.011 -0.008 -0.023 -0.010

Table 27. Per scene quantitative result of the proposed method is based on different models on Mip-NeRF 360, Tanks & Temples, and
Deep Blending in terms of the number of Gaussian primitives(#G)↓.

Method #G↓
Bicycle Bonsai Counter Kitchen Room Stump Garden Flowers Treehill Train Truck Drjohnson Playroom

3DGS* 5.78M 1.25M 1.17M 1.75M 1.49M 4.73M 5.07M 3.38M 3.62M 1.08M 2.58M 3.28M 2.33M
w/ Ours 3.89M 1.58M 1.49M 1.63M 1.74M 3.81M 3.03M 3.55M 3.48M 1.39M 2.05M 3.43M 2.29M
∆ -1.89M +0.33M +0.32M -0.12M +0.25M -0.92M -2.04M +0.17M -0.14M +0.31M -0.53M +0.15M -0.04M

Pixel-GS* 8.46M 2.07M 2.50M 3.03M 2.49M 6.46M 7.55M 7.08M 7.47M 3.80M 5.18M 5.51M 3.76M
w/ Ours 4.47M 1.99M 2.06M 2.07M 2.19M 4.36M 3.98M 4.69M 4.53M 2.74M 3.18M 4.34M 2.84M
∆ -3.99M -0.08M -0.44M -0.96M -0.30M -2.10M -3.57M -2.39M -2.94M -1.06M -2.00M -1.17M -0.92M

Table 28. Per scene quantitative result of the proposed method is based on different models on Mip-NeRF 360, Tanks & Temples, and
Deep Blending in terms of rendering speed(FPS)↑.

Method FPS↑
Bicycle Bonsai Counter Kitchen Room Stump Garden Flowers Treehill Train Truck Drjohnson Playroom

3DGS* 100 310 244 195 235 151 122 200 176 285 208 160 228
w/ Ours 162 206 155 154 173 156 181 151 154 210 225 143 213
∆ +62 -104 -89 -41 -62 +5 +59 -49 -22 -75 +17 -17 -15

Pixel-GS* 59 184 122 113 141 95 76 71 81 111 91 89 138
w/ Ours 129 158 116 121 130 133 128 109 120 138 149 106 163
∆ +70 -26 -6 +8 -11 +38 +52 +38 +39 +27 +58 +17 +25
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Table 29. Per scene quantitative result of the proposed method is based on different models on Mip-NeRF 360, Tanks & Temples, and
Deep Blending in terms of the balance between quality and efficiency(QEB)↓.

Method QEB↓
Bicycle Bonsai Counter Kitchen Room Stump Garden Flowers Treehill Train Truck Drjohnson Playroom

3DGS* 1.185 0.070 0.085 0.101 0.121 0.652 0.428 0.556 0.656 0.079 0.182 0.506 0.251
w/ Ours 0.396 0.116 0.151 0.114 0.169 0.427 0.164 0.604 0.617 0.122 0.107 0.552 0.248
∆ -0.789 +0.046 +0.066 +0.013 +0.048 -0.225 -0.264 +0.048 -0.039 +0.043 -0.075 +0.046 -0.003

Pixel-GS* 2.481 0.182 0.332 0.284 0.323 1.231 0.934 2.503 2.481 0.616 0.694 1.585 0.662
w/ Ours 0.547 0.188 0.272 0.181 0.281 0.554 0.286 1.033 1.000 0.340 0.241 0.954 0.406
∆ -1.934 +0.006 -0.060 -0.103 -0.042 -0.677 -0.648 -1.470 -1.481 -0.276 -0.453 -0.631 -0.256

Table 30. Per scene quantitative result of the proposed method is based on different models on BungeeNeRF in terms of PSNR↑. Metrics
are averaged across the scenes.

Method PSNR↑
Amsterdam Barcelona Bilbao Chicago Hollywood Pompidou Quebec Rome

3DGS* 27.600 27.379 28.800 27.972 26.150 26.997 28.711 27.535
w/ Ours 27.887 27.546 29.081 28.390 26.146 27.180 29.013 27.647
∆ +0.287 +0.167 +0.281 +0.418 -0.004 +0.183 +0.302 +0.112

Pixel-GS* 27.756 26.780 28.582 27.524 26.121 OOM 28.245 26.583
w/ Ours 27.975 27.136 28.938 28.362 25.997 27.010 28.672 26.986
∆ +0.219 +0.356 +0.356 +0.838 -0.124 — +0.427 +0.403

Table 31. Per scene quantitative result of the proposed method is based on different models on BungeeNeRF in terms of SSIM↑.

Method SSIM↑
Amsterdam Barcelona Bilbao Chicago Hollywood Pompidou Quebec Rome

3DGS* 0.913 0.915 0.915 0.927 0.868 0.916 0.931 0.914
w/ Ours 0.922 0.919 0.922 0.933 0.868 0.922 0.938 0.918
∆ +0.009 +0.004 +0.007 +0.006 +0.000 +0.006 +0.007 +0.004

Pixel-GS* 0.916 0.904 0.912 0.921 0.866 OOM 0.924 0.896
w/ Ours 0.922 0.912 0.920 0.930 0.863 0.918 0.932 0.905
∆ +0.006 +0.008 +0.008 +0.009 -0.003 — +0.008 +0.009

Table 32. Per scene quantitative result of the proposed method is based on different models on BungeeNeRF in terms of LPIPS↓.

Method LPIPS↓
Amsterdam Barcelona Bilbao Chicago Hollywood Pompidou Quebec Rome

3DGS* 0.100 0.087 0.099 0.086 0.134 0.095 0.094 0.102
w/ Ours 0.087 0.084 0.092 0.081 0.140 0.089 0.087 0.098
∆ -0.013 -0.003 -0.007 -0.005 +0.006 -0.006 -0.007 -0.004

Pixel-GS* 0.095 0.101 0.103 0.090 0.138 OOM 0.106 0.129
w/ Ours 0.085 0.093 0.094 0.081 0.144 0.092 0.094 0.117
∆ -0.010 -0.008 -0.009 -0.009 +0.006 — -0.012 -0.012
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Table 33. Per scene quantitative result of the proposed method is based on different models on BungeeNeRF in terms of the number of
Gaussian primitives(#G)↓.

Method #G↓
Amsterdam Barcelona Bilbao Chicago Hollywood Pompidou Quebec Rome

3DGS* 6.19M 8.46M 5.51M 6.32M 7.04M 9.11M 6.01M 6.74M
w/ Ours 4.96M 5.97M 3.76M 4.48M 4.88M 6.12M 4.57M 5.03M
∆ -1.23M -2.49M -1.75M -1.84M -2.16M -2.99M -1.44M -1.71M

Pixel-GS* 10.26M 11.04M 7.98M 9.76M 9.88M OOM 8.37M 8.08M
w/ Ours 6.60M 6.64M 4.57M 5.58M 5.85M 7.39M 5.46M 5.27M
∆ -3.66M -4.40M -3.41M -4.18M -4.03M — -2.91M -2.81M

Table 34. Per scene quantitative result of the proposed method is based on different models on BungeeNeRF in terms of rendering
speed(FPS)↑.

Method FPS↑
Amsterdam Barcelona Bilbao Chicago Hollywood Pompidou Quebec Rome

3DGS* 70 63 72 67 72 57 76 71
w/ Ours 85 83 88 92 97 78 98 87
∆ +15 +20 +16 +25 +25 +21 +22 +16

Pixel-GS* 42 48 54 43 52 OOM 57 62
w/ Ours 65 75 76 74 82 64 83 88
∆ +23 +27 +22 +31 +30 — +26 +26

Table 35. Per scene quantitative result of the proposed method is based on different models on BungeeNeRF in terms of the balance
between quality and efficiency(QEB)↓.

Method QEB↓
Amsterdam Barcelona Bilbao Chicago Hollywood Pompidou Quebec Rome

3DGS* 0.884 1.168 0.758 0.811 1.310 1.518 0.743 0.968
w/ Ours 0.508 0.604 0.393 0.394 0.704 0.698 0.406 0.567
∆ -0.376 -0.564 -0.365 -0.417 -0.606 -0.820 -0.337 -0.401

Pixel-GS* 2.321 2.323 1.522 2.043 2.622 OOM 1.557 1.681
w/ Ours 0.863 0.823 0.565 0.611 1.027 1.062 0.618 0.701
∆ -1.458 -1.500 -0.957 -1.432 -1.595 — -0.939 -0.980

Table 36. Per scene quantitative result of the proposed method is based on CoR-GS on 24-view Mip-NeRF 360 in terms of PSNR↑.
Metrics are averaged across the scenes.

Method PSNR↑
Bicycle Bonsai Counter Kitchen Room Stump Garden

CoR-GS* 20.496 24.905 23.331 21.973 25.376 19.819 19.941
w/ Ours 19.757 25.159 23.557 23.405 25.453 18.996 20.598
∆ -0.739 +0.254 +0.226 +1.432 +0.077 -0.823 +0.657
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Table 37. Per scene quantitative result of the proposed method is based on CoR-GS on 24-view Mip-NeRF 360 in terms of SSIM↑.

Method SSIM↑
Bicycle Bonsai Counter Kitchen Room Stump Garden

CoR-GS* 0.479 0.834 0.791 0.836 0.858 0.407 0.440
w/ Ours 0.465 0.847 0.797 0.855 0.854 0.399 0.549
∆ -0.014 +0.013 +0.006 +0.019 -0.004 -0.008 +0.109

Table 38. Per scene quantitative result of the proposed method is based on CoR-GS on 24-view Mip-NeRF 360 in terms of LPIPS↓.

Method LPIPS↓
Bicycle Bonsai Counter Kitchen Room Stump Garden

CoR-GS* 0.491 0.212 0.213 0.158 0.177 0.605 0.529
w/ Ours 0.406 0.171 0.190 0.147 0.175 0.509 0.368
∆ -0.085 -0.041 -0.023 -0.011 -0.002 -0.096 -0.161
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